
High Performance Simulation
for Scalable Multi-Agent Reinforcement Learning

Jordan Langham-Lopez 1 Sebastian M. Schmon 1 Patrick Cannon 1

Abstract

Multi-agent reinforcement learning experiments
and open-source training environments are typ-
ically limited in scale, supporting tens or some-
times up to hundreds of interacting agents. In this
paper we demonstrate the use of Vogue, a high
performance agent based model (ABM) frame-
work. Vogue serves as a multi-agent training en-
vironment, supporting thousands to tens of thou-
sands of interacting agents while maintaining high
training throughput by running both the environ-
ment and reinforcement learning (RL) agents on
the GPU. High performance multi-agent environ-
ments at this scale have the potential to enable the
learning of robust and flexible policies for use in
ABMs and simulations of complex systems. We
demonstrate training performance with two newly
developed, large scale multi-agent training envi-
ronments. Moreover, we show that these environ-
ments can train shared RL policies on time-scales
of minutes and hours.

1. Introduction
Increases in computational power and available data have
led to an increase in the potential scale and fidelity of com-
puter simulations such as agent based models (ABMs). In
tandem, a desire has developed for complex agent behaviour
which cannot be addressed solely by the often error-prone
and challenging process of manually designing and imple-
menting agent behaviours that are both flexible and robust
to extreme states of the simulation.

In the context of agent-based models, multi-agent reinforce-
ment learning (MARL) is a means of learning agent be-
haviours where the reward function is well known but the
simulation has a complex state space. This motivates the

1Improbable, London, UK. Correspondence to: Jordan
Langham-Lopez <jordanlanghamlopez@improbable.io>.

AI4ABM Workshop at the International Conference on Machine
Learning (ICML) 2022, Baltimore, Maryland, USA, 2022. Copy-
right 2022 by the author(s).

Figure 1. Snapshot of agents in the flock MARL environment. The
agents are rewarded for being close to other agents, but are pe-
nalised for collisions. This example contains 5,000 agents learning
a shared policy. 500 training steps (totalling 625,000 mini batches)
took approximately 16 minutes to train on a laptop Nvidia GTX
1650 GPU. The inset illustrates how agents sense neighbouring
agents via a simple vision model, shown in more detail in Figure
3(a).

development of fast and large-scale training environments,
enabling the use of MARL to learn behaviours reflecting
emergent systems such as crowds, flocks, social networks
or markets.

2. High Performance MARL with Vogue
2.1. Vogue: An Agent-Based Modelling Framework

Vogue is a commercial Python framework for high perfor-
mance ABMs. It is motivated by some key design principles:

• Usability: Vogue allows users to write ABM logic in
native, idiomatic Python, as shown in code snippet 1.

ar
X

iv
:2

20
7.

03
94

5v
1

 [
cs

.M
A

]
 8

 J
ul

 2
02

2

High Performance Simulation for RL

This is then compiled by Vogue into high performance
bytecode, and can be run in a standard Python process.

• High Performance Execution: Vogue maps model
logic over agents using high performance, vectorised
update patterns. This is efficient and obviates the need
for modellers to consider the computational complexity
and low-level implementation details of ABMs.

• Composition: Vogue model logic is described in small
pieces of functionality following standard patterns.
This allows modellers to easily combine and reuse
model logic, and standardises how models are written.

• Interoperability: Vogue interacts seamlessly with the
broader Python data science and machine learning (ML)
ecosystem. This allows Vogue models to be easily
employed in ML and data science pipelines.

These design choices allow users to quickly implement high
performance ABMs without the need to write low-level code,
as shown in code snippet 1. In comparison to other nu-
merical Python compilation libraries such as JAX (Brad-
bury et al., 2018) or Numba (Lam et al., 2015), Vogue
specifically implements common patterns encountered in
ABMs, in particular interactions between spatially embedded
agents (based on spatial proximity), and agents interacting
via edges on a graph or network. These base interactions
can them be combined into more complex model logic, in-
cluding interactions between heterogeneous agent types.

