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Abstract

We propose a bio-inspired concept based on the maximization of entropy in neural
networks for memory storage and higher-order cognitive skills. We emphasize
the role of information structure in mapping high-resolution inputs onto extremely
low-resolution neurons. Despite the unreliability of neurons due to intrinsic noise
and limitations, their interaction allows error-free reconstruction. In particular, we
show that the necessary number of neurons for reconstruction grows linearly while
the resolution of the input grows exponentially.

Playing with the information structure of neurons, we can make them sensitive to
symbolic information in signals, like hierarchical binary trees or the relative order
of elements in sequences. These features are a hallmark of symbolic systems and
of higher-order cognitive skills.

1 Introduction

Despite the unreliability of biological neurons, the brain efficiently exploits their poor computational
resources for fast encoding, robust memory preservation, and also for performing high-level cognitive
tasks such as scene understanding and hierarchical planning. In comparison, current machine learning
uses a different strategy with artificial neurons designed with virtually infinite precision of their
weights, unlimited time and gigantic resource (data and GPU) and energy usage.

Here, we emphasize the role of information structure in neural computation (1) for capturing intrinsic
features found in data, and (2) for efficient processing, despite intrinsic noise and errors. First, we
show how error-free efficient encoding can be done in imprecise neurons of low resolution Ry
(number of distinct synaptic weights) to reconstruct highly precise input X of much higher resolution
Rx (cardinality of input alphabet), even though Ry, < Rx. Using Information Theory (IT) and
the source coding theorem of Claude Shannon, we demonstrate that unreliable neurons can optimize
their codes to approach Shannon limits in terms of information capacity, so that each neuron added to
the neural population augments its memory capacity following an exponential rule.

This idea is in line with the principle of Entropy Maximization (PEM) proposed by Barlow, who
hypothesized that biologic systems optimize their resources by using efficient codes to maximize
information (entropy). The PEM is described in Annex Section[5.1]
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Based on this principle, we use randomness as a key mechanism to create orthogonal neural repre-
sentations and to disambiguate information during reconstruction. It follows that the neural codes
create advantageously compact and efficient representations, despite their low resolution at the level
of individual neurons. This computational treatment of information is similar to binary coding in
digital processing.

These two mechanisms, randomness and compactness, represent the minimal and sufficient conditions
to realize efficient coding in an informative system. In line with other proposals, we hypothesize that
these two mechanisms are sufficient to describe many neural computations in the brain.

We present several examples in which these random and compact neurons are used to represent
structured information in spatio-temporal data, like trees or directed graphs. These features are a
hallmark of symbol processing and the higher-order skills processed in the frontal cortex, such as
grammar, action plan, visual geometry and algebra (Dehaene et al.| 2015)).

Although such compact codes are traditionally associated with Good Old-Fashioned Al systems,
they can be associated also with spiking neurons and the bio-inspired learning mechanism of Spike
Timing-Dependent Plasticity (STDP), which is a temporal code sensitive to the serial order of spike
trains (Thorpe et al., 2001; |Van Rullen and Thorpel [2002).

The following Section 2] presents our motivation and the principle used to describe the architecture.
Section [3] presents simulation results. We conclude by pointing out links with brain computation,
cognitive development, as well as links between current machine learning and bio-inspired neural
models.

2 Methods

Neuron Resolution and Patterns. Appendix Section[5.2] presents the two stages of the algorithm
and its pseudo-code Algorithm [T} The first stage consists in encoding part of the signal X into the
synaptic weights W, shuffled and quantized. This can be done in one-shot learning for a specified
number of synapses k.

Shuffling means randomly permuting the order of the synaptic connections from the input X to the
neurons Y, so that each neuron ’sees’ the input in a specific order proper to that neuron. Each neuron
will have its own specific randomly shuffled repertoire so that one value in X € R x will correspond
to different values W € Ry for different neurons. Here R x is the input set of cardinality Rx,
while Ryy is the set of possible synaptic weights, of cardinality Ry. The neural code (codeword)
representing input X will take its values within the repertoire RY,,, which is also the number of
possible states taken by the weight matrix W. Here k is the number of synapses; if N neurons code
an input sequence X of length L, one has k = N L.

