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Abstract

In this work, we introduce a physics-guided self-supervised learning approach
to reconstruct dynamic magnetic resonance (MR) images from sparsely sampled
radial cardiac data. The architecture incorporates a variable splitting scheme via a
quadratic penalty approach consisting of iterative data consistency and denoiser
steps. To accommodate cardiac motion, the denoiser implements a learnable low-
rank and sparse component instead of a conventional convolutional neural network.
We compare the proposed model to iterative regularized MRI reconstruction tech-
niques and to other deep neural network approaches adapted to radial data, both
in supervised and self-supervised tasks. Our proposed method surpasses the per-
formance of other techniques for a single heartbeat and four heartbeat MR image
reconstruction. Furthermore, our approach outperforms other deep neural network
reconstruction approaches in both supervision and self-supervision tasks.

1 Introduction

Magnetic Resonance Imaging (MRI) depicts anatomical structures and functional processes within
the human body in high resolution, which makes MRI a leading diagnostic tool in medical imaging.
To reduce scan time, fewer measurements in signal space (k-space) are acquired (1), often called
undersampling of the acquisition process. However, undersampling the k-space leads to an ill-posed
image reconstruction problem, resulting in aliasing artifacts and noise enhancement (2; 3). Parallel
Imaging (4; 5) and Compressed Sensing (6) mitigate these issues, however, they face challenges at
higher undersampling rates.

Recently, physics-guided Deep Neural Networks (DNNs) (7; 8; 9) have been introduced to withstand
these artifacts. However, these approaches typically require lots of training data to operate effectively.
Recent advancements in self-supervised learning (ssl) have allowed training only on undersampled
datasets (10). One example was proposed by Yaman et al. (11), allowing one to reconstruct MR
images from a single subject using a zero-shot self-supervised learning approach.

However, two key concerns persist in current MRI self-supervision approaches. Firstly, Yaman et al.’s
network faces challenges in accurately capturing moving organs due to its inability to leverage the
intrinsic properties of dynamic MR images, such as a strong low-rank prior (12; 13; 14). Huang et
al. (15) demonstrated that by extracting the low-rank component and learning the sparse component
of an image, undersampling artifacts can be substantially reduced in dynamic MRI reconstruction.
Secondly, while Cartesian acquisitions in Yaman et al.’s work are susceptible to motion artifacts,
radially sampled MRI datasets (16; 17) are more robust (18). As multiple radial spokes pass the low-
frequency k-space, motion-corrupted spokes are compensated through averaging (18). Additionally,
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Figure 1: a) Data Processing. Sparse measurements from three heartbeats are compressed into one
heartbeat and binned into temporal windows to create three cardiac phases. b) Radial Mask Splitting
for Self-Supervision. The initial mask Ω is split into a validation mask Γ and a remainder mask
Ω \ Γ. The remainder mask is randomly split into a training mask Θ and validation mask Λ at each
training step. c) Model training, validation and inference. Training input is created by masking the
sample’s k-space with mask Θ. Validation input is masked with Ω \ Γ and inference input with Ω.
d) Components of an Unrolled Network Unit Block. The regularizer includes low-rank and sparse
components, while data consistency uses a classic conjugate gradient approach.

golden-angle radial sampling provides non-overlapping k-space coverage over time, allowing for
flexible retrospective data binning (18).

In our work, we introduce a self-supervised DNN for reconstructing cardiac MR images from
radially sampled data. Our model adopts a physics-guided deep learning reconstruction approach,
enhancing its robustness to artifacts and noise (7; 19). The model employs iterative algorithm
unrolling, alternating between data consistency (DC) and regularization steps (20; 21). In place
of a conventional denoiser, our approach utilizes learnable low-rank and sparse components as
regularizers, effectively capturing organ motion.

Our key contributions include: 1) Pioneering the use of radially acquired MRI measurements for self-
supervision, allowing models to learn from limited radial data, undersampled scans, and exploiting
advantages of radial data acquisition. 2) Enhancing the architecture to accommodate cardiac motion
by incorporating a low-rank and sparse denoiser, substantially improving MRI reconstruction for
moving organs.