Vogue is currently limited to models that update in discrete
time-steps. It is designed such that individual interactions
update agents simultaneously, in particular the GPU engine
applies interactions to entities in parallel.

2.2. End-to-end GPU-based Reinforcement Learning

As well as allowing users to efficiently implement models,
a major advantage of Vogue is that models can be executed
completely on the GPU with minimal changes to the un-
derlying code, leveraging the high degree of parallelism
afforded by the GPU to efficiently update the state of the
model. Vogue’s implementation allows data to be shared
between Vogue and other ML and deep-learning libraries
without copying (or transfer via the host) via the CUDA
array interface. This means Vogue can interact directly with
any ML framework that implements the CUDA array inter-
face, including popular ML tools like PyTorch (Paszke et al.,
2019) and JAX (Bradbury et al., 2018), or GPU based data
tools like RAPIDS (Team, 2018). This allows the execu-
tion of both the Vogue training environment/simulation and
the deep reinforcement learning (RL) agent on the GPU,
removing the overhead of moving data to and from the GPU
during training.

@vogue.interaction.self()

def update_opinion(

params: Params, person: Person

) -> None:

person.opinion = person.new_opinion

@vogue.interaction.graph()

def social_influence(

params: Params,

me: Person,

you: Person,

edge: Friendship,

) -> None:

d = abs(me.opinion - you.opinion)

if d < params.threshold:

w = params.strength * edge.weight

me.new_opinion = (

(1.0 - w) *
me.new_opinion +

w * you.opinion

)

Code Snippet 1. A Vogue implementation of a simple opinion dy-
namics model. The model is implemented as two interactions. A
self interaction that updates the current opinion of entities, and
a graph interaction that updates an entities opinion based on its
neighbours opinions. Model logic in Vogue is expressed as inter-
actions between pairs of agents, or updates of individual agents.
The compilation of these interactions and execution of the model
is handled by the Vogue engine.

3. Background
MARL has found a wide range of applications including
distributed autonomous systems, socioeconomic and game
theoretic problems (Busoniu et al., 2008). The number
of learning agents in these systems typically ranges from
single-digit to hundreds of interacting agents.

A major obstacle to applying MARL to systems with larger
numbers of interacting agents is the lack of high perfor-
mance simulation environments, as well as the techni-
cal challenges and cost associated with their development.
Training environments are often implemented for execution
on the CPU with the deep RL agent running on the GPU.
However, the communication of data from the simulation
on the host to the agent on the GPU can have a significant
performance impact.

OpenAI Gym (Brockman et al., 2016) has become a de facto
standard API for RL research, allowing training environ-
ments and RL agent implementations to be easily combined,
though it does not have a standard API for multi-agent
training. There are a number of open-source MARL envi-

High Performance Simulation for RL

ronment projects implementing this API, including Petting
Zoo (Terry et al., 2020) and MAgent (Zheng et al., 2018).
MAgent potentially supports environments containing mil-
lions of agents, but in contrast to Vogue (proposed here)
the environments restrict agents to a discrete grid and the
engine is implemented in C++. Petting Zoo wraps a number
of environments (including MAgent), though many of the
environments are restricted to tens or hundreds of agents,
or have observation spaces that scale with the number of
agents, restricting their usable scale.

RLLib (Liang et al., 2017) provides a set of tools for
the execution of RL pipelines, including automated hyper-
parameter tuning and distributed training. It has the ability
to run pipelines with multiple multi-agent policies, and mul-
tiple environments executed in parallel. It does however
rely on users to implement the training environment (or
providing a pre-existing environment).

Warpdrive (Lan et al., 2021) offers a framework for end-to-
end MARL on GPU. It demonstrates high training through-
put, though is only tested (in Lan et al., 2021) on a maxi-
mum of 1,000 agents (executed across 2,000 environments
simultaneously). Its end-to-end solution contrasts Vogue’s
focus on ease of writing high performance models, and in-
teroperability with existing Python tools. NVidia’s Issac
Gym (Makoviychuk et al., 2021) takes a similar approach,
sharing data between simulation and RL agent on the GPU
directly. Their focus is on physics simulations for robotics,
where Vogue is focused on ABM use cases, and ease of
implementing and combining ABMs.

