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Abstract

We propose a bio-inspired concept based on the maximization of entropy in neural1

networks for memory storage and high-order cognitive skills. We emphasize the2

role of information structure to cut into smaller pieces high resolution inputs into3

extremely low resolution neurons. Despite the unreliability of neurons due to4

intrisic noise and limitations, their interaction allows error-free reconstruction. In5

particular, we show that the necessary number of neurons for reconstruction grows6

linearly while the resolution of the input grows exponentially.7

Playing with the information structure of neurons, we can make them sensitive to8

symbolic information in signals, like hierarchical binary trees or the relative order9

of elements in sequences. These features are a hallmark of symbolic systems and10

of higher-order cognitive skills.11

1 Introduction12

Despite the unreliability of biological neurons, the brain exploits efficiently their poor computational13

resources for fast encoding, robust memory preservation, and also for performing high-level cognitive14

tasks such as scene understanding, and hierarchical planning. In comparison, current machine15

learning use a different strategy with artificial neurons designed with virtually infinite precision of16

their weights, unlimited time and gigantic resources (data, and GPU) and energetical cost.17

Here, we emphasize the role of information structure in neural computation (1) for capturing intrinsic18

features found in data, and (2) for efficient processing, despite intrinsic noise and errors. First, we19

show how error-free efficient encoding can be done in unprecise neurons of low resolution RW20

to reconstruct back highly precise input X of much higher resolution RX , with the relationships21

RW ≪ RX . Using Information Theory (IT) and the source coding theorem of Claude Shannon,22

we demonstrate that unreliable neurons can maximize their codes to reach Shannon limits in terms23

of information capacity so that each neuron added to the neural population augments its memory24

capacity following an exponential scale.25

This idea is in line with the principle of Entropy Maximization (PEM) proposed by Barlow who26

hypothesized that biologic systems optimize their resources by using efficient codes to maximize27

information (entropy). The PEM is described in Annex section 5.1.28

Based on this principle, we use randomness as a key mechanism to create orthogonal neural repre-29

sentations and to disambiguate information during reconstruction. It follows that the neural codes30

create advantageously compact and efficient representations, despite their low resolution. This31

computational treatment of information is similar with the binary codes done in digital processing.32
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Figure 1: Entropy Maximization principle in neural networks. a) In Information Theory, a neural
network can be seen as a network of neurons, a communication channel through which information
can pass through. Following this, a high dimensional inputs X of resolution RX , and entropy logRX

can be conveyed into neurons Y of much lower weights precision W and synaptic resolution RW .
b) The minimal number k of neurons Y necessary to encode input X without loss is given by the
Shannon’s souce coding theorem. This number depends of the neurons’ information structure, which
means its resolution RW . Accordingly, efficient codes can be constructed with a minimal number of
neurons, and despite their weak computational capabilities. c) the neurons’ resolution RW , which
is the information structure of the neural code, can serve to represent various types of pattern. For
synaptic weights of high resolution, RW ≈ RX ≈ Re, neurons are similar to perceptrons, with
neural codes of same resolution as the input, with lots of redundancy. For synaptic weights of low
resolution such that RW ≪ RX , neurons with binary codes can be created for RW = 2 and with
serial order codes for RW = L, with L the length of the input vector X . These codes are often used
in symbolic processing. Although discrete codes perform a harsh quantization of the input X , they
are faster to compute and to reconstruct the input X .

