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Abstract
Concept learning seeks to extract semantic and
interpretable representations of atomic concepts
from high-dimensional data such as images and
text, which can be instrumental to a variety of
downstream tasks (e.g., image generation/editing).
Despite its importance, the theoretical founda-
tions for learning atomic concepts and their inter-
actions, especially from multimodal distributions,
remain underexplored. In this work, we estab-
lish fundamental conditions for learning atomic
multimodal concepts and their underlying inter-
actions With identfiability guarantees. We formu-
late concept learning as a latent variable identifi-
cation problem, representing atomic concepts in
each modality as latent variables, with a graphical
model to specify their interactions across modal-
ities. Our theoretical contribution is to provide
component-wise identifiability of atomic concepts
under flexible, nonparametric conditions that ac-
commodate both continuous and discrete modal-
ities. Building on these theoretical insights, we
demonstrate the practical utility of our theory in a
downstream task text-to-image (T2I) generation.
We develop a principled T2I model that explic-
itly learns atomic textual and visual concepts with
sparse connections between them, allowing us
to achieve image generation and editing at the
atomic concept level. Empirical evaluations show
that our model outperforms existing methods in
T2I generation tasks, offering superior controlla-
bility and interpretability.

1 Introduction

Concept learning seeks to extract semantic and interpretable
representations from high-dimensional data, such as images
and text. These representations are essential for a wide
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range of machine learning tasks, including visual under-
standing and generation, transfer learning, and explainable
decision making (Gal et al., 2022a; Jahanian et al., 2019;
Härkönen et al., 2020; Shen et al., 2020; Wu et al., 2021;
Ruiz et al., 2023; Burgess et al., 2019; Locatello et al., 2020;
Du et al., 2022a;b; Liu et al., 2023). For example, learning
atomic concepts within both visual and textual modalities,
along with their patterns of interaction, facilitates seamless
alignment between these modalities. This alignment can
significantly enhance downstream tasks such as controllable
text-to-image (T2I) generation and editing.

However, achieving this alignment without proper guid-
ing principles is highly challenging. In practice, current
T2I methods often suffer from controllability issues, where
modifications specified in the text input lead to unintended
variations in the generated images (Saharia et al., 2022;
Ding et al., 2022; Esser et al., 2024; Liu et al., 2022; Lee
et al., 2023; Liu et al., 2024; Betker et al., 2023). These
issues stem from the entanglement of multimodal concepts
and the resulting misalignment. These empirical challenges
underscore the need for principled approaches to concept
learning. Unfortunately, the theoretical foundations in this
area have been lacking. Only recently, Kong et al. (2024)
have formalized concept learning within the framework of
latent-variable identification, proposing identification condi-
tions for learning discrete hierarchical models. Nevertheless,
their theoretical formulation is limited to single-modal dis-
tributions, restricting its applicability for aligning concepts
across different modalities as required in T2I applications.

In this work, we seek to establish fundamental conditions
for learning atomic concepts and their interactions from
multimodal distributions. We approach this challenge by
framing it as a latent variable identification problem, where
atomic concepts and their interactions are represented as
latent variables and a graphical model among them. Under
this framework, our goal can be formalized as:

Under what conditions can we identify multimodal latent
variables and the underlying graph?

Closely related to our problem is the literature on mul-
timodal causal representation learning (Yao et al., 2024;
Morioka & Hyvarinen, 2023; 2024; Daunhawer et al., 2023;
Sturma et al., 2023; Gresele et al., 2020; Sun et al., 2024;
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von Kügelgen et al., 2021). In particular, Daunhawer et al.
(2023); von Kügelgen et al. (2021); Yao et al. (2024); Gre-
sele et al. (2020) have demonstrated that a representation
block can be identifiable if it is shared across different
modalities. However, these block-wise identifiability re-
sults are limited to the shared structure blocks, which may
still encompass mixtures of multiple atomic concepts. This
limitation hinders their applicability for tasks requiring pre-
cise control over individual concepts, such as controllable
text-to-image (T2I) editing, a challenge our work sets out to
address. While Morioka & Hyvarinen (2024) and Morioka
& Hyvarinen (2023) have achieved component-wise identi-
fiability, their approaches rely on semi-parametric assump-
tions about the latent distributions, including the use of the
exponential family and assumptions of additive causal influ-
ences. These conditions may be too restrictive for modeling
the complex, high-dimensional image-text distributions en-
countered in real-world applications. Furthermore, Sun et al.
(2024) offer component-wise identifiability for multimodal
representations by leveraging sparse connections between
modalities without specific parametric assumptions. How-
ever, their method depends on particular sparsity conditions
involving Jacobian matrices of functions among continuous
variables, making their theoretical framework incompatible
with modalities that include discrete variables, such as text.

In this work, we establish component-wise identifiability
for atomic concepts under flexible nonparametric conditions
that accommodate both continuous and discrete modalities.
Table 1 highlights the key distinctions between our approach
and existing theoretical frameworks. Specifically, we as-
sume that the paired text t and image i are transformations
of underlying atomic textual concepts zT := [zTm]

d(zT)
m=1 and

visual concepts zI := [zIn]
d(zI)
n=1 respectively. The abstract

discrete concepts zT generate detailed visual concepts zI

via a sparse graphical model (Figure 1). At a high level, our
identification theory consists of two stages. First, we lever-
age the distribution changes in the vision modality p(i|t)
induced by variations in the text t to identify atomic vision
concepts zIm. Intuitively, if the visual observation p(i|t)
varies sufficiently, one can discern fundamental visual vari-
ations. For example, an infant might learn atomic visual
concepts like “fur” and “wings” by observing and compar-
ing grouped images of “dogs” and “birds”. As the second
step, we show that once visual concepts zIn are identified,
they can facilitate the identification of atomic text concepts
zTm provided that the interactions between visual and textual
atomic concepts are not overly complex. Returning to the
running example, after recognizing atomic concepts “wings”
and “fur”, the infant can ground these two visual concepts
with their corresponding, more abstract textual concepts.

Our theoretical insights lead to a principled T2I genera-
tive model ConceptAligner in which we explicitly learn

disentangled text and vision representations with sparse
connections. In our empirical evaluations, ConceptAligner
outperforms state-of-the-art text-to-image models in control-
lable generation tasks. Moreover, thanks to the identifiabil-
ity theory, ConceptAligner offers interpretability, enabling
more precise manipulation.

