
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISCODEX: UNIFIED MULTIMODAL CODE
GENERATION VIA MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) have significantly advanced the inte-
gration of visual and textual understanding. However, their ability to generate code
from multimodal inputs remains limited. In this work, we introduce VisCodex, a
unified framework that seamlessly merges vision and coding language models to
empower MLLMs with strong multimodal code generation abilities. Leveraging
a task vector-based model merging technique, we integrate a state-of-the-art cod-
ing LLM into a strong vision-language backbone, while preserving both visual
comprehension and advanced coding skills. To support training and evaluation,
we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse
collection of 598k samples, including high-quality HTML code, chart image-code
pairs, image-augmented StackOverflow QA, and algorithmic problems. Further-
more, we propose InfiBench-V, a novel and challenging benchmark specifically
designed to assess models on visually-rich, real-world programming questions that
demand a nuanced understanding of both textual and visual contexts. Extensive
experiments show that VisCodex achieves state-of-the-art performance among
open-source MLLMs and approaches proprietary models like GPT-4o, highlighting
the effectiveness of our model merging strategy and new datasets.

1 INTRODUCTION

Multimodal large language models (MLLMs) have achieved remarkable success in recent years,
demonstrating an impressive ability to understand and reason about the world by integrating informa-
tion from both visual and textual domains (Zhu et al., 2023; Liu et al., 2023; Bai et al., 2023). These
models have pushed the boundaries of what is possible in tasks like visual question answering (VQA),
image captioning, and general multimodal conversation. However, a critical and highly practical
domain remains relatively underexplored: the generation of functional code from visual inputs.

This task, which we term multimodal code generation, presents a distinct set of challenges. It demands
not only a nuanced interpretation of visual elements—such as UI layouts, data chart structures, or
programming-related screenshots—but also the ability to translate these insights into syntactically
flawless and functionally correct code. While today’s multimodal models excel at visual description,
they often lack the deep programming knowledge required for robust code generation. This gap is
critical, as many modern development tasks, like translating a UI mockup into HTML or replicating a
data chart, demand a seamless fusion of visual understanding and coding proficiency.

To bridge the gap between visual perception and code generation, we introduce VisCodex. Rather
than relying on costly pre-training, our approach efficiently creates a unified model by arithmetically
merging the parameters of a state-of-the-art vision-language model and a dedicated coding LLM.
Specifically, we adopt a model merging technique based on task vectors, which capture the parameter
shifts resulting from fine-tuning on specific domains (e.g., vision-language, coding). By linearly
combining these task vectors in the language model backbone—while keeping the vision encoder
and cross-modal projection modules intact—we jointly integrate advanced code understanding and
generation capabilities with nuanced visual perception. This enables the resulting model to simulta-
neously retain strong visual understanding and robust code generation ability, thereby significantly
enhancing its performance on multimodal coding tasks. Our experiments show that the merged model
significantly outperforms the original vision-language model on multimodal coding tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address the lack of high-quality, large-scale training data for multimodal code generation, We intro-
duce the Multimodal coding Dataset (MCD), a comprehensive, instruction-tuning dataset comprising
598k samples. MCD is meticulously curated from four diverse sources: (1) aesthetically enhanced
and structurally sound HTML code generated from webpage screenshots, (2) high-quality chart-to-
code pairs from real-world and synthetic sources, (3) image-augmented question-answer pairs from
StackOverflow, and (4) foundational algorithmic coding problems to preserve core reasoning abilities.

Furthermore, to rigorously assess the real-world performance of models on multimodal coding
QA task, we develop InfiBench-V, a new and challenging benchmark. InfiBench-V consists of
visually rich programming-related questions derived from real user scenarios where the images are
indispensable for arriving at the correct solution. It provides a more realistic and demanding testbed
than existing benchmarks that often focus on either text-only code QA or simpler visual tasks.

Our primary contributions are threefold:

1. We propose VisCodex, a novel approach for creating powerful multimodal code generators
by merging vision and coding models, demonstrating a new and efficient path to capability
enhancement.

2. We introduce MCD, a large-scale, high-quality dataset for instruction-tuning MLLMs on a wide
spectrum of multimodal coding tasks, and InfiBench-V, a challenging benchmark for realistic
evaluation. We will release both the dataset and benchmark to facilitate reproducibility and future
research.

3. We conduct extensive experiments showing that VisCodex significantly outperforms existing
open-source MLLMs and achieves performance competitive with leading proprietary models like
GPT-4o, thereby setting a new state of the art for open-source multimodal code generation.

Front-End,
31%

Mobile &
Desktop

13%
3%

DS & ML,
30%

Back-End,
23%

InfiBench-V

Vision-Language

Model
Coding Language

Model

VisCodex

You are a helpful assistant.

Please provide the python

code to generate the image

below:

a b

c

You are a helpful assistant. Please

provide the python code to plot a line

chart with four curves in red, green,

blue, and orange, respectively. The

data for each curve are as follows:

..., with the vertical axis labeled 'acc'

and the horizontal axis labeled

'SNR’...

You are a helpful

assistant. Please

provide the python

code to generate

the image right:

HTML,
33%

Chart
35%

QA
10%

Algorithm,
22%

Multimodal

Coding

Dataset

Enhanced HTML

Code

Chart Image to

Code Data

Image-Augmented

Code QA

…

598k in total

Primarily composed of frontend languages,

e.g., CSS and JavaScripts,

Span 13 programming languages

Mobile and desktop development,
e.g., Dart。

IT operations, Primarily written in Bash.

Data science & machine learning,

Primarily written in Python and R.

Primarily composed of backend

languages, e.g., JAVA and PHP.

…

…

Algorithmic Code

Q: How can I find all the elements in a

Venn Diagram of these three lists

A: To find the elements corresponding

to each region of the …
```python x = [1, 2, 3, 4, 5, 6, 7] …

Q: Implement a function`evaluate_arithmetic_expression` that 

takes a string representing … and returns the result of the 

expression as a float.           A: To implement the function 

`evaluate_arithmetic_expression` that evaluates … 

python def evaluate arithmetic expression(expression) … …

…

Q: I am working on a 2D game in 

JavaScript and I am encountering a 

trigonometry issue….                

A: Here’s a JavaScript implementation: 
```JavaScript function findObstacle …

…

…

…

…

Figure 1: Illustration of the VisCodex pipeline. (a) Model merging strategy for unifying vision-
language and coding LLMs; (b) Data distribution and representative cases of MCD; (c) Category
breakdown and representative cases of InfiBench-V.

2 VISCODEX

2.1 MODEL ARCHITECTURE

A typical multimodal large language model (MLLM) is comprised of three primary components: a
vision encoder, a language model backbone, and a projection module to connect the two modalities (Li
et al., 2024a). The vision encoder’s role is to extract visual features from input images. These features
are then projected by the projector module into the language embedding space. Subsequently, the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

language model integrates these visual representations with textual inputs, enabling multimodal
understanding and reasoning.

Many existing MLLMs, such as earlier versions of Qwen-VL Bai et al. (2023) and LLaVA Li et al.
(2024a), are limited by fixed image input resolutions, which curtails their flexibility in processing
images of varying sizes (Bai et al., 2023; Liu et al., 2023). To overcome this limitation, Qwen2.5-
VL Wang et al. (2024); Bai et al. (2025) introduces a 2D Rotary Position Embedding (RoPE) (Su
et al., 2024) mechanism within its Vision Transformer (ViT) Dosovitskiy et al. (2021). This allows
for the flexible processing of images with arbitrary resolutions by dynamically generating visual
tokens. This approach preserves the absolute scale and spatial relationships of objects within the
image. Given its enhanced flexibility and performance, we adopt the Qwen2.5-VL architecture as our
foundation model.

2.2 MODEL MERGING

To enhance the coding capabilities of our multimodal large language model without undertaking costly
retraining from scratch, we employ model merging (Jin et al., 2022). By arithmetically combining the
parameters of specialized models, we can integrate distinct skills and create a unified, more versatile
model without requiring access to the original training data (see Figure 1 (a) for an overview of the
model merging pipeline).