For Ry, = 2, the synaptic weights will have binary values {wg, w1 } and the memory capacity of the
neural network will be equal to klog 2 = k bits (log is base 2 in this article). Binary vectors have
interesting properties to encode hierarchical trees and symbolic patterns.

For the special case of ordinal codes, the resolution of the synaptic weights Ry is equal to the
sequence length L of the input X, with the additional constraint that every weight is used only
once. The neural codes will be simply the relative order of the input sequence: e.g., the input vector
[13.3333; 3.14; 5.666] will be encoded by the following ordinal code [3; 1; 2], corresponding to the
highest value, the lowest value and the value in between (instead of integers 1,2,3, the actual weights
might be any distinct numbers wy, we, w3). Ordinal codes can be seen as encoding a permutation of
cardinality L. Thus the memory capacity of an L-input ordinal neuron is log L! ~ Llog(L/e), using
Stirling’s approximation of the factorial function and Euler’s number e = 2.718. . .. Interestingly,
ordinal neurons have been found to process serial order information in the frontal cortex (Pitti
et al.| 2022a). Ordinal codes have interesting algebraic and combinatorial features for manipulating
context-free grammars, and to represent trees and directed graphs (Pitti et al.,[2022a).

Retrieving Patterns. The second stage corresponds to the reconstruction or decoding phase. It
follows an iterative procedure to refine the signal step by step by a belief vote at the neural population
level. This iterative stage is similar to the Expectation-Maximization algorithm or the Boltzmann
machine mechanism, found also in predictive coding and active inference (Rao and Ballard, [1999;
Friston et al., [ 2016)).
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Figure 1: Entropy Maximization principle in neural networks. a) In Information Theory, a neural
network can be seen as a communication channel through which information can be transmitted or
stored. Following this, an L-dimensional input X of resolution Rx, and entropy L log Rx, can be
conveyed into neurons Y of much lower-precision weights W with synaptic resolution Ry . b) The
minimal number N of neurons Y necessary to encode input X without loss is given by Shannon’s
source coding theorem. This number depends on the neurons’ information structure, which means
their number of inputs and their resolution Ry. Accordingly, efficient codes can be constructed
with a minimal number of neurons, despite their weak computational capabilities. ¢) the neurons’
resolution Ry, which is the information structure of the neural code, can serve to represent various
types of patterns. For synaptic weights of high resolution, Ry =~ Rx = R, neurons are similar
to perceptrons, with neural codes of same resolution as the input, with lots of redundancy. For
synaptic weights of low resolution such that Ry, < Rx, neurons with binary codes can be created
for Ry = 2 and with serial order codes for Ry = L, with L the length of the input vector X. These
codes are often used in symbolic processing. Although discrete codes perform a harsh quantization
of the input X, they are faster to compute and to reconstruct the input.

At each step, the neurons make a decision vote predicting the output value, modeled by a Gaussian
distribution centered on the most probable value. Decision votes from multiple neurons are then
summed up and refined for the next step.

The harsh quantization in W create large errors in the decision votes at the single neuron level, and
large uncertainty intervals. However, the decision vote with multiple neurons allows to discriminate
the candidate values and to retrieve the higher resolution of the original signal. Accordingly, the
random connections do not affect the belief vote, but create sparse and orthogonal representations
such that only the most likely candidate values among the neurons survive, see Section 3]

This error-correcting treatment of information is similar to Bayesian inference. The neurons provide
a conditional output relative to its likelihood to the class or to the input: g(z/z) « p(z/z)p(z) (here
p(z) may be assumed uniform due to randomization). The likelihood of the neuron z, p(z/x), can be
computed, stored, and then used to discriminate the input x. The variance is chosen arbitrarily, it
trades off convergence properties with computational complexity. The neuron input randomization
acts upon the belief vote so that with high probability the original input value receives the largest
cumulative vote, while other values receive a lower, random number of votes.