These two mechanisms, randomness and compacity, represent the minimal and sufficient conditions33

to realize efficient coding in an informative system. In line with other proposals, we hypothesize that34

these two mechanisms are sufficient to describe many neural computation in the brain.35

We present several examples in which these random and compact neurons are used to represent36

structurally organized information in spatio-temporal data, like trees or directed graphs. These37

features are a hallmark of symbol processing and the higher-order skills processed in the frontal38

cortex such as grammar, action plan, visual geometry, and algebra Dehaene et al. [2015].39

Although these compact codes are traditionally associated with Good Old-Fashioned AI systems,40

they can be associated also with spiking neurons and the bio-inspired learning mechanism of Spike41

Timing-Dependent Plasticity (STDP), which is a temporal code sensitive to the serial order of spike42

trains Thorpe et al. [2001a], Van Rullen and Thorpe [2002].43

In this paper, we present in section 2 our motivation and the principle used to describe the architecture.44

In section 3, we present the results. We conclude then with links with brain computation, cognitive45

development, and links between current machine learning and bio-inspired neural models.46
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2 Methods47

Neurons Resolution and Patterns. We present in the Appendix in section 5.2 the two stages of the48

algorithm and its pseudo-code 1. The first stage consists on the encoding part of the signal X into49

the neural weights W , shuffled and quantized. This can be done in one-shot learning for a specified50

number of neurons k.51

Shuffling means permutating randomly the order of the synaptic connections from the input X to52

the neurons Y , so that each neuron ’sees’ the input in a specific order proper to the neuron. Each53

neuron will have its own specific randomly shuffled repertoire so that one value in X ∈ RX will54

correspond to a different value W ∈ RW . The neural codes (codeword), representing input X , will55

take its values within the repertoire RW , the cardinality of the neurons, which is also the number of56

possible states taken in the weights matrix W .57

For RW = 2, the neural codes will be only binary values [0; 1] and the memory capacity of the neural58

network will be equal to k log 2. Binary vectors have interesting properties to encode hierarchical59

trees and symbolic patterns.60

For the special case where the resolution in the synaptic weights RW is equal to the sequence length L61

of the input X , the neural codes will be simply the relative order of the input sequence: e.g., the input62

vector [13.3333; 3.14; 5.666] will be encoded by the following ordinal code [3; 1; 2], corresponding63

to the highest value, the lowest value and the value in between.64

Ordinal codes can be seen as random permutation of cardinality L. Interestingly, they have been65

found in the frontal cortex to process serial order information Pitti et al. [2022a]. Ordinal codes66

have interesting algebraic and combinatorics features for manipulating context-free grammars, and to67

represent trees and directed graphes Pitti et al. [2022a]. The memory capacity of the ordinal neural68

are equal to k logL.69

Retrieving Patterns. The second stage corresponds to the reconstruction or decoding phase. It70

follows an iterative procedure to refine the signal step by step by a belief vote at the neural population71

level. This iterative stage is similar with the Expectation-Maximization algorithm or the Bolztmann72

machine mechanism, found also in predictive coding and active inference Rao and Ballard [1999],73

Friston et al. [2016].74

At each step, the neurons make a decision vote to predict the most probable values, following a75

gaussian distribution centered on the most probable guess. These decision votes are then summed up,76

and revised for the next step.77

The harsh quantization in W create large errors in the decision votes at the unit level, and large78

uncertainty intervals. However, the decision vote with multiple neurons permits to discriminate the79

candidate values and to retrieve the higher resolution of the original signal. Accordingly, the random80

connections don’t affect the belief vote, but create sparse and orthogonal representations such that81

only the least common candidates denominators among the neurons survive, see section 3.82

This error-corrrective treatment of information is similar with bayesian inference. The neurons provide83

a conditional output relative to its likelihood to the class or to the input: q(x/z) ≈ p(z/x)p(x). The84

likelihood of the neuron z, p(z/x), can be computed, stored, and then used to discriminate the input85

x. The variance is chosen arbitrarily large. The random vectors act upon the belief vote so that only86

the least common denominators encoded differently by the neurons will win the votes.87

3 Experiments88

3.1 XP 1: Input Reconstruction for different neural resolutions89

We devise first the reconstruction capabilities on an image of size L = 512 × 512 and pixel’s90

resolution RX = 256. We encode the image in a neural population of N = 100 neurons with two91

different resolution of the synaptic weights W : RW = {2, 10} for binary and ten-level quantization.92

