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ABSTRACT

Multimodal large language models (MLLMs) have significantly advanced the inte-
gration of visual and textual understanding. However, their ability to generate code
from multimodal inputs remains limited. In this work, we introduce VisCodex, a
unified framework that seamlessly merges vision and coding language models to
empower MLLMs with strong multimodal code generation abilities. Leveraging
a task vector-based model merging technique, we integrate a state-of-the-art cod-
ing LLM into a strong vision-language backbone, while preserving both visual
comprehension and advanced coding skills. To support training and evaluation,
we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse
collection of 598k samples, including high-quality HTML code, chart image-code
pairs, image-augmented StackOverflow QA, and algorithmic problems. Further-
more, we propose InfiBench-V, a novel and challenging benchmark specifically
designed to assess models on visually-rich, real-world programming questions that
demand a nuanced understanding of both textual and visual contexts. Extensive
experiments show that VisCodex achieves state-of-the-art performance among
open-source MLLMs and approaches proprietary models like GPT-4o, highlighting
the effectiveness of our model merging strategy and new datasets.

1 INTRODUCTION

Multimodal large language models (MLLMs) have achieved remarkable success in recent years,
demonstrating an impressive ability to understand and reason about the world by integrating informa-
tion from both visual and textual domains (Zhu et al., 2023; Liu et al., 2023; Bai et al., 2023). These
models have pushed the boundaries of what is possible in tasks like visual question answering (VQA),
image captioning, and general multimodal conversation. However, a critical and highly practical
domain remains relatively underexplored: the generation of functional code from visual inputs.

This task, which we term multimodal code generation, presents a distinct set of challenges. It demands
not only a nuanced interpretation of visual elements—such as UI layouts, data chart structures, or
programming-related screenshots—but also the ability to translate these insights into syntactically
flawless and functionally correct code. While today’s multimodal models excel at visual description,
they often lack the deep programming knowledge required for robust code generation. This gap is
critical, as many modern development tasks, like translating a UI mockup into HTML or replicating a
data chart, demand a seamless fusion of visual understanding and coding proficiency.

To bridge the gap between visual perception and code generation, we introduce VisCodex. Rather
than relying on costly pre-training, our approach efficiently creates a unified model by arithmetically
merging the parameters of a state-of-the-art vision-language model and a dedicated coding LLM.
Specifically, we adopt a model merging technique based on task vectors, which capture the parameter
shifts resulting from fine-tuning on specific domains (e.g., vision-language, coding). By linearly
combining these task vectors in the language model backbone—while keeping the vision encoder
and cross-modal projection modules intact—we jointly integrate advanced code understanding and
generation capabilities with nuanced visual perception. This enables the resulting model to simulta-
neously retain strong visual understanding and robust code generation ability, thereby significantly
enhancing its performance on multimodal coding tasks. Our experiments show that the merged model
significantly outperforms the original vision-language model on multimodal coding tasks.
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To address the lack of high-quality, large-scale training data for multimodal code generation, We intro-
duce the Multimodal coding Dataset (MCD), a comprehensive, instruction-tuning dataset comprising
598k samples. MCD is meticulously curated from four diverse sources: (1) aesthetically enhanced
and structurally sound HTML code generated from webpage screenshots, (2) high-quality chart-to-
code pairs from real-world and synthetic sources, (3) image-augmented question-answer pairs from
StackOverflow, and (4) foundational algorithmic coding problems to preserve core reasoning abilities.

Furthermore, to rigorously assess the real-world performance of models on multimodal coding
QA task, we develop InfiBench-V, a new and challenging benchmark. InfiBench-V consists of
visually rich programming-related questions derived from real user scenarios where the images are
indispensable for arriving at the correct solution. It provides a more realistic and demanding testbed
than existing benchmarks that often focus on either text-only code QA or simpler visual tasks.

Our primary contributions are threefold:

1. We propose VisCodex, a novel approach for creating powerful multimodal code generators
by merging vision and coding models, demonstrating a new and efficient path to capability
enhancement.