Task Vectors. Central to model merging are task vectors (Ilharco et al., 2022), which quantify
parameter shifts resulting from fine-tuning a base model on a specific task. Given a pretrained base
model θbase and its task-specific fine-tuned variant θft, a task vector is formally defined as:

τtask = θft − θbase (1)

Such vectors encapsulate the parameter changes necessary for a model to specialize in a particular
domain or capability and serve as modular, transferable units of knowledge across models and tasks.

Multimodal and Code Capabilities. Our goal is to enhance the multimodal large language model by
incorporating advanced code understanding and generation capabilities. Considering that code-related
expertise predominantly resides in the language model backbone, we restrict our merging process to
this component. We retain the original visual encoder and cross-modal projection modules unchanged
to preserve the intrinsic visual understanding capabilities of the MLLM.

Specifically, we define the task vector for the language model component of the Vision-Language
Model (VLM) as:

τvlm = θvlm − θbase (2)

where τvlm captures the parameter shift that enables the language model to effectively handle multi-
modal inputs by jointly processing visual and textual information.

Analogously, we define the task vector for the coding model, encapsulating its capability for code
comprehension and generation:

τcode = θcode − θbase (3)

Merging Strategy. Following the linear merging method of Ilharco et al. (2022) and its application
to enhancing multimodal mathematical reasoning in Chen et al. (2025), we adopt a similar strategy to
transfer code reasoning abilities into an MLLM. The updated language model parameters, combining
both multimodal and code-related knowledge, are computed as follows:

θVisCodex = θbase + λτvlm + (1− λ)τcode (4)

where the hyperparameter λ ∈ [0, 1] controls the trade-off between retaining original multimodal
representations and integrating new code expertise. θVisCodex is the initialization of the parameters of
our VisCodex.

Implementation Details. Our model merging process targets only the language backbone of the
VLM, leaving the vision encoder and cross-modal projection modules unaltered. This selective

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

merging approach allows for a clear attribution of performance gains while significantly reducing
computational overhead. To construct our primary code task vector (τcode), we select a coding model
that shares the same architectural foundation as the VLM’s language backbone. Since Qwen2.5-VL’s
language model is derived from Qwen2.5, we utilize OpenCodeReasoning-Nemotron-1.1-7B (Ahmad
et al., 2025). For our 33B scale model, we correspondingly use the OpenCodeReasoning-Nemotron-
1.1-32B (Ahmad et al., 2025) variant. Furthermore, in our ablation studies, we create and evaluate code
task vectors from two other prominent code-specialized models, Qwen2.5-Coder-7B-Instruct (Hui
et al., 2024) and OpenThinker2-7B (Guha et al., 2025), to verify the effectiveness of merging with a
code-specialized task vector, as shown in Table 3

2.3 MODEL TRAINING

After model merging, we perform supervised fine-tuning on our Multimodal Coding Dataset (MCD),
further aligning the merged model with multimodal coding tasks. To efficiently leverage both the
pretrained visual grounding and newly integrated code abilities, we freeze the vision encoder and
projection modules, fine-tuning only the language model backbone.

3 MCD DATASET

We introduce the Multimodal Coding Dataset (MCD), a new large-scale dataset designed for
instruction-tuning multimodal models on coding tasks. MCD is constructed from four primary
components, each targeting a distinct aspect of multimodal code understanding and generation:

1. Enhanced HTML Code: We generate aesthetically and structurally improved HTML code by
redesigning and augmenting existing webpages.

2. Chart Image-Code Pairs: We construct high-quality chart-code pairs by sourcing Python mat-
plotlib code from GitHub, which are then refined through a multi-stage filtering and rewriting
process.

3. Image-Augmented Code QA: We extract real-world, image-augmented question and answer
pairs from StackOverflow and subject them to rigorous cleaning and refinement.

4. Algorithmic Code: We aggregate and curate data from established algorithmic coding datasets to
preserve and enhance the model’s core reasoning and problem-solving abilities.

The data distribution and representative cases for the four domains are illustrated in Figure 1 (b), and
more comprehensive statistics are available in the Appendix E.1. The following sections describe
each component in detail.

3.1 ENHANCED HTML CODE

A review of the existing Web2Code dataset (Yun et al., 2024) revealed several shortcomings, including
broken image links, rudimentary CSS, and visually unappealing designs. Our initial approach to
address these issues involved using GPT-4o to directly rewrite the existing HTML code. However,
this method proved suboptimal, as the constraints of the original code structure frequently led to
rendering artifacts and visually incongruous layouts.

To overcome this, we adopted a novel, image-driven generation pipeline. We first curated 560,000
webpage images from Web2Code to serve as stylistic seeds. GPT-4o was then prompted to design
entirely new webpages inspired by these seeds. The resulting HTML was rendered using Play-
wright1 to capture screenshots. A rigorous filtering pipeline was then applied to discard rendering
failures, images with anomalous dimensions, and other visual artifacts. This process yielded 200,000
high-quality, newly generated code-image pairs. These pairs were subsequently converted into an
instruction-following format using the framework provided by Web2Code.

3.2 CHART IMAGE TO CODE DATA

To build a diverse and high-quality chart dataset, we incorporate both synthetic and real-world data
sources. For synthetic data, we include the 164,000 synthetic Chart2Code samples released by

1https://github.com/microsoft/playwright-python

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ChartCoder (Zhao et al., 2025b) as part of our training data. For real-world data, we curated 46,000
chart-code pairs from GitHub.

Inspired by data engineering strategies (Ding et al., 2023; Chiang et al., 2023; Xu et al., 2023), we
first collected 129,000 real-world Python matplotlib scripts from GitHub. This raw data, however,
suffered from significant quality issues, including non-executable code, inconsistent formatting, and
potentially harmful snippets. To mitigate these issues, we employed GPT-4o to systematically rewrite
and normalize the code, while simultaneously classifying each script by chart type. Subsequently, a
multi-stage, rule-based filtering pipeline was applied to eliminate low-quality samples. This pipeline
removed scripts that failed to execute, produced blank or improperly sized images, or generated
visually corrupted outputs (e.g., heavily pixelated charts). As a final quality assurance step, we
leveraged GPT-4o to score the aesthetic and functional quality of the generated charts, retaining the
top 46,000 high-quality image-code pairs.

The final dataset combines the 164,000 synthetic samples with our 46,000 curated real-world ex-
amples, resulting in a comprehensive collection of 210,000 chart image-code pairs for instruction
tuning.

3.3 IMAGE-AUGMENTED CODE QA

StackOverflow represents a rich repository of real-world, code-centric QA data, particularly valuable
when augmented with illustrative images. Our collection process involved crawling StackOverflow
for QA threads containing images, followed by an initial filtering step to retain only those with an
accepted answer containing either Python or HTML code.

A rigorous data cleaning pipeline was implemented to ensure quality, removing entries with exces-
sively short or verbose answers, invalid URLs, broken image links, and blank or oversized images.
We also identified that many accepted answers were suboptimal for training, being either too terse for
clarity or overly verbose. To address this, we utilized GPT-4o to refine these answers by removing
sensitive content, rewriting unclear sections, and enhancing overall conciseness and clarity. This
multi-stage pipeline yielded a final dataset of 59,000 high-quality, image-augmented StackOverflow
QA pairs suitable for instruction tuning.

3.4 ALGORITHMIC CODE

To maintain the model’s proficiency in algorithmic reasoning and code generation, we incorporate
algorithm-related code data from Kodcode (Xu et al., 2025). Specifically, we select samples from five
categories: LeetCode (Hartford, 2023), Codeforces (Jur1cek, 2022), TACO (Li et al., 2023), Code
Contests (Li et al., 2022), and Algorithm (The Algorithms, 2023; Keon, 2018). The final collection
contains 129,000 algorithm-related instruction-following examples.

4 INFIBENCH-V

We introduce InfiBench-V, a new benchmark designed to evaluate the ability of multimodal large
language models to answer complex programming questions that integrate both text and images.
While existing benchmarks like InfiBench (Li et al., 2024c) focus on text-based code QA, InfiBench-
V is specifically constructed to assess multimodal reasoning, where visual context is critical to
formulating a correct answer.