Fig. 2 shows the results for the resolution RW = 2 only, binary neurons. The reconstruction process93

corresponds to a belief vote in which each neural unit is added iteratively during the decision making94

stage. Fig. 2 a) presents the decision votes for 50 pixels between [0, 255] and the trajectory for five of95

them is presented in Fig. 2 b). The quadratic error is presented in Fig. 2 c).96
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The convergence to the original image resolution RX = 256 is achieved rapidly by selecting 20 to97

40 neurons during the decision vote. The reconstruction process is also not monotonic as observed98

in Fig. 2 c). The pixel values change with respect to the number of neurons taken for computing99

global decision, and stabilizes to a global minimum when a certain number is taken. In line with the100

source coding theorem, there is a threshold to information capacity and a minimal number of neurons101

k are necessary to allow encoding. Nonetheless, the relationships among the neural codes are highly102

nonlinear due to randomization, so a small number is enough to reconstruct back original information.103

The reconstruction process has some similarities to Diffusion Probabilistic models. In comparison, it104

is faster to converge as it requires a dizain of steps, see Fig. 2 a-b). However, the iterative process of105

the decision vote is also highly nonlinear.106

a) b) c)

Figure 2: Reconstruction stage. a) cumulative prediction error for pixels’ value decision making, by
adding one by one neurons. b) retrieved pixels’ value, for 5 values only. c) reconstruction error.

The Fig. 3 a-b) on the left side corresponds to the encoding of one selected neuron only for a specific107

resolution RW = 2 and RW = 10. Although both neurons have a very low resolution, the behavior108

of the two neural networks drastically change when combined together during the reconstruction109

stage. For instance, the binary codes permit to reconstruct perfectly the input with 40 to 50 neurons110

whereas for RW = 10, ten times less neurons are enough to reconstruct back information.111

This result shows the impact of the neurons’ resolution on encoding. For instance, as the architecture112

of the neural network maximizes entropy through randomness and redundancy suppression, the113

number of neurons required diminishes by a power-law scale.114

a)

b)
c)

Figure 3: Computational efficiency for different information structure. Image reconstruction with
neurons’ weight resolution RW = {2, 10}. a) Reconstruction for k = {1, 10, 20} neurons with
weights RW = 2. b) Reconstruction for k = {1, 2, 3} neurons with weights resolution RW = 10. c)
Error reconstruction related to information structure and neurons’ entropy capacity.

3.2 XP 2: serial order planning in Hanoi Tower game115

The Towers of Hanoi puzzle is a game where all disks have to be positioned in a specific goal116

state, moving one disk at a time on the different rods. As the number of disks N augments, the117

computational complexity increases exponentially in 2N−1. In comparison to machine learning118

techniques, humans are good at it by grasping the structure of the game (pattern extraction), and by119

composing new plans based of the few examples learned (learning-to-learn).120

The states can be represented as nodes in a self-similar graph. Using the graph representation,121

sequences of discrete states can be constructed and analyzed. The experiment presents the most122
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Table 1: Ratio of shortest path’s length (ground truth) to the generated path’s length, averaged over
100 trials. The environment was Towers of Hanoi graph with 3 pegs and 3 plates. OURS (SHORT)
refers to our algorithm initialized with example sequences that are shortest paths, while OURS
(RAND) was initialized with chunks generated by random walk.

ALGORITHM FIXED START RANDOM START RANDOM START
FIXED TARGET FIXED TARGET RANDOM TARGET

DQN 0.693 0.743 -
PPO 0.736 0.796 0.363
OURS (SHORT) 0.712 0.754 0.798
OURS (RAND) 0.882 0.808 0.849

well-known variant with 3 rods and 3 disks (27 states). We have tested slightly more complex variants123

with an extra disk (81 states), 6 disks (729 states), and versions with the number of states of up to124