2. We introduce MCD, a large-scale, high-quality dataset for instruction-tuning MLLMs on a wide
spectrum of multimodal coding tasks, and InfiBench-V, a challenging benchmark for realistic
evaluation. We will release both the dataset and benchmark to facilitate reproducibility and future
research.

3. We conduct extensive experiments showing that VisCodex significantly outperforms existing
open-source MLLMs and achieves performance competitive with leading proprietary models like
GPT-4o, thereby setting a new state of the art for open-source multimodal code generation.
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Figure 1: Illustration of the VisCodex pipeline. (a) Model merging strategy for unifying vision-
language and coding LLMs; (b) Data distribution and representative cases of MCD; (c) Category
breakdown and representative cases of InfiBench-V.

2 VISCODEX

2.1 MODEL ARCHITECTURE

A typical multimodal large language model (MLLM) is comprised of three primary components: a
vision encoder, a language model backbone, and a projection module to connect the two modalities (Li
et al., 2024a). The vision encoder’s role is to extract visual features from input images. These features
are then projected by the projector module into the language embedding space. Subsequently, the
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language model integrates these visual representations with textual inputs, enabling multimodal
understanding and reasoning.

Many existing MLLMs, such as earlier versions of Qwen-VL Bai et al. (2023) and LLaVA Li et al.
(2024a), are limited by fixed image input resolutions, which curtails their flexibility in processing
images of varying sizes (Bai et al., 2023; Liu et al., 2023). To overcome this limitation, Qwen2.5-
VL Wang et al. (2024); Bai et al. (2025) introduces a 2D Rotary Position Embedding (RoPE) (Su
et al., 2024) mechanism within its Vision Transformer (ViT) Dosovitskiy et al. (2021). This allows
for the flexible processing of images with arbitrary resolutions by dynamically generating visual
tokens. This approach preserves the absolute scale and spatial relationships of objects within the
image. Given its enhanced flexibility and performance, we adopt the Qwen2.5-VL architecture as our
foundation model.

2.2 MODEL MERGING

To enhance the coding capabilities of our multimodal large language model without undertaking costly
retraining from scratch, we employ model merging (Jin et al., 2022). By arithmetically combining the
parameters of specialized models, we can integrate distinct skills and create a unified, more versatile
model without requiring access to the original training data (see Figure 1 (a) for an overview of the
model merging pipeline).

Task Vectors. Central to model merging are task vectors (Ilharco et al., 2022), which quantify
parameter shifts resulting from fine-tuning a base model on a specific task. Given a pretrained base
model θbase and its task-specific fine-tuned variant θft, a task vector is formally defined as:

τtask = θft − θbase (1)

Such vectors encapsulate the parameter changes necessary for a model to specialize in a particular
domain or capability and serve as modular, transferable units of knowledge across models and tasks.

Multimodal and Code Capabilities. Our goal is to enhance the multimodal large language model by
incorporating advanced code understanding and generation capabilities. Considering that code-related
expertise predominantly resides in the language model backbone, we restrict our merging process to
this component. We retain the original visual encoder and cross-modal projection modules unchanged
to preserve the intrinsic visual understanding capabilities of the MLLM.

Specifically, we define the task vector for the language model component of the Vision-Language
Model (VLM) as:

τvlm = θvlm − θbase (2)

where τvlm captures the parameter shift that enables the language model to effectively handle multi-
modal inputs by jointly processing visual and textual information.

Analogously, we define the task vector for the coding model, encapsulating its capability for code
comprehension and generation:

τcode = θcode − θbase (3)

Merging Strategy. Following the linear merging method of Ilharco et al. (2022) and its application
to enhancing multimodal mathematical reasoning in Chen et al. (2025), we adopt a similar strategy to
transfer code reasoning abilities into an MLLM. The updated language model parameters, combining
both multimodal and code-related knowledge, are computed as follows:

θVisCodex = θbase + λτvlm + (1− λ)τcode (4)

where the hyperparameter λ ∈ [0, 1] controls the trade-off between retaining original multimodal
representations and integrating new code expertise. θVisCodex is the initialization of the parameters of
our VisCodex.