4.1 DATA CURATION

Our benchmark is built upon a rigorous, multi-stage curation pipeline using data from Stack Overflow.
The process began by scraping an initial set of approximately 1 million image-based questions that
included a community-verified “accepted answer” to ensure solution quality. We then narrowed this
pool to 40,000 recent and high-engagement questions. The most critical refinement step involved
using GPT-4o to isolate samples where the image is indispensable, filtering out questions solvable by
text alone. This yielded a core set of 10,000 high-relevance, multimodal questions.

We categorized these samples based on programming domain and, guided by the class distribution
and sampling principles of InfiBench, domain experts manually selected 322 questions to form the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

final benchmark. These span 13 programming languages, each mapped to one of five high-level
categories: front-end, back-end, data science & machine learning (DS&ML), mobile and desktop
development, and IT operations (ITOps). The detailed category breakdown and representative cases
are shown in Figure 1 (c)

To ensure quality and prevent model memorization in pre-training, we implemented a prompt
paraphrasing process. Domain experts rewrote each question in a concise and directive manner while
preserving its semantic content. Each question is also annotated with its evaluation category and
associated metrics, including a set of key phrases and a reference answer to support robust scoring.

4.2 EVALUATION CRITERIA

To objectively assess the quality of answers across a diverse range of question types, we adopt a
three-pronged evaluation strategy inspired by InfiBench. For each benchmark question, domain
experts select one or more evaluation methods, and the final score for that question is obtained by
averaging the normalized results of the selected methods.

• Keyword Matching. We observed that for a majority of questions, answer quality is closely tied
to the presence of specific keywords. Our domain experts craft a set of rules for each question,
specifying essential terms and phrases. To capture nuanced requirements, these rules can be
simple checks, regular expressions, or complex logical statements. When multiple keywords are
required, they can be individually weighted to ensure that the most critical components of the
answer contribute more significantly to the final score.

• Unit Testing. For questions where the answer is primarily a block of code, we verify its
correctness using unit tests. To facilitate automated evaluation, domain experts supplement the
question with precise requirements, like function names and expected I/O formats. They also
provide the necessary setup and teardown scripts, creating a complete and executable environment
for programmatic validation.

• GPT-4o Judge. For questions that rely heavily on natural language understanding, we leverage
GPT-4o to score MLLM responses by comparing them with the accepted reference answer. The
evaluation considers both answer correctness and completeness across two dedicated scoring
dimensions.

5 EXPERIMENTAL SETUP

Evaluated Benchmarks. We evaluate our model on four multimodal benchmarks to assess a range
of multimodal-related coding skills:

• Design2Code (Si et al., 2024): This benchmark measures the ability to translate visual UI designs
into executable code. We report the average performance on both Low-Level (Low-L) features
(Block, Text, Position, Color) and High-Level (High-L) semantic fidelity.

• ChartMimic (Shi et al., 2024): This benchmark evaluates the generation of chart specifications
from images. We adopt the Direct Mimic task on the test-mini subset and report both Low-Level
(Low-L) and GPT-4o-assessed High-Level (High-L) scores.

• MMCode (Li et al., 2024b): This benchmark assesses algorithmic problem-solving in visually
rich contexts. Performance is measured by pass@1 accuracy (Chen et al., 2021).

• InfiBench-V (Ours): For our proposed benchmark, we report the average score across all defined
evaluation metrics.

Training Settings. In our main experiments with the 8B model, which uses the code task vector from
OpenCodeReasoning-Nemotron-1.1-7B, we determined the optimal merge coefficient λ by evaluating
performance on the MMCode benchmark. From a set of candidate values {0.7, 0.8, 0.85, 0.9}, we
selected λ = 0.7. According to our merging formula 4, this applies a weight of 0.7 to the vision-
language task vector (τvlm) and 0.3 to the code task vector (τcode). Detailed training hyperparameters
and training costs are provided in the Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 EXPERIMENTAL RESULTS

6.1 MAIN RESULTS

Table 1: Performance comparison between proprietary and open-source models across various
benchmarks. Low-L stands for Low-Level features (e.g., Block, Text, Position), and High-L stands
for High-Level semantic fidelity. Best results are in bold.

Model Size Design2Code ChartMimic MMCode InfiBench-V Average
Low-L High-L Low-L High-L pass@1 Acc

Proprietary Models

GPT-4o-mini - 85.8 87.3 68.4 68.5 12.2 71.9 65.7
GPT-4o - 90.2 90.4 79.0 83.5 17.0 79.9 73.3

Open-Source Small Language Models

MiniCPM-V-2 6 8B 78.1 84.2 21.8 45.2 3.8 45.3 46.4
InternVL3-8B 8B 85.3 87.6 43.1 47.2 6.8 66.1 56.0
Qwen2.5-VL-7B-Instruct 8B 83.4 87.6 39.5 38.3 5.3 54.0 51.4
Llama-3.2-11B-Vision-Instruct 11B 72.7 84.8 27.7 26.5 2.3 52.7 44.4
InternVL3-14B 15B 82.9 88.3 53.9 55.0 11.4 70.5 60.3
VisCodex-8B 8B 90.1 90.9 74.8 74.1 11.0 72.1 68.8
Open-Source Large Language Models

Qwen2.5-VL-32B-Instruct 33B 88.0 89.4 72.5 68.7 13.7 73.0 67.6
llava-onevision-qwen2-72b 73B 75.2 85.7 55.8 52.1 5.7 64.7 56.5
Qwen2.5-VL-72B-Instruct 73B 86.9 88.7 66.7 68.7 15.2 75.2 66.9
InternVL3-78B 78B 85.3 89.1 64.9 64.2 14.4 77.3 65.9
VisCodex-33B 33B 90.5 91.1 79.3 78.5 15.6 78.6 72.3

As shown in Table 1, our models achieve state-of-the-art performance across all evaluated multimodal
coding benchmarks. Our smaller model, VisCodex-8B, not only outperforms all open-source models
in its size class (7-15B) but also surpasses the proprietary GPT-4o-mini, with an average score of
68.8. Our larger model, VisCodex-33B, further establishes its superiority by achieving an average
score of 72.3, which is on par with the state-of-the-art proprietary model, GPT-4o (73.3). These
results demonstrate that our VisCodex family sets a new standard for open-source multimodal code
generation.

Our models show exceptional strength in UI and chart understanding. On the Design2Code bench-
mark, both VisCodex-8B (90.1/90.9) and VisCodex-33B (90.5/91.1) achieve scores comparable to or
exceeding GPT-4o. On ChartMimic, our models also secure the top positions among open-source
models, demonstrating robust visual data translation capabilities.

6.2 ANALYSIS

Efficacy of the Model Merging. As demonstrated in Table 2, model merging yields consistent

Table 2: Ablation on model merging for VisCodex.
“w/o model merge” denotes the variant without
applying our model merging strategy.

Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

VisCodex-8B 90.1 90.9 74.8 74.1 11.0
w/o model merge 89.6 90.7 73.4 70.6 6.8

VisCodex-33B 90.5 91.1 79.3 78.5 15.6
w/o model merge 89.7 90.7 78.4 77.4 14.4

performance gains across all benchmarks and
scales. At the 8B scale, merging improves De-
sign2Code (90.1 vs. 89.6), ChartMimic (74.8
vs. 73.4), and MMCode (11.0 vs. 6.8). The
33B model shows similar enhancements. The
most significant improvements on ChartMimic
and MMCode confirm that this strategy effec-
tively augments code-generation capabilities
while preserving visual understanding.

Effect of Different Code LLMs in Merge. As shown in the Table 3, we study how the choice of
the merged LLM affects performance. All code-specialized LLMs present consistent gains across all
benchmarks compared to general-purpose LLM. Compared to the general LLM, OpenThinker2-7B
and Qwen2.5-Coder-7B improve both Design2Code and ChartMimic, while Nemotron-1.1-7B further
boosts MMCode pass@1 from 6.8 to 11.0. These results indicate that merging with code-specialized

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation on Backbone LLM choice. Per-
formance when merging the same multimodal
backbone with either a general-purpose or code-
specialized LLM.

