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ABSTRACT

Despite the remarkable progress in neural models, their ability to generalize—a
cornerstone for applications like logical reasoning—remains a critical challenge.
We delineate two fundamental aspects of this ability: compositionality, the capac-
ity to abstract atomic logical rules underlying complex inferences, and recursive-
ness, the aptitude to build intricate representations through iterative application of
inference rules. In the literature, these two aspects are often confounded together
under the umbrella term of generalization. To sharpen this distinction, we inves-
tigated the logical generalization capabilities of pre-trained large language mod-
els (LLMs) using the syllogistic fragment as a benchmark for natural language
reasoning. Though simple, this fragment provides a foundational yet expressive
subset of formal logic that supports controlled evaluation of essential reasoning
abilities. Our findings reveal a significant disparity: while LLMs demonstrate
reasonable proficiency in recursiveness, they struggle with compositionality. To
overcome these limitations and establish a reliable logical prover, we propose a
hybrid architecture integrating symbolic reasoning with neural computation. This
synergistic interaction enables robust and efficient inference—neural components
accelerate processing, while symbolic reasoning ensures completeness. Our ex-
periments show that high efficiency is preserved even with relatively small neural
components. As part of our proposed methodology, this analysis gives a rationale
and highlights the potential of hybrid models to effectively address key general-
ization barriers in neural reasoning systems.

1 INTRODUCTION

Neural models have achieved substantial advancements at an accelerated pace in recent years. How-
ever, they continue to face challenges in generalizing—a capability that is crucial for tasks such as
logical deduction. While they excel at pattern recognition, these models often struggle with the sys-
tematicity and robustness required for sound reasoning (Marcus|(2018)); |[Lake et al.| (2017); Huang
& Chang| (2023); Mondorf & Plank|(2024)) This is particularly evident in their limited capacity to
generalize beyond the training data, especially in tasks that demand a deep understanding of com-
positional structures (Hupkes et al.[(2023)).

In this work, we focus on two fundamental and complementary aspects of generalization in the con-
text of logical reasoning: compositionality and recursiveness. Compositionality (Janssen & Partee
(1997)) refers to the principle that the meaning of a complex expression is determined by the mean-
ing of its parts and the rules used to combine them —the ability to abstract from complex structures
to process simpler ones. Recursiveness, on the other hand, is the capacity to construct complex rep-
resentations through the iterative application of a finite set of rules—or the ability to build intricate
representations through iterative composition of simpler elements. A simple syllogistic example
illustrates this distinction. Consider the inference: “if all a are b and all b are ¢, then all ¢ are ¢.”
A system demonstrating recursiveness can extend this to “if all a are b, all b are ¢, and all ¢ are
d, then all a are d.” Compositional generalization requires the ability to understand that a simpler
inference—such as “if all a are b and all b are c, then all a are ¢”— is a valid component of both
simple and more complex inferences. A system that is merely recursive might be able to produce
longer chains, but a compositional system truly understands the structure of the argument and can
reason about its sub-parts. It is possible for a model to be recursive (i.e., process arbitrarily long
chains) without being compositional (i.e., without understanding the meaning of the individual links
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in the chain and how they combine). This lack of compositionality is a key limitation of current
neural models (Vargas Guzman et al.[(2024), |Lake & Baroni|(2023))

To investigate this issue, we examine the logical generalization capabilities of large pre-trained lan-
guage models (LLMs) using syllogistic logic—a well-defined, yet non-trivial, fragment of natural
language that captures a fundamental aspect of human reasoning. Syllogistic logic was chosen as
a clearly tractable baseline for compositional and recursive generalization, as logics that are too
expressive—such as full first-order logic—are computationally intractable. We fine-tuned LLMs
on two distinct reasoning tasks: (1) selecting a subset of premises to construct direct proofs, and
(2) generating formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.
These tasks were designed to probe different facets of logical generalization, with premise selection
requiring an understanding of the relationships between statements and proof by contradiction test-
ing the ability to reason about counterfactuals and derive logical consequences. To ensure a rigorous
evaluation, we trained and tested on multiple knowledge bases generated from controlled synthetic
data, which incorporates pseudowords to avoid content bias (Bertolazzi et al.| (2024)). Our exper-
iments reveal a significant disparity: while LLMs demonstrate reasonable proficiency in recursive
reasoning, they struggle with compositional generalization. Specifically, when trained on simpler
inferences, LLMs can recognize analogous simple inferences across different knowledge bases and
generalize to a certain extent to more complex inference patterns. However, models trained exclu-
sively on complex inferences exhibit a substantial performance drop when required to identify the
underlying simpler components. Moreover, we observed notable differences in performance and
generalization across various types of reasoning. This finding highlights a critical gap: current neu-
ral models, even large pre-trained ones, fail to generalize reliably across the spectrum of logical
reasoning tasks.

KB Symbolic Prover v of H from KB

P F

Premise Reductio ad
Selection Absurdum

Neural Assistant

Figure 1: Overview of the hybrid architecture. Input: a knowledge base KB and a hypothesis H.
Hybrid Model: the neural models assist the symbolic prover by providing a subset P C KB such
that P - H, and a formula F such that CBU {H} F F' A F. Output: a proof vV of H from KB.

To address this limitation, we propose a new research program consisting of two elements. On
the theoretical side, we aim to understanding how different reasoning building blocks interact with
deep-learning model performance on generalization tasks. On the practical side, we develop a novel
hybrid architecture (see Figure [I) that integrates the pattern-matching strengths of neural networks
with the formal rigor and completeness of symbolic reasoning. In this framework, the neural com-
ponent serves as an auxiliary to the symbolic prover, efficiently providing candidate premises and
formulas to guide the search for proofs. Furthermore, to evaluate the impact of the assistant on
the symbolic prover with respect to time complexity (i.e., number of steps), we implemented a rel-
atively straightforward non-deterministic prover. This synergistic approach aims to overcome the
limitations of purely neural approaches by enforcing logical consistency and enabling systematic
generalization.