Implementation Details. Our model merging process targets only the language backbone of the
VLM, leaving the vision encoder and cross-modal projection modules unaltered. This selective
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merging approach allows for a clear attribution of performance gains while significantly reducing
computational overhead. To construct our primary code task vector (τcode), we select a coding model
that shares the same architectural foundation as the VLM’s language backbone. Since Qwen2.5-VL’s
language model is derived from Qwen2.5, we utilize OpenCodeReasoning-Nemotron-1.1-7B (Ahmad
et al., 2025). For our 33B scale model, we correspondingly use the OpenCodeReasoning-Nemotron-
1.1-32B (Ahmad et al., 2025) variant. Furthermore, in our ablation studies, we create and evaluate code
task vectors from two other prominent code-specialized models, Qwen2.5-Coder-7B-Instruct (Hui
et al., 2024) and OpenThinker2-7B (Guha et al., 2025), to verify the effectiveness of merging with a
code-specialized task vector, as shown in Table 3

2.3 MODEL TRAINING

After model merging, we perform supervised fine-tuning on our Multimodal Coding Dataset (MCD),
further aligning the merged model with multimodal coding tasks. To efficiently leverage both the
pretrained visual grounding and newly integrated code abilities, we freeze the vision encoder and
projection modules, fine-tuning only the language model backbone.

3 MCD DATASET

We introduce the Multimodal Coding Dataset (MCD), a new large-scale dataset designed for
instruction-tuning multimodal models on coding tasks. MCD is constructed from four primary
components, each targeting a distinct aspect of multimodal code understanding and generation:

1. Enhanced HTML Code: We generate aesthetically and structurally improved HTML code by
redesigning and augmenting existing webpages.

2. Chart Image-Code Pairs: We construct high-quality chart-code pairs by sourcing Python mat-
plotlib code from GitHub, which are then refined through a multi-stage filtering and rewriting
process.

3. Image-Augmented Code QA: We extract real-world, image-augmented question and answer
pairs from StackOverflow and subject them to rigorous cleaning and refinement.

4. Algorithmic Code: We aggregate and curate data from established algorithmic coding datasets to
preserve and enhance the model’s core reasoning and problem-solving abilities.

The data distribution and representative cases for the four domains are illustrated in Figure 1 (b), and
more comprehensive statistics are available in the Appendix E.1. The following sections describe
each component in detail.

3.1 ENHANCED HTML CODE

A review of the existing Web2Code dataset (Yun et al., 2024) revealed several shortcomings, including
broken image links, rudimentary CSS, and visually unappealing designs. Our initial approach to
address these issues involved using GPT-4o to directly rewrite the existing HTML code. However,
this method proved suboptimal, as the constraints of the original code structure frequently led to
rendering artifacts and visually incongruous layouts.

To overcome this, we adopted a novel, image-driven generation pipeline. We first curated 560,000
webpage images from Web2Code to serve as stylistic seeds. GPT-4o was then prompted to design
entirely new webpages inspired by these seeds. The resulting HTML was rendered using Play-
wright1 to capture screenshots. A rigorous filtering pipeline was then applied to discard rendering
failures, images with anomalous dimensions, and other visual artifacts. This process yielded 200,000
high-quality, newly generated code-image pairs. These pairs were subsequently converted into an
instruction-following format using the framework provided by Web2Code.

3.2 CHART IMAGE TO CODE DATA

To build a diverse and high-quality chart dataset, we incorporate both synthetic and real-world data
sources. For synthetic data, we include the 164,000 synthetic Chart2Code samples released by

1https://github.com/microsoft/playwright-python
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ChartCoder (Zhao et al., 2025b) as part of our training data. For real-world data, we curated 46,000
chart-code pairs from GitHub.