2 Related Work

Concept learning. A flux of recent work focuses on learn-
ing interpretable concepts from images. The concept bottle-
neck model (Koh et al., 2020) makes predictions on human-
annotated concepts and then applies these concepts to down-
stream tasks. This approach has spurred a significant amount
of follow-up work (Zarlenga et al., 2022; Yuksekgonul et al.,
2023; Kim et al., 2023; Havasi et al., 2022; Shang et al.,
2024; Chauhan et al., 2023). A separate line of research
aims to achieve unsupervised concept discovery from vision
data by proposing novel neural network architectures and
training objectives (Burgess et al., 2019; Locatello et al.,
2020; Du et al., 2022a;b; Liu et al., 2023). In contrast,
our work considers the theoretical perspective of concept
learning and provides reasonable identification conditions
with empirical implementations. Rajendran et al. (2024)
formulate concepts as affine subspaces of latent variables
and provide identifiability guarantees for these subspaces.
In contrast, we directly identify each latent variable, which
enables us to directly control atomic aspects. Similar to
our work, Kong et al. (2024) formulate concept learning as
the identification of a discrete hierarchical model and offer
theoretical guarantees. However, this work assumes fully
discrete latent variables and a single modality, which fails
to capture the multimodal alignment problem we consider.

Causal representation learning. Causal representation
learning seeks to infer high-level causal variables from
raw, low-dimensional observations (Schölkopf et al., 2021)
with identifiability guarantees. Unfortunately, it has been
shown that identifying latent variables in general nonlin-
ear causal models is impossible without additional condi-
tions (Hyvärinen & Pajunen, 1999; Locatello et al., 2019).
Existing identifiability conditions include (1) constraints on
the generating function (e.g., sparsity) (Xu et al., 2024a;
Zheng et al., 2022; Zheng & Zhang, 2023; Buchholz et al.,
2022), (2) multiple distributions arising from the same
causal model (Hyvarinen et al., 2019; Khemakhem et al.,
2020a; Zhang et al., 2024; Kong et al., 2022; von Kügelgen
et al., 2024; Jiang & Aragam, 2023; Brehmer et al., 2022;
Xie et al., 2023); 3) temporal transitions among latent vari-
ables (Yao et al., 2022; 2021; Klindt et al., 2021; Hyvarinen
& Morioka, 2017; Lachapelle et al., 2024) and (4) paired
multimodal data (e.g., text-image pairs) (Yao et al., 2024;
Morioka & Hyvarinen, 2023; 2024; Daunhawer et al., 2023;
Sturma et al., 2023; Gresele et al., 2020). Our work aligns
most closely with the multimodal category. To contextual-
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ize our contributions, Table 1 compares prior multimodal
identification theories with ours and we provide detailed
discussion in Section 4.

Table 1: Related work on multimodal causal represen-
tation learning. This table considers whether the latent-
variable distribution is nonparametric, whether the identi-
fiability is component-wise, and whether the framework
accommodates discrete latent variables.

Related work Nonparametric Prior Component-wise Iden. Discrete Latents

von Kügelgen et al. (2021) ✓ × ×
Daunhawer et al. (2023) ✓ × ×
Morioka & Hyvarinen (2024) × ✓ ×
Yao et al. (2024) ✓ × ×
Sun et al. (2024) ✓ × ×
Ours ✓ ✓ ✓

Controllable text-to-image generation. ControlGAN (Li
et al., 2019) introduces a word-level generator and discrim-
inator to disentangle different visual attributes. Since it
is challenging to control the output with a text prompt,
many methods resort to using additional supervision, such
as canny edges and depth maps (Zhang et al., 2023; Zhao
et al., 2024; Mou et al., 2024; Voynov et al., 2023). Some
methods also try to inject CLIP image representation to
allow variations in the input images (Ye et al., 2023).

Image editing. Image editing requires the model to fol-
low semantic instructions to modify an image. One ap-
proach is to explore the latent space of the image by the
inversion of generative models (Abdal et al., 2019; 2020;
Alaluf et al., 2022; Epstein et al., 2022; Xia et al., 2022;
Zhu et al., 2020) or by learning an image encoder (Chai
et al., 2021; Richardson et al., 2021; Tov et al., 2021), and
then edit images through latent vector manipulation. With
the advent of CLIP (Radford et al., 2021), which bridges
the latent space between images and text, numerous meth-
ods (Crowson et al., 2022; Gal et al., 2022b; Kim et al.,
2022; Kwon & Ye, 2022; Patashnik et al., 2021; Abdal et al.,
2022) have leveraged its capabilities to conduct textual in-
structions on images. More recently, pre-trained image-text
diffusion models, such as Stable Diffusion (Rombach et al.,
2022), have further facilitated image editing by providing a
robust link between textual instructions and image modifi-
cations (Avrahami et al., 2022; Brooks et al., 2023; Ramesh
et al., 2022; Hertz et al., 2022; Meng et al., 2021; Kawar
et al., 2023). Xu et al. (2024b) focus on designing attention
maps to replace the target attention map with the source map.
In contrast, we develop superior conditioning representation.
These two approaches are complementary.

3 Problem Formulation

In this section, we formalize the data-generating process
that underlies the interaction between the textual and visual
modalities as the foundation for theoretical analysis.

Notations. We denote the dimensionality of a multidi-
mensional variable with d(·). We denote the integer set
{1, . . . , n} with [n]. We refer to a specific coordinate or
dimension of a random vector (variable) as a “component”,
indicated by a subscript.

Data-generating processes. We illustrate the data-
generating process in Figure 1 and define it as follows.

zT ∼ p(zT), zI ∼ p(zI|zT);
t := gT(zT), i := gI(zI).

(1)

We denote the observed text as a discrete variable t ∈ T ⊂
N and the observed image as a continuous variable i ∈ I ⊂
Rd(i). 1 The textual representation is a multidimensional
discrete variable zT ∈ ZT ⊂ Nd(zT), which generates the
text observation through a mapping gT : ZT → T . The
components zTm encode individual atomic textual concepts
with potential statistical dependence. Likewise, the visual
representation is denoted as zI ∈ ZI ⊆ Rd(zI), which
generates the image i through gI : ZI → I . Its components
zIn represent atomic visual concepts in the distribution.

t

zT1 zT2 zT3 zT4

zI1 zI2 zI3 zI4 zI5

i

Figure 1: The data-generating process. The text-image
pair (t, i) originates from its corresponding representation
pair (zT, zI). The textual concepts in zT are high-level
and govern the generation of relatively low-level visual
concepts zI. The dashed curves indicate potential statistical
dependence among the components.