The key contributions of this work are: (1) A rigorous empirical demonstration that, despite their
recursive capabilities, LLMs lack true compositionality, a crucial requirement for robust logical rea-
soning. We emphasize the importance of distinguishing between these two properties in evaluations
of neural reasoning systems. (2) A hybrid approach that leverages neural networks for efficient
inference (e.g., fast premise selection) while relying on symbolic reasoning to guarantee logical
completeness and correctness. (3) A novel methodology, embodied in our Hybrid Model (HM),
that effectively addresses the generalization barriers in neural reasoning systems, achieving a bal-
ance between efficiency and logical soundness. This provides a pathway towards more reliable and
trustworthy Al systems.
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2 A SYLLOGISTIC PROOF SYSTEM

We considered a syllogistic proof system based on |[Smiley| (1973) to implement hybrid models.
The formulas “All a are b”, “No a are b”, “Some a are b”, and “Some a are not b” correspond to
the symbolic representations Aab, Fab, Iab, and Oab, respectively. Next, we formally define the
syntax and semantics over a language that consists of four quantifier symbols Q = {A, E,I,0}
and an infinite set of ferm symbols X = {a, b, c, . ..} denoted by lower-case letters (sometimes with
subscripts).

Syntax and Semantics Well-formed formulas are built as Aab, Eab, Iab, or Oab. An A-chain,
denoted as Aa — b, represents either the formula Aab or the sequence of two or more formulas
Aacy, Acics, ..., Acp_1¢,, Ac,b (for n > 1). In what follows, when we refer to a formula we
mean a well-formed formula. Moreover, we use capital letters (e.g., F' or H) to denote formulas,
and capital calligraphic letters (e.g., KB, F or P) to denote sets of formulas, unless stated differently.

The meaning of syllogistic formulas can be defined using set-theoretic relationships. Let the terms a
and b denote non-empty subsets of an underlying set or universe, then Aab is true iff a C b; Eab is
true iff anNb = 0; Labis true iff aNb # B; and Oab is true iff a € b. A set of syllogistic formulas F
is consistent if there exists an interpretation (i.e., an assignment of sets to terms) under which every
F e Fis true.

Note that Aab and Oab are contradictory, and the same about /ab and Eab. We denote the negation
of aformula F as T, i.e., Aab = Oab, Oab = Aab, Iab = Eab, and Fab = Iab. Last but not least,
I and E-formulas are symmetrical. That is, [ab and Iba have the same meaning, and so do Fab and
FEba.

Types of Syllogisms We define a syllogism as an inference from a set of premises (or knowl-
edge base) to a conclusion. Unlike classical syllogisms, which typically involve two premises, we
consider more complex inferences that may involve multiple premises connected through chains of
A-formulas.

Definition 1 (Inference). Let F be a set of formulas (premises) and let F' be a formula (conclusion).
We write F = F, to denote that F' is derivable (or provable) from F, if there exists a formal proof
of F' from F.

Definition 2 (Proof). The following is a mutually recursive definition to characterize formal proofs
for a set of formulas using tree notation. A proof V is one of the following three types:

(i) Trivial proof: every F' € F is a proof from F

@

(ii) Rule-based proofs: the following four trees are proofs from F. Where V' and V"’ are proofs

from F
v/ v// v/ vl/ v/ v/
Aab Abc Aab Ebc Eba Aba .
Aac h Eac ™ Eab " Iab ™

(ili) Proof by contradiction: where V' is a proof from F U {H } and V" is a proof from F.

v/ v/l
F i I (iif)

Soundness and Completeness The deductive system presented above is based on the framework
developed by |Smiley| (1973). In this system, all formulas that are provable are true in all interpreta-
tions (as established in Theorem 4), and conversely, all formulas that are true in all interpretations
are derivable within the system (as demonstrated in Theorem 3). It therefore follows that the system
is both sound and complete.
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Definition 3 (Minimal Inference). An inference Table 1: Types of syllogistic inferences
F b F is minimal if for no proper subset 7' C F,

it is the case that 7/ - F'. Type Syllogism

Minimal inferences are essential to design a (1) {Aa=b, Ac—d, Oad} - Obe

2 {Aa—b}F Aab

prover assistant, as they use only the necessary 3)  {Aa—b, Ac—d, Aa—e, Ede} - Obe
premises to derive a conclusion. Table [I] depicts @ {Aa— b Aa— c’} E Ihe

all types of minimal syllogistic inferences, as out- (5)  {Aa—b, Ac—d, Ae—f, Iae, Edf} + Obc
lined in|Vargas Guzman et al.| (2024). 6) {Aa—b, Ac—d, Ebd} - Eac

(7 {Aa—b,Ac—d, Iac} - Ibd

3 SyMBOLIC COMPONENT

We implemented a basic automated syllogistic prover that takes as inputs a knowledge base ICB and
a hypothesis H. The general process is described in Algorithm [I]and consists of finding a proof (as
in Definition [2) for H. The prover first tries to derive the hypothesis using proofs of types (i) and
(i1) by calling the DERIVE function. If it does not succeed, it tries to prove H by contradiction, i.e.,
proof of type (iii), using the PBC function. If the hypothesis is valid, the prover returns the derivation
steps. If, on the contrary, H is invalid, then the prover will exhaust all possibilities to derive it.