2 Theoretical Background and Methods

2.1 Data Processing and Undersampled MRI

Cardiac MRI measurements are acquired simultaneously with the patient’s electrocardiogram (ECG)
signal, which can cover multiple cardiac cycles. To address the sparsity of radial measurements in the
spatial-frequency dimensions, measurements are aligned into a single cardiac cycle and then grouped
into temporal windows, each corresponding to a specific cardiac phase in the heartbeat. Figure 1a)
illustrates the data binning for three heartbeats.

Current MRI systems simultaneously acquire frequency signals from multiple receiver coils, each
sensitive to different regions of the scanned subject. These signals are then combined to create a
unified image space. A typical representation of a multi-coil MRI forward model is given by:

yΩ = EΩx+ n, EΩ := PΩFC (1)

where x is the target image, yΩ is the k-space measurements on an undersampling pattern Ω, and n
is the noise (4). EΩ models the forward operator comprised of the undersampling operator PΩ, the
Fourier transform F , and the coil sensitivity maps C.

To reconstruct the image x from the frequency measurements yΩ, one must solve the regularized
inverse problem given by

argmin
x

||yΩ − EΩx||22 +R(x). (2)
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Here, the consistency (DC) term ||yΩ − EΩx||22 aims to minimize the discrepancy between the
reconstructed image and the measured k-space data, while the regularization term R(x) is employed
to control noise and maintain image quality.

2.2 Learned physics-guided L+S reconstruction

Physics-guided deep learning reconstruction is one category of deep learning methods designed to
solve the inverse problem in Eq. 2 by two sub-problems via variable-splitting Eq. 2:

z(i) = f(ynΩ, E
n
Ω;ϕ), (3a)

x(i) = x(i−1) − µEH
Ω (EΩz

(i) − yΩ), (3b)

where z(i) is an intermediate variable, x(i) the reconstructed image at iteration (i) within a fixed num-
ber of iterations in the unrolled algorithm (21), µ is a regularization parameter, and f is the denoiser
function parameterized by ϕ. Usually, Eq. 3b, representing the DC sub-problem, is solved with a
linear optimizer based on either gradient descent methods (7) or conjugate gradient methods (22).

As for Eq. 3a, where conventionally a DNN is responsible for the regularization, our model integrates
L+S (15), which incorporates a low-rank component l for adaptively thresholding singular values (23)
of the input image x and a sparse component s to capture motion through a few convolutional layers.
This transforms Eq. 3 into:

l(i), s(i) = f(ynΩ, E
n
Ω;ϕ), (4a)

x(i) = x(i−1) − µEH
Ω (EΩ(l

(i) + s(i))− yΩ). (4b)

Supervised and Self-Supervised Learning We adopt an extended self-supervised approach to (11)
to radially sampled dynamic MRI data in our work. Ω represents the whole binned sample of spokes.
We subsample Ω to generate the validation mask Γ and a remainder mask Ω \ Γ. Thus, the model
parameters can be optimized by minimizing the loss in k-space for the model parameters ϕ:

min
ϕ

1

N

N∑
n=1

L(ynΛ, E
n
Λ(f(y

n
Θ, E

n
Θ;ϕ))), (5)

where ynΛ and ynΘ are the nth sample’s k-space masked with Λ and Θ, respectively. En
Λ and En

Θ

are the encoding operators for the nth sample, utilizing Λ and Θ masks. The model also supports
supervised learning 5.3, by replacing every mask with the initial undersampled k-space mask Ω and
calculating the loss in the image domain. Figure 1b and Figure 1c depict a complete overview of the
self-supervised masking.

2.3 Experimental Setting

We compare the proposed model to state-of-the-art linear reconstruction (CGSense (4)), compressed
sensing reconstruction (L+S (15)) and deep learning reconstruction model proposed by Yaman et
al. (11), where we consider both supervised and self-supervised training. The CGSense algorithm (4)
was applied with a maximum iteration number of 6. The L+S algorithm (14) was used with 50
maximum iterations, low-rank regularization λL = 0.0037, sparse regularization λS = 0.1 and step
size gamma γ = 1. Our proposed model in Eq. 4 as well as the model by Yaman et al. in Eq. 3,
use 10 iterations of their unrolled blocks (Figure 1d). Yaman et al. (11) uses a 5-block ResNet
as the regularizer with 64 features maps in each block. Our network has 3 convolutional layers
of 32 filters and leakyReLU activations (24) for the sparse component and a learnable low-rank
regularizing parameter λL for each unroll block. Both architectures employ conjugate gradient for
data consistency. For both self-supervised models, the validation mask Γ is subsampled 20% from
the initial Ω and a varying 60%− 40% Θ and Λ masks from the remaining, fixed Ω \ Γ mask. The
loss of the models in the supervised case is the MSE loss (25), while the self-supervised loss is a
combination of normalized mean squared error and absolute error as used in (11).