Inspired by data engineering strategies (Ding et al., 2023; Chiang et al., 2023; Xu et al., 2023), we
first collected 129,000 real-world Python matplotlib scripts from GitHub. This raw data, however,
suffered from significant quality issues, including non-executable code, inconsistent formatting, and
potentially harmful snippets. To mitigate these issues, we employed GPT-4o to systematically rewrite
and normalize the code, while simultaneously classifying each script by chart type. Subsequently, a
multi-stage, rule-based filtering pipeline was applied to eliminate low-quality samples. This pipeline
removed scripts that failed to execute, produced blank or improperly sized images, or generated
visually corrupted outputs (e.g., heavily pixelated charts). As a final quality assurance step, we
leveraged GPT-4o to score the aesthetic and functional quality of the generated charts, retaining the
top 46,000 high-quality image-code pairs.

The final dataset combines the 164,000 synthetic samples with our 46,000 curated real-world ex-
amples, resulting in a comprehensive collection of 210,000 chart image-code pairs for instruction
tuning.

3.3 IMAGE-AUGMENTED CODE QA

StackOverflow represents a rich repository of real-world, code-centric QA data, particularly valuable
when augmented with illustrative images. Our collection process involved crawling StackOverflow
for QA threads containing images, followed by an initial filtering step to retain only those with an
accepted answer containing either Python or HTML code.

A rigorous data cleaning pipeline was implemented to ensure quality, removing entries with exces-
sively short or verbose answers, invalid URLs, broken image links, and blank or oversized images.
We also identified that many accepted answers were suboptimal for training, being either too terse for
clarity or overly verbose. To address this, we utilized GPT-4o to refine these answers by removing
sensitive content, rewriting unclear sections, and enhancing overall conciseness and clarity. This
multi-stage pipeline yielded a final dataset of 59,000 high-quality, image-augmented StackOverflow
QA pairs suitable for instruction tuning.

3.4 ALGORITHMIC CODE

To maintain the model’s proficiency in algorithmic reasoning and code generation, we incorporate
algorithm-related code data from Kodcode (Xu et al., 2025). Specifically, we select samples from five
categories: LeetCode (Hartford, 2023), Codeforces (Jur1cek, 2022), TACO (Li et al., 2023), Code
Contests (Li et al., 2022), and Algorithm (The Algorithms, 2023; Keon, 2018). The final collection
contains 129,000 algorithm-related instruction-following examples.

4 INFIBENCH-V

We introduce InfiBench-V, a new benchmark designed to evaluate the ability of multimodal large
language models to answer complex programming questions that integrate both text and images.
While existing benchmarks like InfiBench (Li et al., 2024c) focus on text-based code QA, InfiBench-
V is specifically constructed to assess multimodal reasoning, where visual context is critical to
formulating a correct answer.

4.1 DATA CURATION

Our benchmark is built upon a rigorous, multi-stage curation pipeline using data from Stack Overflow.
The process began by scraping an initial set of approximately 1 million image-based questions that
included a community-verified “accepted answer” to ensure solution quality. We then narrowed this
pool to 40,000 recent and high-engagement questions. The most critical refinement step involved
using GPT-4o to isolate samples where the image is indispensable, filtering out questions solvable by
text alone. This yielded a core set of 10,000 high-relevance, multimodal questions.

We categorized these samples based on programming domain and, guided by the class distribution
and sampling principles of InfiBench, domain experts manually selected 322 questions to form the
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final benchmark. These span 13 programming languages, each mapped to one of five high-level
categories: front-end, back-end, data science & machine learning (DS&ML), mobile and desktop
development, and IT operations (ITOps). The detailed category breakdown and representative cases
are shown in Figure 1 (c)

To ensure quality and prevent model memorization in pre-training, we implemented a prompt
paraphrasing process. Domain experts rewrote each question in a concise and directive manner while
preserving its semantic content. Each question is also annotated with its evaluation category and
associated metrics, including a set of key phrases and a reference answer to support robust scoring.

