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ABSTRACT

Watermarking techniques have been used to safeguard AI-generated content. In
this paper, we study publicly detectable watermarking schemes (Fairoze et al.) of
LLM, and have several research findings.
First, we observe that two important security properties, robustness and sound-
ness, may conflict with each other. We then formally investigate these two prop-
erties in the presence of an arguably more realistic adversary that we called
editing-adversary, and we can prove an impossibility result that, the robustness
and soundness properties cannot be achieved via a publicly-detectable single wa-
termarking scheme. Second, we demonstrate our feasible result: we for the first
time introduce the new concept of publicly-detectable dual watermarking scheme,
for AI-generated content. We provide a novel construction by using two publicly-
detectable watermarking schemes; each of the two watermarking schemes can
achieve “half” of the two required properties: one can achieve robustness, and the
other can achieve soundness. Eventually, we can combine the two halves into a
whole, and achieve the robustness and soundness properties at the same time. Our
construction has been implemented and evaluated based on OPT-2.7B , LLaMA-7B
and Mistral.

1 INTRODUCTION

Generative AI and robust watermarking. Generative AI technologies, especially advancements
in large language models (LLMs), exhibit a broad range of impressive capabilities. However, these
powerful tools also present risks, such as the potential for misuse in spreading fabricated or false
information. To address these cybersecurity concerns, watermarking schemes have been proposed to
safeguard AI-generated content Kirchenbauer et al. (2023); Aaronson (2023); Kuditipudi et al. (2023).
These schemes embed a watermark into the output text during LLM generation, with the primary
goal of ensuring that the watermark remains detectable even if the text is modified by an adversary.

Achieving both robustness and soundness properties, using watermarking. Two important security
properties, robustness and soundness, have been formalized Christ et al. (2023); Fairoze et al. (2023).
In Christ et al. (2023), the soundness property is formally defined. To achieve the soundness property,
a construction has been developed. Concretely, a “secret watermark” is embedded in the output of the
generative model, by using a secret key. When a text is received, we can check whether the text has
been watermarked or not by using the secret key. The downside of the above mentioned privately
detectable watermarking mechanism is obvious: the generative model and the detector must share the
same secret key, and a party is not allowed to detect LLM-generated content if he/she is not aware
of the secret information that has been embedded in the content. Very recently, publicly detectable
watermarking for AI-generated content is proposed in Fairoze et al. (2023). With this new primitive,
any party is allowed to detect if a content is watermarked or not.

A technical difficulty. Unfortunately, we observe that there is a technical difficulty in achieving
soundness and robustness properties at the same time. Intuitively, the robustness property requires
that even if a watermarked text has been modified, the embedded watermark should not be eliminated;
instead, it should still be able to be detected. We remark that, an adversary could simply remove the
entire watermarked text with the goal of eliminating the embedded watermark. To avoid this trivial
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attack, in the formalization for the robustness property in Fairoze et al. (2023), the adversary is not
allowed to remove the entire watermarked text; instead, the modified version from the adversary,
denoted as t′, and the original version of the watermarked text, denoted as t, must have an overlapping
of at least a δ-length segment, where δ ∈ N. To better illustrate our ideas, here let’s use t′ ▷◁δ t to
denote the δ-length segment overlapping between text t′ and text t. On the other hand, the soundness
property requires that an adversary, after seeing multiple watermarked texts, say t1, t2, . . . , tq , should
not be able to generate a valid (i.e., detectable) but “different” watermarked text t′. Here difference
means there is no overlapping of a k-length window between two texts t′ and t, we write as t′ ̸▷◁k t,
where k ∈ N. For all texts, it is required that (t′ ̸▷◁k t1) ∧ (t′ ̸▷◁k t2) ∧ · · · ∧ (t′ ̸▷◁k tq).

We must note that, the conditions in the two properties are conflicting with each other. Robustness
requires that the modified text has a sufficient overlap (δ-length) with the original text, while soundness
requires that the generated text does not have a sufficient overlap (k-length) with the original text.
Let t ∈ {ti}1≤i≤q . These two properties will lead to the following dilemma.

For simplicity, Let ℓ be the actual length of the longest overlapping segment of t′ and t.

Case 1 (δ ≥ k): If ℓ ≥ δ, then the condition t′ ▷◁δ t is satisfied. However, since ℓ ≥ k, the
condition t′ ̸▷◁k t is not met. Conversely, if ℓ < δ, then t′ ▷◁δ t is not satisfied. Therefore, we
conclude that no modified text t′ can simultaneously satisfy both t′ ▷◁δ t and t′ ̸▷◁k t in Case 1.

Case 2 (δ < k): If ℓ < δ, then t′ ▷◁δ t is not satisfied. If ℓ ≥ k, then t′ ̸▷◁k t is not satisfied. If
δ ≤ ℓ < k and the robustness property holds, meaning the watermark can be detected from t′,
then the soundness property is violated.

More concretely, in Case 1, if the length of the overlapping segment between t′ and t is greater than
or equal to δ (i.e., ℓ ≥ δ), then t′ overlaps with t by more than k. Consequently, t′ does not satisfy
the assumption of the soundness property, which states that t′ ̸▷◁k t. Conversely, if the length of the
overlapping segment is less than δ (i.e., ℓ < δ), then t′ does not meet the assumption of the robustness
property, which requires t′ ▷◁δ t. In Case 2, the length of the overlapping segment between t′ and
t can satisfy the assumptions of both the robustness and soundness properties (i.e., δ ≤ ℓ < k).
However, if the watermark can be detected from t′, the soundness property is violated; otherwise, the
robustness property is compromised.

Our research question. Based on the above discussions, we have the following question:

Is it possible to achieve the robustness and soundness properties at the same time,
in a publicly detectable watermarking scheme for LLM-generated content?

1.1 OUR CONTRIBUTIONS

We give an affirmative answer to the above research question. In this paper, we carry out a systematic
study on publicly detectable watermarking for LLM-generated content. We want to highlight that,
we are the first to introduce the new concept of publicly detectable dual watermarking, for LLM-
generated content. Concretely, we have the following results.

1.1.1 EDITING ADVERSARIES AND PUBLICLY DETECTABLE SINGLE WATERMARKING

New adversaries with edit distance. We first remark that in Fairoze et al. (2023), the differences
between texts are measured using the length of overlapping substrings. This way of measuring
differences is not strict enough, as an adversary could change small amounts of text at specific
positions to avoid long consecutive substrings. In natural language, a more reasonable way to
measure the differences of text is based on edit distance. Edit distance is the minimal steps that are
needed to modify a text to another one. We emphasize that it is non-trivial using edit distance to
describe texts embedding watermark because small edit distance cannot guarantee the integrity of
the watermark. We are the first to consider a restricted but arguably more realistic adversary, that we
called editing-adversary, with the goal of providing a better understanding of the security properties
when we study watermarking for LLM-generated content. Here, considering the text generated by
the adversary and the text generated by the generative model, if the difference is measured by edit
distance, then the adversary is called an editing-adversary.
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A formal treatment for publicly detectable single watermarking. If in a watermarking scheme,
the watermark can be detected publicly, it is defined as publicly detectable watermarking in Fairoze
et al. (2023). If the watermark detector returns a unique boolean value to indicate if the watermark
is detected in the watermarking scheme, we observe that the robustness and soundness security
properties may conflict with each other. We define this type of watermarking scheme as publicly
detectable single watermarking.

An impossibility result in the presence of editing adversaries. We redefine soundness and
robustness in the presence of editing-adversary. We now are able to formally investigate if the two
conflicting properties, soundness and robustness, can be achieved at the same time or not, for a
publicly detectable single watermarking. Indeed, we can formally establish an impossibility result for
achieving soundness and robustness at the same time in the presence of an editing-adversary, if we
use a single watermarking scheme.

1.1.2 PUBLICLY DETECTABLE DUAL WATERMARKING AGAINST EDITING ADVERSARIES

A new concept: Publicly detectable dual watermarking. To bypass the impossibility result, we
introduce a new primitive, publicly detectable dual watermarking, for LLM-generated content. We
formally define the syntax and the required properties, including robustness and soundness, of the
new primitive. We remark that, the impossibility result of achieving robustness and soundness at the
same time, does not hold for the dual watermarking scheme anymore.

A new construction of publicly detectable dual watermarking scheme. We then demonstrate our
feasibility result by constructing a publicly detectable dual watermarking scheme. In our construction,
we use two publicly detectable watermarking schemes as building blocks. Note that neither scheme
can achieve soundness and robustness at the same time in the presence of an editing-adversary;
however, the two watermarking schemes can achieve “half” of the two required properties, respec-
tively: one can achieve robustness, and the other can achieve soundness. Interestingly, we are able to
combine the two halves into a whole, and achieve the robustness and soundness properties at the
same time! In this way, we successfully reconcile the two properties in watermarking for LLMs.

Implementation and evaluation. We implement our publicly detectable dual watermarking scheme
based on OPT-2.7B Zhang et al. (2022) , LLaMA-7B Touvron et al. (2023) and Mistral Jiang et al.
(2023). We then evaluate the probability that a watermark bit is embedded correctly; we also evaluate
the quality of the text which is affected by watermark embedding. Our experiments show that, with
a small tune factor the watermark can be embedded with very high probability. Our experiments
further show that in our dual watermarking scheme, the text quality is reduced marginally. Finally,
our experiments demonstrate that the parameter selection made in the theoretical parts of the paper is
achievable.

1.2 ORGANIZATION

The paper is organized as follows. Section 2 covers the preliminaries, including formal definitions for
publicly detectable watermarking and the building blocks of our constructions. Section 3 redefines
the security properties and proves the impossibility result. In Section 4, we introduce a novel
definition of publicly detectable dual watermarking and its security properties. Section 5 presents
our main construction, with security proofs in Appendix F. Section 6 discusses the implementation
and evaluation results. A brief overview of related work is provided in Section 7, followed by the
conclusion in Section 8.

Finally, in Section A, we include the related work including AI-generated content detection and
watermarking schemes for LLM. We provide detailed preliminaries in Appendix B, definition of
properties in Appendix C, supporting materials for analysis in Appendix D, details of publicly-
detectable dual watermarking construction in Appendix E and additional experiments result in
Appendix G.