Backbone LLM Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

Baseline (Qwen2.5-VL) 83.4 87.6 39.5 38.3 5.3

General LLM

Qwen2.5-7B-Instruct 89.5 90.7 73.2 72.5 6.8

Code LLM

OpenThinker2-7B 90.2 91.0 74.3 73.8 8.0
Qwen2.5-Coder-7B 90.0 90.7 75.1 74.5 8.4
Nemotron-1.1-7B 90.1 90.9 74.8 74.1 11.0

Table 4: Performance comparison of model merg-
ing vs. backbone replacement. The “Replace (1-
stage)” strategy directly replaces the LLM back-
bone in a single stage. The “Replace (2-stage)”
strategy first trains a projector, then fine-tunes the
full MLLM (ViT, projector, and LLM).

Strategy Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

Baseline 83.4 87.6 39.5 38.3 5.3

Replace (1-stage) 88.7 90.7 70.4 69.2 11.0
Replace (2-stage) 88.2 90.6 73.4 70.9 11.0
Model Merge (Ours) 90.1 90.9 74.8 74.1 11.0

LLMs is crucial for robust multimodal code generation, enhancing executable correctness while
maintaining strong visual grounding and UI-to-code translation.

Effectiveness of the Model Merge Strategy. To evaluate the effectiveness of our proposed model
merge strategy compared to direct backbone replacement, we conducted comparative experiments
using two distinct approaches: (i) directly replacing the LLM backbone of Qwen2.5-VL-7B-Instruct
with OpenCodeReasoning-Nemotron-1.1-7B (Ahmad et al., 2025), and (ii) employing the two-stage
training procedure from LLaVA-OneVision (Li et al., 2024a), which initially trains the projector on
BLIP-558K, followed by joint fine-tuning of the ViT, projector, and LLM on MCD.

Our results indicate that the model merge strategy achieves overall superior performance across the
evaluated tasks, as shown in Table 4. It demonstrates particularly strong gains on visually-intensive

benchmarks such as Design2Code and ChartMimic, where successful code generation heavily relies
on accurate visual-semantic alignment. This is because directly replacing the LLM backbone often
disrupts previously learned visual grounding. In contrast, the model merge approach preserves these
visual alignment abilities while simultaneously incorporating enhanced code generation capabilities.
This confirms the effectiveness of model merging in maintaining multimodal comprehension and
boosting performance in multimodal coding tasks.

Additional Analyses. Further results are provided in the Appendix, including comparisons with
existing Web2Code datasets (Appendix B.1), the generalizability of MCD (Appendix B.2), and the
generality of our code model merging strategy (Appendix B.3).

6.3 CASE STUDY

We further conducted case studies to qualitatively compare the performance of VisCodex-8B against
GPT-4o, InternVL3-78B, and Qwen2.5-VL-7B on the ChartMimic and Design2Code benchmarks.
As shown in Figure 2, VisCodex-8B consistently generates outputs that more closely match the
ground truth in both chart reconstruction and HTML generation tasks, surpassing the fidelity of
results produced by GPT-4o-mini and other open-source baselines. These observations underscore
VisCodex-8B’s superior multimodal code generation capabilities. For additional case studies on
MMCode, InfiBench-V, and further examples, please refer to Appendix G.

7 RELATED WORK

7.1 MULTIMODAL CODE GENERATION

The ability of MLLMs to generate code has attracted increasing attention in recent years. De-
sign2Code (Si et al., 2024) evaluates the HTML generation capabilities of MLLMs. Extending earlier
datasets like WebSight (Laurençon et al., 2024) and Pix2Code (Beltramelli, 2018), Web2Code (Yun
et al., 2024), Webcode2M Gui et al. (2025) provides a webpage-to-code dataset to improve HTML
generation. Benchmarks like MMCode (Li et al., 2024b) and Human-V (Zhang et al., 2024b) focus
on assessing MLLMs in algorithmic coding tasks that incorporate visual inputs. Similarly, Chart-
Mimic (Shi et al., 2024) and Plot2Code (Wu et al., 2024) evaluate MLLMs’ capabilities to translate
raw data into scientific charts. ChartCoder (Zhao et al., 2025a) addresses chart generation explicitly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ground Truth
VisCodex-8B

(Ours) GPT-4o InternVL3-78B Qwen2.5-VL-7B

Figure 2: Case study comparing VisCodex-8B and baseline models on Design2Code and ChartMimic
tasks, demonstrating the superior multimodal code generation capabilities of VisCodex-8B.

through a large dataset of 160k examples. Additionally, CodeV (Zhang et al., 2024c) integrates visual
data to improve large language models’ problem-solving abilities. Despite recent progress, to the
best of our knowledge, existing work falls short of providing a complete and unified solution to
multimodal code generation.

7.2 MODEL MERGING FOR MLLMS

Model merging has become a widely used approach for integrating the capabilities of multiple models
within the parameter space. A basic method involves simple weighted averaging (Wortsman et al.,
2022), while more advanced strategies have been developed in recent years (Ilharco et al., 2022;
Matena & Raffel, 2022; Jin et al., 2022; Yadav et al., 2023; Bandarkar et al., 2024). Recently,
several studies have applied model merging to enhance the capabilities of multimodal large language
models. For example, REMEDY (Zhu et al., 2025a) improves multitask performance and zero-shot
generalization in VQA tasks. (Akiba et al., 2025) enhance Japanese language understanding and
generation, while Chen et al. (2025) improve mathematical reasoning abilities. Li et al. (2025)
enable textual preference transfer by integrating a text-based reward model into an MLLM, without
additional training. Our study demonstrates that model merging can effectively endow MLLMs with
strong abilities in multimodal code understanding and generation.

8 CONCLUSION

In conclusion, we have presented VisCodex, a unified multimodal framework that effectively in-
tegrates advanced visual comprehension with sophisticated code-generation capabilities through a
novel task vector-based model merging strategy. By leveraging this efficient approach, VisCodex
significantly enhances multimodal large language models without incurring the costs associated with
full-scale retraining. We also introduced the Multimodal Coding Dataset (MCD), a comprehensive
resource comprising 598k diverse, high-quality instruction-tuning examples, along with InfiBench-V,
a rigorous benchmark designed specifically for realistic multimodal coding assessments. Extensive
experiments confirm that VisCodex establishes a new state-of-the-art performance among open-source
multimodal code generators, demonstrating capabilities competitive with leading proprietary models
such as GPT-4o.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. Nature Machine Intelligence, 7(2):195–204, 2025.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, and Bing
Liu. Layer swapping for zero-shot cross-lingual transfer in large language models. arXiv preprint
arXiv:2410.01335, 2024.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In
Proceedings of the ACM SIGCHI symposium on engineering interactive computing systems, pp.
1–6, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and
Junxian He. Bring reason to vision: Understanding perception and reasoning through model
merging. arXiv preprint arXiv:2505.05464, 2025.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2(3):6,
2023.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,

10

https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2010.11929

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Bohua Chen, Yi Su, Dongping Chen, Siyuan
Wu, Xing Zhou, et al. Webcode2m: A real-world dataset for code generation from webpage
designs. In Proceedings of the ACM on Web Conference 2025, pp. 1834–1845, 2025.

Eric Hartford. LeetCode Solutions, 2023. URL https://www.kaggle.com/datasets/
erichartford/leetcode-solutions. Accessed: 2025-02-11.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Jur1cek. Codeforces Dataset, 2022. URL https://github.com/Jur1cek/
codeforces-dataset. Accessed: 2025-02-11.

Keon. Pythonic Data Structures and Algorithms, 2018. URL https://github.com/keon/
algorithms. Accessed: 2025-02-11.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into
html code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Chen-An Li, Tzu-Han Lin, Yun-Nung Chen, and Hung yi Lee. Transferring textual preferences to
vision-language understanding through model merging, 2025. URL https://arxiv.org/
abs/2502.13487.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-
modal code large language models with visually rich programming problems. arXiv preprint
arXiv:2404.09486, 2024b.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. Advances in Neural Information Processing Systems, 37:128668–128698,
2024c.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th international conference on World Wide Web, pp. 141–150,
2007.