Algorithm 1 Syllogistic Prover

Input: A hypothesis H and a knowledge base KCB.
Output: A proof V of H from KB (if H is valid).
A0 > set of partial proofs A C 27 x F x ProofType
2: if DERIVE(H, KB) or PBC(H, KB) then

3 V < GET_STEPS(H, A) > get partial proofs that derive H
4: return V
5
6
7

: else
: return false
: end if

Derive function The central component of the prover is the recursive function DERIVE, described
in Algorithm 2] The function takes as input the knowledge base KB and the hypothesis H, and
initially checks whether proof of type (i) can be directly applied (line 2). If the base case is not
satisfied, the function attempts to derive H (line 5) by non-deterministically searching for a set of
formulas F such that H follows from F by using rules of inference, i.e., proof of type (ii). This
process is applied recursively to each ' € F, continuing until the base case is met or no further
applicable rules and formula combinations are available. To prevent redundant computations and
potential infinite loops, the algorithm is optimized by storing partial proofs as tuples whenever the
base case is reached (lines 3 and 6). These stored derivations are reused if the same inputs are en-
countered again. Additionally, the system tracks failed derivation attempts to avoid repeating them in
subsequent searches. Nevertheless, this search process remains computationally demanding. This is
particularly evident when constructing A-chains, where the algorithm conducts a non-deterministic
search over formulas of the form Aab, generated using terms drawn from the knowledge base. In
the worst case, this results in at most n!/(n — 2)! attempts, where n denotes the number of distinct
terms in the knowledge base.

Proof by Contradiction Function The final component of the prover, denoted PBC, is specified
in Algorithm 3] This function gets the same inputs as DERIVE, and it aims to prove the hypothesis
H by contradiction by finding a formula F' such that CBU {H} - F A F. The algorithm begins
by generating all possible contradictory formula pairs (F, F) that can be constructed using the four
quantifiers applied to all terms present in the knowledge base KCB. It then iterates through these
pairs in search of a contradiction (line 4). If such proof is found, it is stored (line 5); otherwise,
the process continues until all pairs have been exhausted (line 9). The search for candidate pairs is
performed in a non-deterministic manner, which can result in significant computational cost, as the
algorithm calls the DERIVE function for each formula within every potential pair.
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Algorithm 2 Derive Recursive Function

1: function DERIVE(H, KB)

2 if H € KB then > base case: all formulas in the knowledge base are derivable
3 A~ AU{(0,H )}

4: return true

5: else if IS_DERIVABLE(F, H) then > find a set F s.t. F ) H
6 A+~ AU{(F, H,(GD))}

7 for all F' € F do

8

: return DERIVE(F, KB3) > recursive call to the function
9: end for
10: else
11: return false
12: end if

13: end function

Algorithm 3 Proof by Contradiction Function

1: initialize: V < (Q, &) > vocabulary of quantifiers and terms
2: function PBC(H, KB) o

3: for all (F, F') € ALL_PAIRS(V) do > all pairs (F, F)st. F € Qx X x X
4 if DERIVE(F, KB) and DERIVE(F, KB U {H}) then
5 A+ AU{({F, F}, H,(ii))}

6: return true

7: end if

8 end for

9 return false

10: end function

4 CONNECTIONIST COMPONENT

Our hybrid models integrate two distinct fine-tuned LLM components—one for premise selection
and another for identifying contradiction formulas—trained on synthetic data to support the prover.

Synthetic Data A knowledge base B can be formally represented as an edge-labeled graph
G = (V, E,~), where the set of vertices V' are terms from the domain X and the set of formu-
las correspond to the set of edges E' C {(u,v) | u,v € V and u # v} along with a labeling function
v : E — Q that maps edges to syllogistic quantifiers (see Figure 2] for an example). We produced
synthetic knowledge bases by randomly generating graphs such that the resulting knowledge bases
are consistent. Furthermore, we imposed the constraint that for every formula F' derivable from a
given knowledge base I3, there exists a unique subset P C KB such that P = F is minimal. This
property is critical for eliminating redundant derivations of the same hypothesis. We refer to such
structures as non-redundant knowledge bases (see Appendix for more details).

To convert these structured representations into natural language inputs, terms are replaced with
artificially generated pseudowords, and formulas are rendered in textual form (see Figure[3). Models
are trained and evaluated using multiple knowledge bases with varied term substitutions and premise
permutations, a data augmentation strategy that prevents memorization and improves generalization.

Fine-Tuning LLMs We conducted experiments by fine-tuning two transformer-based architec-
tures, FLAN-TS5-base (Raffel et al.| (2020)), an encoder-decoder model developed by Google Al,
and GPT-40-mini (OpenAll (2024)), a decoder-only model developed by OpenAl. Importantly, our
goal is not to teach general reasoning through fine-tuning, but to adapt models for specific tasks—
premise selection and proof by contradiction—while improvements in reasoning skills may still
arise. We therefore view our results as reflecting the overall reasoning capabilities of pre-trained
and fine-tuned models. In this setting, for both tasks the input consists of a complete knowledge
base paired with a hypothesis to be proven, while the output depends on the task: in premise se-
lection, it is the subset of premises required to derive the hypothesis; in proof by contradiction, it
is a formula enabling a type (iii) derivation. In both cases, the models process inputs and produce
outputs as plain text sequences.
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E KB = {AI1$27AI2I3,AI3.Z47AI3I5,AZ61‘7,
0 Azxrxg, Ax7ag, Arg®i0, AT911, Xy,

Ty —— % T5 T10 T11 Izqzs, Oxg2s, Oxs2s, Ox11207}

;\ A)// 0 A\ ) \ A Inference examples from each type:
. ¢ (1) {A{E1—I3,0I51‘3} = OI5I1
3

o o (2) {Azg—x11} F Az
A‘ :4\ /4 (3) {Axg—ay, Ax7—211, Az72s, Exgz11} - Oy
I @ {Axg—210, Ax7—211} F Iz10211
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AI A[ (6) {Azy — 24, Azg—211, Exgz11} F Exgay
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1 Te

Figure 2: Example of a knowledge base /I3 represented as a graph along with valid inferences that
can be derived from KB.