There are a number of ABM frameworks, sharing the broad
aim of allowing users to more easily implement ABMs, or
provide performance gains. Mesa (Kazil et al., 2020) is a
popular Python ABM framework, though its performance is
restricted by Python’s native performance. Netlogo (Wilen-
sky, 1999) is instead implemented in Java, though this limits
its interoperability with Python and requires users to imple-
ment models in Netlogo’s scripting language. A comparison
of the performance of these libraries for a basic implemen-
tation of boids (with hard-coded behaviours) is shown in
Figure 2. Both the CPU and GPU version of Vogue are sev-
eral orders of magnitude faster than Mesa and NetLogo. The
GPU engine demonstrates improved scaling over the CPU
engine with increasing number of agents. Few frameworks
support GPU execution; Flame (Richmond et al., 2021) is
a notable example, implemented in C++ with an optional
Python interface.

4. Training Environments
At the time of writing, we could not locate any documented
training environments at the scale of 1,000+ interacting
agents. Instead, we provide two simple examples by imple-

102 103 104

Simulated agents

101

102

103

104

It/
s

Mesa

NetLogo

Vogue CPU

Vogue GPU

Figure 2. Average updates per second of a simple boids model im-
plemented in each framework. The Vogue GPU engine is initially
slower than the CPU but demonstrates much better scaling with
increasing number of agents.

menting extended versions of two popular models: flocking
and tag. We note that extending the range and complexity
of example environments is a priority for future work.

In both examples, to address the increased overall size of the
simulation state space, the agents only observe their local
neighbourhood of the simulation via a simple ray casting
algorithm that divides an agent’s field of view into a fixed
number, v, of sectors. Internally, their view is represented by
an array of v values representing the distance to the nearest
object at that angle, as shown in Figure 3(a). An example
time series showing an agent’s view during a training step
is shown in Figure 3(b). This local view forms part of the
training environment observation space, local to each agent
in the environment.

4.1. Flocking

This training environment is based on Reynolds’ Boids
model (Reynolds, 1987), designed to mimic natural flocks
and shoals. The training environment consists of a flock of
agents navigating a 2d space, with no hard-coded navigation
rules. Previous studies have looked at emergence of flock-
ing from reinforcement learning (for example Durve et al.,
2020; Shimada & Bentley, 2018) but in this work we aim
to examine the feasibility of efficiently training flocking be-
haviours for 1,000-10,000+ interacting agents. A snapshot
of a simulation state is shown in Figure 1.

The observation space of the environment (for an individual
agent) is a 129 length vector containing the agent’s view,
with v = 128 sectors, and the agent’s current speed. The
action space is two dimensional. One dimension acceler-
ates/decelerates the agent, in the range [−amax, amax], updat-
ing the speed of the agent as st+1 = min(smin,max(st +
at, smax)). The second dimension in the range [−θmax, θmax]

High Performance Simulation for RL

(a) Agent vision model (b) Agent’s view over time

Figure 3. Agents visualise their local environment using a simple
ray-casting model, segmenting their field of vision into a fixed
number of cells (a). The resulting array (shown below the agent)
represents the distance to the nearest neighbouring agent in the
simulation. An example time series of an agent’s view is shown in
image (b); darker areas are objects closer to agent.

rotates the heading of the agents up to a maximum rotation
rate. The reward signal for each agent is the sum of contri-
butions due to proximity to other agents, i.e. the reward ri
of agent i is

ri =
∑
j

f(dij) for dij < dv, (1)

where dij is the Euclidean distance between agents i, j,
dv is the visual range of the agent, and f is the reward
contribution, as in Figure 4.

0 2dr 4dr dv

Distance

0.1

0

-0.1

R
ew

ar
d

Figure 4. Flock reward function, f , where dr is the agents’ radius,
and dv the agents’ vision range. Agents are penalised when they
collide at a distance of 2dr

In each environment update, the agents are accelerated and
rotated (according to actions sampled from the current pol-
icy), after which their local view model and rewards are
updated for all pairs of agents in spatial proximity.