4.2 EVALUATION CRITERIA

To objectively assess the quality of answers across a diverse range of question types, we adopt a
three-pronged evaluation strategy inspired by InfiBench. For each benchmark question, domain
experts select one or more evaluation methods, and the final score for that question is obtained by
averaging the normalized results of the selected methods.

• Keyword Matching. We observed that for a majority of questions, answer quality is closely tied
to the presence of specific keywords. Our domain experts craft a set of rules for each question,
specifying essential terms and phrases. To capture nuanced requirements, these rules can be
simple checks, regular expressions, or complex logical statements. When multiple keywords are
required, they can be individually weighted to ensure that the most critical components of the
answer contribute more significantly to the final score.

• Unit Testing. For questions where the answer is primarily a block of code, we verify its
correctness using unit tests. To facilitate automated evaluation, domain experts supplement the
question with precise requirements, like function names and expected I/O formats. They also
provide the necessary setup and teardown scripts, creating a complete and executable environment
for programmatic validation.

• GPT-4o Judge. For questions that rely heavily on natural language understanding, we leverage
GPT-4o to score MLLM responses by comparing them with the accepted reference answer. The
evaluation considers both answer correctness and completeness across two dedicated scoring
dimensions.

5 EXPERIMENTAL SETUP

Evaluated Benchmarks. We evaluate our model on four multimodal benchmarks to assess a range
of multimodal-related coding skills:

• Design2Code (Si et al., 2024): This benchmark measures the ability to translate visual UI designs
into executable code. We report the average performance on both Low-Level (Low-L) features
(Block, Text, Position, Color) and High-Level (High-L) semantic fidelity.

• ChartMimic (Shi et al., 2024): This benchmark evaluates the generation of chart specifications
from images. We adopt the Direct Mimic task on the test-mini subset and report both Low-Level
(Low-L) and GPT-4o-assessed High-Level (High-L) scores.

• MMCode (Li et al., 2024b): This benchmark assesses algorithmic problem-solving in visually
rich contexts. Performance is measured by pass@1 accuracy (Chen et al., 2021).

• InfiBench-V (Ours): For our proposed benchmark, we report the average score across all defined
evaluation metrics.

Training Settings. In our main experiments with the 8B model, which uses the code task vector from
OpenCodeReasoning-Nemotron-1.1-7B, we determined the optimal merge coefficient λ by evaluating
performance on the MMCode benchmark. From a set of candidate values {0.7, 0.8, 0.85, 0.9}, we
selected λ = 0.7. According to our merging formula 4, this applies a weight of 0.7 to the vision-
language task vector (τvlm) and 0.3 to the code task vector (τcode). Detailed training hyperparameters
and training costs are provided in the Appendix C.
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6 EXPERIMENTAL RESULTS

6.1 MAIN RESULTS

Table 1: Performance comparison between proprietary and open-source models across various
benchmarks. Low-L stands for Low-Level features (e.g., Block, Text, Position), and High-L stands
for High-Level semantic fidelity. Best results are in bold.

Model Size Design2Code ChartMimic MMCode InfiBench-V Average
Low-L High-L Low-L High-L pass@1 Acc

Proprietary Models

GPT-4o-mini - 85.8 87.3 68.4 68.5 12.2 71.9 65.7
GPT-4o - 90.2 90.4 79.0 83.5 17.0 79.9 73.3

Open-Source Small Language Models

MiniCPM-V-2 6 8B 78.1 84.2 21.8 45.2 3.8 45.3 46.4
InternVL3-8B 8B 85.3 87.6 43.1 47.2 6.8 66.1 56.0
Qwen2.5-VL-7B-Instruct 8B 83.4 87.6 39.5 38.3 5.3 54.0 51.4
Llama-3.2-11B-Vision-Instruct 11B 72.7 84.8 27.7 26.5 2.3 52.7 44.4
InternVL3-14B 15B 82.9 88.3 53.9 55.0 11.4 70.5 60.3
VisCodex-8B 8B 90.1 90.9 74.8 74.1 11.0 72.1 68.8
Open-Source Large Language Models