2 PRELIMINARIES

We use λ to denote the security parameter. A negligible function negl(λ) are those functions that
decay faster than the inverse of any polynomials in λ. In this paper, we describe each text t generated
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by the LLM as a vector of tokens x1, . . . , xn; we write it as t = x1∥ · · · ∥xn. We let ϵ denote the
empty vector. We define the length of the text t as |t|, which represents the number of tokens in
the text, denoted as |t| = n. We use the symbol t[i] to denote the i-th token xi of the token-vector
t. When the context is clear, we often also refer to a token as a word, and a vector of tokens as a
string. We use substring t̂ to denote any consecutive tokens in t such as t̂ = xi∥xi+1∥ · · · ∥xj where
1 ≤ i ≤ j ≤ n. For simplicity, we use t[i :] to denote the substring of t from the i-th element to
the end; that is t[i :] = xi∥ · · · ∥xn. When we append a token x to a vector t, we write it as t ∥ x.
Finally, we use V to represent the token vocabulary; we use V∗ to denote texts with arbitrary lengths
where tokens are from V .

Building Blocks. In our construction we uses cryptographic hash functions, digital signature scheme
and error-correcting code (ECC) as building blocks. We also use edit distance to limit how a text t
can be modified by adversary. Due to space limitations in the main text, we have placed the formal
definitions in the Appendix B.

2.1 PUBLICLY-DETECTABLE WATERMARKING OF LLM

In this paper, we explore the watermark embedding algorithm in a large language model, commonly
referred to as LLM. The large language model is a probabilistic generative model. We follow the
definitions in Kirchenbauer et al. (2023); Christ et al. (2023); Fairoze et al. (2023), as below:

Definition 2.1 (Auto-regressive Model). An auto-regressive model Model over vocabulary V takes
prompt ρ ∈ V∗ and the previous output of the model t ∈ V∗ as input. Then it outputs a vector of

logits of each word in the vocabulary as D $← Model(ρ, t).

Definition 2.2 (Generative Language Model). A generative language model GenModel over vocabu-
lary V takes prompt ρ ∈ V∗ and generated text t as input. Then it outputs a sequence of words in V
with length n.

Algorithm 1 Generative Lan-
guage Model (GenModel)
Input: ρ, t, n

for i = 1, . . . , n do
D $← Model(ρ, t)
t← t ∥ Predict(D)

end for
return t

In the generative language model (GenModel), the auto-regressive
model Model(·) serves as the foundation, with a prediction algorithm
Predict(·) utilized to choose the subsequent output token, as outlined
in Algorithm 1. Most commonly, Predict(·) normalizes the logits
values of D and takes the token x with the highest probability as the
output.

Syntax. Our focus in this paper is on publicly detectable water-
marking for LLM. We adopt the definition of a publicly detectable
watermarking scheme (PDWS) as presented in Fairoze et al. (2023).

Definition 2.3 (Publicly-Detectable Watermarking Scheme). A publicly detectable watermarking
scheme PDWS for a generative language model GenModel over token vocabulary V consists of a
tuple of algorithms PDWS = (Setup,Watermark,Detect) where:

The setup algorithm (pk, sk)
$← Setup(1λ). The algorithm Setup takes as input a security

parameter 1λ and outputs a pair of public and private keys (pk, sk).

The watermarking algorithm t
$←Watermark(sk,ρ). The algorithm Watermark takes as input

a private key sk and a prompt ρ ∈ V∗ and outputs a text t ∈ V∗.

The watermark detection algorithm ϕ ← Detect(pk, t′). The deterministic algorithm Detect
takes as input a public key pk, a candidate watermarked text t′, and outputs a boolean value ϕ,
with ϕ = true meaning valid and ϕ = false meaning invalid.

Properties. A publicly detectable watermarking of LLM should satisfy the following properties. First
property is completeness. The completeness property ensures that a text of sufficient length that was
watermarked faithfully must be detected (i.e., must be treated as a valid watermarked text), except
negligible probability. The second property is robustness. The robustness property requires that even
if a watermarked text is modified, the embedded watermark cannot be eliminated and can still be
detected. The second property is soundness. The soundness property requires that an adversary,
after seeing multiple watermarked texts should not be able to generate a valid (i.e., detectable) but
“different” watermarked text. The last property distortion-freeness is often used to describe the text
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quality of watermarked text. Distortion-freeness ensures that the watermarking algorithm does not
noticeably decrease the quality of the model output. We will give the formal definition of these
properties in Appendix C.

3 SOUNDNESS AND ROBUSTNESS IN THE PRESENCE OF AN
EDITING-ADVERSARY, AND AN IMPOSSIBILITY RESULT

As we discussed in the introduction, the conditions for robustness and soundness properties in
Definition C.2 and Definition C.3 conflict with each other. Therefore, it is infeasible to achieve the
two properties simultaneously based on the definitions in Fairoze et al. (2023). In this section, we will
define the robustness and soundness properties in the presence of a new type of adversaries called
editing-adversaries. We then formally prove an impossibility result of achieving the robustness and
soundness properties at the same time in the presence of editing-adversaries. Jumping ahead, in
Section 4, we will show to how to bypass the impossibility result by introducing a revised version of
the definitions for robustness and soundness (in the presence of editing-adversaries).

3.1 WHY USING EDIT DISTANCE (INSTEAD OF OVERLAPPING SUBSTRING)

Using overlapping substrings to measure differences between two texts is equivalent to measuring
text similarity by the length of the longest common substring. Compared to the length of overlapping
substrings, edit distance has significant advantages in measuring text similarity. Unlike the length
of overlapping substrings, edit distance evaluates the minimum number of operations (insertions,
deletions, and substitutions) needed to transform one text into another. This allows it to compre-
hensively consider words change between two texts, whether these matching parts are successive
or separated. Consequently, edit distance can more generally capture local similarities within texts,
such as matching subsequences scattered in different positions, providing a more accurate similarity
assessment.

3.2 SOUNDNESS AND ROBUSTNESS IN THE PRESENCE OF AN EDITING-ADVERSARY

To analyze if the two properties can be achieved simultaneously more formally, we redefine them
with a unified parameter. The edit distance is commonly used to measure the dissimilarity between
texts, making it a natural choice for describing the differences between the text generated by the
adversary and the text generated by Watermark(·). Because we use edit distance to describe the
adversary’s output, we refer to this type of adversary as an editing-adversary.

We use the edit distance Distance(t′, t) to depict the relation between the output from the ad-
versary and the original outputs. In addition, for a text t and a set Q of texts where Q =
{t1, t2, . . . , tq} and q ∈ N, we define the edit distance between t′ and Q as Distance(t′,Q) =
min{Distance(t′, ti)}ti∈Q.

Definition 3.1 (d-Robustness). We say publicly detectable watermarking scheme PDWS = (Setup,
Watermark,Detect) is d-robust, if for all PPT editing-adversaries A, for every prompt ρ ∈ V∗, it
holds that

Pr

 (pk, sk)
$← Setup(1λ); t

$←Watermark(sk,ρ);

t′
$← A(pk, t)

: (Detect(pk, t′) = false)
∧

(Distance(t′, t) ≤ d)

 ≤ negl(λ).

Definition 3.2 (d-Soundness). We say publicly detectable watermarking scheme PDWS = (Setup,
Watermark,Detect) is d-sound, if for all PPT editing-adversaries A, it holds that

Pr

[
(pk, sk)

$← Setup(1λ); t′
$← AWatermark(sk,·)(pk)

: (Detect(pk, t′) = true)
∧

(Distance(t′,Q) ≥ d)

]
≤ negl(λ),

where Q is the history of queries that the editing-adversary A made to the watermarking oracle
Watermark(sk, ·).

The parameter d quantifies the extent to which the adversary alters the watermarked text. This
parameter constrains the difference between the original text t and the manipulated text t′. By using
a unified parameter d for both robustness and soundness, we can analyze whether the protocol can
simultaneously satisfy these two properties.
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3.3 AN IMPOSSIBILITY RESULT

In order to prove the impossibility result we first define single watermarking scheme.

Definition 3.3. For a publicly-detectable watermarking scheme PDWS in Definition 2.3, if the
output ϕ← Detect(pk, t′) is a single boolean value, we say PDWS is a publicly-detectable single
watermarking scheme.

Theorem 3.4 (Impossibility of achieving d-robustness and d-soundness simultaneously). Let
PDWS = (Setup,Watermark,Detect) be a publicly detectable single watermarking scheme, then
PDWS cannot achieve d-robustness and d-soundness simultaneously.

We leave the proof of Theorem 3.4 in Appendix D. Theorem 3.4 shows that if the PDWS is a single
watermarking scheme, then it cannot achieve d-robustness and d-robustness simultaneously. We also
show the impossibility for substring-adversaries as in Fairoze et al. (2023) in Theorem D.1 in the
Appendix.

4 PUBLICLY-DETECTABLE DUAL WATERMARKING: DEFINITIONS

4.1 SYNTAX

In order to achieve d-robustness and d-soundness simultaneously, we define publicly-detectable
dual watermarking scheme. The primary distinction from the original publicly-detectable single
watermarking scheme is that the Detect(·) algorithm will output a tuple of boolean values, with one
serving the robustness property and the other the soundness property. We will highlight the difference
in blue in this section.

Definition 4.1 (Publicly-Detectable Dual Watermarking Scheme). A publicly detectable watermark-
ing scheme PD2WS for an auto-regressive model Model over token vocabulary V consists of a tuple
of algorithms PD2WS = (Setup,Watermark,Detect) where:

The setup algorithm (pk, sk)
$← Setup(1λ).

The algorithm Setup takes as input a security parameter 1λ and outputs a pair of public and
private keys (pk, sk).

The watermarking algorithm t
$←Watermark(sk,ρ).

The algorithm Watermark takes as input a private key sk and a prompt ρ ∈ V∗ and outputs a
text t ∈ V∗.

The watermark detection algorithm ⟨ϕr, ϕs⟩ ← Detect(pk, t′).

The deterministic algorithm Detect(·) takes as input a public key pk, a candidate watermarked
text t′, and outputs a tuple of boolean values ⟨ϕr, ϕs⟩. If ϕr = true the robustness watermark
is detected. If ϕs = true the soundness watermark is detected.

4.2 PROPERTIES

Distortion-freeness is independent of the Detect(·) algorithm, requiring no additional modifications,
which we will not delve into here. We revise the definitions of completeness, robustness, and
soundness below, emphasizing the distinctions in blue.
Definition 4.2 (γ-Completeness). We say publicly detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) is γ-complete, if for every prompt ρ ∈ V∗, it holds that

Pr

 (pk, sk)
$← Setup(1λ); t

$←Watermark(sk,ρ);
⟨ϕr, ϕs⟩ ← Detect(pk, t)
: ((ϕr = false) ∨ (ϕs = false)) ∧ (|t| ≥ γ)

 ≤ negl(λ).