Atomic visual/textual concepts and their interactions.
We note that “atomic” is defined w.r.t. the distribution. For
instance, a component zTm in a distribution rich with textual
and visual features could encode the concept “dog eyes”
whereas in a less diverse distribution, it might encode a
coarser concept like “dog faces”. The textual representa-
tion zT serves as an upstream causal variable relative to
the visual representation zI because text typically contains
high-level abstract concepts, while the visual representation
includes lower-level details that reflect these concepts. For
instance, the visual concept of “dogs” encompasses not only
the general idea of a “dog” from the text but also visual
details like textures and subtle contours. Importantly, due

1Note that any multidimensional discrete variable can be con-
verted into a one-dimensional variable via an invertible mapping,
so we represent the observed text t in this way.
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to its low-level nature, each visual concept may be influ-
enced by multiple textual concepts. For example, the visual
concept “hat” may be affected not only by the textual con-
cept “hat” but also by other textual concepts like “color”.
These complex relationships are encoded in the graphical
model Gt→i. Moreover, statistical dependence may exist
among the atomic concepts – for instance, dog species may
induce dependence between “eyes” and “noses”. Our frame-
work captures these potential dependencies among textual
concepts in zT (dashed curves in Figure 1).

Concept identification and alignment for multimodal
representations. Our primary objective is to learn the
atomic concepts and their interactions within multimodal
data, specifically from textual and visual modalities. By
identifying these underlying concepts and modeling their in-
teractions, we explicitly characterize how high-level textual
concepts influence detailed visual concepts. This founda-
tional characterization enables downstream tasks, such as
precise control and manipulation of visual content through
textual input. In our formulation, this entails: 1) identify-
ing the atomic textual concepts zTm present in the text t; 2)
identifying the atomic visual concepts zIn in the image i and
3) learning the interactions between zTm and zIn through the
causal graph Gt→i. By learning these concepts and their
interactions, we align the textual and visual representations
at an atomic level. This alignment facilitates downstream
applications. For example, when editing an image from
“a dog” to “a dog with glasses,” our model leverages the
learned interactions to add the textual concept “glasses,”
which in turn affects only the corresponding visual concept
without inadvertently altering other aspects.

In Section 4, we provide theoretical guarantees and discus-
sions regarding these objectives.

4 Identification Theory

In this section, we present the identification conditions and
theoretical guarantees that underpin our objectives.

First, we define component-wise identifiability, which
serves as a formal definition for disentanglement.
Definition 4.1 (Component-wise Identifiability). Let z ∈ Z
and ẑ ∈ Z be variables under two model specifications
θ and θ̂ respectively. We say that z and ẑ are identified
component-wise if there exists a permutation π such that for
each i ∈ [d(z)], ẑi = hi(zπ(i)) where hi is invertible.

In our context, the two specifications are given by θ :=
(p(zI, zT), gI, gT) and θ̂ := (p(ẑI, ẑT), ĝI, ĝT), where we
consider θ as the true model and θ̂ as its estimate. Under
the component-wise identifiability, our estimate ẑi captures
full information of zπ(i) and no information from zj such
that j ̸= π(i). This property provides a formal guaran-
tee of disentanglement. The permutation accounts for the

fundamental indeterminacy in the ordering of latent vari-
ables (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2019;
Kivva et al., 2021).

To achieve our goal, we introduce Condition 4.2 and Con-
dition 4.3, which facilitate the identification of the visual
concepts zIn and textual concepts zTm respectively.

Condition 4.2 (Visual Concept Identification).

i [Invertibility & Smoothness]: Generating functions gT

and gI are invertible and gI is smooth.

ii [Smooth and Positive Density]: The probability density
function of zI is smooth and positive, i.e., p(zI|zT) > 0
is smooth over ZI ×ZT.

iii [Conditional Independence]: Components zIn are in-
dependent given zT: p(zI|zT) =

∏
n p(z

I
n|zT).

iv [Sufficient Variability]: For any zI ∈ ZI, there ex-
ist 2d(zI) + 1 values of zT, i.e., zT(n) with n =

0, 1, . . . , 2d(zI) + 1, such that the 2d(zI) vectors
w(zI, zT(n)) − w(zI, zT(0)) are linearly independent,
where vector w(zI, zT) is defined as follows:

w(zs, z
T) =

(∂ log p
(
zI1|zT

)
∂zI1

, . . . ,
∂ log p

(
zId(zI)|z

T
)

∂zI
d(zI)

,

∂2 log p
(
zI1|zT

)
(∂zI1)

2
, . . . ,

∂2 log p
(
zId(zI)|z

T
)

∂(zI
d(zI)

)2

)
.

(2)

Interpretation & discussion. Condition 4.2 ensures that
each visual concept zIn can be disentangled from the oth-
ers. The key idea is that each zIn should exhibit sufficiently
distinct behavior to be distinguishable. Specifically, Condi-
tion 4.2-iv requires the conditional distributions p(zIm|zT)
vary sufficiently over different zT. Intuitively, when we
change the text from “cats” to “dogs”, the visual concepts
“eyes” and “noses” exhibit different patterns of change, al-
lowing us to recognize them as separate concepts. In gen-
eral, we expect this condition to hold – standard text-image
datasets (e.g., LAION (Schuhmann et al., 2021)) contain
millions of captions, far exceeding the number of possi-
ble visual concepts. Additionally, we may follow existing
methods (e.g.,Wang et al. (2023); Chen et al. (2024); Betker
et al. (2023)) to employ vision-language models to gen-
erate higher-quality captions. Oftentimes, other natural
properties can also greatly weaken this condition (e.g., spar-
sity (Li et al., 2025)). Such sparsity is often encouraged
implicitly or explicitly in generative models (e.g., sparse
attention patterns). Condition 4.2-i ensures the observed
variables preserve all latent variables’ information. Other-
wise, it would be impossible to recover them from observed
variables. These conditions are commonly assumed in the
independent component analysis literature (Hyvarinen &
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Morioka, 2016; Hyvarinen et al., 2019; Khemakhem et al.,
2020a;b; Kong et al., 2022; Zhang et al., 2024).

Condition 4.3 (Textual Concept Identification).

i [Non-degeneracy]: P
[
zT = k

]
, for all k ∈ Ω;

for all components zI, P
[
zI|Pa(zI) = k1

]
̸=

P
[
zI|Pa(zI) = k2

]
, if k1 ̸= k2.

ii [No-twins]: Distinct components zT have distinct
neighbors: ne(zTm) ̸= ne(zTn ) for m ̸= n.

iii [Maximality]: There is no DAG G̃t→i resulting from
splitting a latent variable z into (z̃1, z̃2) in Gt→i, such
that the resultant distribution is Markov w.r.t. G̃t→i

and G̃t→i satisfies ii.

iv [Non-Subset Observed Children]: For any pair zTi and
zTj with i ̸= j, one’s observed children are not the
subset of the other’s, ChGt→i(zTi ) ̸⊂ ChGt→i(zTj ).