4.2. Tag

This environment is based on Petting Zoo’s (in Terry et al.,
2020) simple tag environment. It contains two agent types:
runners and chasers. Chasers are rewarded for touching
runners, and runners are rewarded for staying close to other
runners, and penalised for touching a chaser. The view
model of the agent has two simulated colour channels al-
lowing agents to distinguish between neighbouring runners
or chasers. The corresponding observation space is a 128
length vector, concatenating the two v = 64 colour channels.
The two dimensional action space rotates the agent’s head-
ing, in the range [−θmax, θmax] and moves them along the
heading, in the range [0, smax] where smax is the maximum
speed of the agents.

4.3. Training

For both environments we used proximal policy optimisa-
tion (PPO) (Schulman et al., 2017) for a continuous action
space, with the simulated agents sharing a single policy. In
the tag environment, the runner and chaser types share inde-
pendent policies, trained simultaneously. Instead of multiple
parallel environments, we treat each individual agent as an
independent learner, and gather trajectories across the full
set of of agents. If we have n agents and run t updates of
the simulation each training step, we sample a total of n× t
trajectories per training step. Vogue updates the state of
the ABM in response to the actions sampled from the PPO
policy, then copies the updated observations and rewards to
the JAX experience buffer, as shown in Figure 5.

Update agent velocities

Update agent positions

Update agent vision and rewards

Update agent observation and rewards

Copy new observation and rewards to
JAX exp buffer

Sample actions from current policy

Figure 5. The experience collection loop. Vogue (blue) updates the
state of the ABM in response to the actions sampled from the PPO
policy implemented in JAX (red). It then updates each agent’s
local view and rewards then copies them to the JAX experience
buffer.

High Performance Simulation for RL

5. Performance Results
Benchmarking was performed on an Nvidia A100 GPU.
Each full training run includes T = 200 training steps. In-
side each training step the environment was updated for
t = 128 steps, generating m = n× t individual trajectories.
The policy was then updated for p = 2 epochs, across bmini-
batches sampled from the trajectories. The number of tra-
jectories scales with the number of simulated agents, so the
number of mini-batches is capped as b = min(m/|b|, bmax)
where bmax = 512 is the maximum number of batches, and
|b| = 512 is the chosen mini-batch size. This means for
the highest number of entities each training run performs
T × p× b = 204, 800 mini-batch updates of the PPO policy,
and T×t = 25, 600 updates of the environment. The agents
have a view distance equivalent to 1/10th of the width of the
environment and a convex field of vision of approximately
250◦. The RL agent update, and trajectory processing algo-
rithms were implemented in JAX. The actor and critic PPO
networks had two hidden layers with 64 nodes each, with a
total of 1035 trainable parameters.

It should also be noted that performance of the simulation
can be highly dependent on the parameters of the simulation.
For example the view distance of the agents and their vision
angle impact the number of interactions between agents that
must be processed.

5,000 10,000 15,000
Simulated agents

200

400

600

Tr
ai

ni
ng

 ti
m

e
(s

)

flock

tag

Figure 6. Total training time for 200 training steps, for the flock
and tag environments, with increasing number of agents. Each
training step includes running the model for 128 steps with the
current policy, and updating the policy over 1024 mini-batches.
Results are shown averaged over 10 training runs, though error bars
are omitted due to their small relative size. For the tag environment
1/10th of the shown number of agents are chasers.

The total training time for 200 steps using the flock and
tag environments are shown in Figure 6. Values shown are
averaged over 10 independent training runs. With 16,000
agents, the flock environment takes around 3.5 minutes
to complete training, and demonstrates slow scaling with
number of agents. For a tag environment with a total of

17,600 agents (16,000 runners and 1,600 chasers) training
takes around 12 minutes. The tag environment demonstrates
roughly linear growth in training time with number of agents,
we speculate because of the added complexity of multiple
interactions between different agent types.