3 Experiments

3.1 XP 1: Input Reconstruction for different neural resolutions

We test first the reconstruction capabilities on an image of size L = 512 x 512 and pixel’s resolution
Rx = 256. We encode the image in a neural population of N = 100 neurons with two different
resolutions of the synaptic weights W: Ry, = 2, 10 for binary and decimal quantization.

Fig. 2] shows the results for the resolution Ry, = 2 only, i.e. binary weights. The reconstruction
process corresponds to a belief vote in which each neural unit is added iteratively during the decision
making stage. Fig.[2|a) presents the decision votes for 50 pixels between [0, 255] and the trajectory
for five of them is presented in Fig. 2|b). The quadratic error is presented in Fig.[2]c).
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Figure 2: Reconstruction stage. a) cumulative prediction of pixel values, by adding neurons’ votes
one by one. b) retrieved pixel values, for 5 pixels only. ¢) reconstruction error.

The convergence to the original image resolution Rx = 256 is achieved rapidly by using 20 to 40
neurons during the decision vote. The reconstruction process is also not monotonic as observed in
Fig.[2]c). The pixel values change with respect to the number of neurons used for computing the
global decision, and stabilize after a certain number is used. In line with the source coding theorem,
there is a threshold to information capacity and a minimal number of neurons N is necessary to
allow correct decoding. Nonetheless, the relationships among the neural codes are highly nonlinear
due to randomization, so a small number is enough to reconstruct the original information. The
reconstruction process has some similarities to Diffusion Probabilistic models. In comparison, it is
faster to converge as it typically requires some dozen of steps, see Fig.[2]a-b). However, the iterative
process of the decision vote is also highly nonlinear.
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Figure 3: Computational efficiency for different information structure. Image reconstruction with
neuron weight resolution Ry = 2,10. a) Reconstruction for £ = 1,10, 20 neurons with weights
Ry = 2. b) Reconstruction for £ = 1, 2, 3 neurons with weight resolution Ry = 10. c) Reconstruc-
tion error related to information structure and neuron weight resolution.

Fig. 3] a-b) on the left side corresponds to the decoding of one selected neuron only for weight
resolution Ry = 2 and Ry = 10. Although both neurons have a very low resolution, the behavior
of the two neural networks drastically change when combined together during the reconstruction
stage. For instance, the binary codes permit to reconstruct perfectly the input with 40 to 50 neurons
whereas for Ry = 10, ten times less neurons are enough to reconstruct information.



This result shows the impact of the neurons’ resolution on encoding. For instance, as the architecture
of the neural network maximizes entropy through randomness, the number of neurons required
diminishes by an exponential rule.

3.2 XP 2: Serial order planning in Tower of Hanoi game

The Tower of Hanoi puzzle is a game where all disks have to be positioned in a specific goal
state, moving one disk at a time on the different rods. As the number of disks N augments, the
computational complexity increases exponentially as 2V~!. In comparison to machine learning
techniques, humans are good at it by grasping the structure of the game (pattern extraction), and by
composing new plans based on the few examples learned (learning-to-learn).

The states can be represented as nodes in a self-similar graph. Using this graph representation,
sequences of discrete states can be constructed and analyzed. The experiment presents the most
well-known variant with 3 rods and 3 disks (27 states). We have tested slightly more complex variants
with an extra disk (81 states), 6 disks (729 states); also versions with up to 3125 states (5 rods and 5
disks) were examined.

A set of ordinal patterns, which are sensitive to the serial order of the items present in the sequences,
can be extracted from the example chunks; see Fig.|l] These patterns can be thought of as the
grammar, or the set of rules, that governs the sequences, and that can be used to both reconstruct
missing items within a sequence and to generate novel sequences.

The models were evaluated by calculating the ratio between the ground truth shortest path length
and the the generated path length. The averaged results for reinforcement learning algorithms like
DQN and PPO, as well as our algorithm with both types of example sequences are presented in Table
[I] Our approach used less than 100 neurons with one-shot learning. DQN and PPO were able to
generate models that solve the tasks with both start and target nodes fixed, and with random start
node and fixed target node. DQN required 200.000 iterations, PPO 50.000 iterations. Besides, DQN
was not able to generate a useful model for the case with both start and target nodes set to random,
even after 5 million iterations. In the case of PPO, the model trained over 200.000 iterations for the
last case is sub-optimal, the generated path was 50% longer than in the other cases.