We investigate two dimensions of generalization in our framework: compositionality, the capacity to
deconstruct complex structures into simpler components, and recursiveness, the ability to iteratively
combine simpler structures to construct more complex ones. We operationalize these concepts by
systematically excluding syllogisms with short and long A-chains during training and evaluating
model performance on them exclusively at test time. More precisely, a model is said to exhibit
compositional generalization if it can correctly infer syllogisms with shorter A-chains than those
encountered during training. Conversely, it demonstrates recursive generalization if it successfully
predicts syllogisms with longer A-chains than those used in training. To implement this evaluation,
we excluded from the training set the five shortest and five longest A-chain lengths for each syllogism

type.

Data Specification To achieve satisfactory performance, we experimented with fine-tuning on
varying numbers of knowledge bases and different proportions of the dataset, using 80% of the data
for T5 and only 25% for GPT. While OpenAl suggests that small datasets may suffice for fine-tuning,
our GPT models were trained on an average of 100 million tokensﬂ highlighting the necessity of
large-scale data for robust model performance in logical reasoning tasks. We generated 30 distinct
synthetic knowledge bases for fine-tuning and an additional 30 for evaluation purposes. On average,
each knowledge base consists of 40 premises and 1333 valid hypothesis (see Table 2] for the mean
number of hypothesis for each task categorized by syllogism type). To further assess the models’
capacity for recursive generalization, we constructed an extra set of 60 knowledge bases, specifically
designed to include a greater proportion of inferences involving longer A-chains, which are typically
underrepresented. Furthermore, each knowledge base features unique pseudoword substitutions and
random permutations of premises to enhance lexical diversity and reduce overfitting (see Table [3).

Table 2: Average number of valid hypothesis (by type) for every KB.

Task € 2 B @ () ® () Total
Premise Selection 68 152 245 513 42 110 203 1333
Proof By Contradiction 62 - 245 361 42 - 202 911

Table 3: Dataset specification for fine-tuning LLMs.

Data split (experiment) KBs Substitutions Permutations
Train (all) 30 10 3
Test (overall and compositionality) 30 3 1
Test (recursiveness) 60 3 1

Generalization Experiments To assess the generalization capabilities of the fine-tuned models,
we compare compositional and recursive variants against overall models, i.e., models trained with-

'Fine-tuning cost: ~ $3.1k (excluding evaluation and preliminary testing); see Table , Appendix
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Figure 3: Example of a conversion from a set of syllogistic formulas represented as a graph to a set
of formulas in natural language (using pseudoword substitutions) and vice-versa.

out restrictions on A-chain lengths. Table[dpresents the average accuracy across all evaluated knowl-
edge bases for each experimental setting, using T5 and GPT architectures fine-tuned on premise
selection and proof by contradiction tasksE] The evaluation of overall models is conducted across
three datasets, all, short, and long. The last two are subsets of the first one and correspond to the
same tests performed for compositional and recursive models, respectively.

A more comprehensive analysis is provided in Figure {f] which illustrates the accuracy of evaluated
inferences across the five shortest and five longest unseen A-chain lengths. For a given syllogism
of type t, we denote the shortest evaluated length as o (¢) and the longest as 1(¢). Solid lines in the
plot represent compositional and recursive models, while dashed lines depict overall models. Note
that overlapping lines would imply a perfect generalization. The latter is visible in the recursive
evaluation for the premise selection task (top-right plot). However, a slight drop in the accuracy
occurs as the unseen lengths increase. The drop is more evident for the proof by contradiction task
(bottom-right plot). This suggests that LLMs experience difficulties in generating long sequences of
A-formulas, regardless of their presence during training. Compositional experiments, on the other
hand, exhibit a poor generalization and a steeper curve towards the shortest length, in contrast to
overall models that can generate inferences involving shorter A-chains almost perfectly.

Models occasionally predict unnecessary premises that still lead to valid proofs; when such predic-
tions are treated as correct, GPT exhibits a notable improvement in compositional generalization
(see Appendix [A.2]for details). Finally, cases in which the models fail to produce the correct answer
are analyzed in Appendix [A.3]

Table 4: Accuracy scores for premise selection and proof by contradiction tasks (all experiments).

Premise Selection Proof By Contradiction

Experiment TS GPT TS GPT

Overall (all) 094+ 005 094+005 093+004 095+ 0.04
Overall (short) ~ 0.99+£0.01 098 +0.01 099 +0.01 0.98 + 0.02
Overall (long) 079+ 0.17 083 +0.15 076 +0.15 0.88 +0.15
Compositionality 0.84 £ 0.04 0.76 +0.04 0.67 £0.05 0.85 = 0.05
Recursiveness 0.80 £0.15 0.82+0.15 0.71 £0.18 0.86 +0.17

Analysis by Syllogism Type We analyzed these experiments on specific types of syllogism (Table
[I). In the premise selection task, Type (2)—the structurally simplest inference embedded within
all other types—consistently achieved the highest accuracy across all experimental settings, demon-
strating near-perfect generalization, with the unique exception of GPT in the compositionality ex-
periment. In contrast, Type (1) and Type (5) achieved the lowest accuracies for TS5 across the gen-
eralization tasks. For GPT, poor performance was observed only on Type (1). In the proof by
contradiction task—where Types (2) and (6) were not applicable—Type (7) emerged as the best-
performing inference type on both architectures, achieving a near-perfect generalization in the case
of GPT. Overall, this task appeared to be easier for GPT than for T5, which, with few exceptions,
struggled to generalize effectively. GPT, by contrast, demonstrated consistently strong performance

Each experiment was run three times for T5 and twice for GPT; we report the highest accuracy achieved
across these runs.
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Figure 4: Generalization performance of GPT and T5 architectures across the five shortest (compo-
sitional) and five longest (recursive) unseen A-chain lengths, denoted as o (¢) and p(t), respectively,
for each syllogism type t.

across all inference types, including the particularly challenging Type (1) (see Appendix for
more details).