Interpretation & discussion. Condition 4.3 facilitates the
identification of discrete textual concepts zTm. The criti-
cal aspect is the sparse connectivity between the visual
concepts zIn and the textual concepts zTm, as specified in
Condition 4.3-iv. Since the visual concepts zIn have already
been identified (thanks to Condition 4.2), we can treat them
as observed variables. Condition 4.3-iv ensures that each
textual concept zTm exerts distinguishable influences on the
different subsets of visual concepts zIm, making them iden-
tifiable. This condition is reasonable because the textual
concepts zTm are defined to be atomic and thus should not
have heavily overlapping effects on the visual concepts zIn.
Consider concepts like ”fur” and ”ears” when describing a
cat. These concepts should affect partially distinct visual
features. If every visual feature triggered by ”ears” was also
triggered by ”fur,” these concepts aren’t genuinely atomic
and should be restructured. Similar conditions have been
adopted in prior work (Kivva et al., 2021; 2022; Kong et al.,
2024). Condition 4.3-i,ii,iii are a set of necessary conditions
for discrete latent variable identification as extensively dis-
cussed in prior work (Kivva et al., 2021; 2022). Intuitively,
Condition 4.3-i ensures that each discrete latent variable
has a detectable influence through the observed variables.
Condition 4.3-ii and iii eliminate the indeterminacy arising
from arbitrary merging and splitting over latent variables,
making identification tractable.

Theorem 4.4 (Atomic Concept Identification). We assume
the generating process in (1). Under Condition 4.2 and
Condition 4.3, we attain component-wise identifiability of
concepts zT and zI (Definition 4.1) and the bipartite graph
Gt→i up to permutation of component indices.

Proof sketch. As we have outlined in discussions on Condi-
tion 4.2 and Condition 4.3, we first utilize the variability of

visual concepts p(zIn|t) over different textual descriptions
t (since gT is invertible, varying t is equivalent to varying
zT) to identify visual concepts zIn. Subsequently, treating
the identified visual concepts zIn as observed variables, we
exploit the sparse graphical structure between zTm and zIn (as
ensured by Condition 4.3-iv) to disentangle textual concepts
zTm and recover the causal graph Gt→i.

Theoretical contribution. Our work has advanced the the-
oretical understanding of identifiability in multimodal rep-
resentation learning. Previous studies (Daunhawer et al.,
2023; von Kügelgen et al., 2021; Yao et al., 2024) have
established identifiability under shared representation as-
sumptions across modalities. However, their guarantees are
limited to identifiability up to subspaces (groups of latent
components) determined by the sharing patterns, which is
insufficient for tasks requiring precise control over indi-
vidual concepts. In contrast, we achieve component-wise
identifiability of atomic concepts.

Some recent works, such as Morioka & Hyvarinen (2024),
also aim for component-wise identifiability but rely on semi-
parametric assumptions like the exponential family and ad-
ditive causal influences. Our fully nonparametric framework
offers greater flexibility for modeling complex real-world
distributions. While Sun et al. (2024) also leverage sparse
connectivity and assume nonparametric models to achieve
component-wise identifiability, their approach depends on
specific sparsity conditions involving Jacobian matrices of
continuous functions, which preclude discrete variables – a
capability desired for our problem.

Practical implications. As motivated in Section 3, Theo-
rem 4.4 provides the identification guarantee for disentan-
gled atomic textual and visual concepts (zTm and zIn) and
their interactions. This foundation is crucial for aligning
these two modalities and downstream tasks including T2I
generation. In Section 5, we implement the data-generating
process and key conditions (e.g., sparse Gt→i in Condi-
tion 4.3-iv) and evaluate our framework in Section 6.

5 ConceptAligner : Controllable
Text-to-Image with Learning Concepts

Consider a common use case in text-to-image generation:
a user provides a text prompt to generate an image, then
wishes to make minor edits, such as changing only the color
of the clothing. Controllable generation enables the user
to modify the prompt accordingly, prompting the model
to adjust the specified feature while preserving all other
aspects of the image. This ability to make targeted changes
without unintended alterations underscores the importance
of controllable text-to-image generation.

In this section, we present our empirical approach to control-
lable text-to-image generation—guided by the identifiability
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Figure 2: Diagram of ConceptAligner . We use text network RT to recover the textual concepts zT and image network RI

to recover the visual exogenous information ϵ. We transform them with our concept network RC and obtain visual concepts
zI. Finally, we feed the visual concepts zI into a diffusion transformer vθ as the conditioning input.

results established in Section 4—and detail the model archi-
tecture, implementation specifics, and training objectives.

5.1 Model Design

Overall structure. Controllable image generation requires
the generative model to faithfully capture the interaction be-
tween textual and visual concepts (i.e., zT and zI), aligning
the two modalities and enabling precise control from text t
to image i. This alignment allows for precise manipulation
of image attributes based on textual conditions. To construct
our theoretical framework, our model ConceptAligner con-
sists of four major modules:

1. Text network RT that extracts textual concepts zT from
the text t;

2. Image network RI that maps the image i back to its ex-
ogenous information ϵ associated with the conditional
distribution p(zI|zT) (i.e., zI := gzI(zT, ϵ));

3. Concept network RC that produces the visual concepts
zI given the textual concepts zT and the exogenous
information ϵ, i.e., the sampling step zI ∼ p(zI|zT);

4. Conditional generation model vθ that renders out the
visual representation zI to image i.

We present our model ConceptAligner in Fig. 2 and intro-
duce each module in detail as follows.

Text encoder RT. We first use pre-trained text embeddings
to obtain the embedding t̃ of the text input t. These embed-
dings retain sequential dependencies and do not represent
concepts. To extract meaningful and disentangled concepts
from these embeddings, we introduce a perceive-resampler
text network RT (Alayrac et al., 2022), which maps text
embeddings t̃ into a structured concept space (i.e., zT). We
predefine the number of textual concepts and initialize a set

of learnable queries. The final concept zT are then obtained
by conditioning on the text embedding t̃ as:

zT = RT(t̃). (3)

Image encoder RI. Visual concepts zI are sampled from
a distribution conditioned on textual concepts zT, i.e.,
p(zI|zT). We recover the exogenous information ϵ in-
volved in the sampling (which can be written as zI :=
gzI(zT, ϵ)) by following the variational autoencoder frame-
work (Kingma, 2013):

µ, σ = RI
µ(i), R

I
σ(i),

ϵ = µ+ σ ∗ ϵ̃,
(4)

where RI is the image encoder. We adopt the reparameteri-
zation trick and sample ϵ̃ from the prior N (0, I).

Concept network RC. After obtaining the exogenous vari-
able ϵ and the textual concepts zT in (4) and (3), we imple-
ment a concept network RC to transform them into visual
concepts zI (i.e., zI ∼ p(zI|zT)):

zI = RC
(
zT ⊙m, ϵ

)
, (5)

where m is a learnable mask whose components take values
in [0, 1] to control the sparsity of the connectivity from zT

to zI (i.e., Gt→i) – mi,j = 0 indicates no influence from the
textual concepts zTi to the visual concepts zIj .