3125 (5 rods and 5 disks) were also examined.125

A set of ordinal patterns, which are sensitive to the serial order of the items present in the sequences,126

can be extracted from the example chunks; see Fig. 1. These patterns can be thought of as the127

grammar, or a set of rules, that govern the sequences, and that can be used to both reconstruct missing128

items within a sequence, and to generate novel sequences.129

The models were evaluated by calculating a ratio between the ground truth shortest path with the130

length of the generated path. The averaged results for reinforcement learning algorithms like DQN131

and PPO, as well as our algorithm with both types of example sequences are presented in table 1.132

DQN and PPO were able to generate models that solve the tasks with both start and target nodes133

fixed, and with random start node and fixed node. DQN required 200.000 iterations, PPO - 50.000134

iterations. Besides, DQN was not able to generate a useful model for the case with both start and135

target nodes set to random, even after 5 million iterations. In the case of PPO, the model trained for136

200.000 for the last case is sub-optimal – path generated 50% longer than in the other cases.137

Our approach initialized with example sequences generated using a random walk had the best138

performance, and it was better than the version that uses the shortest path examples. This could be139

explained by greater variability in the random sequences. Some of the paths are indeed never seen140

when using only the shortest paths. Despite the coarseness of serial order codes, they are capable to141

capture the relative information structure in sequences, which is pertinent for compositionality.142

4 Discussion143

Horace Barlow made the hypothesis that the brain maximizes its computational resources to overcome144

the unreliability of its neurons due to intrinsic noise and material limitation Barlow [2012, 2001].145

Accordingly, although the computational performances of noisy neurons are poor, the interaction of146

few neurons can increase their performance exponentially, as entropy follows a power-law scale.147

Thus, the Principle of Entropy Maximization can explain how information compression, and memory148

retention can be done in neural networks Jirsa and Sheheitli [2022]. For this, we presented a149

biologically plausible method that removes redundancy in a compact way by limiting neurons’150

variability (quantization) and by shuffling their distribution (randomization). By doing so, neurons151

have a different information structure from raw input. We emphasize here its advantage in higher-level152

cognitive skills; e.g., to extract hierarchical patterns like binary trees and serial order information.153

Among all types of information structure, the ability to process hierarchical trees and serial order154

in sequences has been acknowledged as a sign of higher-order cognition Dehaene et al. [2015],155

Rosenbaum et al. [2007]. It is interesting that relatively poor capabilities of spiking neurons may be156

advantageously exploited as they are also sensitive to the spatio-temporal order of spike trains Thorpe157

et al. [2001b]. During cognitive development in infancy, infants appear to rapidly learn from physical158

interactions the causal and temporal rules present in data as well as their violation. Indeed, whenever159

a sequence of actions does not correspond to any of the known ordinal rules, it can be evaluated to160

be either a rule violation or a new ’symbolic’ rule, which can then be incorporated into the known161

repertoire.162
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5 Annex269

5.1 Principle of Entropy Maximization270

Our approach is based on the Maximization of Entropy principle (ME), which is a principle rooted in271

Thermodynamics and used then in Information Theory. In biology, ME has been proposed as a core272

concept for the efficient encoding of information in the brain by redundancy minimization Barlow273

[2001, 2012], Laughlin [1981], Rolls and Treves [2011], Jirsa and Sheheitli [2022]. ME is comple-274

mentary to the Free-Energy minimization principle for the brain, proposed by Karl Friston Da Costa275

et al. [2020], and to the sparse coding of neural information Olshausen and Field [2004], Rolls [2016].276

The hypothesis of efficient encoding states that neurons must encode information as efficiently277

as possible in order to maximize neural resources van Hateren [1992], Atick and Redlich [1992],278

Laughlin and Sejnowski [2003]. To do so, an optimal code must suppress the redundancy present in279

data and keep the useful information only. Removing redundancy means suppressing information280

that can be reconstructed by inference. As a consequence, useful information is also more compact,281

less predictible (because it could have been infered otherwise) and resemble more to a random282

signal Atick and Redlich [1992], Olshausen and Lewicki [2013]. It follows that more information283

can be stored for the same capacity limit within memory.284

Following the principle of ME, we devise a similar treatment of information embedded into neural285

networks to maximize the data storage within, with the most compact neural codes, and to achieve a286

large capacity memory system Pitti et al. [2022b]. For this, we introduce two important mechanisms,287

namely quantization and permutation, in order to create neurons synaptic weights W with random288

connections and low resolution RW . On the one hand, the quantization of signals X of resolution289