Definition 4.3 (d-Robustness). We say publicly detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) is d-robust, if for all PPT editing-adversaries A, for every prompt ρ ∈
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V∗, it holds that

Pr

 (pk, sk)
$← Setup(1λ); t

$←Watermark(sk,ρ);

t′
$← A(pk, t); ⟨ϕr, ϕs⟩ ← Detect(pk, t′)

: (ϕr = false) ∧ (Distance(t, t′) ≤ d)

 ≤ negl(λ).

Definition 4.4 (d-Soundness). We say publicly detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) is d-sound, if for all PPT editing-adversaries A, it holds that

Pr

 (pk, sk)
$← Setup(1λ); t′

$← AWatermark(sk,·)(pk);
⟨ϕr, ϕs⟩ ← Detect(pk, t′)
: (ϕs = true) ∧ (Distance(t′,Q) ≥ d)

 ≤ negl(λ),

where Q is the history of queries that the editing-adversary A made to the watermarking oracle
Watermark(sk, ·).

5 PUBLICLY-DETECTABLE DUAL WATERMARKING: CONSTRUCTION

In this section, we show how to bypass the impossibility result as we demonstrated in the previous
section. Due to space limitations, we provide only a brief description of the construction in the main
text, with the complete version included in Appendix E. Our novel construction which is named as
Publicly-Detectable Dual Watermarking Scheme (PD2WS) will utilize two different watermarking
strategies, short-range watermarking and long-range watermarking, for generating text of a LLM.
Short-range watermarking means that when a word in text t is modified, it only impacts a small
number of bits (at least 1 bit) in the extracted watermark. This ensures that even if certain words
are modified, the extracted watermark remains similar to the original. Short-range watermarking
provides the robustness property. On the other hand, long-range watermarking means that when a
word is modified, it will affect a lot of bits in the extracted watermark. This implies that when a
few words are modified, the extracted watermark is broken. Long-range watermarking provides the
soundness property.

To embed watermark information in tokens, it is essential to select suitable tokens to signify 0 and 1
individually. We utilize the least significant bit of the hash value of a token to indicate the respective
bit of the embedded watermark. The study in Kirchenbauer et al. (2023) has demonstrated that
employing a modified softmax function can enhance the likelihood of selecting appropriate tokens
with minimal effect on text quality. We use a similar method to generate a token. The algorithm
TGPB takes prompt ρ, previous output tokens t, a preferred bit b and tune factor τ as input. TGPB
first employ an auto-regressive model Model(·) to produce a vector of logits D of each word in the
vocabulary V . The procedure that the tokens are generated with dual watermarks is illustrated in
Figure 1.

IV

t

Figure 1: The short-range watermark πS is embedded in the tokens periodically for every m tokens.
The long-range watermark πL is embedded in the last ℓ tokens. All but the last ℓ tokens are used as
input text of LWG to generate πL.

The short-range watermark is embedded periodically in every m token except the last ℓ tokens. As the
generation of the short-range watermark is from a constant initial vector, the short-range watermark
remains the same in each period. The generative model generates the sequence of tokens which are
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embedded with the short-range watermark. The generation of the long-range watermark, on the other
hand, depends on the tokens already generated which are embedded with the short-range watermark.
The long-range watermark is only embedded once in the last ℓ tokens. In order to detect if a text t′
contains the short-range watermark, all the substrings of t′ will be checked. For one substring, each
token is mapped to a bit using the hash function, thereby forming a bit string π′

S of length m. Then
the edit distance between πS and π′

S is used to measure if π′
S is a valid watermark where πS is the

hash value of the public initial vector IV. If the edit distance is less than a predefined threshold T ,
then the output is true. The long-range watermark is embedded in the last ℓ tokens. ECC is used to
recover the original signature σ from πL. The first n− ℓ tokens are used as the message to generate
the signature σ. If the input text is not modified, the signature verification will return true.

We will examine the security characteristics of our publicly-detectable dual watermarking scheme,
PD2WS. We can demonstrate that it achieves γ-Completeness, d-Robustness, and d-Soundness.
Further details are available in Appendix F.

6 PUBLICLY-DETECTABLE DUAL WATERMARKING: IMPLEMENTATION AND
EVALUATION

We implement our watermarking scheme using three publicly available LLMs : OPT-2.7B Zhang
et al. (2022) , LLaMA-7B Touvron et al. (2023) and Mistral Jiang et al. (2023). Similar to previous
works Kirchenbauer et al. (2023); Fairoze et al. (2023); Kuditipudi et al. (2023), we conducted our
experiments using the news-like subset of the C4 dataset Raffel et al. (2020) as the prompt input.

6.1 PROBABILITY OF WATERMARK EMBEDDED

We first evaluate the probability that a watermark bit is embedded correctly in Algorithm 4. This
probability is only related to the hash value of the token returned by LLM model, and this is not
related to the model’s performance. We will complete the following experiment using the OPT-2.7B
Zhang et al. (2022) model as an example. As described in Algorithm 4, the distribution of each
token is computed by a modified softmax function, the token with the highest probability is chosen
to output. The probability that a correct watermark bit is embedded is tuned by the parameter τ . If
τ = 0, the probability is decided by the original logits value of each token output from Model(·).
The chosen token x is independent of the preferred bit b. We have Pr[LSB(H(x)) = b] = 1

2 . In this
case, the preferred bit is embedded in the token correctly with probability pgood = 1

2 which is low. In
order to increase the probability that a token is embedded correctly. The modified softmax function
tunes the probability with the parameter τ . If a token x satisfies that LSB(H(x)) = b its probability
will be increased, otherwise will be decreased correspondingly.

In order to determine how the parameter τ benefit a watermarking bit embedding correctly we observe
the vector of logits D of tokens when Model(·) is called to generate a token. We use 5 different
prompts and generate token vectors with the length of 100 for each prompt. The number of tokens of
top 4 highest logits values are recorded as in Figure 2. The average of the highest logits value is about
20.05 which is 3.08 larger than the average of second highest logits value. If we set τ > 3.08 then the
second token will have good chance to be tried if the highest one x does not satisfy LSB(H(x)) = b.
The larger the parameter τ is, the more tokens have a chance to be tried.

We evaluated the probability that a preferred bit is not embedded correctly (bad probability) with
0 ≤ τ ≤ 10. For each τ we tried 2000 tokens with random preferred bit. We illustrate the bad
probability according to the parameter τ in Figure 3.

6.2 TEXT QUALITY EVALUATION

The watermarking scheme will decrease the text quality and the watermark can be viewed as noise.
Distortion-freeness in Definition C.4 ensures that the watermarking algorithm does not noticeably
decrease the quality of the model output. In this paper, we do not analyze the distortion-freeness
theoretically. We evaluate the text quality with experiments. Similar to the approach in Kirchenbauer
et al. (2023), we utilize perplexity to measure the quality of the text after watermark embedding.
Specifically, perplexity is computed by taking the logarithm of the probability of each token at every
position and then averaging them. Perplexity (PPL) is defined as the exponential average negative
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Figure 2: The top 4 logits values for token
generation.

Figure 3: The bad probability over different
τ . When τ = 4, the bad probability is about
10%. When τ = 8, the bad probability is
about 1%.

log-likelihood of a token sequence Chen et al. (1998). If we have a text t = (x0, x1, ..., xt), the PPL
of t is computed as PPL(x) = exp

{
− 1

t

∑t
i=0 log p(xi|x<i)

}
. Here, log p(xi|x<i) represents the

log-likelihood of the i-th token conditioned on the preceding tokens x<i.

Figure 4: The PPL will increase when the tune
factor τ increases.

This metric can be understood as the average
number of options the model considers when
predicting the next word. A lower perplexity
value on a given test set indicates a better output
quality. For large language models, beam search
is commonly employed during text generation to
enhance the quality of the generated output. The
perplexity values for generated text typically
range from 1.5 to 20 Zhao et al. (2023).

Our text quality evaluation utilized OPT-2.7B
, LLaMA-7B and Mistral to compute perplex-
ity. In order to evaluate how the parameter τ
affects the text quality. We randomly chose 20
test prompts from C4 dataset for 0 ≤ τ ≤ 10
and conducted the experiment. The result is il-
lustrated in Figure 4. It can be observed that the perplexity of watermarked text increases as τ
increases. This indicates that the text quality will decrease when the watermark is embedded with a
higher probability. Our scheme can take a proper τ to embed the watermark correctly with a high
probability while the text quality is good enough.

In Appendix G, we provide examples illustrating the example of text completions with different τ .

6.3 A CONCRETE EXAMPLE OF PARAMETERS

Here, we provide a specific set of parameters for the scheme as an example to demonstrate that
distance-soundness and distance-robustness can be simultaneously achieved. We employ a BLS
signature scheme with a 48-byte signature length (384 bits). An error correction code ECC is utilized,
where the input length is 384 bits and the output length is ℓ = 512 bits, corresponding to the length
of the long-range watermark ℓ = 512. Assuming the SHA-256 hash function is employed to create
a short-range watermark with a length of m = 256 bits. We establish the total length of the text
generated from LLM as n = 2048 bits, indicating that there are n−ℓ

m = 6 short-range watermarks
embedded.

The error correction code ECC has a redundancy of 128 bits, allowing it to correct a maximum of
d = 64 bits of errors. By setting the tuning factor as τ = 4, we achieve pbad = 0.1. When µ = 0.1,
we ensure that d ≥ (1 + µ) · ℓ · pbad ≈ 57, guaranteeing the correction of errors in the long-range
watermark with a high probability. If n−ℓ

ℓ ( T
m − (1+µ) · pbad) > 1, then we obtain T > 114. Setting

the threshold as T = 115, we find that d = n−ℓ
m T − (1 + µ)(n− ℓ) · pbad ≈ 515, which simplifies
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to d = 515. We confirm that this specific set of parameters will achieve both d-soundness and
d-robustness with a value of d = 515.

Firstly, it is clear that d > ℓ. For any altered t′ and query history Q, if Distance(t′,Q) ≥ d, then t′

must contain distinct tokens prior to the last ℓ = 512 tokens compared to any t ∈ Q. The long-range
watermarking detector will return false for the input t′, ensuring the soundness property. Secondly,
within the first 1536 tokens, 6 segments of tokens are embedded with a short-range watermark. In the
case of any altered t′ and an output text t generated by LLM, if Distance(t′, t) ≤ d, it implies that
at least one segment of t′ has an edit distance from the corresponding segment of t that is less than
d
6 ≈ 86. For this specific segment, the error bits of the embedded watermark are expected to be less
than m · (1 + µ)pbad ≈ 29 with a high probability. When considering these factors collectively, the
distance of the extracted watermark from this segment compared to the short-range watermark is less
than 86 + 29 = T with a high probability. Consequently, the long-range watermarking detector will
return true for t′ as input, ensuring the robustness property.