Conditional generation vθ. We utilize a diffusion trans-
former vθ for our conditional generation. It takes as input
a noisy image and certain conditioning to perform denois-
ing. In the conventional T2I model, the conditioning is the
text embedding from a pre-trained text encoder (e.g., CLIP
(Radford et al., 2021)). In our method, we use the visual
representation zI as the conditioning.

5.2 Loss Functions

As motivated before, our empirical goals include
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Figure 3: Controllable text-to-image generation comparisons. Thanks to the identifiability of visual and textual concepts,
our method can make only necessary changes without affecting other attributes. For example, when we modify the prompt
from “golden crown” to “flower crown” for the dog, SD-3.5-L changes the color of the sign from black to white background
whereas our model precisely implements the requested change.

1. T2I generation: accurately generating images i based
on the textual description t.

2. Text-based editing: applying changes specified in a
new textual instruction t̃ to a previously generated im-
age i, without introducing unnecessary modifications.

Having introduced the architecture of our model, we now
present the training losses to achieve the above goals.

Diffusion loss. As mentioned previously, we condition the
diffusion transformer model with our visual concepts zI.
We set the initial diffusion sample i0 := i and draw random
noises η to corrupt the image i0. We adopt the denoising
loss (Liu et al., 2022; Lipman et al., 2022; Xie et al., 2024;
Esser et al., 2024),

iα = (1− α)i0 + αη, (6)

Ldiff = Eη∼N (0,I)∥vθ(iα, α, zI)− (η − i0)∥2,

where α ∈ (0, 1) is sampled from a predefined distribution,
e.g., uniform distribution U [0, 1].

Kullback–Leibler divergence loss. We apply an image
encoder to recover the exogenous information ϵ, which
is sampled from a prior distribution N (0, I). To enforce
this, we match the marginal distribution of ϵ with the prior
distribution as

Lkl = − log(σ) +
σ2 + µ2

2
− 1

2
. (7)

Sparsity regularization. As indicated in Condition 4.3-iv,
the connections from zT to zI should be sparse enough to
recover the textual concepts zTm. In our implementation, we
use a learnable mask m to modulate the connectivity by
applying a sparsity regularization:

Lspa = ∥m∥1. (8)

Full objective. Combining the above loss functions, we
arrive at our final objective:

L = Ldiff + λspaLspa + λklLkl, (9)

where λspa and λkl balance the three loss terms.
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Method CLIP-I ↑ LPIPS ↓ CLIP-T ↑ DINO ↑
SD3.5-M 0.862 0.428 0.321 0.719
SD3.5-L 0.864 0.456 0.318 0.700
FLUX-S 0.868 0.463 0.318 0.740
FLUX-D 0.872 0.452 0.310 0.721
SANA 0.870 0.438 0.313 0.741

SANA-Finetune 0.865 0.457 0.320 0.750
ConceptAligner 0.903 0.357 0.314 0.835

w.o sparsity 0.863 0.388 0.308 0.751
w.o diffusion 0.999 0.000 0.171 0.999

w.o KL 0.909 0.246 0.206 0.826

Table 2: Comparisons on Emu-Edit dataset. We generate
pairs of images with the source and target prompt in Emu-
edit dataset (Sheynin et al., 2024). Our method achieves the
best or competitive performance across various metrics.

6 Experiments

In this section, we first describe the experimental setup,
including implementation details, datasets, baselines, and
evaluation metrics. We then present the results, covering
comparisons with baselines, visualizations of learned con-
cepts, disentanglement analysis, and ablation studies. More
results and analyses can be located in Appendix B.

6.1 Setup

Implementation. We implement our method based on
SANA (Xie et al., 2024). Firstly, we employ a 6-block
perceiver resampler (Alayrac et al., 2022) to transform the
entangled text embedding into our textual concept zT. We
define the number of textual tokens as 64. Then we use
a transformer block to transform Siglip (Zhai et al., 2023)
image embedding into the mean and variance of the latent
ϵ. Then we feed the re-parametrized latent into a 6-block
perceiver resampler with masking m ⊙ zT. Finally, we
obtain the image representation zI and replace the original
text embedding with this representation. We use LoRA on
the diffusion transformer with rank 256. All the parameters
are trained with batch size 768 and learning rate 5 · 10−5.

Datasets. We use FLUX-S (Labs, 2024) to generate 2 mil-
lion images using prompts sourced from the LAION dataset.
Subsequently, we employ QWEN2-VL (Wang et al., 2024b)
to produce accurate textual descriptions.

To evaluate the controllability of our generative model, we
need to generate pairs of images that reflect specific target
changes. For this purpose, we utilize the EMU-Edit dataset
(Sheynin et al., 2024), which includes 3,589 paired prompts
spanning seven image editing categories. Using the pro-
vided source and target prompts, we generate corresponding
image pairs for analysis.

Baselines. We compare with state-of-the-art methods for

Figure 4: Visualization of the learned concepts. From the
text embeddings of “Batman” and “peacock”, we isolate
distinct visual elements - specifically, the flowing cape char-
acteristic of Batman and the distinctive shape associated
with peacocks. Our approach enables selective modifica-
tion of individual features while preserving all other aspects.
This is demonstrated in the middle columns, where we can
substitute one learned feature from the left column with a
corresponding feature from the right column, resulting in
coherent images that differ only in that specific aspect.

T2I generation. Specifically, we compare with stable-
diffusion3.5-medium (SD3.5-M) (Esser et al., 2024), stable-
diffusion3.5-large (SD3.5-L) (Esser et al., 2024), Flux.1-dev
(FLUX-D) (Labs, 2024), Flux.1-Schnell (FLUX-S) (Labs,
2024) and SANA (Xie et al., 2024). For a fair comparison,
we also finetune SANA on our training data and refer to the
resulting model as SANA-Finetune. We fix the random seed
for each pair of generations.

Metrics. To evaluate the similarity between the generated
pairs of images, we calculate the CLIP (Radford et al., 2021)
and DINO (Caron et al., 2021) embedding similarities, along
with the LPIPS (Zhang et al., 2018) score. Additionally, we
assess the average CLIP image-text similarity to determine
how well the generated image aligns with the given prompts.

6.2 Results

Comparisons with baselines. We present our text-to-image
generation results in Table 2. As shown, ConceptAligner
outperforms other methods in terms of CLIP-I, DINO sim-
ilarity, and LPIPS scores. Figure 3 further illustrates that
our model can apply the intended changes while preserving
unrelated attributes—for example, maintaining the color of
the sign or the pose of the dog.

Analysis of the concepts. To analyze the learned concepts,
we interpolate between them to generate new images and
compare these with the originals. As illustrated in Fig. 4,
ConceptAligner effectively disentangles complex text em-
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Figure 5: Comparisons with the model trained without
sparsity regularization. Without applying sparsity regu-
larization, the model makes unnecessary changes when we
alter the text input from “horse” to “zebra”.