RX into a neural code W of resolution RW , with RW ≪ RX , produces a harsh discretization of290

data values that is easier to manipulate for neurons. It suppresses as well redundancy, and produces291

discrete neural codes W of fewer states RW , and of lower entropy. On the other hand, the random292

connections from the original signal contribute to differentiate the neural representations for each293

neuron. Although each neural code of resolution RW is not capable to represent completely the294

original information of higher entropy RX , we show that only a few number is enough to reconstruct295

it perfectly without loss. Accordingly, randomness does not destroy information, but helps to296

disambiguate it in dense codes with few units.297

We will show that neural networks initialized with random vectors can convey maximal information,298

and reach out the Shannon’s limit in terms of capacity with the equation logRX ≈ k logRW , with k299

the number of neural units.300

This use of the ME principle is in line with the definition of entropy proposed by Boltzmann and301

reformulated by Shannon for digital computing. We suggest therefore that our model instanciates a302

new type of neural model, a digital neural network.303

5.2 Neural codes implementation304

The coding strategy consists of discretizing the items in the sequence in a given repertoire or alphabet305

of cardinality RW .306

When RW = L, with L the length of the input sequence, theneural code corresponds to an ordinal307

code, sensitive to the serial order of the elements resent in the sequence; i.e., their relative amplitude308

or temporal order.309

In this case, the ordering function rank(An,S, i), n ∈ [N ], i ∈ [L], specifies as output the rank under310

order An of the item si located at position i within the sequence S = [S1, S2, . . . , SL]. The ordered311

alphabet An = [π
(n)
1 , π

(n)
2 , . . . , π

(n)
R ] is a permutation of the original repertoire, and N is the number312

of output neurons, equal to the number of representations of the same sequence in different permuted313

orders. We implement the rank function rank(An,S, i) = 1/r as the inverse of the rank r for a314

particular index i, which can be obtained easily with the argsort() function in the C, MATLAB, or315

python languages.316

The equations of the neurons Y sensitive to ordinal information in a sequence are as follows.317

The neurons’ output Y is computed by forming the dot product between the ordering function318

rank(An,S, i) and the synaptic weights wi; wi ∈ [0, 1], i ∈ [L]. For an input sequence of L items319
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taken in the repertoire of cardinality R and for a population of N ordinal neurons, we have:320

Y (n) =

L∑
i=1

rank(An,S, i)w
(n)
i , n ∈ [N ]. (1)

The updating rule of the weights is that of the Kohonen networks Kohonen [1982] with a learning321

rate α fixed to 1.0 for one-shot learning, for the neuron Y (n), we have:322

∆w(n) = α(rank(An,S)− w(n)). (2)

Thus after complete learning, the weights w(n) = rank(An,S) and the neuron’s output becomes323

maximal, Y (n) = Ymax =
∑L

r=1
1
r2 for our choice of rank function. Notice that this maximum324

depends only on the choice of rank function and the sequence length L.325

5.3 Related Works326

This approach exploiting information structure is original in Machine Learning and AI. However,327

some similar features can be found in current neural architectures inspired by Physics and Biology328

such as the Diffusion Probabilistic Models, the Variational Auto-Encoder and the Modern Hopfield329

Networks Ramsauer et al. [2021], Millidge et al. [2022], or by the Computer architecture are also ,330

using discrete codes as neural addresses, such as the Sparse Distributed Memory Kanerva [1988],331

Bricken and Pehlevan [2021], Pourcel et al. [2022] or others Graves et al. [2014], Träuble et al. [2022].332

We report a comparison of computational features and pros and cons in section 5.3.333

Furthermore, it is noteworthy that random matrices have been exploited successfully already in the334

last decades for fast and accurate sampling and reconstruction in Telecommunication Berrou et al.335