Qwen2.5-VL-32B-Instruct 33B 88.0 89.4 72.5 68.7 13.7 73.0 67.6
llava-onevision-qwen2-72b 73B 75.2 85.7 55.8 52.1 5.7 64.7 56.5
Qwen2.5-VL-72B-Instruct 73B 86.9 88.7 66.7 68.7 15.2 75.2 66.9
InternVL3-78B 78B 85.3 89.1 64.9 64.2 14.4 77.3 65.9
VisCodex-33B 33B 90.5 91.1 79.3 78.5 15.6 78.6 72.3

As shown in Table 1, our models achieve state-of-the-art performance across all evaluated multimodal
coding benchmarks. Our smaller model, VisCodex-8B, not only outperforms all open-source models
in its size class (7-15B) but also surpasses the proprietary GPT-4o-mini, with an average score of
68.8. Our larger model, VisCodex-33B, further establishes its superiority by achieving an average
score of 72.3, which is on par with the state-of-the-art proprietary model, GPT-4o (73.3). These
results demonstrate that our VisCodex family sets a new standard for open-source multimodal code
generation.

Our models show exceptional strength in UI and chart understanding. On the Design2Code bench-
mark, both VisCodex-8B (90.1/90.9) and VisCodex-33B (90.5/91.1) achieve scores comparable to or
exceeding GPT-4o. On ChartMimic, our models also secure the top positions among open-source
models, demonstrating robust visual data translation capabilities.

6.2 ANALYSIS

Efficacy of the Model Merging. As demonstrated in Table 2, model merging yields consistent

Table 2: Ablation on model merging for VisCodex.
“w/o model merge” denotes the variant without
applying our model merging strategy.

Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

VisCodex-8B 90.1 90.9 74.8 74.1 11.0
w/o model merge 89.6 90.7 73.4 70.6 6.8

VisCodex-33B 90.5 91.1 79.3 78.5 15.6
w/o model merge 89.7 90.7 78.4 77.4 14.4

performance gains across all benchmarks and
scales. At the 8B scale, merging improves De-
sign2Code (90.1 vs. 89.6), ChartMimic (74.8
vs. 73.4), and MMCode (11.0 vs. 6.8). The
33B model shows similar enhancements. The
most significant improvements on ChartMimic
and MMCode confirm that this strategy effec-
tively augments code-generation capabilities
while preserving visual understanding.

Effect of Different Code LLMs in Merge. As shown in the Table 3, we study how the choice of
the merged LLM affects performance. All code-specialized LLMs present consistent gains across all
benchmarks compared to general-purpose LLM. Compared to the general LLM, OpenThinker2-7B
and Qwen2.5-Coder-7B improve both Design2Code and ChartMimic, while Nemotron-1.1-7B further
boosts MMCode pass@1 from 6.8 to 11.0. These results indicate that merging with code-specialized
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Table 3: Ablation on Backbone LLM choice. Per-
formance when merging the same multimodal
backbone with either a general-purpose or code-
specialized LLM.

Backbone LLM Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

Baseline (Qwen2.5-VL) 83.4 87.6 39.5 38.3 5.3

General LLM

Qwen2.5-7B-Instruct 89.5 90.7 73.2 72.5 6.8

Code LLM

OpenThinker2-7B 90.2 91.0 74.3 73.8 8.0
Qwen2.5-Coder-7B 90.0 90.7 75.1 74.5 8.4
Nemotron-1.1-7B 90.1 90.9 74.8 74.1 11.0

Table 4: Performance comparison of model merg-
ing vs. backbone replacement. The “Replace (1-
stage)” strategy directly replaces the LLM back-
bone in a single stage. The “Replace (2-stage)”
strategy first trains a projector, then fine-tunes the
full MLLM (ViT, projector, and LLM).

Strategy Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

Baseline 83.4 87.6 39.5 38.3 5.3

Replace (1-stage) 88.7 90.7 70.4 69.2 11.0
Replace (2-stage) 88.2 90.6 73.4 70.9 11.0
Model Merge (Ours) 90.1 90.9 74.8 74.1 11.0

LLMs is crucial for robust multimodal code generation, enhancing executable correctness while
maintaining strong visual grounding and UI-to-code translation.