Our approach initialized with example sequences generated using a random walk had the best
performance, better than the version using the shortest path examples. This could be explained by
greater variability in the random sequences. Some of the paths are indeed never seen when using only
shortest paths. Despite the coarseness of serial order codes, they are capable to capture the relative
information structure in sequences, which is pertinent for compositionality (Lebioda et al., 2024)).

ALGORITHM FIXED START ~ RANDOM START = RANDOM START
FIXED TARGET  FIXED TARGET =~ RANDOM TARGET

DQN 0.693 0.743 -

PPO 0.736 0.796 0.363

OURS (SHORT) 0.712 0.754 0.798

OURS (RAND) 0.882 0.808 0.849

Table 1: Ratio of shortest path’s length (ground truth) to the generated path’s length, averaged over
100 trials. The environment was Towers of Hanoi graph with 3 pegs and 3 plates. OURS (SHORT)
refers to our algorithm initialized with example sequences that are shortest paths, while OURS
(RAND) was initialized with chunks generated by random walk.

4 Discussion

Horace Barlow made the hypothesis that the brain maximizes its computational resources to overcome
the unreliability of its neurons due to intrinsic noise and material limitation (Barlow, 2001} 2012]).
Accordingly, although the computational performances of noisy neurons are poor, the interaction of
few neurons can increase their performance exponentially, as their entropies are summed.

Thus, the Principle of Entropy Maximization can explain how information compression, and memory
retention can be done in neural networks (Jirsa and Sheheitli, [2022). For this, we presented a



biologically plausible method that removes redundancy in a compact way by limiting neurons’
variability (quantization) and by shuffling their alphabet order (randomization). By doing so, neurons
have a different information structure from raw input. Here we emphasize its advantage in higher-level
cognitive skills; e.g., to extract hierarchical patterns like binary trees and serial order information.

Among all types of information structure, the ability to process hierarchical trees and serial order
in sequences has been acknowledged as a sign of higher-order cognition (Dehaene et al.| 2015}
Rosenbaum et al., [2007). It is interesting that relatively poor capabilities of spiking neurons may be
advantageously exploited as they are also sensitive to the spatio-temporal order of spike trains (Thorpe
et al., 2001). During cognitive development in infancy, infants appear to rapidly learn from physical
interactions the causal and temporal rules present in data as well as their violation. Indeed, whenever
a sequence of actions does not correspond to any of the known ordinal rules, it can be evaluated to
be either a rule violation or a new ’symbolic’ rule, which can then be incorporated into the known
repertoire.
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5 Annex

5.1 Principle of Entropy Maximization

Our approach is based on the Maximization of Entropy principle (ME), which is a principle rooted in
Thermodynamics and used then in Information Theory. In biology, ME has been proposed as a core
concept for the efficient encoding of information in the brain by redundancy minimization (Barlowl,
2001},12012; Laughlin, {1981 |Rolls and Treves, |2011; Jirsa and Sheheitli,|2022)). ME is complementary
to the Free-Energy minimization principle for the brain, proposed by Karl Friston (Da Costa et al.|
2020), and to the sparse coding of neural information (Olshausen and Field, 2004; Rolls, 2016)).
The hypothesis of efficient encoding states that neurons must encode information as efficiently as
possible in order to maximize neural resources (van Hateren, 1992 Atick and Redlichl|1992; |Laughlin
and Sejnowski, [2003). To do so, an optimal code must suppress the redundancy present in data
and keep the useful information only. Removing redundancy means suppressing information that
can be reconstructed by inference. As a consequence, useful information is also more compact,
less predictable (because it could have been inferred otherwise) and resembles more a random
signal (Atick and Redlichl|1992; |Olshausen and Lewickil, 2013)). It follows that more information can
be stored for the same memory capacity limit.