Method Subject ↑ Prompt ↑
SANA (Xie et al., 2024) 0.913 0.615

SANA-Finetune (Xie et al., 2024) 0.934 0.731
ConceptAligner 0.946 0.814

Table 3: Disentanglement comparisons. We modify the
subject’s action in the source prompt and evaluate whether
the generative models can preserve the subject’s identity,
given that only the action in the text input is altered. Our
method achieves the highest scores in both subject consis-
tency and prompt consistency.

beddings into atomic textual concepts. For instance, in the
second row, we recover the shape concept of a peacock and
successfully generate a chicken with a peacock shape. These
results demonstrate that our method learns to decompose
text embeddings into interpretable, atomic concepts.

Disentanglement analysis. If the model learns disentan-
gled representations, it should be able to preserve unrelated
concepts when only specific parts of the text are modified.
To evaluate this, we prompt ChatGPT to randomly generate
10 animal names and 10 actions. For each animal, we fix its
identity and modify only the action, resulting in 100 origi-
nal–edited image pairs. This process is repeated across 10
random seeds, yielding a total of 1,000 pairs.

For evaluation, we use Qwen2.5-VL-Instruct-7B to assess
two criteria: subject consistency, measuring whether the
animal identity is preserved, and prompt consistency, evalu-
ating whether the intended action change is accurately re-
flected. ConceptAligner achieves the highest scores on both
metrics compared to SANA and finetuned SANA, demon-
strating superior disentanglement capabilities.

Ablation study. We present the quantitative ablation results
in Table 2. As outlined in our theoretical framework, achiev-
ing sparse connections from textual concepts zT to visual

concepts zI is crucial, which motivates the need for sparsity
regularization. To assess this, we train a model without the
masking module, resulting in a fully connected zT → zI

mapping. A qualitative comparison of outputs from both
models is shown in Fig. 5. We observe that the model
lacking sparsity introduces more irrelevant changes when
the prompt is modified from horse to zebra, underscoring
the importance of promoting sparse zT → zI connections,
consistent with our identifiability theory.

Additionally, removing the diffusion loss results in nearly
identical image pairs, indicating that the model fails to lever-
age the paired prompts. Eliminating the KL divergence loss
causes the exogenous variable ϵ to carry excessive informa-
tion about the clean image, allowing the model to ignore the
text condition for denoising, and ultimately fail to produce
prompt-consistent outputs.

7 Conclusion

In this work, we develop theoretical foundations for learn-
ing atomic concepts and their interactions from multimodal
data distributions. In comparison with prior theoretical
work Yao et al. (2024); von Kügelgen et al. (2021); Daun-
hawer et al. (2023); Gresele et al. (2020); Sun et al. (2024);
Morioka & Hyvarinen (2024; 2023), our theory provides
component-wise identifiability for each atomic concept with-
out resorting to semi-parametric assumptions, while admit-
ting modalities consisting of continuous and discrete latent
variables. As a consequence of our theory, we design a prin-
cipled T2I generative model. Under thorough evaluation,
our model outperforms baselines in T2I generation tasks
and demonstrates superior interpretability and controllabil-
ity. Limitations: in order to identify visual atomic concepts
zIn, Condition 4.2-iv demands the text t to impose sufficient
influences over the visual concept distribution p(zI|t). Prac-
tically, this requires captions in the dataset to be sufficiently
informative and diverse, which may be violated on datasets
with poor caption qualities.
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A Proof for Theorem 4.4

We present the proof for Theorem 4.4. We duplicate the theorem here for readability.

Condition 4.2 (Visual Concept Identification).

i [Invertibility & Smoothness]: Generating functions gT and gI are invertible and gI is smooth.

ii [Smooth and Positive Density]: The probability density function of zI is smooth and positive, i.e., p(zI|zT) > 0 is
smooth over ZI ×ZT.

iii [Conditional Independence]: Components zIn are independent given zT: p(zI|zT) =
∏

n p(z
I
n|zT).

iv [Sufficient Variability]: For any zI ∈ ZI, there exist 2d(zI) + 1 values of zT, i.e., zT(n) with n = 0, 1, . . . , 2d(zI) + 1,
such that the 2d(zI) vectors w(zI, zT(n))−w(zI, zT(0)) are linearly independent, where vector w(zI, zT) is defined as
follows:

w(zs, z
T) =

(∂ log p
(
zI1|zT

)
∂zI1

, . . . ,
∂ log p

(
zId(zI)|z

T
)

∂zI
d(zI)

,
∂2 log p

(
zI1|zT

)
(∂zI1)

2
, . . . ,

∂2 log p
(
zId(zI)|z

T
)

∂(zI
d(zI)

)2

)
(2)

Condition 4.3 (Textual Concept Identification).

i [Non-degeneracy]: P
[
zT = k

]
, for all k ∈ Ω; for all components zI, P

[
zI|Pa(zI) = k1

]
̸= P

[
zI|Pa(zI) = k2

]
, if

k1 ̸= k2.

ii [No-twins]: Distinct components zT have distinct neighbors: ne(zTm) ̸= ne(zTn ) for m ̸= n.

iii [Maximality]: There is no DAG G̃t→i resulting from splitting a latent variable z into (z̃1, z̃2) in Gt→i, such that the
resultant distribution is Markov w.r.t. G̃t→i and G̃t→i satisfies ii.

iv [Non-Subset Observed Children]: For any pair zTi and zTj with i ̸= j, one’s observed children are not the subset of the
other’s, ChGt→i(zTi ) ̸⊂ ChGt→i(zTj ).

Theorem 4.4 (Atomic Concept Identification). We assume the generating process in (1). Under Condition 4.2 and
Condition 4.3, we attain component-wise identifiability of concepts zT and zI (Definition 4.1) and the bipartite graph Gt→i

up to permutation of component indices.

Proof. The proof consists of two main steps. In Step 1, we take advantage of the observed discrete variable t and its influence
over the visual latent variable zI (Condition 4.2-iv) to establish the component-wise identifiability of zI. This proof technique
is adopted in the causal representation learning and nonlinear independent component analysis community (Hyvarinen et al.,
2019; Khemakhem et al., 2020a; Kong et al., 2022).

In Step 2, we leverage the identified visual latent components zI to further identify the textual latent variables zT, together
with the graph Gt→i that connects the textual representation (atomic concepts) to the visual representation (atomic concepts).
The crux of this step is to treat the zI components as observed variables since they can be identified from the image data i, as
shown in Step 1, and also utilize the sparsity constraint on the graph Gt→i (Condition 4.3-iv).