The training and evaluation is conducted on 128 slices from 16 subjects, for a single cardiac cycle
and for four cardiac cycles. Additional information on the data can be found in the Supplementary
Material 5. The evaluation metrics are normalized mean squared error (NMSE) (25), structural
similarity (SSIM) (26) and peak signal to noise ratio (PSNR) (27).

3



Table 1: Inference results of all experiments. The mean and the standard deviations of NMSE, SSIM
and PSNR are displayed for each model prediction on 1 or 4 cardiac cycle dataset.

Cardiac Cycles Metric CGSense L+S Yaman et al. (s) Proposed (s) Yaman et al. (SSL) Proposed (SSL)

1
NMSE 0.18±0.05 0.10±0.04 0.12±0.04 0.12±0.05 0.12±0.05 0.09±0.04
SSIM 0.65±0.04 0.78±0.06 0.78±0.05 0.74±0.05 0.77±0.05 0.83±0.05
PSNR 26.91±1.84 29.83±2.47 28.95±2.32 29.41±2.20 28.74±2.31 31.55±2.71

4
NMSE 0.08±0.05 0.04±0.04 0.05±0.03 0.04±0.03 0.06±0.05 0.03±0.02
SSIM 0.76±0.048 0.90±0.05 0.87±0.04 0.91±0.04 0.86±0.05 0.93±0.03
PSNR 31.45±2.34 35.50±3.37 33.45±2.53 35.22±2.92 33.00±2.82 36.12±2.93

3 Results

Table 1 presents metrics for both test sets, providing mean and standard deviation values. Our
proposed method outperforms both iterative reconstruction methods (CGSense and L+S), and Yaman
et al.’s approach in all metrics. Notably, L+S algorithm exhibits superior PSNR than techniques
without the low-rank prior component of cardiac images, while performing similarly in NMSE and
SSIM. Furthermore, self-supervision variants of both Yaman et al. and our method perform on par
with or even outperform the supervised variants.

Compared to other methods, our proposed method effectively reduced streaking artifacts and en-
hanced contrast, even at high undersampling rates, as shown in Figure 2. More detailed error maps
comparisons can be found in Supplementary Materials 5.

Figure 2: Prediction images on a sample from the test set. First row presents the 1 cardiac cycle
dataset, while the second row presents the 4 cycle dataset. "s" stands for supervised. The arrows are
pointing at the contrast of the myocardium of the heart.

4 Discussion and Conclusion

Incorporating the low-rank and sparse properties into our model has proven highly advantageous
for reconstruction, particularly in dynamic data scenarios, where Yaman et al.’s approach (11)
faces challenges in both supervised and self-supervised variants. Furthermore, adapting L+S into
our approach yields additional benefits, as the model has approximately three times less trainable
parameters than (11), resulting in reduced mathematical complexity, faster training, and inference.

The self-supervised version of our approach outperforms the supervised version in all metrics. This
phenomenon may arise from the repeated application of the non-linear Fast Fourier Transform,
causing fluctuations across iterations in the unrolled network. When combined with the MSE loss,
which is sensitive to image intensity outliers, it may hinder the model’s training.

In conclusion, we developed a self-supervised physics-guided model tailored for radially sampled
cardiac MR data, building on (11). Our model leverages the low-rank and sparse properties of moving
organs to handle dynamic data more effectively, especially in a limited data scenario.
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5 Supplementary Material

In this section we provide additional details about the setup of data, the model and the experiments
that we have conducted. Then, the model predictions are analyzed more in-depth by providing error
maps time profiles of the predictions.

5.1 Data

Data was acquired on a 1.5T Philips (Ingenia, Best, Netherlands) machine using a 28-channel cardiac
coil. The privately acquired data consists of 8960 radial spokes and ECG signals of 128 samples
from 16 anonymised volunteer subjects. Slices were acquired on the short axis, with a field of view
of 256x256 mm2, 8 mm slice thickness, 2x2 mm2 resolution, TE/TR = 1.16/2.3 ms, b-SSFP readout,
radial tiny golden angle of 23.6◦, flip angle 60◦, 20s nominal scan time and breath-hold acquisition.