5 HYBRID MODELS EVALUATION

To construct a hybrid model, we employed the same algorithms described in Section |3} however,
the search processes are guided by inputs generated by the assistants (neural models). In the case
of Algorithm 2] rather than exhaustively exploring all formulas derivable from the knowledge base
KB, the hybrid model restricts its search to a subset P C B which is predicted by the premise
selection assistant. Similarly, in Algorithm [3] (line 3), the search for contradictory formula pairs
(F, F) is initiated using candidates suggested by the proof by contradiction assistant.

We investigated three variants of hybrid models, each incorporating neural components trained under
different generalization regimes—namely, overall, compositional, and recursive— and evaluated
their performance relative to a purely symbolic baseline to assess the impact of the neural assistants.

Data Distribution We randomly selected just over 2000 samples from 30 distinct knowledge bases
within the test dataset. From each knowledge base, we selected 10 syllogisms of each type, compris-
ing 5 instances featuring longer A-chains and 5 with shorter A-chains. To ensure a sufficient level
of inference complexity, we excluded trivial proofs by retaining only those syllogisms in which the
A-chains length is greater than or equal to 2.

Evaluation Methodology To assess the efficiency of the hybrid models, we measured the num-
ber of steps required to complete the proof of a valid hypothesis, where each step corresponds to
a single invocation of the recursive function DERIVE by the prover. Due to the non-deterministic
nature of the symbolic component, each experiment is executed five times for each model configu-
ration. Moreover, we use logarithmic notation and the geometric mean—due to the potentially wide
variability— to represent step counts (see Figure[5).
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Figure 5: Geometric mean and standard deviation of the number of steps for the Symbolic and
Hybrid models, using different assistants trained on GPT and T5. OVE, COM, and REC denote
overall, compositional, and recursive models, respectively.

On average, the symbolic model requires approximately 10°7 steps to complete a proof. In contrast,
hybrid models require substantially fewer steps. In particular, models incorporating overall and
recursive neural assistants, exhibit comparable performance, and they need only around 10%# steps
across both LLM architectures. This corresponds to a reduction of approximately three orders of
magnitude. Hybrid configurations assisted by compositional models require slightly more steps,
approximately 1027 for the GPT-based model and 103! for the T5-based model. This outcome is
not unexpected, as they exhibit a drop in accuracy relative to their overall and recursive counterparts.
However, their use in hybrid configurations does not result in a significant increase in derivation
steps, indicating robustness when assisting the prover.

6 CONCLUSIONS

Our main findings focus on the performance of Large Language Models (LLMs) and their role in
assisting automated provers. From a semantic perspective, LLMs struggle to fully grasp logical
reasoning. Our generalization experiments highlight a significant gap between recursiveness and
compositionality, indicating a need for a deeper theoretical understanding of this issue.

Additionally, we observed notable differences in performance and generalization across various
types of reasoning. These findings open up a research agenda aimed at understanding how different
reasoning building blocks interact with deep learning model performance on generalization tasks.
Future research should explore increasingly complex fragments of logic, where the interactions
between various inference building blocks and reasoning forms become even more fascinating.

We consider a relatively small encoder—decoder model (T5), chosen for its efficiency and strong
overall performance on our tasks, alongside a substantially larger decoder-only model (GPT), se-
lected to evaluate a state-of-the-art LLM (see Appendix [A:4.2] for details). GPT shows greater
efficiency, converging with less data, though both models achieve comparable performance. This
suggests that scaling to larger models alone may not be sufficient to overcome the challenges posed
by these reasoning tasks. Nevertheless, our results demonstrate that neither the limitations in gen-
eralization nor model size prevent LLMs from effectively assisting symbolic provers. On the con-
trary, this assistance fosters a collaborative relationship between connectionist and symbolic models.
While connectionist models can simplify and expedite tasks, symbolic models can still complete
them when necessary, making hybrid models an important area for further investigation.

This study focuses on syllogistic logic—a simple fragment of natural language—laying the ground-
work for future work on the theoretical relationship between generalization and logical complexity.
Subsequent investigations will explore richer fragments, e.g., [Pratt-Hartmann| (2004) or suitable
fragments of modal logic. Our modular approach to hybrid models could provide practical solutions
for developing computationally efficient provers for these logics, forming part of a broader effort to
determine where the boundary of tractability lies for neural and neuro-symbolic reasoners.
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A APPENDIX

A.1 EXPERIMENTS BY TYPES OF SYLLOGISM

In this section, we elaborate on the results presented in Table[d]by providing a breakdown of accuracy
scores according to specific syllogism types. The outcomes of the premise selection task are reported
in Tables [AT|and [AZ]for the T5 and GPT models, respectively. Similarly, Tables[A3]and [A4] present
the results for the proof by contradiction task.

Table Al: TS accuracy scores by types of syllogism (premise selection).