Following the principle of ME, we devise a similar treatment of information embedded into neural
networks to maximize the data storage within, with the most compact neural codes, and to achieve a
large capacity memory system (Pitti et al., [2022b). For this, we introduce two important mechanisms,
namely quantization and permutation, in order to create neuron synaptic weights W with random
connections and low resolution Ryy. On the one hand, the quantization of signals X of resolution
Rx into a neural code W of resolution Ry, with Ry < Rx, produces a harsh discretization of data
values that is easier to manipulate for neurons. It may suppress redundancy as well, and produces
discrete neural codes W with fewer states Ry, and of lower entropy. On the other hand, the random
connections from the original signal contribute to differentiate the neural representations for each
neuron. Although a single neural code of resolution Ry is not capable to represent completely the
original information of higher resolution Rx, we show that only a small number of neurons is enough
to reconstruct it perfectly without loss. Accordingly, randomness does not destroy information, but
helps to disambiguate it in dense codes with few units.

We show that neural networks initialized with random vectors can convey maximal information, and
approach Shannon’s limit in terms of capacity with the equation log Rx ~ klog Ry, with k the
number of neural weights.

This use of the ME principle is in line with the definition of entropy proposed by Boltzmann and
reformulated by Shannon for digital computing. We suggest therefore that our model instantiates a
new type of neural model, a digital neural network.

5.2 Neural code implementation

The coding strategy consists of discretizing the items in the sequence into a given repertoire or
alphabet of cardinality Ry . In experiment XP1 this is done by simple uniform quantization, i.e.
W, = | Xi/q] - ¢ + q/2 for an appropriate step size ¢ (yielding the desired number of quantization
levels Ryy).

As outlined in Section 2} the ordinal neurons used in experiment XP2 have resolution Ry = L, with
L the length of the input sequence, and the constraint that every weight is used only once. Then the
neural code corresponds to an ordinal code, sensitive to the serial order of the elements present in the
sequence; i.e. their relative amplitude or temporal order.

In this case, the ordering function rank(A,, s,4), n € [N], 4 € [L], specifies as output the rank under

order A,, of the item s; located at position ¢ within the sequence s = [s1, S, ..., s1.]. The ordered
alphabet 4,, = [77%”), Wé”), RN 775-:)] is a permutation of the original repertoire, and [V is the number

of output neurons, equal to the number of representations of the same sequence in different permuted
orders. We implement the rank function rank(A,,, s,4) = 1/r as the inverse of the rank r for a
particular index ¢, which can be obtained easily with the argsort () function in the C, MATLAB, or
python languages.



The equations of the neurons Y sensitive to ordinal information in a sequence are as follows.
The neurons’ output Y is computed by forming the dot product between the ordering function
rank(A,,, s,4) and the synaptic weights w; € {1/r}~_,, i € [L]. For an input sequence of L items
taken in the repertoire of cardinality R and for a population of N ordinal neurons, we have:

L
y(n) — Zrank(Am 8,1) wgn), n € [N]. ey
i=1

The updating rule of the weights is that of Kohonen networks (Kohonenl [1982) with a learning rate «
fixed to 1.0 for one-shot learning, for neuron Y (™) we have:

Aw™ = afrank(4,,s) —w™). @

Thus after complete learning, the weights w(™ = rank(A,,, s) and the neuron’s output becomes

maximal, Y = Yiax = Zle 2 for our choice of rank function. Notice that this maximum

depends only on the choice of rank function and the sequence length L.

The complete procedure for ordinal neurons including decoding is outlined in Algorithm 1. The
decoding step 2 is iterated until a tentative solution satisfying the learned ranks of all /N neurons
is found. Then a global decision vote takes place in step 3. In case of quantizing neurons as in
XP1, step 2 for reconciling the ranks is not needed, and iteration over k may be stopped early if the
reconstructed value stabilizes.

5.3 Related Works

This approach exploiting information structure is original in Machine Learning and Al. However,
some similar features can be found in current neural architectures inspired by Physics and Biology,
such as the Diffusion Probabilistic Models, the Variational Auto-Encoder and the Modern Hopfield
Networks (Ramsauer et al., 2021} |[Millidge et al., 2022), or by Computer architecture using discrete
codes as neural addresses, such as the Sparse Distributed Memory (Kanerval 1988} Bricken and
Pehlevan, 2021} [Pourcel et al., 2022) or others (Graves et al., 2014} [Trauble et al., [2022). We report a
comparison of computational features and pros and cons in Section [5.3]

Furthermore, it is noteworthy that random matrices have been exploited successfully already in the
last decades for fast and accurate sampling and reconstruction in Telecommunication (Berrou et al.|
1993} |Guizzo, |2004) and in Sensing (Candes et al., [2005; [Donohol |2006). They are now considered
as standard methods for optimal codes.