Step 1. We first introduce Lemma A.1, which we adapt from Kong et al. (2022) by omitting their invariant latent subspace.

Lemma A.1 (Adapted from Kong et al. (2022)). We follow the following data-generation process

z ∼ p(z|u), x := g(z) (10)

and make the following assumptions:

• A1 (Smooth and Positive Density): The probability density function of latent variables is smooth and positive, i.e., pz|u
is smooth and pz|u > 0 over Z and U .

• A2 (Conditional independence): Conditioned on u, each zi is independent of any other zj for i, j ∈ [n], i ̸= j, i.e.
log pz|u(z|u) =

∑n
i qi(zi,u) where qi is the log density of the conditional distribution, i.e., qi := log pzi|u.
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• A3 (Linear independence): For any z ∈ Z , there exist 2d(z) + 1 values of u, i.e., uj with j = 0, 1, . . . , 2d(z), such
that the 2n vectors w(z,uj)−w(z,u0) are linearly independent, where vector w(z,u) is defined as follows:

w(zs,u) =
(∂ log p (z1|u)

∂z1
, . . . ,

∂ log p
(
zd(z)|u

)
∂zn

,
∂2 log p (z1|u)

∂z21
, . . . ,

∂2 log p
(
zd(z)|u

)
∂z2d(z)

)
. (11)

We can achieve component-wise identifiability of the latent variable z.

Lemma A.1 leverages the conditional distribution index u for identification. Since we have access to text t which is
equivalent to the textual concept variable zT up to an invertible map, we can simplify the data-generating process in (1) by
omitting zT:

t ∼ p(t), zI ∼ p(zI|t), i := gI(zI). (12)

We observe that this data-generating process is a special case of Lemma A.1 where we treat the text variable t as the
distribution index u in Lemma A.1. As a consequence, under Condition 4.2, we can show visual atomic concepts zIn are
identifiable, thanks to the distribution variability (i.e., the changes of the conditional distribution p(zI|zT)) resulting from
the discrete variable t.

Step 2. Given the identified visual atomic concepts zIn, we can simplify our data-generating process as:

zT ∼ p(zT), zI ∼ p(zI|zT), (13)

where we treat the identified visual concepts zIn as observed variables and view textual concepts zTm as latent discrete
variables with potential statistical dependence. These two sets of variables are connected via a bipartite graph Gt→i, which
we assume to be sparse (Condition 4.3-iv).

In the following, we present a lemma adapted from Kivva et al. (2021) that utilizes the sparse graphical structure of Gt→i to
component-wise identify the textual atomic concepts zTm.

Definition A.2 (Mixture Oracles (Kivva et al., 2021)). Let zI be a set of observed variables and t ∈ Ω ⊂ N be the
discrete variable that is an invertible function of the latent discrete variable zT ∈ Nd(zT). The mixture model is defined as
P
[
zI
]
=

∑
k∈Ω P [t = k]P

[
zI|t = k

]
. A mixture oracle MixOracle(zI) takes P

[
zI
]

as input and returns the number of
components |Ω|, the weights P [t = k] and the component P

[
zI|t = k

]
for k ∈ Ω.

Lemma A.3 (adapted from Kivva et al. (2021)). We assume the generating process (13). Under Condition 4.3, one can
reconstruct the bipartite graph Gt→i between zI and zT, the invertible map gT : zT 7→ t, and the joint distribution
P
[
zT1 = k1, . . . , z

T
d(zT) = kd(zT)

]
from P

[
zI
]

and MixOracle(zI).

We note that since we have access to the joint distribution p(t, i) and have identified zI component-wise, we can derive the
MixOracle(zI) from p(t, zI) by marginalizing out components in zI accordingly. Given this equivalent formulation, we
invoke Lemma A.3 to establish the identifiability of the map gT, from which we can component-wise identify zTm from the
observed variable t.

B More Empirical Results

Generation results on PIE-BENCH dataset Ju et al. (2024). We also evaluate our method on the PIE-BENCH dataset (Ju
et al., 2024). As shown in Table 4, our method achieves superior or competitive performance across various metrics. In
order to test the model’s capability when given long captions, we apply QWEN2.5-Instruct-32B to expand the prompts in
PIE-BENCH. The average caption length increases from 8 to 68. As we can see from Table 5, our method achieves better
results than the strong baselines SANA and SANA-Fintune.

Generation samples for EMU-Edit dataset (Sheynin et al., 2024). In the main paper, we present quantitative results on
the EMU-Edit dataset. As shown in Fig. 7, our method produces more consistent paired images compared to the baselines
FLUX-D and SANA.
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Sampling efficiency. Our method builds upon SANA (Xie et al., 2024) and introduces three lightweight networks during
training. However, only the textual and concept networks are used during inference for text-to-image generation. One
potential concern is the additional computational cost introduced by these new components. To address this, we present a
comparison of sampling efficiency in Table 6. Despite the added networks, our method is the fastest in generating an image.
This efficiency is primarily due to our use of a more compact representation, whereas SANA relies on 300 text tokens during
inference.

Ablation samples. In the main paper, we present quantitative comparisons by systematically removing each proposed
module. Fig. 6 shows qualitative examples from different model variants. When sparsity regularization is omitted, the
generated images exhibit greater inconsistency, indicating that dense connections between textual and visual concepts hinder
controllability. Removing the diffusion loss, which serves as the primary objective for training the diffusion model, leads to
outputs that lack meaningful structure. Additionally, excluding the KL loss, which regularizes the information contained
in the exogenous variable ϵ, results in ϵ encoding excessive details about the input clean image. Consequently, the model
ignores the text prompt for denoising, producing images that fail to reflect the input prompt accurately.

Multiple-concepts editing. It is also interesting to investigate whether our model supports multi-concept editing. To explore
this, we present examples in Fig. 8, showing results where 2, 3, or 4 concepts are edited simultaneously. As observed, the
baseline SANA often alters the subject’s identity or the overall image layout, even when such changes are not reflected in the
modified prompt. In contrast, our method produces paired images that accurately reflect the intended edits while preserving
unrelated attributes, demonstrating stronger control and disentanglement.

Disentanglement samples. In Fig. 9, we present paired samples generated for disentanglement analysis, where only the
action or background in the text prompt is modified. We observe that both SANA and SANA-Finetune frequently alter the
subject’s identity, despite changes in the text inputs being limited to action or background. In contrast, our method more
effectively preserves the animal’s identity, demonstrating stronger disentanglement of concepts.

Real-world image editing. While the primary focus of our work is controllable text-to-image generation, it is also important
to evaluate the model’s ability to handle real-world image editing tasks. To this end, we conduct experiments on a subset
of the PIE-Bench dataset. The results, shown in Table 7, demonstrate that our method achieves the best or competitive
performance across various metrics. Furthermore, as illustrated in Fig. 10, our method applies precise and necessary edits to
the input image, avoiding excessive or unintended modifications that can lead to visual distortions.