Experiment (1) 2) 3) 4) (5) (6) (7)

Overall (all) 090+0.10 1.00£0.01 085+0.13 097+0.03 0.72+£0.28 0.97+0.08 0.96=0.08
Overall (short) 096+0.05 1.00£0.00 096+0.05 100+0.01 0.71£036 0.99+0.03 1.00=+0.01
Overall (long) 058 +0.38 0.97£0.09 0.61+037 077+021 0.65+041 0.84+033 0.76+0.31
Compositionality 0.35+£0.11 0.99 £0.01 0.88+0.06 0.87+0.06 0.49£037 090+0.05 0.77+0.12
Recursiveness 0.59+0.35 0.96£0.08 0.66+0.33 074+0.23 0.69+038 0.88+028 0.80+0.28

Table A2: GPT accuracy scores by types of syllogism (premise selection).

Experiment (1) ) 3) ) ) (6) (@)

Overall (all) 0.84+0.15 1.00£0.01 087+0.13 097+0.04 0.84+£023 0.99=+0.04 0.96=+0.09
Overall (short) 091+0.10 1.00£0.00 098+0.04 099+0.02 093+£0.17 1.00£0.02 0.99+0.03
Overall (long) 054+036 098+006 0.67+036 081+022 0.70+£038 094+0.19 0.86+0.25
Compositionality 020 £0.11 0.89 £0.04 0.87+0.07 0.76£0.05 0.93+£0.16 092+0.02 0.71+0.12
Recursiveness 052+0.38 097£006 0684035 078+0.24 0.68+£039 0924023 0.86+0.24

Table A3: TS accuracy scores by types of syllogism (proof by contradiction).

Experiment (1 3) ) (5) @)

Overall (all) 097+0.05 0.88=+0.09 097=+£0.03 0.78=£0.29 0.95+0.07
Overall (short) 098 +0.04 0.98£0.04 1.00+£0.00 0.68+0.39 0.99+£0.03
Overall (long) 088+0.21 0.54+£033 0.78+020 0.78+0.33 0.85+£0.25
Compositionality 0.23 £0.12 095 +0.05 0.66+0.06 0.36+0.36 0.83+0.12
Recursiveness 0.82+0.27 037£033 0.77+022 0844031 0.80+0.29

Table A4: GPT accuracy scores by types of syllogism (proof by contradiction).

Experiment (1) 3) (@) (5) 7

Overall (all) 097+0.06 0.92+£0.12 097 +0.04 0.85+0.30 0.97£0.07
Overall (short) 096 +£0.07 0.97=£0.08 099+0.02 0.78+0.37 0.98+£0.06
Overall (long) 093+020 0.81+030 087=+£0.19 096 =£0.16 0.92=+0.19
Compositionality 0.90 +0.14 0.97+0.05 0.78+0.05 0.73+£0.37 0.98 £+ 0.04
Recursiveness 090+0.24 074+034 081+£023 093£022 095+£0.15

A.2 ANALYSIS OF UNNECESSARY PREMISES

We evaluated the generalization performance of the models in cases where the predicted set of
premises contains both the correct premises and additional, unnecessary ones, while still allowing
for a valid proof. In this setting, such predictions are treated as correct, and we report a non-minimal
accuracy (NM Acc.) metric for inferences evaluated across the five shortest and five longest unseen
A-chain lengths. The corresponding results are presented in Tables and for the TS model,
and in Tables[A7)and [A8]for the GPT model. In the tables, the second column presents the accuracy
obtained under the minimal inference criterion (as shown in Figure ) for comparison. Additionally,
we report the average number and standard deviation of unnecessary premises predicted by each
model.
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Table A5: TS accuracy scores for shorter unseen lenghts (premise selection)

Leneth Accuracy Non-minimal
g (minimal) NM Acc. # Unnec. Prem.

o(t) 0.75 0.83 5.55 £+ 4.66
o(t)+1 0.84 0.86 577 £4.11
o(t)+2 0.88 0.88 4.76 = 4.10
o(t)+3 0.87 0.88 4.40 £ 3.79
o(t)+4 0.86 0.86 5.22 +4.87
Total 0.84 0.86 5.44 +£4.48

Table A6: TS accuracy scores for longer lenghts (premise selection)

Lenath Accuracy Non-minimal
g (minimal) NM Acc. # Unnec. Prem.

u(t) —4 0.81 0.81 521 +£3.48
u(t) —3 0.80 0.81 6.86 £+ 3.58
wu(t) —2 0.79 0.79 7.46 £3.77
u(t) —1 0.78 0.78 2.75 + 1.30
u(t) 0.76 0.76 5.67 £ 1.25
Total 0.80 0.80 6.06 + 3.63

Table A7: GPT accuracy scores for shorter unseen lenghts (premise selection)

Leneth Accuracy Non-minimal
g (minimal) NM Acc. # Unnec. Prem.

o(t) 0.40 0.66 5.51 £3.53
o(t)+1 0.71 0.81 5.33 £3.86
o(t) +2 0.84 0.88 5.28 +3.63
o(t)+3 0.89 0.91 5.31+£3.78
o(t)+4 0.90 0.92 5.30 £ 3.94
Total 0.76 0.84 5.42 £ 3.66

Table A8: GPT accuracy scores for longer unseen lenghts (premise selection)

Leneth Accuracy Non-minimal
g (minimal) NM Acc. # Unnec. Prem.

pu(t) —4 0.84 0.86 4.22+4.22
u(t) —3 0.82 0.84 421 +4.16
u(t) —2 0.79 0.81 3.48 £3.47
u(t) —1 0.77 0.79 3.46 + 3.69
u(t) 0.76 0.77 3.86 £ 4.69
Total 0.82 0.84 3.98 £4.04

A.3 ERROR ANALYSIS

We examined incorrect model predictions that did not involve the inclusion of unnecessary premises,
in order to better understand the inferential patterns being captured. Notably, in all such cases,
the models consistently generated well-formed formulas. Therefore, the observed errors can be
attributed to the incorrect selection or construction of syllogistic formulas, rather than to syntactic
malformation.