After binning, each sample in the dataset consists of 30 cardiac phases (30 images) corresponding to
the feature dimension of the model input. Depending on the heart rate, the number of acquired spokes
per cardiac phase ranges from 11 to 19 spokes for the one heartbeat dataset and 45 to 74 spokes for
the four heartbeat dataset. We normalize the data such that the operator norm of the non-linear Fast
Fourier Transform becomes 1.

5.2 Model Regularizer

Subsection 2.2 presented the regularizer and data consistency steps within a unit block of the model
architecture. Figure 3 provides an in-depth representation of the regularizer, which contains the
low-rank component with a learnable parameter that thresholds the singular values of the dynamic
input image. Consequently, only the non-moving parts of the image over time are retained, such as
the liver and ribs. Subsequently, the sparse component eliminates streaking artifacts and improves
contrast through three 3D convolutions. The sparse component is responsible for the moving parts of
the image, such as the heart’s beating action.

Figure 3: An in-depth representation of the regularizer workflow on a sample from the dataset. The
low-rank component reconstructs the input images with thresholded singular values. The low-rank
images are then concatenated with the input images and run through 3 convolutional layers with
leakyReLu activations. The output of the sparse component is added to the low-rank images to
generate the output of the regularizer.

5.3 Supervised Learning

Subsection 2.2 presented the self-supervised loss for network training. Here, we provide the su-
pervised variant that we used in the experiments. This variant only uses the fully undersampled
mask Ω and calculates the loss in the image space with regard to the reference 20 heartbeat L+S
reconstruction. This is motivated by the fact that, after spoke binning, we lose the target k-space in its
original form, to which we could compare.
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min
ϕ

1

N

N∑
n=1

L(xn
ref , f(y

n
Ω, E

n
Ω;ϕ)), (6)

where xref is the target image and EΩ the encoding operator using the fully undersampled k-space
mask Ω.

5.4 Output Analysis

Figure 4: Error maps of the prediction images on a sample from the test set. First row presents the 1
cardiac cycle dataset, while the second row presents the 4 cycle dataset. The value scale represents
the percentage of intensity error with regard to the ground truth maximum pixel intensity.

Figure 4 shows the error maps of the image predictions presented in Figure 2. The error maps show
that our approach reduces the amount of streaking artifacts and noise compared to other methods,
while still preserving structural integrity, even for high undersampling rates. Indeed, it can be seen
that the methods implementing the low-rank prior present less error than the techniques that do not.

Specifically, the one heartbeat reconstructions for L+S and our proposed model contain few intensity
errors inside and outside the heart. Our proposed method achieves the least error on the heart’s outer
walls. Conversely, CGSense and Yaman et al.’s approach not only contain more noise outside the
heart, but present high intensity errors inside of the heart’s region.

In the case of the four heartbeat reconstructions, all methods achieve low error. However, the advan-
tages of the low-rank and sparse components can also be seen here. The methods not implementing
the two components show higher noise than the ones that do so. Thus, we confirm that the low-rank
prior approach delivers improved results on moving MRI scans.

Figure 5: Time profile (yt plane) of the predictions on a sample from the two datasets (one and four
heartbeat reconstructions). The value scale of the error maps represents the percentage of intensity
error with regard to the ground truth maximum pixel intensity.

Figure 5 shows the time profiles in the yt plane of the predictions from a sample of the dataset.
Compared to all other reconstructions, the proposed model manages to keep the error low, while still
preserving good structural integrity of the moving heart, even for a single cardiac cycle reconstruction.
Furthermore, in the case of the single cardiac cycle reconstruction, the L+S algorithm and our
proposed method present the least amount of total intensity error, especially around the heart’s region.
Yaman et al.’s approach struggles to reconstruct the tissue outside the heart, presenting a high error
rate at the chest walls of the patient. In the four cardiac cycle case, our technique and L+S achieve
the lowest error, while Yaman et. al’s models present the highest amount of noise. Moreover, Yaman
et al.’s models and CGSense struggle to find the right intensities for the regions outside the heart,
a problem that is solved in the other models by the low-rank component. This enforces again the
importance of the low-rank prior and the learnable sparse component.
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