11

https://arxiv.org/abs/2506.04178
https://www.kaggle.com/datasets/erichartford/leetcode-solutions
https://www.kaggle.com/datasets/erichartford/leetcode-solutions
https://github.com/Jur1cek/codeforces-dataset
https://github.com/Jur1cek/codeforces-dataset
https://github.com/keon/algorithms
https://github.com/keon/algorithms
https://arxiv.org/abs/2502.13487
https://arxiv.org/abs/2502.13487

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far are
we from automating front-end engineering? arXiv e-prints, pp. arXiv–2403, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

The Algorithms. Python Algorithms, 2023. URL https://github.com/TheAlgorithms/
Python. Accessed: 2025-02-11.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/
abs/2503.02951.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy
Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and Zhiqiang Shen. Web2code: A
large-scale webpage-to-code dataset and evaluation framework for multimodal llms. arXiv preprint
arXiv:2406.20098, 2024.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-llms:
Recent advances in multimodal large language models, 2024a. URL https://arxiv.org/
abs/2401.13601.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large
multimodal models through coding tasks. arXiv preprint arXiv:2410.12381, 2024b.

Linhao Zhang, Daoguang Zan, Quanshun Yang, Zhirong Huang, Dong Chen, Bo Shen, Tianyu Liu,
Yongshun Gong, Pengjie Huang, Xudong Lu, et al. Codev: Issue resolving with visual data. arXiv
preprint arXiv:2412.17315, 2024c.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, and
Maosong Sun. Chartcoder: Advancing multimodal large language model for chart-to-code genera-
tion. arXiv preprint arXiv:2501.06598, 2025a.

12

https://github.com/TheAlgorithms/Python
https://github.com/TheAlgorithms/Python
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, and
Maosong Sun. Chartcoder: Advancing multimodal large language model for chart-to-code genera-
tion, 2025b. URL https://arxiv.org/abs/2501.06598.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Didi Zhu, Yibing Song, Tao Shen, Ziyu Zhao, Jinluan Yang, Min Zhang, and Chao Wu. Remedy:
Recipe merging dynamics in large vision-language models. In The Thirteenth International
Conference on Learning Representations, 2025a.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025b.

13

https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

A large language model (ChatGPT) was used to aid and polish the writing of the paper, including
minor grammar correction and language refinement.

B ADDITIONAL ANALYSIS EXPERIMENTS

B.1 COMPARISON WITH EXISTING WEB2CODE DATASETS

As demonstrated in Table 5, our dataset outperforms prior Web2Code corpora across all metrics.
Compared to Webcode2M Gui et al. (2025) and Web2Code Yun et al. (2024), MCD achieves the
highest scores on both low-level (Block-Match, Text, Position, and Color) and high-level evaluation.
The gains are especially notable on layout-sensitive metrics and visual fidelity, indicating that MCD
provides more accurate structural alignment and visual grounding for UI-to-code generation, while
also improving semantic consistency.

Table 5: Performance comparison of MCD with WebCode2M and Web2Code on the Design2Code
benchmark.

Data Block-Match Text Position Color CLIP
Baseline 85.4 95.8 77.3 75.3 87.6
WebCode2M 82.1 96.0 72.4 72.6 86.3
Web2Code 84.4 93.4 76.2 79.6 88.8
MCD 89.6 97.2 84.7 86.8 90.7

B.2 GENERALIZABILITY OF MCD

To assess the generalizability of our dataset MCD, we conducted supervised fine-tuning experi-
ments on two strong open-source MLLMs: InternVL3-8B (Zhu et al., 2025b) and llava-llama3.1-
8b2 (Zhang et al., 2024a). We evaluated the models on multiple established benchmarks, as shown in
Table 6. The results demonstrate that fine-tuning with MCD consistently and significantly enhances
the multimodal coding abilities of both base models. In particular, we observe substantial improve-
ments in both the Design2Code and ChartMimic tasks, as well as noticeable gains on the MMCode
benchmark. These findings validate the robustness and strong transferability of MCD across different
model architectures and suggest its value as a general-purpose resource for advancing multimodal
code generation.

Table 6: Generalization performance of MCD: Results of supervised fine-tuning on InternVL3-8B
and llava-llama3.1-8b across multiple multimodal coding benchmarks.

Model Design2Code ChartMimic MMCode
Low High Low High pass@1

InternVL3-8B 85.3 87.6 43.1 46.6 6.8
InternVL3-8B-SFT 88.2 89.9 72.6 70.4 7.6
llava-llama3.1-8b 7.3 78.4 6.2 4.8 2.3
llava-llama3.1-8b-SFT 82.8 90.5 70.7 68.2 4.2

B.3 GENERALITY OF CODE MODEL MERGING

To verify that our model merging strategy is not limited to LLMs with Qwen2.5 backbones, we
further conduct experiments using llava-llama3.1-8b (Zhang et al., 2024a), an MLLM based on the
Llama-3.1 (Dubey et al., 2024) architecture. Specifically, we merge llava-llama3.1-8b with the code
task vector (τcode) obtained from DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI, 2025), following

2https://huggingface.co/modelscope/llava-llama3.1-8b

14

https://huggingface.co/modelscope/llava-llama3.1-8b

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the same procedure as in our previous Qwen2.5VL experiments. As shown in Table 7, the merged
model consistently outperforms the non-merged baseline across all multimodal coding tasks. The
performance improvement is particularly significant on the MMCode benchmark, where pass@1
increases from 4.2 to 6.5. These results, which are consistent with our findings on Qwen2.5VL,
demonstrate the general effectiveness and broad applicability of the code model merging strategy.

Table 7: Ablation on model merging for llava-llama3.1-8b and DeepSeek-R1-Distill-Llama-8B.
Results compare models with and without the merging strategy.

Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

w/o model merge 82.8 90.5 70.7 68.2 4.2
w model merge 83.3 90.7 70.9 68.8 6.5

C TRAINING PARAMETERS AND TRAINING COST

All models are trained on our instruction-tuning dataset of 598K examples from MCD. We employ
the AdamW optimizer with a 10% linear warm-up followed by a cosine learning rate decay. The
maximum learning rate is set to 1× 10−5, with a batch size of 128 and a maximum sequence length
of 8K tokens. Training the 8B model for two epochs takes approximately 16 hours on 8 nodes, each
equipped with 8×A100 GPUs with 40 GB VRAMs. Training the 33B model under the same setup
takes approximately 2 days.

D HUMAN EVALUATION

To assess the alignment between automatic evaluation and human expert judgment, we randomly
sampled 100 questions from InfiBench-V and selected five MLLMs for evaluation: GPT-4o-mini,
VisCodex-33B, VisCodex-8B, Qwen2.5-VL-7B-Instruct, and Qwen2.5-VL-32B-Instruct. Each model
was tasked with generating responses to all sampled questions, resulting in a total of 500 model
outputs.

Annotator Details and Protocol. We employed three annotators, all of whom are graduate students
in computer science with strong domain expertise relevant to the benchmark tasks. Although all
annotators are non-native English speakers, they are proficient in English and familiar with the style
and requirements of the benchmark questions.

Before the main evaluation, the annotators underwent a comprehensive training and calibration
process, including practice with a subset of the dataset, review of the evaluation criteria, and targeted
feedback to ensure consistent understanding of the annotation standards. A final readiness test was
conducted to confirm alignment among annotators prior to the main evaluation phase.

During evaluation, all model-generated responses were anonymized and presented in a standardized
format, removing all identifying information about the originating model. Annotators indepen-
dently evaluated the samples without communication or influence from others, ensuring impartiality
throughout the process.

For each question, the annotators were provided with the question, the model-generated answer, and
the accepted StackOverflow answer as a reference. Each annotator was asked to indicate whether the
model’s answer correctly solved the problem (1 for correct, 0 for incorrect).

Automatic Evaluation. For the automatic InfiBench-V evaluation, we adopted the same metrics as
described in the main text, assigning a score in the range 0–100 to each response. For the purpose
of agreement analysis with human annotations, we further mapped these scores to binary “pass” or
“fail” labels according to a defined threshold. This binarization enabled direct comparison between
the automatic evaluation and the binary judgments provided by human annotators.