7 RELATED WORK

AI-generated content detection. Early approaches to detecting AI-generated text typically involve
identifying special features present in human-generated textLavergne et al. (2008); Beresneva (2016);
Gehrmann et al. (2019). Deep learning is utilized as a binary classifier for this purpose in Zellers
et al. (2019); Mitchell et al. (2023); Hendrik Kirchner et al. (2023). Another method involves fine-
tuning pre-trained language models, as discussed in Wu et al. (2023); Liu et al. (2022). Research
in Chakraborty et al. (2023) indicates that as AI-generated text approaches human quality, text
distinguishers require longer text samples. Furthermore, research has demonstrated the possibility of
training models to alter text in a way that deceives text distinguishers Krishna et al. (2023); Sadasivan
et al. (2023).

Watermarking for LLM-generated content. Recent research has explored the use of machine learning
for watermarking, as evidenced by works such as Abdelnabi & Fritz (2021); Qiang et al. (2023); Yoo
et al. (2023); Munyer & Zhong (2023); Liu et al. (2023). These schemes are purely empirical and lack
of formal definition of security properties such as robustness, soundness, or distortion-freeness. In
Kirchenbauer et al. (2023), it is demonstrated that a watermark can be inserted into the output of LLM
if the model entropy is high.This study quantifies the distortions introduced by the watermark through
the measurement of perplexity. In Kuditipudi et al. (2023), a family of watermarking schemes are
developed to maximize robustness. The formal security properties such as soundness, completeness
of LLM are defined in Christ et al. (2023). In Fairoze et al. (2023), the concept of publicly detectable
schemes is explored for the first time. The robustness and soundness of this scheme are demonstrated
under the assumption of substring overlapping.

Some recent related work. The term “dual watermarking” has also been employed in Zhu et al. (2024)
(a work parallel to ours). It optimize the efficiency and quality of watermarking by incorporating
dual secret patterns into both the token probability distribution and sampling strategies. In a very
recent paper Zhou et al. (2024), the authors noted that existing LLM watermarking schemes cannot
simultaneously achieve robustness and soundness. This work aligns with the impossibility theorem
presented in our paper. In recent study Zhang et al. (2023), the impossibility of achieving strong
watermarks for generative models is proved. We remark, there is no conflict between the impossibility
result and our feasibility result. We assume that the edit distance of text is bounded, and the attacker
is not allowed to change the text a lot.

Due to space limitations, the details of related work is included in Appendix A.

8 CONCLUSION

In this paper, our focus is on watermarking techniques for LLMs. We define the security properties
of a watermarking scheme based on edit distance and demonstrate the impossibility of achieving
robustness and soundness simultaneously for a publicly-detectable single watermarking scheme.

Our major result is a new concept of publicly-detectable dual watermarking scheme. We propose a
concrete construction, and then prove the security properties of the proposed scheme; Finally, we
evaluate the critical parameters through experiments.
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Appendix

A RELATED WORK

AI-generated content detection. AI-generated content detection means that the content does not
introduce any extra information when it is generated. The content is detected passively.

Early approaches to detecting AI-generated text typically involve identifying special features present
in human-generated text. If these features are identified, it is considered to be generated by a human;
otherwise, it is attributed to AI. Examples of such features include relative entropy scoring Lavergne
et al. (2008), perplexity Beresneva (2016), and other statistical signals Gehrmann et al. (2019).

To automatically detect AI-generated text, researchers have proposed training-based classifiers. Deep
learning is utilized as a binary classifier for this purpose in Zellers et al. (2019); Mitchell et al. (2023);
Hendrik Kirchner et al. (2023). Another method involves fine-tuning pre-trained language models, as
discussed in Wu et al. (2023); Liu et al. (2022). The issue with this approach is its reliance on the
assumption that AI-generated text cannot mimic human-generated text with similar features. While
this may hold for early AI models, as models improve, the distinct features of AI-generated text will
diminish. For instance, GPT-4 OpenAI (2023) and other state-of-the-art models closely resemble
human writing. Research in Chakraborty et al. (2023) indicates that as AI-generated text approaches
human quality, text distinguishers require longer text samples.

Furthermore, research has demonstrated the possibility of training models to alter text in a way that
deceives text distinguishers Krishna et al. (2023); Sadasivan et al. (2023).

Watermarking for LLM-generated content. Watermarking hides identifying information within
AI-generated text, enabling the detection of whether the text is AI-generated. Recent research has
explored the use of machine learning for watermarking, as evidenced by works such as Abdelnabi
& Fritz (2021); Qiang et al. (2023); Yoo et al. (2023); Munyer & Zhong (2023); Liu et al. (2023).
However, it is important to note that all schemes in this category are purely empirical and lack
of formal definition of security properties such as robustness, soundness, or distortion-freeness.
Recently, a series of research have advanced the rigorous definition and security proof of LLM
watermarking, and our work is also following this line of development. The main references are listed
in the following.

In Kirchenbauer et al. (2023), it is demonstrated that a watermark can be inserted into the output of
LLM if the model entropy is high. A watermark can be planted by hashing previous tokens to embed
a watermark signal in the next token. Furthermore, this study quantifies the distortions introduced
by the watermark through the measurement of perplexity, which reflects the difference between
the distribution produced by the unaltered model and the distribution produced by the model with
watermarking.

Another approach to LLM watermarking is the Gumbel softmax scheme introduced in Aaronson
(2023). This scheme utilizes exponential minimum sampling to draw samples from the model using
randomness derived from previous tokens (via hashing). Additionally, Kuditipudi et al. (2023) has
developed a family of watermarking schemes that are designed to maximize robustness.

The formal security properties such as soundness, completeness of LLM are defined in Christ et al.
(2023). The security properties are proved under the assumption that an contiguous substring of the
output remaining sufficiently high entropy. The watermark in Christ et al. (2023) is undetectable
without a secret key.

In Fairoze et al. (2023), the concept of publicly detectable schemes is explored for the first time. The
scheme proposed in Fairoze et al. (2023) utilizes digital signatures to facilitate the public detection of
the watermark. The robustness and soundness of this scheme are demonstrated under the assumption
of substring overlapping. However, it is observed that the assumptions underlying these two properties
are contradictory and cannot be simultaneously satisfied, as we discussed in Section 3. To circumvent
the impossibility result, we introduce a novel watermarking approach termed “dual watermarking,”
detailed in Section 4. The concept of “dual watermarking” involves the use of two distinct watermarks
to ensure robustness and soundness, respectively.
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The term ”dual watermarking” has also been employed in Zhu et al. (2024) (a work parallel to ours).
The objective of the method presented in Zhu et al. (2024) is to optimize the efficiency and quality of
watermarking by incorporating dual secret patterns into both the token probability distribution and
sampling strategies. It is important to note that the design and security aspects explored in Zhu et al.
(2024) are entirely distinct from those in our study.

The watermarking mechanism for generative models is still in the early stages of research. In recent
study Zhang et al. (2023), the impossibility of achieving strong watermarks for generative models is
proved. A strong watermarking scheme satisfies the property that a computationally bounded attacker
cannot erase the watermark without causing significant quality degradation. In their paper, the authors
demonstrated the attack on several existing watermarking schemes with minor quality degradation.
However, their attack requires extra computing resources to alter tokens of text. We remark, there
is no conflict between the impossibility result in Zhang et al. (2023), and our feasibility result (i.e.,
our dual watermarking in Section 5 and Section F): in our feasibility result, we assume that the edit
distance of text is bounded, and the attacker is not allowed to change the text a lot.

In a very recent paper Zhou et al. (2024), the authors noted that existing LLM watermarking schemes
cannot simultaneously achieve robustness and soundness, meaning they cannot resist both removal
attacks and spoofing attacks at the same time. In their paper, they proposed a scheme called Bilevel,
which uses two watermarking mechanisms to resist these two types of attacks separately. This
work aligns with the impossibility theorem presented in our paper, and the constructed scheme
also meets the definition of a Publicly-Detectable Dual Watermarking Scheme as provided in our
paper. However, the paper does not provide a rigorous definition of security, nor does it specify
the conditions required to achieve both security features simultaneously. The construction of the
Bilevel scheme also has shortcomings. For instance, its digital signature-based approach requires the
signature to be embedded strictly correctly into the output text, which in some cases may necessitate
choosing tokens that significantly degrade text quality.

B DETAILED PRELIMINARIES

B.1 HASH FUNCTIONS

Our construction uses cryptographic hash functions H : {0, 1}∗ → {0, 1}m, with m-bit output where
m ∈ N. In our security analysis, cryptographic hash functions will be treated as random oracles.
As formalized in Bellare & Rogaway (1993) by Bellare and Rogaway, a random oracle is a random
function drawn from the set of all possible functions uniformly and randomly (over specific input and
output domains). We use LSB(H(x)) to denote the least significant bit of H(x).

B.2 DIGITAL SIGNATURE SCHEMES

In our construction, we use a digital signature scheme to generate watermark sequences that will be
embedded in the output tokens. Below, we present the definition of digital signature schemes; Please
also see Katz & Lindell (2007).

Definition B.1 (Digital Signature Scheme). A digital signature scheme consists of three PPT algo-
rithms (Gen,Sign,Verify) such that:

• The key-generation algorithm (pk, sk)
$← Gen(1λ).

The algorithm Gen takes as input a security parameter 1λ and outputs a pair of public and
private keys (pk, sk).

• The signing algorithm σ
$← Sign(sk,m).

The algorithm Sign takes as input a private key sk and a message m from some message
space (that may depend on pk), and outputs a signature σ.

• The verification algorithm ϕ← Verify(pk,m, σ).
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The deterministic algorithm Verify takes as input a public key pk, a message m, and a
signature σ, and outputs a boolean value ϕ, with ϕ = true meaning valid and ϕ = false
meaning invalid.

Definition B.2 (Completeness). We say digital signature scheme Σ = (Gen,Sign,Verify) is complete
if for any message m, it holds that

Pr

[
(pk, sk)

$← Gen(1λ);σ
$← Sign(sk,m)

: (Verify(pk,m, σ) = true)

]
≥ 1− negl(λ).

Definition B.3 (Unforgeability). We say digital signature scheme Σ = (Gen,Sign,Verify) is unforge-
able if for all PPT adversary A, it holds that

Pr

[
(pk, sk)

$← Gen(1λ); (m∗, σ∗)
$← ASign(sk,·)(pk)

: (Verify(pk,m∗, σ∗) = true)
∧

((m∗, σ∗) ̸∈ Q)

]
≤ negl(λ),

where Q is the history of queries that the adversary A made to signing oracle Sign(sk, ·).