To evaluate semantic errors in the premise selection task, we considered three key aspects: (1)
whether the terms appearing in the hypothesis were also present in the predicted premises, which
would indicate a basic understanding of syllogistic rules; (2) whether the predicted premises were
sourced from the knowledge base; and (3) whether the terms within the predicted premises were

12
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Table A9: Semantic validity for the premise selection task

Model Experiment Term overlap (with H) Premise validity ~Term validity
Overall 0.77 0.35 0.92
TS Compositionality 0.46 0.25 0.90
Recursiveness 0.63 0.18 0.89
Overall 0.94 0.20 0.92
GPT Compositionality 0.71 0.31 0.94
Recursiveness 0.92 0.32 0.92

restricted to those found in the knowledge base. These latter checks ensure that models are not
generating fabricated content.

Table [A9] presents a summary of semantic validity by reporting the proportion of cases, across all
experiments, in which each criterion was satisfied for both TS and GPT models. These proportions
were calculated relative to the set of incorrect predictions. Remarkably, the results indicate that
the models generate fabricated premises. A closer analysis suggests that this issue may stem from
confusion between syllogisms whose hypotheses share the same formula type—specifically, among
O-formulas in inference types (1), (3), and (5), and among I-formulas in types (4) and (7). That
is, the models appear to erroneously construct an incorrect type of syllogism, thereby generating
fabricated premises in an attempt to force a valid inference.

Similarly, in the proof by contradiction task, all incorrect predictions were syntactically well-formed.
While the criteria concerning term overlap with the hypothesis and the validity of premises are
not directly applicable in this setting, it is noteworthy that, in all instances, the terms used in the
incorrectly predicted formulas were contained within the vocabulary of the knowledge base.

A.4 EXPERIMENTAL SETUP

All experiments were implemented in Python, with TensorFlow as the primary deep learning frame-
work. The implementation also made use of several additional libraries: Hugging Face’s Trans-
formers for model loading and fine-tuning; NumPy and Pandas for numerical operations and data
manipulation; json and jsonlines for data formatting; os, random, and itertools for file handling and
data sampling; and matplotlib and pydot for visualization and graph rendering.

A.4.1 KNOWLEDGE BASE GENERATION

The process began with the construction of knowledge bases, represented as graph-like structures
(see Figure[2). To introduce variability in the data, we focus on two main factors: the number of sub-
graphs, each corresponding to a tree structure that encodes A-formulas, and the maximum length of
an A-chain within a single subgraph. For both fine-tuning and evaluation, we generated two distinct
types of knowledge bases, which were evenly distributed throughout the dataset: those comprising
4 subgraphs, each with a maximum A-chain length of 5; and those consisting of 2 subgraphs, with
maximum A-chain lengths ranging from 7 to 10. Finally, although it is not feasible for a single
knowledge base to evenly represent every syllogism type, we ensured that each structure contains a
sufficient number of instances for each inference type.

A.4.2 FINE-TUNING STRATEGY

We conducted preliminary experiments to determine the number of knowledge bases and data pro-
portions that maximize accuracy in the overall setting (i.e., when training includes all A-chain
lengths) across both tasks: premise selection and proof by contradiction. The most effective con-
figuration consisted of 30 graph-based knowledge bases, of which 27 were used for training and
3 for validation. Each base structure was further augmented through substitution with 10 distinct
pseudoword sets and presented in 3 different premise orderings. This augmentation process resulted
in a total of 900 knowledge bases. A summary of the overall data distribution is provided in Table
[ATO0] Finally, we applied a stratified sampling approach to select a proportion of the dataset, based
on inference type and A-chain length.
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Table A10: Data distribution by syllogism type and A-chain length (train/validation split)

Length (1 2) 3) @ 5) (©6) ) Total

0 6390 - 2400 - - 2400 2400 13590
I 9060 28800 4800 57600 30 4800 6180 111270
2 10170 25440 8370 66720 210 7140 10260 128310
3 9510 21540 11700 67920 570 9060 15180 135480
4 8430 16770 15480 65700 990 10620 17940 135930
5
6
7
8

6300 11910 18780 57120 1830 11580 20220 127740
4560 7530 20610 44280 2580 10920 19320 109800
2700 4620 21420 30480 3090 9960 17820 90090
1380 1290 20790 17940 3420 8160 15420 68400

9 570 570 18900 8820 3720 6420 12900 51900
10 210 150 16140 4800 3930 4620 8880 38730
11 60 - 12960 1560 3420 3060 2760 23820
12 30 - 10170 540 2940 2220 1380 17280
13 - - 7650 120 2520 1500 600 12390
14 - - 5460 - 2040 900 240 8640
15 - - 3570 - 1560 480 60 5670
16 - - 2130 - 1140 300 - 3570
17 - - 1230 - 690 120 - 2040
18 - - 510 - 300 - - 810
19 - - 210 - 120 - - 330
20 - - 90 - 30 - - 120

Total 59370 118620 203370 423600 35130 94260 151560 1085910

Table A11: Data distribution by syllogism type and A-chain length (test split for overall and com-
positional models)

Length (¢))] (2) 3) 4) (5) (6) @) Total

630 2847 240 5694 15 240 240 9906
879 2487 480 6528 48 480 672 11574
954 2034 822 6444 90 678 1188 12210
897 1608 1176 6036 162 822 1656 12357
1185 1512 5202 243 912 1890 11697
585 798 1776~ 4116 285 930 1926 10416
444 537 1902 3030 291 870 1818 8892
324 240 1929 1908 309 828 1686 7224
183 138 1842 1146 330 714 1506 5859
10 99 60 1686 666 318 588 1194 4611

