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ABSTRACT

Iterative decision-making has been widely studied in human cognition and is rec-
ognized for its energy efficiency and suitability for biological computations. In
contrast, instance segmentation models adopt strategies that diverge from human
vision, each presenting unique strengths and limitations. In this paper, we exam-
ine the grouping problem in segmentation models and demonstrate that iterative
recurrent processing facilitates the identification of diverse solutions and can en-
hance grouping capabilities. Our experiments further reveal that recurrent pro-
cessing accelerates convergence and can generate diverse solutions that can help
mitigate suboptimal spurious minima. Our work focuses on confounding cases,
which have become increasingly relevant as systems are increasingly deployed in
safety-critical environments.

1 INTRODUCTION

Human vision is robust generalizable and accurate compared to deep learning models. Electro-
physiological research provides empirical support for the concept of dual thinking van Bergen &
Kriegeskorte (2020); Chen et al. (2021), characterized by an initial rapid feed-forward stage fol-
lowed by a slower, iterative refinement process VanRullen (2007). Dual-processing framework has
also been substantiated by studies on visual perception Dayanandan et al. (2024); Daniel (2017),
which also highlight spurious behaviors in instance segmentation models. While research on spu-
rious correlations has predominantly focused on classification tasks Ghaznavi et al. (2024), similar
challenges in instance segmentation remain relatively under-explored despite emerging findings.

Recurrent processing can efficiently perform complex computations in environments with energy
and spatial constraints in human vision Kreiman & Serre (2020); however, current systems ignore
them in the encoding process due to their slower operation with attention Oren et al. (2024). In this
study, we investigate the underlying sources of some of the spurious errors in segmentation models
Dayanandan et al. (2024) and examine the usefulness of recurrent processing in human vision for
segmentation. Our approach aligns with recent methodologies focusing on generating better candi-
date solutions and refining them to determine the most optimal outcome Wang et al. (2023). Our key
contributions include (a) a theoretical analysis of training objectives and the equilibrium they attain
and a comparison with strategies in human visual processing and (b) an investigation of the role of
recurrent processing alongside feed-forward networks in human vision.
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2 RELATED WORK

Deep learning models for classification identify statistical properties that are important in the train-
ing dataset that also includes correlations and are not causal which comes across as spurious fea-
tures or shortcuts Izmailov et al. (2022). Recent works have looked into addressing these spurious
effects in classification models Noohdani et al. (2024); Ghaznavi et al. (2024). The recent work
argues that human vision is also prone to shortcuts and compares the shortcomings of human vi-
sion and deep learning based segmentation models Dayanandan et al. (2024). While incorporating
sub-components can help in better performance on some of the errors to be related absence of un-
derstanding of sub-structures, the errors related to grouping conflicts are not explored.

Recurrent computation has shown to be both computationally efficient and highly effective across
various tasks Wang et al. (2019); Tomar et al. (2022). Recurrent neural networks modeled after
human visual processing have been shown to exhibit perceptual phenomena such as the orientation-
tilt illusion Linsley et al. (2020) and the perception of illusory shapes Pang et al. (2021) akin to
human vision. In recurrent processing, outputs from previous states can progressively transform the
original image into a simpler representation, making it easier for the model to solve in later steps.
They can help identify intersecting lines and complete patterns in deep learning models Linsley
et al. (2018; 2020) and amodal completion in human vision Tang et al. (2018). While studies have
highlighted the inherent limitations of fully connected networks Abbe & Boix-Adsera (2022); Abbe
et al. (2022), their usefulness for generating diverse samples in human vision has not been explored
especially in context of dual thinking.

3 METHODS

(a) (b) (c) (d) (e)

Figure 1: (a) Grouping problem (b) Example of grouping conflict of common region from Human
Confusion Dataset Dayanandan et al. (2024) (c) Segmentation model output with the confounding
region (leg of the man) to be part of both instances (man and child) (d,e) Merging of components
from different instances due to absence of understanding sub-structures is analyzed in existing work.

Instance segmentation can be formally defined as partitioning an image into mutually exclusive pixel
subsets, each corresponding to a distinct object instance. However, our previous study found that
this criterion is not always strictly followed despite its fundamental logical basis Dayanandan et al.
(2024). This paper investigates how spurious minima contribute to such inconsistencies, particularly
in confounding cases. Let us consider two different regions of size P1 and P2, and a common region
b with two possible valid groupings (P1, b) and (b, P2). We investigate the best possible case for
this grouping by splitting the common region b. In this case, we consider the ratio x ∈ [0, 1], that
represents the split in the common region (Fig.1a). We set that bx is assigned to P1 and b(1− x) is
assigned to P2, so that b is completely assigned between them. In case of real world segmentation,
as sub-components cannot be split (for e.g. in fig.1b the leg can be assigned to man or child, but not
both), the leg in , there could be two ground truth possibilities with b completely assigned to either
P1 or P2.