Agreement Analysis. Table 8 reports the pairwise agreement ratios (as in MT-Bench (Zheng
et al., 2023)) among InfiBench-V and the human annotators, as well as between human annotators

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

themselves. On average, InfiBench-V achieved an agreement rate of 86.07% with human annotators,
which is higher than the inter-annotator agreement (79.33%). Notably, the agreement rate of InfiBench-
V is comparable to that reported in previous works (Li et al., 2024c) (85.1%), demonstrating the
reliability of our evaluation method.

Table 8: Agreement ratios between InfiBench-V and human annotators, as well as between annotators.

Judge A-1 A-2 A-3 Average

InfiBench-V 87.00% 87.00% 84.20% 86.07%
A-1 – 80.80% 79.20% 80.00%
A-2 80.80% – 78.00% 79.40%
A-3 79.20% 78.00% – 78.60%

E DATA STATISTICS

E.1 DATA STATISTICS OF MCD

To ensure a fair evaluation and prevent data contamination, we performed deduplication between our
dataset and the evaluation benchmarks using SimHash (Manku et al., 2007), removing any data with
a similarity score greater than 0.9 to the benchmark test samples. After deduplication, the resulting
dataset contains a total of 598k examples across four domains: HTML, Chart, QA, and Algorithm.
Table 9 presents the statistics of the dataset, including the number of examples and the average token
length (with standard deviation) for each domain.

Table 9: Statistics of the MCD by domain. For each domain, the number of samples and the average
token length (mean ± standard deviation) are reported.

Data HTML Chart QA Algorithm
Size 200k 210k 59k 129k
Avg Length 632±144 551±190 1022±776 969±321

Table 10: Distribution of InfiBench-V questions across programming domains and languages.

Category Language Count Category Total

Front-End
CSS 30

100HTML 39
JavaScript 31

Back-End

Java 30

75

PHP 24
Go 5
Ruby 5
Rust 6
C++ 5

DS & ML Python 90 95R 5

IT Ops Bash 11 11

Mobile & Desktop Dart 41 41

Total 322 322

E.2 DISTRIBUTION OF SELECTED BENCHMARK QUESTIONS IN INFIBENCH-V

Table 10 presents the detailed distribution of questions in InfiBench-V across various programming
domains and languages. The benchmark consists of five main categories: Front-End, Back-End,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Data Science & Machine Learning (DS & ML), IT Operations (IT Ops), and Mobile & Desktop
development, covering a total of 13 programming languages and 322 carefully curated questions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PROMPT

Prompt Template for GPT-4o Automatic Evaluation on InfiBench-V

You are a professional code assistant evaluation expert. Your task is to assess the quality
of a model-generated answer to a programming-related question by comparing it with the
gold reference answer. The question includes both text and a screenshot image (which may
contain code, error messages, or UI context). You must consider both modalities when
evaluating the answer.

Please first read the question (text + image), then read the model-generated answer, and
compare it carefully with the reference (gold) answer.

You must provide clear and detailed justifications before assigning scores. The scoring
dimensions are weighted as follows: Correctness (50 points) and Completeness (50 points).

Below is a programming question-answering example.

[Question] {question}

[Note] The screenshot image provided alongside this question is part of the question context.
You must use it to fully understand the problem being asked.
[Screenshot Image]
{base64 image}

[Model Answer]
{model answer}

[Reference Answer]
{reference answer}

Please evaluate the model’s answer based on the following two dimensions:

1. Correctness (0–50): Is the answer factually accurate and technically correct? Does it
address the problem without errors or misleading information?
2. Completeness (0–50): Does the answer cover all critical elements present in the reference
answer? Are any key details missing?

—
Justification:
1. Correctness: <Your reasoning here>
2. Completeness: <Your reasoning here>

Scores:
• Correctness: X/50
• Completeness: X/50

Total Score: X/100

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXAMPLES

G.1 MMCODE CASE 1

Question: Alice has a binary string. She thinks a binary string is beautiful if and only if it
doesn’t contain the substring ”010”.
In one step, Alice can change a 0 to a 1 or vice versa. Count and print the minimum number of
steps needed to make Alice see the string as beautiful.
Example
b = 010
She can change any one element and have a beautiful string.
Sample Input 0
STDIN Function
----- --------
7 length of string n = 7
0101010 b = ’0101010’

Sample Output 0
2
Explanation 0:
In this sample, b = ”0101010”
The figure on the right shows a way to get rid of each instance of ”010”: Make the string
beautiful by changing 2 characters (b[2] and b[5]).

Qwen2.5-VL-7B-Instruct:

def beautifulBinaryString(b):
b = list(b)
count = 0
for i in range(len(b) - 2):

if b[i] == ’0’ and b[i + 1] == ’1’ and b[i + 2] == ’0’:
b[i] = ’1’
b[i + 1] = ’0’
count += 2

return count

✗

VisCodex-8B:
To solve the problem of making a binary string “beautiful” (i.e., removing all occurrences of the substring “010”), we need to identify and
count these substrings within the given binary string. For each occurrence of “010”, we will determine the minimal changes required to
eliminate it.
Here’s how we can approach the problem:
1. Identify Occurrences: Traverse through the string and find all instances of the substring “010”.
2. Count Changes: For each found “010”, determine the minimal number of changes required to break this pattern. Typically, changing either
the middle ‘1‘ to ‘0‘ or the last ‘0‘ to ‘1‘ suffices.
3. Sum Up Changes: Sum up the changes for all identified “010” substrings to get the total number of steps required.

Let’s implement this logic in Python:

def beautifulBinaryString(b):
Initialize the counter for the number of changes
changes = 0

Iterate over the string to find all occurrences of "010"
i = 0
while i <= len(b) - 3:

if b[i:i+3] == "010":
We found a "010" pattern, increment the changes counter
changes += 1
Move the index past this pattern
i += 3

else:
Move to the next character
i += 1

return changes

✓

Figure 3: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.

G.2 MMCODE CASE 2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Question: You have most definitely heard the legend of King Arthur and the Knights of the
Round Table. Almost all versions of this story proudly point out that the roundness of the Round
Table is closely related to Arthur’s belief of equality among the Knights. That is a lie! In fact,
Arthur’s choice of table is conditioned by his childhood traumas.
In fact, Arthur was forced to clean up quadratic tables from a young age after a tournament
in pick-up sticks1 had been played on them. After the tournament, typically there would be a
bunch of sticks on the table that do not touch each other. In the spirit of the game, the organizers
issued strict regulations for the table cleaners. More precisely, the sticks on the table need to be
removed one by one in a way that the cleaners pull them in the shortest way towards the edge of
the table closest to where they are currently sitting. They also mustn’t rotate or touch the other
sticks while doing this (not even in the edge points).
In this task, we will represent the table in the coordinate system with a square that has opposite
points in the coordinates (0, 0) and (10 000, 10 000), whereas the sticks will be represented
with straight line segments that lie within that square. We will assume that Arthur is sitting at the
edge of the table lying on the x-axis. Then the movement of the stick comes down to translating
the line segment along the shortest path towards the x-axis until the stick falls off the table (as
shown in the right image). It is your task to help Arthur determine the order of stick movements
that meets the requirements from the previous paragraph.

Qwen2.5-VL-7B-Instruct:

import sys
input = sys.stdin.readline

def solve():
n = int(input())
ls = []
for _ in range(n):

(x1, y1, x2, y2) = map(int, input().split())
ls.append((x1, y1, x2, y2))

ls.sort(key=lambda x: (x[1] - x[3], x[0]))
ans = []
for (x1, y1, x2, y2) in ls:

if y1 == y2:
ans.append(1)

else:
ans.append(2)

print(*ans)
solve()

✗

VisCodex-8B:

def remove_sticks_order(n, sticks):
Create a list of tuples where each tuple is (index, x1, y1, x2, y2)
indexed_sticks = [(i + 1, x1, y1, x2, y2) for i, (x1, y1, x2, y2) in enumerate(sticks)]

Sort the sticks based on the y-coordinate in descending order
indexed_sticks.sort(key=lambda x: (-x[2], -x[4]))

Extract the indices of the sorted sticks
sorted_indices = [stick[0] for stick in indexed_sticks]

return sorted_indices

Example usage:
if __name__ == "__main__":

import sys
input = sys.stdin.read
data = input().split()

n = int(data[0])
sticks = []
index = 1
for _ in range(n):

x1 = int(data[index])
y1 = int(data[index + 1])
x2 = int(data[index + 2])
y2 = int(data[index + 3])
sticks.append((x1, y1, x2, y2))
index += 4

result = remove_sticks_order(n, sticks)
print(" ".join(map(str, result)))

✓

Figure 4: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G.3 INFIBENCH-V CASE 1

Question: I have a dataset with absolute numbers for various variants over time, and I want to
create a plot similar to the one shown in the image, depicting the abundance of these variants
over time. I am working in Python, and I would prefer to use matplotlib, although other libraries
are also acceptable if necessary.
Does Python offer any specific function or tool for generating this type of plot? Additionally,
what is the common name for this kind of plot, as I have encountered it before but am having
trouble finding relevant resources online?