B.3 ERROR CORRECTING CODE

An error-correcting code (ECC) is a coding scheme used for the transmission of messages. In our
construction, we utilize Error Correcting Code (ECC) to correct errors in watermark data. We remark
that, in the context of AI-generated content, in Fairoze et al. (2023), the authors has already mentioned
that ECC can be used for watermarking the LLM-generated text. The ECC encoding and decoding
algorithms are defined as follows.
Definition B.4 (Error Correcting Code). An error-correcting code ECC consists of a tuple of algo-
rithms ECC = (Encode,Decode).

• c← Encode(m). The Encode algorithm takes a message m ∈M as input and outputs c as
a codeword.

• m← Decode(c′). The Decode algorithm recovers the original message from the received
codeword c′ which may have maximum distance t from an original codeword c.

The notation [n, k, d] is used to present the parameters of ECC, where n is the length of c, k is the
length of m and d is the minimal distance between any two different codewords. An error-correcting
code can correct t < d−1

2 bits of errors at most.

B.4 EDIT DISTANCE

Measuring the similarity between two strings is a crucial task in various domains. The edit distance
(also known as the Levenshtein distance Levenshtein (1966)) is a commonly employed similarity
measurement, which quantifies the minimum number of operations required to transform one string
into another (i.e., insertion, deletion, and substitution). We use edit distance to limit how a text t can
be modified by adversary.

Consider a finite alphabet set V whose elements are used to construct strings. Let ZI , ZD and ZS be
finite sets of integers. Let the function I : V → ZI be the insertion cost function, i.e., I(a) is the
cost of inserting the element a ∈ V into a given string. Similarly, define the deletion cost function
as D : V → ZD so that D(a) is the cost of deleting the element a ∈ V from a given string. Finally,
define the substitution cost function S : V × V → ZS so that for a, b ∈ V , S(a, b) is the cost of
replacing the element a by the element b in a given string.

Given two strings of length m and n, denoted by t ∈ Vm and t′ ∈ Vn respectively, consider the
sequence of insertion, deletion and substitution operations needed to transform t into t′ and the
corresponding aggregate cost of the transformation. The edit distance between t and t′ is defined
as the minimum aggregate cost of transforming t′ into t which is denoted as Distance(t′, t). The
general definition of edit distance given above considers different weights for different operations.

In this paper, we will consider a simpler definition which is given below.
Definition B.5. For all a, b ∈ V , let I(a) = D(a) = 1, S(a, b) = 1 when a ̸= b, and S(a, a) = 0.
Then, the edit distance is defined as the minimum number of insertion, deletion and substitution
operations required to convert t′ into t.
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Calculation for Edit Distance Consider two texts t and t′. First, we parse t into (x1, x2, . . . , xm)
where xi ∈ V for all i ∈ {1, . . . ,m}. Similarly, we parse t′ into (x′

1, x
′
2, . . . , x

′
n) where x′

j ∈ V
for all j ∈ {1, . . . , n}. We use M(i, j) to denote the edit distance between the two substrings
t̂ = x1, x2, . . . , xi and t̂′ = x′

1, x
′
2, . . . , x

′
j . The problem of finding the edit distance between t and

t′ can be solved in O(mn) time via dynamic programming Gusfield. (1997).

Let M(0, 0) = 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, define M(i, 0) =
∑i

k=1 I(xk), and M(0, j) =∑j
k=1 D(x′

k). Then, the edit distance M(m,n) is defined by the following recurrence relation for
1 ≤ i ≤ m, 1 ≤ j ≤ n:

M(i, j) = min

 M(i− 1, j) +D(x′
j),

M(i, j − 1) + I(xi),
M(i− 1, j − 1) + S(xi, x

′
j)

 .

For convenience, we use d = Distance(t, t′) = M(m,n) to denote the edit distance between t and
t′ with the length of m,n respectively.

B.5 CHERNOFF BOUND

There are many different forms of Chernoff bounds with different assumptions. We use a simple case
of a sum of independent Bernoulli trials. In a Bernoulli trial the random variable only takes the value
1 with probability p and value 0 with probability 1− p.

Theorem B.6. Let X =
∑n

i=1 Xi, where Xi = 1 with probability p > 0 and Xi = 0 with probability
1− p, and all Xi are independent. Let µ = E(X) = n · p. For all 0 < δ < 1, we have

(i) Upper Tail: Pr[(X ≥ (1 + δ)µ)] ≤ e−δ2µ/3 = e−Ω(n);

(ii) Lower Tail: Pr[(X ≤ (1− δ)µ)] ≤ e−δ2µ/2 = e−Ω(n).

B.6 SOFTMAX FUNCTION

The softmax function takes a vector z of k real numbers as input and normalizes it into a probability
distribution of k probabilities that are proportional to the exponential of the input numbers. The
original components of z can have any values and may not sum to 1. Upon applying softmax, each
component will be in the range (0, 1), with the sum of components equaling 1, enabling interpretation
as probabilities. Moreover, higher input components will correspond to higher probabilities.

Softmax is significant for assigning a probability value to each element in a vector, indicating the
likelihood of that element, instead of merely identifying one element as the maximum value in the
vector. The Softmax function is commonly used in deep learning classification tasks. The softmax
function Softmax(zi) for zi ∈ z is defined by the formula:

Softmax(zi) =
exp (zi)∑k
j=1 exp (zj)

.

C MATERIALS SUPPORTING DEFINITION

C.1 PROPERTIES

First, we define the completeness; basically, the completeness property ensures that a text of sufficient
length that was watermarked faithfully must be detected (i.e., must be treated as a valid watermarked
text), except negligible probability.
Definition C.1 (γ-Completeness). We say publicly detectable watermarking scheme PDWS =
(Setup,Watermark,Detect) is γ-complete if for every prompt ρ ∈ V∗, it holds that

Pr

[
(pk, sk)

$← Setup(1λ); t
$←Watermark(sk,ρ)

: (Detect(pk, t) = false)
∧
(|t| ≥ γ)

]
≤ negl(λ).
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We now describe the robustness and soundness properties as in Fairoze et al. (2023). Intuitively, the
robustness property requires that even if a watermarked text is modified, the embedded watermark
cannot be eliminated and can still be detected. However, an adversary could simply remove the entire
watermarked text so that the embedded watermark can be eliminated. To avoid this trivial attack, in
the formalization for the robustness property in Fairoze et al. (2023), the adversary is not allowed to
remove the entire watermarked text; instead, the modified version from the adversary, denoted as t′,
and the original version of the watermarked text, denoted as t, must share at least a δ-length segment,
where δ ∈ N.

On the other hand, the soundness property requires that an adversary, after seeing multiple water-
marked texts, say t1, t2, . . . , tq , should not be able to generate a valid (i.e., detectable) but “different”
watermarked text. We will introduce some notations, and formally define the difference between two
watermarked texts.

Notations ▷◁n and ̸▷◁n. To facilitate our presentation, we introduce the notation “▷◁n” and its
negation “ ̸▷◁n”. Concretely, consider two texts t, t′ ∈ V∗. If the two texts t′ and t share at least an
n-length segment, we write t′ ▷◁n t. In contrast, if there is no overlapping of an n-length window
between the two texts t′ and t, we write t′ ̸▷◁n t.

In addition, when the text t′ does not overlap an n-length window of tokens with any of the texts in a
set Q, where Q = {t1, t2, . . . , tq} and q ∈ N, we write (t′ ̸▷◁n t1) ∧ (t′ ̸▷◁n t2) ∧ · · · ∧ (t′ ̸▷◁n tq);
when the context is clear, we also write t′ ̸▷◁n Q.

We are now ready to formally define the robustness and soundness properties as in Fairoze et al.
(2023). We remark that the adversaries are restricted in the sense that their behavior on a text can be
defined with substring; we thus call them substring-adversaries.
Definition C.2 (δ-Robustness). We say publicly detectable watermarking scheme PDWS = (Setup,
Watermark,Detect) is δ-robust if for all PPT substring-adversaries A, for every prompt ρ ∈ V∗, it
holds that

Pr

[
(pk, sk)

$← Setup(1λ); t
$←Watermark(sk,ρ);

t′
$← A(pk, t) : (Detect(pk, t′) = false)

∧
(t′ ▷◁δ t)

]
≤ negl(λ).

Definition C.3 (k-Soundness). We say publicly detectable watermarking scheme PDWS = (Setup,
Watermark,Detect) is k-sound if for all PPT substring-adversaries A, it holds that

Pr

[
(pk, sk)

$← Setup(1λ); t′
$← AWatermark(sk,·)(pk)

: (Detect(pk, t′) = true)
∧

(t′ ̸▷◁k Q)

]
≤ negl(λ),

where Q is the history of queries that the substring-adversary A made to the watermarking oracle
Watermark(sk, ·).

Distortion-freeness ensures that the watermarking scheme does not significantly degrade the quality
of the text.
Definition C.4 (ϵ-Distortion-freeness). We say publicly detectable watermarking scheme PDWS =
(Setup,Watermark,Detect) is ϵ-distortion-free if for all PPT distinguishers D, it holds that∣∣∣∣∣Pr [DModel,GenModel(1λ) = 1

]
− Pr

[
(pk, sk)

$← Setup(1λ)
: DModel,Watermark(sk,·)(1λ) = 1

]∣∣∣∣∣ ≤ ϵ,

where ϵ ≥ 0.

D MATERIALS SUPPORTING IMPOSSIBILITY RESULT

D.1 IMPOSSIBILITY WITH EDITING ADVERSARY

Theorem 3.4 (Impossibility of achieving d-robustness and d-soundness simultaneously). Let
PDWS = (Setup,Watermark,Detect) be a publicly detectable single watermarking scheme, then
PDWS cannot achieve d-robustness and d-soundness simultaneously.

Proof. Let (pk, sk) be a key pair which is generated as (pk, sk)← Setup(1λ). Let Q be the history
of queries as Q ←Watermark(sk, ·). Let A be any PPT algorithm.
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Assume that PDWS is d-sound. After obtaining Q, the algorithm A produces an output t′ ← A(pk).
The distance between t′ and Q is Distance(t′,Q) = d, indicating that there exists a text t ∈ Q such
that Distance(t′, t) = d. Following the Definition 3.2, we have

Pr[Detect(pk, t′) = true] ≤ negl(λ). (1)

Assume that PDWS is also d-robust. The text t′ which is generated by algorithm A as t′ ← A(pk, t)
satisfies Distance(t′, t) = d. Following the Definition 3.1, Pr[Detect(pk, t′) = false] ≤ negl(λ).
That is

Pr[Detect(pk, t′) = true] ≥ 1− negl(λ). (2)

Given that PDWS is publicly-detectable single watermarking scheme, the output of Detect(pk, t′) =
true is a single boolean value so that Pr[Detect(pk, t′) = true] must be the same value for
robustness and soundness. Putting the equations (1) and (2) together we obtain

negl(λ) ≥ Pr[Detect(pk, t′) = true] ≥ 1− negl(λ). (3)

That is negl(λ) ≥ 1/2 which is contradicted with the definition of negligible function.