Effectiveness of the Model Merge Strategy. To evaluate the effectiveness of our proposed model
merge strategy compared to direct backbone replacement, we conducted comparative experiments
using two distinct approaches: (i) directly replacing the LLM backbone of Qwen2.5-VL-7B-Instruct
with OpenCodeReasoning-Nemotron-1.1-7B (Ahmad et al., 2025), and (ii) employing the two-stage
training procedure from LLaVA-OneVision (Li et al., 2024a), which initially trains the projector on
BLIP-558K, followed by joint fine-tuning of the ViT, projector, and LLM on MCD.

Our results indicate that the model merge strategy achieves overall superior performance across the
evaluated tasks, as shown in Table 4. It demonstrates particularly strong gains on visually-intensive
benchmarks such as Design2Code and ChartMimic, where successful code generation heavily relies
on accurate visual-semantic alignment. This is because directly replacing the LLM backbone often
disrupts previously learned visual grounding. In contrast, the model merge approach preserves these
visual alignment abilities while simultaneously incorporating enhanced code generation capabilities.
This confirms the effectiveness of model merging in maintaining multimodal comprehension and
boosting performance in multimodal coding tasks.

Additional Analyses. Further results are provided in the Appendix, including comparisons with
existing Web2Code datasets (Appendix B.1), the generalizability of MCD (Appendix B.2), and the
generality of our code model merging strategy (Appendix B.3).

6.3 CASE STUDY

We further conducted case studies to qualitatively compare the performance of VisCodex-8B against
GPT-4o, InternVL3-78B, and Qwen2.5-VL-7B on the ChartMimic and Design2Code benchmarks.
As shown in Figure 2, VisCodex-8B consistently generates outputs that more closely match the
ground truth in both chart reconstruction and HTML generation tasks, surpassing the fidelity of
results produced by GPT-4o-mini and other open-source baselines. These observations underscore
VisCodex-8B’s superior multimodal code generation capabilities. For additional case studies on
MMCode, InfiBench-V, and further examples, please refer to Appendix H.

7 RELATED WORK

7.1 MULTIMODAL CODE GENERATION

The ability of MLLMs to generate code has attracted increasing attention in recent years. De-
sign2Code (Si et al., 2024) evaluates the HTML generation capabilities of MLLMs. Extending earlier
datasets like WebSight (Laurençon et al., 2024) and Pix2Code (Beltramelli, 2018), Web2Code (Yun
et al., 2024), Webcode2M Gui et al. (2025) provides a webpage-to-code dataset to improve HTML
generation. Benchmarks like MMCode (Li et al., 2024b) and Human-V (Zhang et al., 2024b) focus
on assessing MLLMs in algorithmic coding tasks that incorporate visual inputs. Similarly, Chart-
Mimic (Shi et al., 2024) and Plot2Code (Wu et al., 2024) evaluate MLLMs’ capabilities to translate
raw data into scientific charts. ChartCoder (Zhao et al., 2025a) addresses chart generation explicitly
through a large dataset of 160k examples. Additionally, CodeV (Zhang et al., 2024c) integrates visual
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Ground Truth
VisCodex-8B

(Ours) GPT-4o InternVL3-78B Qwen2.5-VL-7B

Figure 2: Case study comparing VisCodex-8B and baseline models on Design2Code and ChartMimic
tasks, demonstrating the superior multimodal code generation capabilities of VisCodex-8B.

data to improve large language models’ problem-solving abilities. Despite recent progress, to the
best of our knowledge, existing work falls short of providing a complete and unified solution to
multimodal code generation.