[1993], Guizzo [2004] and in Sensing Candes et al. [2005], Donoho [2006]. They are now considered336

as standard methods for optimal codes.337

5.3.1 link with Diffusion Probabilistic Models and Variational Auto-Encoders338

Variational Auto-Encoders– Variational Auto-Encoders allow statistical inference such as inferring339

the value of one random variable from another random variable Kingma and Welling [2014]. They340

are meant to map the input variable to a multivariate latent distribution.341

In the mathematical expression of VAE neurons, the mean and variance parameters of Gaussian342

functions are in the place of the synaptic weight values to be optimized. Using the so-called343

reparametrization trick, the randomness variable ε is injected into the latent space z as external input344

in VAE. In this way, it is possible to backpropagate the gradient without involving stochastic variable345

during the update.346

In comparison, our approach quantizes information by removing redundancy directly, in one-shot,347

without regression, by selecting the desired uncertainty level. In effect, it creates large interval bins348

that correspond with the uncertainty margin of Gaussian functions (mean and variance). The neurons349

with random distrivution can represent the missing value by intersecting their belief votes within their350

respective interval range.351

Diffusion Probabilistic models– In thermodynamics, diffusion refers to the flow of particles from352

high-density regions towards low-density regions. In Machine Learning, this is done by gradually353

adding noise to input Sohl-Dickstein et al. [2015], Ho et al. [2020]. The reverse process generate data354

by denoising. In the context of statistics, DPM are modeling energy gradient directly, along entire355

diffusion process, which can take large number of iterations.356

In comparison, our method generates gaussian random distribution from input by combining the357

shuffling and quantizing operations. Quantization reduces the certainty level of one random variable358

to model priors (mean value).Each individual neuron learns a random permuted order of the original359

sequence X corresponding to a discrete version of it, a codeword; i.e., the horizontal red row in the360

weight matrix W .361

Similar with VAE, each item in the sequence is encoded then separately as a latent vector; i.e., the362

vertical green column in the weight matrix. Thus, the larger the number of neurons used to encode363

one item, the more precise the reconstruction is.364
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Algorithm 1 Pseudo-code of the algorithm

s = [item1, item2, . . . , itemL], ▷ a sequence of L items,
items ∈ [R] = {1, 2, . . . R} ▷ items randomly selected
neurons ∈ [N ] ▷ neural population of N neurons
random alphabets A = [A1,A2, . . . ,AN ], ▷ of cardinality R
original alphabet A0 = [1, 2, . . . R]

sk = Ak[s], k ∈ [N ] ▷ sequence s in the new alphabet Ak

#1 encoding, one-shot learning for demonstration purpose
for k = 1, 2, . . . , N do ▷ for each neuron k

Wk = rank(Ak, sk) ▷ learn the relative ordinal code
end for

#2 decoding, similar with a Hill-Climbing gradient error
for k = 1, 2, . . . , N do ▷ for each neuron k

initialize Errk, Err_bak,
s_bak = s_noise ▷ with s_noise ∈ [R]L

while Errk ̸= 0 do
s′k = s_bak + s_noise ▷ with s_noise ∈ [R]L

Y (k) =
∑

rank(Ak, s
′
k)Wk,

Errk = (Y max − Y (k))2

if Errk ≤ Err_bak then ▷ keep values
s_bak = s′k
Err_bak = Err_k

end if
end while sk = s_bak

end for

#3 global decision, similar to a Gaussian Mixture Model
initialize σ, S′

for i = 1, 2, . . . , L do
initialize cumul_sum[i, j] = 0, ∀j ∈ [R]
for k = 1, 2, . . . , N do

initialize µ = s′k[i]
for j = 1, 2, . . . , R do ▷ or j in a range around µ

G(π
(k)
j ) = 1

σ
√
2π

e−(j−µ)2/2σ2

▷ in alphabet Ak

cumul_sum[i, j]+ = G(j) ▷ in alphabet A0

end for
end for
S′[i] = argmax(cumul_sum[i, :]) ▷ return max item

end for
return S′
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5.3.2 link with Sparse Distributed Memory and Modern Hopfield Networks365