5.3.1 Link with Diffusion Probabilistic Models and Variational Auto-Encoders

Variational Auto-Encoders— Variational Auto-Encoders allow statistical inference such as inferring
the value of one random variable from another random variable (Kingma and Welling| [2014). They
are meant to map the input variable to a multivariate latent distribution.

In the mathematical expression of VAE neurons, the mean and variance parameters of Gaussian
functions are in the place of the synaptic weight values to be optimized. Using the so-called
reparametrization trick, the randomness variable ¢ is injected into the latent space z as external input
in VAE. In this way, it is possible to backpropagate the gradient without involving stochastic variables
during the update.

In comparison, our approach quantizes information by removing redundancy directly, in one-shot,
without regression, by selecting the desired uncertainty level. In effect, it creates large interval bins
that correspond with the uncertainty margin of Gaussian functions (mean and variance). The neurons
with random distribution can represent the missing value by intersecting their belief votes within their
respective interval range.

Diffusion Probabilistic models— In thermodynamics, diffusion refers to the flow of particles from
high-density regions towards low-density regions. In Machine Learning, this is done by gradually
adding noise to input (Sohl-Dickstein et al.,|2015; |Ho et al., |2020). The reverse process generates

10



Algorithm 1 Pseudo-code of the algorithm

s =s1,82,...,8L), > a sequence of L items,
item s; € [R] ={1,2,...R} > items randomly selected
neurons n € [N] > neural population of N neurons
random alphabets A = [A;, A, ..., Ap], > of cardinality R

original alphabet Ag = [1,2,... R]
sk = Ag[s], k € [N] > sequence s in the new alphabet Aj,

#1 encoding, one-shot learning for demonstration purpose

fork=1,2,...,Ndo > for each neuron &
Wy, =rank(Ay, si) > learn the relative ordinal code
end for

#2 decoding, similar to a Hill-Climbing gradient error

fork=1,2,...,N do > for each neuron k&
initialize Erry, Err_bak,
s_bak = s_noise > with s_noise € [R]F
while Erry; # 0 do
s}, = s_bak + s_noise > with s_noise € [R]F

Y*) = 3" rank(Ayg, s,) Wi,

Erry = (Ymaac _ Y(lc))2

if Err, < Err_bak then > keep values
s_bak = s,
Err_bak = Err_k

end if

end while s, = s_bak
end for

#3 global decision, similar to a Gaussian Mixture Model
initialize o, s’
fori=1,2,...,Ldo
initialize cumul_sumli, j] = 0,Vj € [R]
fork=1,2,...,Ndo

initialize p = s} [i], 7 = (7(*))~! > inverse permutation 7
forj =1,2,...,Rdo > or j in a range around f
G(j) = =% e~ i=m? /207 > in alphabet Ay,
oV2m
cumul_sumli, 7(§)]+ = G(7(3)) > in alphabet A
end for
end for
§'[i] = argmaz(cumul_sumli,:]) > return max item
end for
return s’
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data by denoising. In the context of statistics, DPM are modeling energy gradients directly, along the
entire diffusion process, which can take a large number of iterations.

In comparison, our method generates Gaussian random distributions from input by combining the
shuffling and quantization operations. Quantization reduces the certainty level of one random variable
to model priors (mean value). Each individual neuron learns a randomized version of the original
sequence X by discretizing it, yielding the weights learned by that neuron.

Similar to VAE, each item in the sequence is encoded also separately as a latent vector; i.e. the vector
of weights of synapse ¢ of every neuron. Thus, the larger the number of neurons used to encode one
item, the more precise its reconstruction is.