Response: The type of plot shown in the image is commonly known as an ”area plot” or ”stacked area plot.” In Python, you can create such plots using the
matplotlib library. Although there isn’t a specific function called ”area plot” in matplotlib, you can use the stackplot function to generate this type of
visualization.
Here’s a basic example of how you can create a stacked area plot using matplotlib:

import matplotlib.pyplot as plt
import numpy as np

Example data
dates = np.arange(’2021-01’, ’2021-03’, dtype=’datetime64[D]’)
variant1 = np.random.rand(len(dates))
variant2 = np.random.rand(len(dates))
variant3 = np.random.rand(len(dates))

Normalize data to sum to 1 for each day
total = variant1 + variant2 + variant3
variant1 /= total
variant2 /= total
variant3 /= total

Create stacked area plot
plt.stackplot(dates, variant1, variant2, variant3, labels=[’Variant 1’, ’Variant 2’, ’Variant 3’], alpha=0.8)
plt.legend(loc=’upper left’)
plt.xlabel(’Date’)
plt.ylabel(’Frequency (%)’)
plt.title(’Abundance of Variants Over Time’)
plt.show()

In this example, variant1, variant2, and variant3 are arrays representing the frequencies of different variants over time. You should replace these with your
actual data. Make sure your data is normalized (i.e., the sum of all variants for each time point should equal 1, or 100% if expressed in percentage terms) before
plotting.
If you prefer using pandas, you can also leverage its capabilities to simplify data manipulation and plotting:

import pandas as pd
import matplotlib.pyplot as plt

Example data
data = {

’Date’: pd.date_range(start=’2021-01-01’, periods=60, freq=’D’),
’Variant1’: np.random.rand(60),
’Variant2’: np.random.rand(60),
’Variant3’: np.random.rand(60)

}

df = pd.DataFrame(data)
df.set_index(’Date’, inplace=True)

Normalize data to sum to 1 for each day
df = df.div(df.sum(axis=1), axis=0)

Plot
df.plot.area(alpha=0.8)
plt.ylabel(’Frequency (%)’)
plt.title(’Abundance of Variants Over Time’)
plt.show()

This approach simplifies the handling of data, especially if it’s already in a pandas DataFrame format. Adjust the data and labels as needed for your specific dataset.

Category: DS & ML——Python
Evaluation Criteria: Keyword Matching & GPT-4o
Keywords: stackplot, matplotlib
Keyword Matching Score: 100
GPT-4o Score: 100

Total Score: 100

Figure 5: A case of InfiBench-V from the DS & ML category.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.4 INFIBENCH-V CASE 2

Question: I attempted to change the colors in my macOS Terminal by following a guide and
modifying my .bash profile file. After creating and saving the .bash profile, every
time I open the Terminal, I encounter the following errors as shown in the screenshot on the
right:
Despite deleting the .bash profile, the issue persists. Every command I enter is followed
by these errors:

-bash: git: command not found
-bash: gt: command not found
-bash: /dev/null: Permission denied

Here is the content I added to the .bash profile file:

export CLICOLOR=1
export LSCOLORS=GxBxCxDxexegedabagaced
parse_git_branch() {

git branch 2> /dev/null |
sed -e ’/ˆ[ˆ*]/d’ -e ’s/* (.*)/ (\1)/’

}
export PS1="\e[0;35m->>

\e[1;34m\W\e[0;32m\$(parse_git_branch)\e[0;37m $ "

Please help me resolve these issues and understand why these errors are occurring.

Response:
The errors you’re encountering are likely due to incorrect syntax in your .bash profile file. Let’s address each issue:

1. Incorrect Redirection Symbol: In your parse git branch() function, you used > instead of > for redirecting output to /dev/null. The correct
line should be:

git branch 2> /dev/null |

2. Extra Spaces in PS1: Your PS1 variable has some extra spaces that might cause issues. It should look like this:

export PS1="\e[0;35m>> \e[1;34m\W\e[0;32m\$(parse_git_branch)\e[0;37m $ "

Make sure there are no unintended spaces around special characters or within the escape sequences.
3. Check for Hidden Characters: Sometimes, copy-pasting from certain editors or websites can introduce hidden characters. Ensure your .bash profile

doesn’t contain any non-printable characters. You can use a text editor that shows whitespace or use a command-line tool to check for them.
4. File Permissions: Ensure your .bash profile file has the correct permissions. You can set it with:

chmod 644 ˜/.bash_profile

5. Recreate .bash profile: If the problem persists, try recreating the .bash profile file manually without copying and pasting. Open a new terminal and type
the commands directly into a new file.

After making these changes, save the file and restart your terminal session. This should resolve the errors you’re seeing. If the problem continues, double-check for
any other syntax errors or unexpected characters in the file.

Category: IT Ops——Bash
Judge: GPT-4o

1. Correctness:

• The model answer correctly identifies the primary issue with the .bash profile file, which is the use of HTML entities (>) instead of the correct
characters (>). This aligns with the reference answer.

• The model also addresses the potential for non-printable characters and file permissions, which, while not mentioned explicitly in the reference answer,
are reasonable considerations given the symptoms described.

• Additionally, the model suggests recreating the .bash profile file to ensure there are no hidden characters, which is a practical troubleshooting step
that could help resolve the persistent issues.

• Overall, the model’s suggestions are factually accurate and technically correct, directly addressing the syntax errors.

2. Completeness:

• The reference answer is concise and focuses solely on the issue of HTML entities, while the model answer provides a more comprehensive approach by
including additional troubleshooting steps (checking for hidden characters, file permissions, and recreating the file).

• Although the model answer includes extra steps beyond the reference answer, it does not miss any critical elements present in the reference. Instead, it
enhances the response with additional useful advice for resolving the issue thoroughly.

• The model’s completeness is therefore high, as it covers the key issue identified in the reference answer and adds further depth.

Scores:

• Correctness: 50/50

• Completeness: 50/50

Total Score: 100/100

Figure 6: A case of InfiBench-V from the IT Ops category.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.5 INFIBENCH-V CASE 3

Question: I am working on a 2D game in JavaScript and I am encountering a trigonometry
issue. The game involves a player shooting at a target, but there is an obstacle blocking the shot
between the player and the target. I need to find the coordinates of this obstacle.
Here is the information I have:

1. The starting coordinates of the shot are (x1, y1).

2. The ending coordinates of the shot are (x2, y2).

3. The distance from the starting coordinates to the obstacle is known.

How can I calculate the (x, y) coordinates of the obstacle along the line of the shot? Addition-
ally, I would appreciate an efficient solution implemented in JavaScript.
Please refer to the attached image for a visual representation of the problem.

Response:
To solve the problem of finding the coordinates of the obstacle along the line of the shot, you can use vector mathematics. Given the starting point (x1, y1), the
ending point (x2, y2), and the distance d from the starting point to the obstacle, you can calculate the coordinates of the obstacle as follows:

1. Calculate the direction vector from (x1, y1) to (x2, y2):

direction = (x2 − x1, y2 − y1)

2. Normalize the direction vector to get the unit vector in the direction of the shot:

magnitude =
√

(x2 − x1)2 + (y2 − y1)2

unit direction =

(
x2 − x1

magnitude
,

y2 − y1

magnitude

)
3. Multiply the unit direction vector by the distance d to find the displacement vector from the starting point to the obstacle:

displacement = (d × unit directionx, d × unit directiony)

4. Add the displacement vector to the starting point to get the coordinates of the obstacle:

obstaclex = x1 + displacementx

obstacley = y1 + displacementy

Here’s how you can implement this in JavaScript:

This code will give you the coordinates of the obstacle along the line of the shot, given the specified distance from the starting point.