A similarity exists between our approach and Sparse Distributed Memory architecture proposed by366

Pentti Kanerva Kanerva [1988] and recently investigated by several teams Bricken and Pehlevan367

[2021], Pourcel et al. [2022]. SDM has been reintroduced recently for its analogy with a computer-368

like memory content retrieval based on addresses. Addresses are high-dimensional random binary369

vectors that separate memory patterns from each other.370

The Dynamic SDM (DSDM) proposed by Vu and colleagues Pourcel et al. [2022] modifies the371

SDM architecture to make the addresses data-driven and dynamically learnt. This work permits the372

challenging scenario of continual learning under online, completely task-free and class-incremental373

(data incremental) setting where learning and evaluating can be carried out at any point of time.374

The variant SDMLP Bricken and Pehlevan [2021] aims to reduce catastrophic forgetting by using375

a Multi-Layered Perceptron (MLP) with mechanisms derived from the SDM model. The first376

mechanism is the utilisation of the Top-K activation function, which means using only the k most377

active neurons of a layer in each learning step. This choice permits to have neurons specialized in378

some tasks, where other are free to learn other tasks. This mechanism reduces the chances for a379

neuron to be overwritten during the learning phase of another task, and thus, to reduce catastrophic380

forgetting.381

In comparison to our model, the quantized vectors extracted from the memory sequence and encoded382

into the synaptic weights play the same role as the random binary vectors used in the SDMs to383

allocate memory addresses. The SDM architectures use the Hamming distance for selection of the384

closest neurons for categorization, we use instead an Euclidean metric based on the gaussian function,385

and centered on the mean value of the neuron output, to deliver a belief vote. Although very similar,386

this approach is more compatible with the Bayesian treatment of information of gaussian mixture387

models for inference.388

5.3.3 link with Modern Hopfield Networks389

Our approach has many similarities with the Modern Hopfield Networks (MHN) Krotov and Hopfield390

[2016], Demircigil et al. [2017], Krotov and Hopfield [2021]. The MHN’s version of 2016 exploits a391

dense and binary weight matrix to encode data. A polynomial interactive function between neurons392

is proposed to update the value, which has a nonlinear effect on the decision making process.393

This new version of the Hopfield network has showed many advantages in terms of reconstruction, for394

robustness against noise, memory preservation against catastrophic forgetting and rapid convergence395

and stability. Moreover, a new interactive function has been introduced using an exponential one, and396

theoretical result has been demonstrated to achieve maximum capacity limit Demircigil et al. [2017].397

A recent version of it has been developped for encoding continuous values Krotov and Hopfield398

[2021].399

In comparison, our approach provides two parameters, the level of random permutation and dis-400

creteness of the synaptic weights, to describe the capacity limit of a given neural network. These401

parameters modulate directly the degree of redundancy or efficacy of the neural codes. In line with402

Information Theory, we show that the capacity limit of a neural network depends then on its number403

of neurons N , the resolution of its synaptic weights RW but also, the resolution of the input RX , or404

its repertoire size. For the case of binary neurons, we have N = logRX/log2, the minimal number405

of neurons required to encode one value X ∈ RX .406

The reconstruction phase in MHN use polynomial and exponential interactive functions to retrieve407

the store information. Besides, in our case, the reconstruction phase exploits gaussian functions for408

the interaction between neurons to deliver a belief vote. It corresponds also to a decision making409

process compatible with Bayesian inference.410

MHN makes a distinction between discrete and continuous values. Instead, Information Theory treats411

information uniformly for the two cases, with the quantization of information dependent to their412

resolution. Similary, we don’t make any separation between the discrete and continuous cases to413

encode information in our neural network. That is, a combination of discrete neurons of low entropy414

can encode information of bigger resolution and high entropy.415
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