D.2 IMPOSSIBILITY WITH SUBSTRING ADVERSARY

We will show that it is impossible to achieve δ-robustness and k-soundness simultaneously which is
defined in Fairoze et al. (2023).

Theorem D.1 (Impossibility of achieving δ-robustness and k-soundness simultaneously). Let
PDWS = (Setup,Watermark,Detect) be a publicly detectable single watermarking scheme, then
PDWS cannot achieve δ-robustness and k-soundness simultaneously with substring-adversaries A.

Proof. Let Q be the set of queries which are made by A. Let t ∈ Q be a text which is generated by
LLM. Let text t′ be the output which is generated by A. Following the δ-robustness in Definition
C.2, the modified text t′ and the original watermarked text t satisfies that t′ ▷◁δ t, where δ ∈ N.

On the other hand, based on the k-robustness DefinitionC.3, the modified text t′ and the query history
Q satisfies t′ ̸▷◁k Q , where k ∈ N.

Suppose that PDWS achieves δ-robustness and k-soundness simultaneously. If δ ≥ k, there is no
modified text t′ that can satisfy both t′ ▷◁δ t and t′ ̸▷◁k t. If δ < k, suppose a modified text t′
satisfies that t′ ▷◁δ t and t′ ̸▷◁k t.

Given the robustness property holds, we have Pr[Detect(pk, t′) = false] ≤ negl(λ) which means
Pr[Detect(pk, t′) = true] ≥ 1− negl(λ). Given that the soundness property holds, we have
Pr[Detect(pk, t′) = true] ≤ negl(λ) which contradicts with the fact that the robustness property
also holds. This completes the proof.

E DETAILS OF PUBLICLY-DETECTABLE DUAL WATERMARKING
CONSTRUCTION

In this section, we show how to bypass the impossibility result as we demonstrated in the previous
section. Our novel construction which is named as Publicly-Detectable Dual Watermarking Scheme
(PD2WS) will utilize two different watermarking strategies, short-range watermarking and long-
range watermarking, for generating text of a LLM.

Short-range watermarking means that when a word in text t is modified, it only impacts a small
number of bits (at least 1 bit) in the extracted watermark. This ensures that even if certain words
are modified, the extracted watermark remains similar to the original. Short-range watermarking
provides the robustness property.

On the other hand, long-range watermarking means that when a word is modified, it will affect a lot
of bits in the extracted watermark. This implies that when a few words are modified, the extracted
watermark is broken. Long-range watermarking provides the soundness property.
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Following the definition of publicly-detectable watermarking scheme in Definition 2.3, PD2WS con-
tains three algorithms: Setup(·), Watermark(·) and Detect(·). Setup(1λ) utilizes the key-generation
algorithm Gen(1λ) of signature scheme to generate a pair of keys (pk, sk) which is simple. We
introduce Watermark and Detect algorithms in the following two subsections respectively.

E.1 DUAL WATERMARKING OF GENERATIVE MODELS

The Watermark(sk,ρ) algorithm is implemented with three subroutines: watermark generation,
watermark embedding and generative model of watermarking.

E.1.1 WATERMARK GENERATION

In our construction, the watermark is generated with public information and the private key which are
input into the LLM as parameters. Watermarks for the two halves are generated separately.

Short-range Watermark Generation We define the short-range watermark generation algorithm
abbreviated as SWG in Algorithm 2. The short-range watermark is the hash value of a public initial
vector IV. The output of SWG is denoted as πS with the length of m bits.

Algorithm 2 Short-range Watermark Generation (SWG)
Input: IV

πS ← H(IV)
return πS

Long-range Watermark Generation We define the long-range watermark generation algorithm
abbreviated as LWG in Algorithm 3. First, the signature σ is generated by signing the hash value of
the previous tokens. Then the signature is encoded with the error correcting code. The output of
πL = Encode(σ) is used as long-range watermark. The error correcting code will ensure that if the
watermark is modified slightly the signature still can be recovered. The result of LWG is denoted as
πL with the length of ℓ bits.

Algorithm 3 Long-range Watermark Generation (LWG)
Input: t, sk
σ

$← Sign(sk, H(t))
πL ← Encode(σ)
return πL

E.1.2 PROBABILISTIC WATERMARK EMBEDDING

To embed watermark information in tokens, it is essential to select suitable tokens to signify 0 and 1
individually. We utilize the least significant bit of the hash value of a token to indicate the respective
bit of the embedded watermark. In the absence of additional constraints, this token bit generated by a
language model will match the watermark bit with a probability of 1/2.

If the token selected by the LLM with the highest probability does not meet this criterion, alternative
tokens must be explored. This approach contradicts the principle of selecting the token with the
highest probability, and opting for alternative tokens could potentially degrade the quality of the
output text. The study in Kirchenbauer et al. (2023) has demonstrated that employing a modified
softmax function can enhance the likelihood of selecting appropriate tokens with minimal effect on
text quality. The definition of softmax function can be found in B.6.

We use a similar method which is defined as Token Generation with Preferred Bit (TGPB) as in
Algorithm 4 to generate a token. The algorithm TGPB takes prompt ρ, previous output tokens t, a
preferred bit b and tune factor τ as input. TGPB first employ an auto-regressive model Model(·) to
produce a vector of logits D of each word in the vocabulary V . Let D[x] be the logits value of token
x in the vector. We use LSB(H(x)) to denote the least significant bit of H(x) for a token x ∈ V . Let
Sb be a subset of V , a token x ∈ Sb if and only if LSB(H(x)) = b. The D[x] is converted into a
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normalized probability px using the softmax function according to if it is in Sb. The token x with the
highest probability px will be returned.

Algorithm 4 Token Generation with Preferred Bit (TGPB)
Input: ρ, t, b, τ
/* The input bit b is preferred bit to be embed in the generated
token; the input τ is used to tune the probability that b will be
embedded correctly. Note that, this algorithm is parameterized by the
vocabulary V and two disjoint subsets S0 and S1, where V = S1 ∪ S0 and
S1 ∩ S0 = ∅. Concretely, for b ∈ {0, 1}, a token x ∈ Sb if and only if
LSB(H(x)) = b. */

D $← Model(ρ, t) //Run auto-regressive model and obtain the vector of
logits.
w ← 0
for all x ∈ V do
αx ← D[x] //Get the logits value of x.
if x ∈ Sb then
w ← w + exp (αx + τ)

else
w ← w + exp (αx)

end if
end for
for all x ∈ V do

if x ∈ Sb then
px ← exp (αx+τ)

w
else
px ← exp (αx)

w
end if

end for
x← ϵ
for all y ∈ V do

if py > px then
x← y

end if
end for
return x

The input parameter τ is employed to modify the likelihood of selecting a token from the vocabulary.
If a token x ∈ Sb, its selection probability is heightened, and conversely, diminished otherwise.
This approach skews the least significant hash value of the resulting token towards matching b. As
the value of τ increases, the probability of the returned token x satisfying LSB(H(x)) = b will
rise. However, a larger τ value may disrupt the vocabulary distribution from the original output of
Model(ρ, t), potentially reducing the quality of the generated text.

It must be noticed that TGPB is a probabilistic watermark embedding algorithm. Whatever the
value of τ is, the probability that LSB(H(x)) = b is less than 1. This means TGPB may generate a
token that does not embed a bit of watermark correctly. We will show that the probability a bit b is
embedded correctly is high enough while the negligible impact on text quality is slight with suitable
parameter τ in Section 6.

Both the short-range watermark and long-range watermark are embedded into tokens using TGPB
algorithm. Note that the algorithm TGPB will introduce errors; These errors will be processed in two
different ways:

Short-range Watermark Error The short-range watermark is used to guarantee the robustness
property. We treat the errors brought in TGPB the same as errors brought by the adversary. We use
the edit distance to measure the similarity of the extracted watermark with the original one. If they
are close enough we say the watermark is detected.
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Long-range Watermark Error The long-range watermark is used to guarantee the soundness
property. Signature scheme is equipped to verify if an extracted watermark is the original one. The
errors brought in TGPB must be corrected to recover the signature. The error correcting code is
utilized to achieve this goal.

E.1.3 GENERATIVE MODEL OF DUAL WATERMARKING

The Dual Watermarking of Generative Model (Watermark(·)) in Algorithm 5 is designed to generate
watermarked text. Here, Watermark(·) takes private key sk and prompt ρ as input parameters. The
expected output length is set as n.

Algorithm 5 Dual Watermarking of Generative Model (Watermark)
Input: sk,ρ

n← target length
t← ϵ, πS ← ϵ, πL ← ϵ
IV← “a constant string”
τ ← c
while |t| < n do

if |t| < n− ℓ then
if |πS | = 0 then

πS ← SWG(IV)
end if
σ̄S ← πS [0], πS ← πS [1 :]
x← TGPB(ρ, t, σ̄S , τ)

else
if |πL| = 0 then

πL
$← LWG(t, sk)

end if
σ̄L ← πL[0], πL ← πL[1 :]
x← TGPB(ρ, t, σ̄L, τ)

end if
t← t ∥ x

end while
return t

The procedure that the tokens are generated with dual watermarks is illustrated in Figure 1.

Generative Model of Short-range Watermark The short-range watermark is embedded periodi-
cally in every m token except the last ℓ tokens. As the generation of the short-range watermark is from
a constant initial vector, the short-range watermark remains the same in each period. The generative
model generates the sequence of tokens which are embedded with the short-range watermark.

Generative Model of Long-range Watermark The generation of the long-range watermark, on
the other hand, depends on the tokens already generated which are embedded with the short-range
watermark. The long-range watermark is only embedded once in the last ℓ tokens.

The SWG in Algorithm 2 and LWG in Algorithm 3 are used to generate short-range watermarks and
long-range watermarks, respectively. The watermarks are embedded using the token generation with
the preferred bit (TGPB) function in Algorithm 4. The factor τ ← c is used as a parameter to tune
the probability that a watermark bit is correctly embedded in a token x.

The output tokens are generated one by one until the target length n is reached. It should be noted
that this algorithm does not guarantee that all the watermark bits are embedded correctly. As we
mentioned in the Algorithm 4, some bits of the watermark may not be embedded correctly. This error
should be tolerated in the detection algorithms.
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E.2 DUAL WATERMARK DETECTOR

Dual watermark detector, Detect(·) also can be divided into two halves: Short-range Watermark
Detector (SWD) in Algorithm 6 and Long-range Watermark Detector (LWD) in Algorithm 7.