3.1 THEORETICAL CONTRIBUTIONS

In this section, we consider feed-forward deep learning models, there is no iterative procedure and
there is only a single decision made. We assume a general case where the prior probability of two
ground truths (P1, b) and (b, P2) are different and later analyze case for an equal probability for both
ground truths.
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Theorem 3.1. If there are two regions P1 and P2 and a common region b, such that (P1, b) and
(b, P2) are valid groupings with a prior probability of m and n for them being correct. Let x be the
ratio of pixels assigned to P1, then the average IoU score is convex for x ∈ [0, 1].

The average IoU in the general case can be written as below.

IG(x) = m

{
P1 + xb

P1 + b
+

P2

P2 + (1− x)b

}
+ n

{
P1

P1 + xb
+

P2 + (1− x)b

P2 + b

}
(1)

I ′G(x) =
P1bm

(b(1− x) + P1)2
+

bm

P1 + b
− P2bn

(P2 + xb)2
− bn

P2 + b
(2)

I ′′G(x) =
2P1b

2m

(b(1− x) + P1)3
+

2P2b
2n

(bx+ P2)3
(3)

Since x is a fractions with values in [0, 1], 1 − x is also positive. P1, P2, b are area and m,n are
probabilities, all the terms in equation 3 are positive hence the second differential is positive for x
in [0, 1]. This implies that the function IG(x) is convex for x in [0, 1], and there is only one minima
even for a general case, with a possibility of one or two maximas at the ends of the interval. The
above result also implies that the maximum average IoU will lie at the ends of this interval (x = 0
or x = 1) and any split in common region would lead to sub-optimal score. The maxima will depend
on m (for either of scenarios m+ n = 1) and P1, P2 and b. From equation 1, we obtain

IG(x = 0) = m

{
P1

P1 + b
+

P2

P2 + b

}
+ 2n (4)

IG(x = 1) = 2m+ n

{
P1

P1 + b
+

P2

P2 + b

}
(5)

The value of x for the maximum IoU is either x = 0 or x = 1, which can be selected from the
maximum of IG(x = 0) and IG(x = 1) above and any other value of x is sub-optimal.
Corollary 3.2. If there are two individual regions of same size P and a common region b, such that
(P, b) and (b, P ) are valid groupings with a prior probability of m and n for them being correct.
Let x be the ratio of pixels assigned to P , then the maximum average IoU will be at x = 0 if m > n
and at x = 1 if m < n.

We should choose x = 0 when IG(x = 0) > IG(x = 1). Setting P1 = P2 = P in eq. 4 and 5, this
implies

{
mP
P+b + n

}
>

{
nP
P+b +m

}
. Multiplying by (P + b) and evaluating implies that, we should

choose x = 0 when nb > mb or n > m. Hence we should choose x = 0 (completely assign to right
instance fig.1a) when n > m or we should choose the more likely combination.
Theorem 3.3. If there are two regions P1 and P2 such that Area(P1) = Area(P2) and a common
region b, such that (P1, b) and (b, P2) are valid groupings with equal probability, splitting common
region by half [(P1, b/2), (b/2, P2)] gives minimum (worst) average IoU score, and assigning
common region to one of [(P1, b), (P2)] or [(P1), (b, P2)] gives maximum (best) average IoU score
for single stage prediction.

Setting P1 = P2 = P and m = n =
1

2
in eq.1 gives

I(x) = 0.5

{
P + xb

P + b
+

P

P + (1− x)b

}
+ 0.5

{
P

P + xb
+

P + (1− x)b

P + b

}
(6)

However, we can directly set P1 = P2 = P and m = n = 1
2 in eq.2 gives
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I ′(x) = 0.5

{
Pb

(b · (1− x) + P )
2 − Pb

(bx+ P )
2

}
(7)

The roots for the equation I ′(x) = 0 is x = 1
2 . Differentiating the I ′(x) and setting x = 1

2

I ′′(x) =
Pb2

(bx+ P )3
+

Pb2

(b · (1− x) + P )
3 (8)

I ′′(x =
1

2
) =

2Pb2

( b2 + P )3
> 0 as P, b > 0 (9)

I(x) in convex for x in [0,1] as I ′′(x) > 0 (eq. 8), Further I(x) has minima at x = 1
2 .This implies

that I(x) increases in both directions with maxima at either of the edges. The value of I(x) (eq. 10)
at the edges are same, hence maxima exists at both x = 0 and x = 1.