5.3.2 Link with Sparse Distributed Memory

A similarity exists between our approach and the Sparse Distributed Memory (SDM) architecture
proposed by Pentti Kanerva (Kanerva, |1988)) and recently investigated by several teams (Bricken and
Pehlevan| 2021} |Pourcel et al.||2022)). SDM has been reintroduced recently for its analogy with a
computer-like memory content retrieval based on addresses. Addresses are high-dimensional random
binary vectors that separate memory patterns from each other.

The Dynamic SDM (DSDM) proposed by Vu and colleagues (Pourcel et al.| [2022)) modifies the
SDM architecture to make the addresses data-driven and dynamically learnt. This work permits the
challenging scenario of continual learning under an online, completely task-free and class-incremental
(data incremental) setting, where learning and evaluating can be carried out at any point of time.

The variant SDMLP (Bricken and Pehlevan, 2021) aims to reduce catastrophic forgetting by using
a Multi-Layered Perceptron (MLP) with mechanisms derived from the SDM model. The first
mechanism is the utilization of the Top-k activation function, which means using only the £ most
active neurons of a layer in each learning step. This choice permits to have neurons specialized in
some tasks, while others are free to learn other tasks. This mechanism reduces the chances for a
neuron to be overwritten during the learning phase of another task, and thus to reduce catastrophic
forgetting.

In comparison to our model, the quantized vectors extracted from the memory sequence and encoded
into the synaptic weights play the same role as the random binary vectors used in the SDMs to allocate
memory addresses. The SDM architectures use the Hamming distance for selection of the closest
neurons for categorization, we use instead an Euclidean metric based on the Gaussian function, and
centered on the mean value of the neuron output, to deliver a belief vote. Although very similar, this
approach is more compatible with the Bayesian treatment of information of Gaussian mixture models
for inference.

5.3.3 Link with Modern Hopfield Networks

Our approach has many similarities with the Modern Hopfield Networks (MHN) (Krotov and Hopfield)
2016; \Demircigil et al., [2017; [Krotov and Hopfield, 2021). The MHN version of 2016 exploits a
dense binary weight matrix to encode data. A polynomial interaction function between neurons is
proposed to update the value, which has a nonlinear effect on the decision making process.

This new version of the Hopfield network has showed many advantages in terms of reconstruction,
robustness against noise, memory preservation against catastrophic forgetting and rapid convergence
and stability. Moreover, a new exponential interaction function has been introduced, and a theoretical
result demonstrated it to achieve the maximum capacity limit (Demircigil et al.l [2017). A recent
version of it has been developed for encoding continuous values (Krotov and Hopfield, |[2021).

In comparison, our approach provides two parameters, the level of random permutation and dis-
creteness of the synaptic weights, to describe the capacity limit of a given neural network. These
parameters modulate directly the degree of redundancy or efficacy of the neural codes. In line with
Information Theory, we show that the capacity limit of a neural network depends then on its number
of neurons N and the resolution of its synaptic weights Ry, but also on the resolution of the input
Rx, or its repertoire size. For the case of binary weights, we have N = log R x, the minimal number
of (one-input) neurons required to encode one value X € Rx.
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The reconstruction phase in MHN uses polynomial and exponential interaction functions to retrieve
the store information. Besides, in our case, the reconstruction phase exploits Gaussian functions for
the interaction between neurons to deliver a belief vote. It corresponds also to a decision making
process compatible with Bayesian inference.

MHN makes a distinction between discrete and continuous values. Instead, Information Theory treats
information uniformly for the two cases, with the quantization of information dependent on their
resolution. Similarly, we do not make any separation between the discrete and continuous cases to
encode information in our neural network. That is, a combination of discrete neurons of low entropy
can encode information at finer resolution and higher entropy.

13



	Introduction
	Methods
	Experiments
	XP 1: Input Reconstruction for different neural resolutions
	XP 2: Serial order planning in Tower of Hanoi game

	Discussion
	Annex
	Principle of Entropy Maximization
	Neural code implementation
	Related Works
	Link with Diffusion Probabilistic Models and Variational Auto-Encoders
	Link with Sparse Distributed Memory
	Link with Modern Hopfield Networks