6. Conclusion
We have demonstrated that joining forward simulation and
training of MARL systems into a single end-to-end RL pro-
cess can lead to drastic improvements in performance. Us-
ing the commercial software Vogue, high performance ABMs
can be executed directly on the GPU, while the high level
of interoperability enables direct communication between
Vogue and many Python based RL or deep learning frame-
works. Vogue is currently available for academic research –
please contact the authors.

References
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI gym,
2016.

Busoniu, L., Babuska, R., and De Schutter, B. A com-
prehensive survey of multiagent reinforcement learning.
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 38:156 – 172, 04 2008.
doi: 10.1109/TSMCC.2007.913919.

Durve, M., Peruani, F., and Celani, A. Learning to flock
through reinforcement. Physical Review E, 102(1), jul
2020. doi: 10.1103/physreve.102.012601. URL https:
//doi.org/10.1103%2Fphysreve.102.012
601.

Kazil, J., Masad, D., and Crooks, A. Utilizing python for
agent-based modeling: The mesa framework. In Thom-
son, R., Bisgin, H., Dancy, C., Hyder, A., and Hussain,
M. (eds.), Social, Cultural, and Behavioral Modeling, pp.
308–317, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-61255-9.

Lam, S. K., Pitrou, A., and Seibert, S. Numba: A llvm-
based python jit compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC,
pp. 1–6, 2015.

Lan, T., Srinivasa, S., and Zheng, S. Warpdrive: Extremely
fast end-to-end deep multi-agent reinforcement learning

http://github.com/google/jax
https://doi.org/10.1103%2Fphysreve.102.012601
https://doi.org/10.1103%2Fphysreve.102.012601
https://doi.org/10.1103%2Fphysreve.102.012601

High Performance Simulation for RL

on a GPU. CoRR, abs/2108.13976, 2021. URL https:
//arxiv.org/abs/2108.13976.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R.,
Gonzalez, J., Goldberg, K., and Stoica, I. Ray rllib:
A composable and scalable reinforcement learning li-
brary. CoRR, abs/1712.09381, 2017. URL http:
//arxiv.org/abs/1712.09381.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., and State, G. Isaac gym: High performance
gpu-based physics simulation for robot learning, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019. URL http://pa
pers.neurips.cc/paper/9015-pytorch-a
n-imperative-style-high-performance-
deep-learning-library.pdf.

Reynolds, C. W. Flocks, herds and schools: A distributed
behavioral model. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’87, pp. 25–34, New York, NY, USA,
1987. Association for Computing Machinery. ISBN
0897912276. doi: 10.1145/37401.37406. URL
https://doi.org/10.1145/37401.37406.

Richmond, P., Chisholm, R., Heywood, P., Leach, M., and
Kabiri Chimeh, M. Flame gpu, December 2021. URL ht
tps://doi.org/10.5281/zenodo.5769677.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shimada, K. and Bentley, P. J. Learning how to flock: deriv-
ing individual behaviour from collective behaviour with
multi-agent reinforcement learning and natural evolution
strategies. Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2018.

Team, R. D. RAPIDS: Collection of Libraries for End to
End GPU Data Science, 2018. URL https://rapi
ds.ai.

Terry, J. K., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sulivan, R., Santos, L., Perez, R., Horsch, C., Dief-
fendahl, C., Williams, N. L., Lokesh, Y., Sullivan, R., and
Ravi, P. Pettingzoo: Gym for multi-agent reinforcement
learning. arXiv preprint arXiv:2009.14471, 2020.

Wilensky, U. Netlogo. http://ccl.northwestern.edu/netlogo/,
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL, 1999.
URL http://ccl.northwestern.edu/netlo
go/.

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang,
J., and Yu, Y. Magent: A many-agent reinforcement
learning platform for artificial collective intelligence. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

https://arxiv.org/abs/2108.13976
https://arxiv.org/abs/2108.13976
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/37401.37406
https://doi.org/10.5281/zenodo.5769677
https://doi.org/10.5281/zenodo.5769677
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://rapids.ai
https://rapids.ai
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