IMax(x) = I(x = 0) = I(x = 1) =
P

P + b
+ 1 (10)

Theorem shows that assigning completely to one instance maximizes average IoU score. This also
implies that the maximum average IoU lie at the ends of this interval (x = 0 or x = 1) and any split
in common region would lead to sub-optimal score.

Corollary 3.4. If there are two regions P1 and P2 such that Area(P1) = Area(P2) and a common
region b, such that (P1, b) and (b, P2) are valid groupings with equal probability, then the IoU
average score is symmetric around x = 1

2 for x in [0,1].

This is intuitive as the values of IoU averaged across instances and scenarios. We can show that
I(x = 1

2 + y) = I(x = 1
2 − y), hence IoU is symmetric around x = 1

2 for x in [0, 1].

I(x =
1

2
+ y) = I(x =

1

2
− y) = 0.5

{
1 +

P

P + ( 12 − y)b
+

P

P + ( 12 + y)b

}
(11)

Theorem 3.5. If there are two regions P1 and P2 such that Area(P1) = Area(P2) and a common
region b, such that (P1, b) and (b, P2) are valid groupings with equal probability, then the average
IoU score for assigning common region to one of the instance is equal to the score of assigning it
completely to both instances (

[
(P1, b), (P2, b)

]
).

ID(x) = 0.5

{
P + b

P + b
+

P

P + b

}
+ 0.5

{
P

P + b
+

P + b

P + b

}
=

P

P + b
+ 1 = IMax(x) (12)

The assignment
[
(P1, b), (b, P2)

]
is preferred by deep learning models, as it gives maximum average

IoU score for both ground truths (eq.10 and 12), though it will be a spurious equilibrium not which
is partially wrong in both scenarios.

Observations : We can observe that the function IG(x) is convex for x in [0, 1] in Fig.2a and the
second differential is positive for x in [0, 1] in Fig.2c as in Theorem 3.1 implying that the there is
only one minima, with a possibility of one or two maximas at the ends of the interval.

4 EXPERIMENTS

We use a simulation to show the theoretical results. We consider two shapes similar to dumbbell
that are overlapped and the information is insufficient to correctly identify the correct assignment
(m = 1

2 ). This is similar to the coarse-to-fine approach in human vision, where the initial inference
is made on the coarser image with lesser information.
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(a) IG(x) (b) I ′G(x) (c) I ′′G(x)

Figure 2: Plot for P1 = P2 = 4 and b = 1 for different values of x for m=0.5. There are no
discontinuities in the interval in x ∈ [0, 1]

4.1 SIMULATIONS

We consider three implementations (a) single stage decision making similar to deep learning, where
one single decision is made (b) Two decisions are made simultaneously (c) Two decisions are made
sequentially one after the other with inputs from the previous decision. We use inputs containing a
common region center square patch which can be assigned to either left of right instances shown in
red and yellow (fig.4). We use a differential form of maximum function to find the maximum score
of two decisions in second and third setting.

4.1.1 SINGLE STAGE DECISION MAKING

We use a UNet model for our experiment. We observed that the common region is split between
instances during intermediate steps in training, and the common region is assigned to both instances
after training over a significant number of epochs. This results in the deep learning model being
partially wrong in both ground truth scenarios as in Theorem 3.5. In human vision, the common
region is assigned to one instance and evaluated to ensure correctness iteratively, and assigning to
only one randomly can be completely correct 50% of the time with maximum average IoU score or
the optimum value as in Theorem 3.5.

(a) Input (b) Ground Truth and Prediction (c) Ground Truth and Prediction

Figure 3: Single prediction in deep learning models for different ground truths. We can observe
that the common region is in orange as it predicted for both left and right instances or the spurious
equilibrium and learned in 10 epoch and training for 100 epochs did not change the behavior.

Observation : The single stage decision making is similar to the general setting in deep learning
applications which optimizes the output for all samples or for all possible ground truths. This results
in the choice of the spurious equilibrium. The model chooses an optimum based on it’s training cri-
teria or loss function resulting in spurious equilibrium that will never be fully correct and reproduces
output combination that is not present in the training set.