Short-range Watermark Detector In order to detect if a text t′ contains the short-range watermark,
all the substrings of t′ will be checked. For one substring, each token is mapped to a bit using the
hash function, thereby forming a bit string π′

S of length m. Because the probabilistic watermark
embedding Algorithm 4 is used, the extracted watermark may not be exactly the same as the original
one. Then the edit distance between πS and π′

S , Distance(πS , π
′
S), is used to measure if π′

S is a valid
watermark where πS is the hash value of the public initial vector IV. If Distance(πS , π

′
S) is less than

a predefined threshold T , then the output is true. If none of the substrings returns true then returns
false.

Algorithm 6 Short-range Watermark Detector (SWD)
Input: t′, IV, T
n← |t′|, i← 0
while i < n− (m+ ℓ) do
πS ← H(IV)
π′
S ← ϵ, j ← 0

while i+ j < n− ℓ do
π′
S ← π′

S ∥ LSB(H(t′[i+ j]))
j ← j + 1
if Distance(πS , π

′
S) ≤ T then

return true
end if

end while
i← i+ 1

end while
return false

Long-range Watermark Detector The long-range watermark is embedded in the last ℓ tokens.
Each of the last ℓ tokens is mapped to a bit using LSB(H(t[i])) and all the ℓ bits are composed into
a bit string πL. The πL is supposed to be the embedded watermark. The probabilistic embedding
algorithm may bring errors into πL as discussed in Algorithm 4. ECC is used to recover the original
signature σ from πL. The first n− ℓ tokens are used as the message to generate the signature σ in
Algorithm 5. If the input text is not modified, the signature verification will return true.

Algorithm 7 Long-range Watermark Detector (LWD)
Input: t′, pk
n← |t′|, i← 0,plain← ϵ, πL ← ϵ
while i < n do

if i < n− ℓ then
plain← plain ∥ t[i]

else
πL ← πL ∥ LSB(H(t[i]))

end if
end while
σ = Decode(πL)
if Verify(pk, H(plain), σ) = true then

return true
else

return false
end if
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We utilize both short-range watermark detector SWD and long-range watermark detector LWD in
Detect(·) in Algorithm 8. Only when both watermarks are detected, it can be concluded that the
text is generated by the generative model Watermark(·). When the short-range watermark is not
detected, it can be inferred that the text is not generated by Watermark(·). If only the short-range
watermark is detected, it can be inferred that the text is originally generated by Watermark(·) but has
been tampered with. That is, if the return value vS = true, then it is a watermarked text; otherwise,
it is not. If the return value vL = true, it is unmodified otherwise it is modified.

Algorithm 8 Dual Watermark Detector (Detect)
Input: pk, t′

{/* T is a global parameter of threshold to detect short-range watermark.*/}
IV← “a constant string”
ϕr ← SWD(t′, IV, T )
ϕs ← LWD(t′, pk)
return ⟨ϕr, ϕs⟩

F PUBLICLY-DETECTABLE DUAL WATERMARKING: SECURITY ANALYSIS

We will analyze the robustness property and soundness property of our publicly-detectable dual
watermarking scheme PD2WS.

F.1 ANALYSIS OF WATERMARK ERRORS

In Algorithm 4, a watermark bit b is probabilistically embedded in a token x by choosing x such that
LSB(H(x)) = b. If a token x satisfies that LSB(H(x)) = b, we say x is good otherwise it is bad. A
good token means a bit of the watermark is embedded correctly and a bad token implies that an error
bit of the watermark is embedded. We use pgood to denote the probability that a token x is good and
use pbad to denote the probability that a token x is bad.

pgood = Pr[LSB(H(x)) = b],

pbad = Pr[LSB(H(x)) ̸= b].
(4)

It is obvious that pgood + pbad = 1.

The probability pgood is adjusted by the factor τ using the softmax function. For a candidate
token x, if LSB(H(x)) = b, its probability of being chosen will increase according to the factor τ .
Otherwise, its probability of being chosen will decrease relatively. If we set τ = 0 in Algorithm 4,
the probability of tokens being chosen will not be tuned. In this case, we have the probability that
pgood = Pr[LSB(H(x)) = b] = 1

2 .

The probability that a token is good is independent of the other tokens. For any consecutive n tokens
that are generated in Algorithm 4, let α and β be the number of tokens which are good and bad
respectively. The expectation of α is E(α) = n · pgood and the expectation of β is E(β) = n · pbad.

Using the Chernoff bound as in Theorem B.5, we can measure the upper bound of β with the
following probability for any constant µ > 0

Pr[β ≥ (1 + µ)n · pbad] ≤ e−Ω(n).

If n = O(λ), we have
Pr[β ≥ (1 + µ)n · pbad] ≤ negl(λ). (5)

F.2 SECURITY PROOFS

We prove that our publicly-detectable dual watermarking scheme (PD2WS) can satisfy the complete-
ness in Definition C.1, robustness in Definition 3.1, and soundness in Definition 3.2. We leave the
distortion-freeness in Definition C.4 to be discussed in Section 6.

We recall the parameters that will be used in the following proofs. Let m be the length of output of
hash function H(·) where m = O(λ). Let ℓ be the length of output of Encode(·) where ℓ = O(λ).
Let n = |t| be the length of text t which is generated by Watermark(·). We assume n ≥ m+ ℓ. Let
pbad be the probability that a generated token is bad as in the Equation 4.
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F.2.1 γ-COMPLETENESS

Our dual watermark algorithm uses two watermarking with different sensitivities to simultaneously
ensure robustness and soundness.

Firstly, we will show short-range watermark detector will return true with overwhelming probability.
Lemma F.1. Consider the publicly-detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) in Section 5 and assume that text t is generated by Watermark(·) with
the length n ≥ m+ ℓ. Let T be the threshold in Algorithm 6. If there exists a constant µ > 0 such
that T ≥ (1 + µ) ·m · pbad, then we have Pr[SWD(t, IV, T ) = true] ≥ 1− negl(λ).

Proof. Let t̂ be the prefix string of t with m tokens. For n ≥ m+ ℓ, the short-range watermark πS

must be embedded in t̂ (with errors). Let β be the number of bad tokens in t̂. From the Equation 5, we
have Pr[β ≥ (1+µ)m·pbad] ≤ negl(λ). For T ≥ (1+µ)m·pbad, we have Pr[T ≥ β] ≥ 1−negl(λ).
Let π′

S be the watermark extracted in SWD. We have the distance between πS and π′
S as

Distance(πS , π
′
S) = β. If T ≥ β, SWD(t, IV, T ) will return true. Putting them together, we

have Pr[SWD(t, IV, T ) = true] ≥ 1− negl(λ).

Secondly, we will show long-range watermark detector will also return true with overwhelming
probability.
Lemma F.2. Consider the publicly-detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) in Section 5, and assume that text t is generated by Watermark(·)
with the length n ≥ m+ ℓ. Let d be the number of errors that Decode() can correct in Algorithm 7.
Assume that the signature scheme Σ is complete in Algorithm 7. If there exists a constant µ > 0 such
that d ≥ (1 + µ) · ℓ · pbad, then we have Pr[LWD(t, pk) = true] ≥ 1− negl(λ).

Proof. Let t̂ be the last ℓ tokens of t. For n ≥ m + ℓ, the long-range watermark πL must be
embedded in t̂ (with errors). Let β be the number of bad tokens in t̂. From the Equation 5, we have
Pr[β > (1+µ)ℓ·pbad] ≤ negl(λ). For d ≥ (1+µ)ℓ·pbad, we have Pr[d ≥ β] ≥ 1−negl(λ). Because
ECC can correct d errors, if d ≥ β then σ = Decode(πL) in Algorithm 7. For the signature scheme is
complete, given a correct signature σ, Pr[Verify(pk, H(plain), σ) = true] ≥ 1− negl(λ). If the
Verify(·) = true then LWD(·) will return true. Putting them together, we have Pr[LWD(t, pk) =
true] ≥ (1− negl(λ))2 = 1− negl(λ).

Based on Lemma F.1 and Lemma F.2, we can prove the completeness property.
Theorem F.3 (γ-Completeness). Consider the publicly-detectable dual watermarking scheme
PD2WS = (Setup,Watermark,Detect) in Section 5 with the same parameters as in Lemma F.1 and
in Lemma F.2. Let γ = m+ ℓ. We have that PD2WS is γ-complete.

Proof. Let text t is generated by Watermark(·) and |t| ≥ γ. From Lemma F.1 we have
Pr[SWD(t, IV, T ) = true] ≥ 1− negl(λ). From Lemma F.2 we have Pr[LWD(t, pk) = true] ≥
1− negl(λ). Let ⟨ϕr, ϕs⟩ = Detect(·) as in Algorithm 8. We have

Pr[(ϕr = false ∨ ϕs = false) ∧ (|t| ≥ γ)]

≤ Pr[SWD(t, IV, T ) = false] + Pr[LWD(t, pk) = false]

≤ negl(λ).

F.2.2 D-ROBUSTNESS

The short-range watermark based on edit distance is not sensitive to token modifications, thus it can
verify the watermark as true for slightly modified text, ensuring robustness. We prove d-Robustness
using short-range watermark.

First, we will demonstrate that if the distance between two texts is bounded by a parameter n, then
there exist two corresponding substrings of the texts where the distance is bounded by n

m when the
text is divided into m substrings.
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Theorem F.4. Let t′ and t be two texts, the distance of the two texts is Distance(t′, t) = n. Assume
that t is divided into m consecutive substrings t̂i where i ∈ {1,m} as t = t̂1, · · · , t̂m. There is a
substring t̂′i of t′ and a substring t̂i of t such that Distance(t̂′i, t̂i) ≤ n

m .

Proof. For each substring t̂i where i ∈ {1,m} choose the substring t̂′i of t′ with the least distance
Distance(t̂′i, t̂i), we have that Distance(t′, t) ≥

∑m
i=1 Distance(t̂

′
i, t̂i). If for all t̂′i and t̂i it is that

Distance(t̂′i, t̂i) > n
m , then we have Distance(t′, t) > m · n

m = n. It is contradicted with the
condition that Distance(t′, t) = n.

Now, we can prove d-Robustness property.

Theorem F.5 (d-Robustness). Consider the publicly-detectable dual watermarking scheme
PD2WS = (Setup,Watermark,Detect) in Section 5, and assume that text t is generated by
Watermark(·) with the length n ≥ m + ℓ. Let T be the threshold in Algorithm 6. If there ex-
ists a constant µ > 0 such that T ≥ (1 + µ) · m · pbad + m

n−ℓd, then we have that PD2WS is
d-robust.