O 01NN B~ W~
~
W
9

11 60 - 1443 252 327 456 912 3450
12 33 - 1215 120 294 348 660 2670
13 15 - 1005 42 255 258 372 1947
14 - - 801 - 216 192 198 1407
15 - - 603 - 189 138 84 1014
16 - - 405 - 159 84 42 690
17 - - 264 - 120 54 - 438
18 - - 150 - 93 24 - 267
19 - - 78 - 57 = - 135
20 - - 30 - 30 - - 60
21 - - 15 - - - - 15

Total 5856 11934 19374 41184 3831 8616 16044 106839
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Table A12: Data distribution by syllogism type and A-chain length (test split for recursive models)

Length Mm@ @ @ 5 6 (1) Total

u(t)—4 609 2451 1107 4410 549 750 2958 12834
u(t)—3 408 1806 684 2544 444 534 2196 8616
w(t)—2 237 1245 348 1008 306 348 1446 4938
wu(t)y—1 111 765 177 444 165 192 756 2610
wu(t) 42 360 63 168 63 84 288 1068

Total 1407 6627 2379 8574 1527 1908 7644 30066

For the T5 models, a proportion of 80% was found to be optimal. Fine-tuning was performed for
one epoch using the Adam optimizer, with a learning rate of le-4 and a batch size of 20. We also
explored the effect of different dataset proportions for fine-tuning the GPT models. The results
revealed two key findings: first, using only 25% of the data was sufficient to match the performance
of the TS models; second, increasing the proportion to 80% resulted in only marginal performance
gains. Therefore, we opted to use the smaller dataset. All GPT models were fine-tuned for one
epoch, using a learning rate multiplier of 1.8. Batch sizes, ranging up to 128, were automatically
selected by the API based on the dataset size.

The fine-tuning process was performed three times for the T5 model and twice for GPT. In each
case, the model achieving the highest accuracy was selected for subsequent experiments with the
symbolic prover.

Pseudoword Handling and OpenAI Moderation Constraints During the initial stages of model
fine-tuning, we encountered challenges related to the use of pseudowords and the OpenAl Modera-
tion API. Although the pseudowords were intentionally meaningless and devoid of semantic content,
a significant number of training examples were flagged for violating OpenAI’s usage policies—
specifically under the category of hate speech—which resulted in the training files being blocked.
To resolve this, we introduced delimiters (e.g., “{” and “}”) to explicitly mark pseudowords. Inter-
estingly, this restriction applied only during training; the API imposed no such limitations during
evaluation.

Evaluation Settings We evaluated the fine-tuned models on a set of unseen knowledge bases.
To assess the overall and compositional models, we generated 30 distinct structures. Additionally,
to address the underrepresentation of syllogisms involving longer A-chain lengths, we constructed
an extra set of 60 knowledge bases to include the five longest A-chain lengths across all inference
types, with the aim of evaluating the recursive models. Each structure was instantiated using three
distinct sets of pseudowords. Notably, testing across different pseudoword orderings yielded iden-
tical results. Therefore, our evaluation excludes permutations of premises. Table [ATT| presents the
data distribution for evaluating the overall and compositional models, while Table [K_]_Z] shows the
distribution used for the recursive models.

A.4.3 HARDWARE AND COMPUTE ENVIRONMENT

The GPT models were fine-tuned using OpenAI’s hosted infrastructure via their fine-tuning APIE}
At the time of experimentation, the cost of fine-tuning the GPT-40-mini model was $3.00 per one
million tokens. Table[AT3|reports the total number of tokens used during a single run, as well as the
corresponding estimated cost for two runs across all experiments and both tasks—namely, premise
selection and proof by contradiction.

Experiments involving TS5 fine-tuning and hybrid models were conducted on a clustered, Linux-
based system using a compute node equipped with an AMD EPYC 7742 64-Core processor, 256
GB of RAM, and a 40 GB NVIDIA A100 GPU.

Table summarizes the total compute time (in hours) used for fine-tuning and evaluating the GPT
and T5 models, carried out via the GPT API and the supercomputer, respectively, across all runs,
experiments, and tasks.

3 (https://platform.openai.com/docs/api-reference/fine-tuning)
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Table A13: Resource usage and cost estimation using the GPT API

Task Experiment Tokens (single run)  Total Cost (two runs)
Overall 128.40M $770.37
Premise Selection Compositionality 61.14M $366.84
Recursiveness 122.44M $734.67
Overall 80.24M $481.46
Proof by Contradiction ~Compositionality 42.16M $252.95
Recursiveness 77.25M $463.52

Table A14: Total runtime for all fine-tuning experiments

Premise Selection

Proof by Contradiction

Model  Runs  Experiment Training Time Evaluation Time Training Time Evaluation Time
Overall 16.92 h 80.00 h 8.34h 8.85h
T5 Compositionality 895h 56.66 h 396 h 4.01h
Recursiveness 13.82h 82.99 h 7.94h 5.33h
Overall 15.04 h 11.86 h 7.53h 8.14h
GPT Compositionality 6.38 h 6.50 h 4.65h 376 h
Recursiveness 11.82h 332h 74h 2.26h

Finally, Table [AT5|reports the total runtime (in hours) for the hybrid model evaluation experiments
described in Section [5] We precomputed and stored the model outputs to simulate the interac-
tions between neural assistants and the prover in an asynchronous fashion. This approach enables
constant-time querying of the neural models, ensuring a more efficient and uniform evaluation.
Moreover, real-time requests to the GPT API over the internet were impractical given the scale of
the data.

Table A15: Total runtime (5 runs) for the evaluation of hybrid models

Model Assistant Model Total Time
Symbolic - - 117.14 h
GPT 2.58 h

Overall Ts 315h

. .. GPT 427h
Hybrid Compositional T5 2892 h
Recursive GPT 2.83h

sty TS5 3.59h
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