4.1.2 DUAL DECISIONS

We extended this experiment to have two decisions by generating four outputs and considering them
in sets of two to denote two sets of decisions. In order to ensure that the system generates both
possible responses, we use the loss which is an approximation of minimum loss of either of these
decisions. This ensures that the model generates the combinations in all scenarios and the minimum
loss in this case will be zero. A UNet without recurrent processing could not generate the two ground
truths in the two sets of decisions (Fig.4).
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Observation : In dual decision with a simple loss function the considers the maximum score of
two decisions, the simple UNet could not generate correct outputs, as it trains the better initialized
decision set to the spurious equilibrium. Any change from this equilibrium affects in both decisions
which worsens the maximum score and hence reverts back to the spurious equilibrium in the next
step. The network does not directly have knowledge the other set of decisions to make a prediction
dissimilar to it, and the training loss affects both the decisions together and are not separated due to
which it remains in the spurious equilibrium.

(a) Input (b) Ground Truth (c) Dual Predictions (d) Recurrent Predictions

Figure 4: Dual prediction with recurrent processing generates appropriate outputs, whereas for just
dual decisions the common region is in orange as it predicted for both left and right instances or
the spurious equilibrium. We trained recurrent processing with 10 epochs and without recurrent
processing for 100 epochs as the model could not learn any meaningful patterns in 10 epochs. In the
case of a dual decision, we can observe that the common region is in orange or predicted for both
left and right instances or the spurious equilibrium for one of the decisions and the other decision
does not learn anything meaningful.

4.1.3 RECURRENT DUAL DECISIONS

In our experiments we used the recurrent UNet from Wang et al. (2019). The model has a UNet
backbone with a GRU (Gated Recurrent Unit) for recurrent processing, which generate two outputs,
i.e. first step and then the second step that also takes input from the first step. This model architecture
learns the required behaviour within fewer epochs, showing the relevance of recurrent processing in
such decision making settings (Fig.4).

Observation : In a recurrent neural network, the decision is sequential, as the first decision
D1 = f(x) depends only on input x and the second decision has the access to the first decision
(or the history of decisions in general) D2 = f ′(x,D1). In case of an traditional convolutional
neural network, the decisions D1 = f(x) and D2 = f ′(x) are independent and the loss function is
ineffective to learn the required behaviour during the training process. This also indicates the impor-
tance of recurrent processes in human vision for dual thinking which relies on multiple decisions.

Recurrent dual decision simulates the feed-forward processing followed by recurrent processing ob-
served in the electrophysiological studies and our simulation finds them to be easy to train for eval-
uation of multiple approaches as proposed in studies on dual thinking in visual perception Dayanan-
dan et al. (2024). A recurrent neural network with a simple loss function that minimizes the loss in
either of the decisions learns the correct behavior with recurrent processing, which is similar to hu-
man vision, whereas dual decisions without recurrent processing could not learn this pattern during
training.

5 DISCUSSION

Human vision must ensure accurate inference to prevent harm in safety-critical situations, such as
driving, robotic surgery, or encountering potential threats. Unlike deep learning models that make
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decisions based solely on pre-learned representations, human vision actively gathers additional in-
formation when initial data is insufficient. By focusing on critical regions and iteratively refining
its inference through recurrent processing, human vision improves accuracy. Deep learning models
are trained using ground truth and optimized to minimize loss in each training batch, focusing on
reducing batch-level loss rather than ensuring the best prediction for each sample. During training,
a spurious equilibrium, analogous to a Nash equilibrium, can emerge, wherein any deviation from
this suboptimal state results in an increase in loss, driving the network to revert to its prior state. As
shown in Fig. 4c for dual predictions, the model converges on a spurious equilibrium for one of the
decisions. Any perturbation during training influences both decisions, leading to an overall increase
in loss and consequently forcing the model to return to its previous state. In such an equilibrium,
the model may achieve the best overall metric but never attain complete correctness, as partial as-
signments remain inherently flawed. This contrasts with human vision, which prioritizes the most
accurate prediction for each instance.

6 CONCLUSION

Human vision focuses on ensuring the accuracy of individual instances, whereas deep learning mod-
els aim to maximize overall accuracy, often leading to spurious equilibria. Theoretical analysis
highlights the existence of spurious optima, which prevents neural networks from converging to the
correct equilibrium. Simulations show that recurrent computation enables faster training in fewer
epochs while feed-forward networks struggle to achieve the desired behavior. Our study also sup-
ports the role of sub-component formation in human vision by showing that splitting a cohesive
group of pixels that are likely to occur together and assigning them to different instances is inher-
ently suboptimal. These findings emphasize key differences in decision-making between human
vision and deep learning models and highlight the importance of recurrent processing in human
perception.
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