Proof. Let t′ ← A(t) and the edit distance between t′ and t is d = Distance(t, t′). The text t is
divided into n−ℓ

m segments to embed short-range watermark in Watermark. With Theorem F.4, for
the d = Distance(t, t′), there is at least one substring t̂′ in t′ and corresponding substring t̂ in t that
Distance(t̂, t̂′) ≤ m

n−ℓd.

Similar with the proof of Lemma F.1, let β be the number of bad tokens in t̂, we have Pr[β ≥
(1 + µ)m · pbad] ≤ negl(λ). Let β′ be the number of bad tokens in t̂′, we have β′ ≤ β + m

n−ℓd. That
is Pr[β′ ≥ (1 + µ)m · pbad + m

n−ℓd] ≤ negl(λ).

For T ≥ (1 + µ)m · pbad + m
n−ℓd, we have Pr[T ≥ β′] ≥ 1− negl(λ). If T ≥ β′, SWD(t′, IV, T )

will return true.

Putting them together, we have Pr[SWD(t′, IV, T ) = true] ≥ 1− negl(λ). That is, the SWD will
return ϕr = true with probability Pr[ϕr = true] ≥ 1 − negl(λ). Let ⟨ϕr, ϕs⟩ = Detect(·) as in
Algorithm 8. We have Pr[ϕr = false] < negl(λ).

F.2.3 D-SOUNDNESS

On the other hand, the long-range watermark based on digital signatures is very sensitive to token
modifications, and it verifies the watermark as false for changed text, ensuring soundness. We prove
d-Soundness with long-range watermark.

Theorem F.6 (d-Soundness). Consider the publicly-detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) in Section 5, assume that the signature scheme Σ is unforgeable in
Algorithm 7. If d > ℓ, then we have that PD2WS is d-sound.

Proof. The adversary queries the oracle Watermark(·) and get a text set Q and then generate a text
t′ ← A(pk) satisfying the condition Distance(t′,Q) ≥ d. Comparing t′ with any t ∈ Q, because
d > ℓ there is at least one token which is different in t′ and t before the last ℓ tokens. That is the
message plain verified in SWD is different from any one signed in LWG in the querying stage.

Given the signature Σ scheme is unforgeable, the probability that the signature verification return true
is negligible. That is the SWD will return ϕs = true with probability Pr[ϕs = true] ≤ negl(λ).
Let ⟨ϕr, ϕs⟩ = Detect(·) as in Algorithm 8. We have Pr[ϕs = true] < negl(λ).

F.2.4 COMBINE D-ROBUSTNESS AND D-SOUNDNESS

We will show that with proper parameters, the d-Robustness and d-Soundness can be achieved
simultaneously.

Theorem F.7. Consider the publicly-detectable dual watermarking scheme PD2WS =
(Setup,Watermark,Detect) in Section 5, following all the parameters in Theorem F.5 and F.6.
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If the parameters satisfy that n−ℓ
ℓ ( T

m − (1 + µ) · pbad) > 1, then we have that PD2WS is d-robust
and d-sound, simultaneously.

Proof. Let d = n−ℓ
m T − (1 + µ)(n− ℓ) · pbad, we have

T = (1 + µ)m · pbad +
m

n− ℓ
d,

which satisfy the condition in Theorem F.5. That is PD2WS is d-robust.

Considering the condition that n−ℓ
ℓ ( T

m − (1 + µ) · pbad) > 1, we have d > ℓ which satisfy the
condition in Theorem F.6. That is PD2WS is d-sound.

Let θ = T
m − (1+µ) · pbad. If pbad is small enough, we can choose suitable T and m such that θ > 0.

Under this condition, we obtain that d = (n− ℓ) · θ. We will show in Evaluation 6 that small pbad is
achievable.

G ADDITIONAL EXPERIMENT RESULTS

Table 1 shows the completion situations of randomly selected prompts from C4 dataset Raffel
et al. (2020) without watermark (NW) and with watermark (W) under different tune factor τ using
OPT-2.7B. We witness that the PPL values of the watermarked completion slowly increase with the
increase of the tune factor, which shows that the text quality has declined to a certain extent. However,
the actual generated text has no quality defects visible to humans.

Table 2 provides another example illustrating how the output text changes as τ increases, given the
same prompt.
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[...] Shortly after the release of
the lead single “Life’s About to
Get Good,” it hit number one on

the Billboard 200. Of course,
fans were simply dying to see

how their favourite country icon
was doing, so the new single
rocked its way to the top of

Billboard + Twitter Trending
140, too! So far, the song

’s video has over four million
views on YouTube and the

number continues to ride the
wave of Now’s release. The
52-year-old country star, still

clad in her iconic leopard print,
insists that Now is not a break

up album but another
coming-of-age collection of

tunes [...truncated]

has racked up over 1.5 million
streams on Spotify. The album

is also set to be certified
platinum in Canada, which
means it’s already sold over

100,000 copies. “I’m so excited
to share this album with you,”

Shania wrote on Twitter.
[...truncated]

has racked up more than 1.2
million streams on Spotify. The
album also features the likes of
“The Man” and “The Woman,”

which were both released in
June. “I’m so excited to share

this album with you. I hope you
love it as much as I do,” Shania

wrote on Instagram.
[...truncated]

1.65 1.86 1

[...] Health authorities in New
Zealand said that about 200

passengers on the Dawn
Princess ship became infected
with the norovirus. The ship
was scheduled to leave for

Australia on Monday. The last
time there was a norovirus

outbreak on the ship was back
in 2012. According to Yahoo,
health officials conducted a

series of tests, and they
confirmed that the illness was

norovirus, but the outbreak does
seem to be going away.

[...truncated]

outbreak on a cruise ship was in
2003, when about 1,000

passengers and crew were
infected. The ship was carrying

about 1,000 passengers and
crew from New Zealand,

Australia, the United States and
Canada. [...truncated]

outbreak was on a cruise ship in
Australia in 2014. New

Zealand’s Ministry of Health
said that about 200 people on

board were infected with
norovirus. ”The passengers are
being treated in isolation and

the ship will be held
[...truncated]

1.59 1.91 2

[...] automotive datasets from
IHS Markit that include vehicle

sales and production history,
aggregated registration

information, manufacturing
volumes and vehicle pricing

insight for multiple geographies.
According to Greenwich
Associates, 50 per cent of

institutional

investors are planning to
increase their usage of

alternative datasets. Research
Signals delivers valuable

investment insights through a
comprehensive library of more

than 600 global stock
[...truncated]

investors are now using
alternative data to make

investment decisions. ”The
launch of our new stock

selection and strategy signals
for the automotive sector is a
significant step forward in our
efforts to provide our clients
with the most comprehensive

[...truncated]

asset managers have invested in
automotive stocks, with more
than $2 trillion of assets under
management. ”The launch of
these new indicators for the
automotive sector represents

another significant step for the
Research Signals service, which

is [...truncated]

1.28 2.21 3

[...] Assembled by Palestinian
artist Said Baalbaki, the
exhibition presents 50 of

Abbo’s sketches, etchings and
object, as well as texts – all

taken from Baalbaki’s personal
collection of work from, and
publications on, the elusive

sculptor. Baalbaki has

no work of his own in this show.
Born in Safad, northern

Palestine, around 1888-1890,
Abbo was a farmer and

fisherman who later took up
carpentry and stone masonry. It

was not until he moved to
Berlin in 1911 to study
sculpture [...truncated]

been a longtime friend of
Abbo’s, and has been working
with him on the exhibition for

the past two years. ”I have been
working with him for a long

time, and I have been collecting
his work for a long time,”

Baalbaki said. [...truncated]

curated the show, which runs
until August 31, with support
from the Palestinian Cultural

Fund. ”I wanted this exhibition
because I wanted it to be a

celebration, a celebration for
the Palestinian artist,”

[...truncated]

1.68 2.51 4

Table 1: Example text completions by OPT-2.7B Zhang et al. (2022) with different tune factor τ . Prompts are randomly selected from the news-like subset of the C4
dataset Raffel et al. (2020).
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[...] Walmart is big. The
acquisitions of Jet.com, Bonobos,
ModCloth, etc. have only made it
bigger and more complex, saying
nothing too of the ever-changing

demands of consumers and
Walmart’s ever-expanding interests
abroad (see Flipkart). Therefore, it

is only right that someone, like
Casey, take up the mantle to oversee
and to fight for the consumer and to
ensure that all Walmart’s activities
look, feel, and convey the Walmart

brand in the simplest, most
straightforward way as possible.
The products inside Walmart’s

stores are immaterial to its future
success. What matters is the

Product of its brand—its website,
its store, its app-based services, etc.
Those are the Products that matter.
In a future world where the only

thing that differentiates a physical
from a digital experience is the

memory and

delight of being somewhere, a
Walmart store is the Product or

collective set of experiences that
will get someone off his or her

couch. A tube of toothpaste just
won’t cut it anymore. While the

products within Walmart’s store or
on its website will come and go and

ebb and flow, the shroud of the
Walmart brand will be what matters.

[...truncated]

the brand experience, Walmart’s new hire is a must have and a
must have now for the future of Walmart. Walmart has hired the
world’s most famous Product Manager, Jeff Bezos, to lead its
new Design and Product team. This month some important

Walmart news did not get the attention it deserved. The news
wasn’t some shiny announcement about virtual reality or about

[...truncated]

1.49 0

the experience, Walmart’s new head of design will be the one
who will make sure that all Walmart’s products and services,

from websites to employee and consumer apps, work in
cohesion and from a singular experience design point of view.
Walmart’s new head of design will be the one who will make

sure that all Walmart’s products [...truncated]

1.57 1

the brand, Walmart’s new head of design will be the one who
will make sure that all Walmart’s products and services, both

digital and physical, work together and from a singular
experience design point of view. Walmart’s new head of design
will be the one who will make sure that all Walmart’s products

and services [...truncated]

2.41 2

the brand experience, Walmart’s new hire is a must have.
Walmart has hired the world’s most famous Product Manager,

Jeff Bezos, to lead its new Design and Product team. This
month some important Walmart news did not get the attention it
deserved. The news wasn’t some flashy announcement about

virtual reality or about some [...truncated]

2.57 3

the brand experience, Walmart’s new hire is a must have and a
must have now for the future of Walmart. Walmart has hired the
world’s most famous Product Manager, Jeff Bezos, to lead its
new Design and Product team. This month some important

Walmart news did not get the attention [...truncated]

2.82 4

Table 2: Example text completions by OPT-2.7B Zhang et al. (2022) with different tune factor τ and same prompt.
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