Category: Front-End——JavaScript
Evaluation Criteria: Unit Testing
Sample Test Case:
input: {"x1":0.0,"y1":0.0,"x2":10.0,"y2":0.0,"distance":5.0},
expected: [5.0, 0.0],

actual: [5.0, 0.0], ...

(only partial cases shown)
Total Score: 100

Figure 7: A case of InfiBench-V from the Front-End category.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G.6 INFIBENCH-V CASE 4

Question: I am developing a Flutter application where I want to draw a square on the screen at the location
of a click. The square should be centered at the click point, but currently, it is being drawn at seemingly random
positions. I am using ‘event.pointerEvent.localPosition.dx‘ and ‘event.pointerEvent.localPosition.dy‘ to obtain
the click coordinates, and I am passing these coordinates to ‘Rect.fromCenter‘ to draw the square.
Below is my Flutter code, which includes the ‘SpriteSquare‘ widget and the ‘handleAdd‘ function from its
parent widget, ‘MySpriteGame‘.
sprite square.dart

class SpriteSquare extends NodeWithSize {

Color color;
Function handler;
double left;
double top;

SpriteSquare(size, this.color, this.handler, this.top, this.left) :
super(size){

userInteractionEnabled = true;
}

@override handleEvent(SpriteBoxEvent event) {
handler(event);
return true;

}

@override
Future<void> paint(Canvas canvas) async {
canvas.drawRect(
Rect.fromLTWH(left, top, size.height, size.width),
Paint()..color = color

);
}

}

handleAdd

handleAdd(SpriteBoxEvent event) {
final _whitesquare = SpriteSquare(
const Size(50.0, 50.0),
const Color(0xFFFFFFFF),
handleRemoveSelf,
Offset(event.pointerEvent.localPosition.dx,

event.pointerEvent.localPosition.dy)
);
_background.addChild(_whitesquare);
return true;

}

Can you help me understand why the square is not being drawn centered at the click location and suggest how
to fix this issue?

Response:
The issue you’re experiencing with the square not being drawn centered at the click location is likely due to the way you’re calculating the position of the square. In
your current implementation, you’re using ‘Rect.fromLTWH‘ to draw the rectangle, which takes the left and top coordinates as the starting point of the rectangle. This
means that the rectangle is drawn starting from the top-left corner at the specified coordinates, rather than being centered at those coordinates.
To center the square at the click location, you need to adjust the ‘left‘ and ‘top‘ values by subtracting half of the square’s width and height, respectively. Here’s how
you can modify your code:
In the ‘handleAdd‘ function, calculate the ‘left‘ and ‘top‘ values like this:

handleAdd(SpriteBoxEvent event) {
final clickX = event.pointerEvent.localPosition.dx;
final clickY = event.pointerEvent.localPosition.dy;

// Calculate the top-left corner of the square so that it is centered at the click location
final left = clickX - 25.0; // Half of the square’s width (50.0 / 2)
final top = clickY - 25.0; // Half of the square’s height (50.0 / 2)

final _whitesquare = SpriteSquare(
const Size(50.0, 50.0),
const Color(0xFFFFFFFF),
handleRemoveSelf,
left,
top

);
_background.addChild(_whitesquare);
return true;

}

By adjusting the ‘left‘ and ‘top‘ values in this way, the square will be centered at the click location. This is because you’re effectively moving the top-left corner of the
square to a position that centers the square around the click point.

Category: Mobile & Desktop——Dart
Evaluation Criteria: GPT-4o
Correctness Score: 35/50
Completeness Score: 25/50
Total Score: 60

Figure 8: A case of InfiBench-V from the Mobile & Desktop category.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.7 INFIBENCH-V CASE 5

Question: In the context of a Ruby on Rails application using version 2.3.5 and Ruby 1.8.7, I am working
with three database tables: A, B, and C. The relationships are as follows: table A has multiple associated records
in table B, and table C also has multiple associated records in table B. There is no direct relationship between
tables A and C.
I want to query records from table A and include associated records from tables B and C. I can include table B
in the query using the following code:

A.all(:conditions => { :id => id }, :include => [:B])

However, I am unsure how to also include table C in the query. Despite extensive research, I have not found a
solution. How can I modify the query to include records from both tables B and C when querying table A’s
records?

Response:
To include associated records from both tables B and C when querying table A in a Ruby on Rails application, you need to ensure that the associations are set up
correctly in your models. Assuming you have the following associations:
- Table A has many records in table B (e.g., has many :bs).
- Table C has many records in table B (e.g., has many :cs).
You can use eager loading with :include to load associated records from both tables B and C. Here’s how you can modify your query:

A.all(:conditions => { :id => id }, :include => { :bs => :cs })

This assumes that:
- In model A, you have has many :bs.
- In model B, you have belongs to :a and has many :cs.
- In model C, you have has many :bs.
If the association between B and C is different, adjust the :include statement accordingly. If there is no direct relationship between A and C, but you want to
include C through B, make sure the association is correctly defined in your models.
Note: Since you’re using Rails 2.3.5 and Ruby 1.8.7, the syntax for eager loading is slightly different compared to newer versions of Rails. Make sure your models’
associations are set up correctly to reflect these relationships.

Category: Back-End——Ruby
Evaluation Criteria: GPT-4o
1. Correctness (0–50): The model answer provides a solution using Rails’ eager loading feature with the :include option in a way that aligns with Rails 2.3.5

syntax. It correctly assumes that B acts as an intermediary between A and C. The proposed query modification A.all(:conditions => { :id => id
}, :include => { :bs => :cs }) is a valid way to include associated records from both tables B and C through B. This matches the associations
depicted in the screenshot, where A is linked to B, and B is linked to C. The model answer elaborates on the associations needed in the models, which is technically
correct. However, the reference answer is more concise and directly points to the usage of :include => { :B => :C } without additional assumptions
about model setup. The model answer’s explanation about associations, while correct, is not necessary to resolve the specific query issue. Nonetheless, the
model’s proposed query would work given the correct associations. Therefore, the correctness of the model’s answer is high, albeit slightly verbose.

2. Completeness (0–50): The model answer provides a comprehensive response by explaining the underlying assumptions about the model associations, which
are essential to achieving the desired query behavior. It goes beyond the reference answer by elaborating on how associations should be set up in the models.
This additional detail provides a complete understanding of how the query interacts with the model structure. While the reference answer is more succinct, the
model answer’s thoroughness in explaining potential association configurations adds value and ensures that the user understands the prerequisites for the query to
function as intended. Thus, the model answer is complete but includes information that, although helpful, is not strictly necessary to address the question directly.

Scores:
- Correctness: 45/50
- Completeness: 45/50
Total Score: 90

Figure 9: A case of InfiBench-V from the Back-End category.

25

	Introduction
	VisCodex
	Model Architecture
	Model Merging
	Model Training

	McD Dataset
	Enhanced HTML Code
	Chart Image to Code Data
	Image-Augmented Code QA
	Algorithmic Code

	InfiBench-V
	Data Curation
	Evaluation Criteria

	Experimental Setup
	Experimental Results
	Main Results
	Analysis
	Case Study

	Related Work
	Multimodal Code Generation
	Model Merging for MLLMs

	Conclusion
	LLM Usage Statement
	Additional analysis experiments
	Comparison with Existing Web2Code Datasets
	Generalizability of McD
	Generality of Code Model Merging

	Training Parameters and Training Cost
	Human Evaluation
	Data Statistics
	Data Statistics of McD
	Distribution of selected benchmark questions in InfiBench-V

	Prompt
	Additional Examples
	MMCode Case 1
	MMCode Case 2
	InfiBench-V Case 1
	InfiBench-V Case 2
	InfiBench-V Case 3
	InfiBench-V Case 4
	InfiBench-V Case 5