Method CLIP-I ↑ LPIPS ↓ CLIP-T↑ DINO ↑
SD3.5-M 0.822 0.533 0.339 0.565
SD3.5-L 0.824 0.544 0.340 0.516
FLUX-S 0.837 0.536 0.331 0.603
FLUX-D 0.823 0.566 0.328 0.505
SANA 0.839 0.573 0.331 0.593

SANA-Finetune 0.840 0.574 0.334 0.603
ConceptAligner 0.879 0.488 0.331 0.651

Table 4: Evaluation results on controllable text-to-image generation on PIE-Bench dataset. We add SANA-Fintune as
an additional baseline method where we apply LoRA to fine-tune SANA on our training dataset for comparison. We also
include DINO similarity as one metric. We can observe that ConceptAligner consistently outperforms or is comparable to
the baselines across all metrics. We bold the best performances.

Method CLIP-I ↑ LPIPS ↓ CLIP-T ↑ DINO ↑
SANA 0.788 0.680 0.328 0.406

SANA-Finetune 0.786 0.707 0.329 0.403
ConceptAligner 0.826 0.596 0.328 0.549

Table 5: Evaluation results on long captions. We use QWEN2.5-Instruct-32B to expand the prompts in PIE-BENCH. The
average caption length increases from 8 to 68. We bold the best performances. ConceptAligner outperforms SANA and
SANA-Finetune.
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A cat A dog lying on the grass
A cat with a gold chain and star on its head A dog lying on the grass with a ball surrounded by colorful flowers’

Ours Ours

w.o comprehensive captions w.o comprehensive captions

w.o sparsity w.o sparsity

w.o diffusion loss w.o diffusion loss

w.o KL loss w.o KL loss

Figure 6: Qualitative ablation results. The five rows correspond to ConceptAligner , ConceptAligner without compre-
hensive captions, ConceptAligner without sparsity, ConceptAligner without diffusion loss, and ConceptAligner without
KL loss. We can observe that ConceptAligner is robust to the caption quality degradation. Sparsity effectively minimizes
unnecessary changes in each pair. The model cannot follow text prompts without diffusion losses and KL losses.
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Method Sampling Speed (seconds/image)
SD3.5-M 1.56
SD3.5-L 2.29
FLUX-S 0.63
FLUX-D 4.72
SANA 0.58

ConceptAligner 0.48

Table 6: Sampling efficiency comparison on a H100 GPU. Based on SANA, we employ three lightweight networks during
training and only textual and concept networks are used for text-to-image generation. Each model contains 6 lightweight
attention blocks. To further reduce the training and inference cost, we use 64 textual tokens for sampling. Compared to
SANA, which employs 300 tokens (0.58 seconds/per sample), our method is the fastest with 0.48 seconds to sample an
image.

Setting Method CLIP-I ↑ LPIPS ↓ CLIP-T↑ DINO ↑

Unpaired Images

BlendedDiffusion (Avrahami et al., 2022) 0.837 0.377 0.303 0.562
Pix2pix-zero (Parmar et al., 2023) 0.777 0.434 0.282 0.472

Plug-and-Play (Tumanyan et al., 2023) 0.887 0.324 0.301 0.705
PnpInv (Ju et al., 2024) 0.892 0.313 0.301 0.720

LEDITS-SDXL (Tsaban & Passos, 2023) 0.878 0.343 0.299 0.701
RF-Inversion (Wang et al., 2024a) 0.906 0.427 0.285 0.737
Fireflow-FLUX (Deng et al., 2024) 0.891 0.316 0.295 0.725

Paired Images Instruct-Pix2pix (Brooks et al., 2023) 0.878 0.356 0.287 0.717
Unpaired Images ConceptAligner 0.917 0.314 0.288 0.782

Table 7: Evaluation results on real-world image editing dataset. We use the source images, source and target prompts in
PIE-BENCH dataset. Given a source image and source prompt, we apply standard diffusion inversion to obtain the initial
noise of the diffusion process. We input the noise and the target prompt to produce the edited image. Across all metrics,
ConceptAligner is superior or comparable to baseline methods, including those trained on expensive paired editing data.
We bold the best performances.
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Some palm trees and other plants are sitting on a highway overpass on a cloudy day.
Some palm trees and other plants are sitting on a highway overpass on a cloudy day with a double rainbow in the sky.

FLUX-D SANA ConceptAligner

A red and yellow double decker bus on a small narrow street.
A Russian icon painting of a red and yellow double decker bus on a small narrow street.

FLUX-D SANA ConceptAligner

A woman in a black and white striped shirt has her arm reaching out.
A woman in a red and white striped shirt has her arm reaching out.

FLUX-D SANA ConceptAligner

A giraffe walking in front of a lake.
A giraffe walking in front of a lake with a tree next to it.

FLUX-D SANA ConceptAligner

A couple of birds sitting on branches outside.
A couple of birds sitting on branches in a cage.

FLUX-D SANA ConceptAligner

Figure 7: Examples of controllable text-to-image generation comparisons.
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A cat.
A cat, wearing crown, smiling.

SANA ConceptAligner

A dog, sketch.
A dog, watercolor, mouth opening.

SANA ConceptAligner

A cartoon panda eating bamboo.
A cartoon panda eating bamboo, flowers around, butterflies around.

SANA ConceptAligner

A beach.
A beach, a tree, a dog, a boat in the ocean, vangogh style.

SANA ConceptAligner

Figure 8: Multiple concepts editing comparisons. We use two prompts that differ by multiple concepts to generate paired
images. Baseline SANA creates unnecessary changes, whereas ConceptAligner can preserve all desirable information, e.g.,
the dog’s shape in the second row, the panda’s pose in the third row, and the beach’s layout in the last row. ConceptAligner
can support simultaneously editing four concepts.
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SANA SANA-Finetune ConceptAligner
A dog is jumping.
A dog is sleeping.

A cat is swimming.
A cat is jumping.

An octopus is in a frozen tunddra.
An octopus is in a moonlit beach.

Figure 9: Disentanglement evaluation examples. Please find protocol details in Table 3. Baseline methods demonstrate
inadequate preservation of subject identity during action or background modifications, our approach successfully maintains
subject consistency throughout these transformations.
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Input Plug-and-Play PnpInv InstructPix2pix ConceptAligner

Figure 10: Real-world image editing comparisons. Target prompts: photo of a horse and a cat standing on rocks near the
ocean, a red bird standing on a branch, an orange van with flowers on top,the Christmas illustration of a Santa’s angry face,
a lion puppy wrapped in a blue towel. The experimental details are provided in Table 7. ConceptAligner correctly follows
the target prompt while preserving the subject identity.
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