7.2 MODEL MERGING FOR MLLMS

Model merging has become a widely used approach for integrating the capabilities of multiple models
within the parameter space. A basic method involves simple weighted averaging (Wortsman et al.,
2022), while more advanced strategies have been developed in recent years (Ilharco et al., 2022;
Matena & Raffel, 2022; Jin et al., 2022; Yadav et al., 2023; Bandarkar et al., 2024). Recently,
several studies have applied model merging to enhance the capabilities of multimodal large language
models. For example, REMEDY (Zhu et al., 2025a) improves multitask performance and zero-shot
generalization in VQA tasks. (Akiba et al., 2025) enhance Japanese language understanding and
generation, while Chen et al. (2025) improve mathematical reasoning abilities. Li et al. (2025b)
enable textual preference transfer by integrating a text-based reward model into an MLLM, without
additional training. Our study demonstrates that model merging can effectively endow MLLMs with
strong abilities in multimodal code understanding and generation.

8 CONCLUSION

In conclusion, we have presented VisCodex, a unified multimodal framework that effectively in-
tegrates advanced visual comprehension with sophisticated code-generation capabilities through a
novel task vector-based model merging strategy. By leveraging this efficient approach, VisCodex
significantly enhances multimodal large language models without incurring the costs associated with
full-scale retraining. We also introduced the Multimodal Coding Dataset (MCD), a comprehensive
resource comprising 598k diverse, high-quality instruction-tuning examples, along with InfiBench-V,
a rigorous benchmark designed specifically for realistic multimodal coding assessments. Extensive
experiments confirm that VisCodex establishes a new state-of-the-art performance among open-source
multimodal code generators, demonstrating capabilities competitive with leading proprietary models
such as GPT-4o.

9
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A LLM USAGE STATEMENT

A large language model (ChatGPT) was used to aid and polish the writing of the paper, including
minor grammar correction and language refinement.

B ADDITIONAL ANALYSIS EXPERIMENTS

B.1 COMPARISON WITH EXISTING WEB2CODE DATASETS

As demonstrated in Table 5, our dataset outperforms prior Web2Code corpora across all metrics.
Compared to Webcode2M Gui et al. (2025) and Web2Code Yun et al. (2024), MCD achieves the
highest scores on both low-level (Block-Match, Text, Position, and Color) and high-level evaluation.
The gains are especially notable on layout-sensitive metrics and visual fidelity, indicating that MCD
provides more accurate structural alignment and visual grounding for UI-to-code generation, while
also improving semantic consistency.

Table 5: Performance comparison of MCD with WebCode2M and Web2Code on the Design2Code
benchmark.

Data Block-Match Text Position Color CLIP
Baseline 85.4 95.8 77.3 75.3 87.6
WebCode2M 82.1 96.0 72.4 72.6 86.3
Web2Code 84.4 93.4 76.2 79.6 88.8
MCD 89.6 97.2 84.7 86.8 90.7

B.2 GENERALIZABILITY OF MCD

To assess the generalizability of our dataset MCD, we conducted supervised fine-tuning experi-
ments on two strong open-source MLLMs: InternVL3-8B (Zhu et al., 2025b) and llava-llama3.1-
8b2 (Zhang et al., 2024a). We evaluated the models on multiple established benchmarks, as shown in
Table 6. The results demonstrate that fine-tuning with MCD consistently and significantly enhances
the multimodal coding abilities of both base models. In particular, we observe substantial improve-
ments in both the Design2Code and ChartMimic tasks, as well as noticeable gains on the MMCode
benchmark. These findings validate the robustness and strong transferability of MCD across different
model architectures and suggest its value as a general-purpose resource for advancing multimodal
code generation.

Table 6: Generalization performance of MCD: Results of supervised fine-tuning on InternVL3-8B
and llava-llama3.1-8b across multiple multimodal coding benchmarks.

Model Design2Code ChartMimic MMCode
Low High Low High pass@1

InternVL3-8B 85.3 87.6 43.1 46.6 6.8
InternVL3-8B-SFT 88.2 89.9 72.6 70.4 7.6
llava-llama3.1-8b 7.3 78.4 6.2 4.8 2.3
llava-llama3.1-8b-SFT 82.8 90.5 70.7 68.2 4.2

B.3 GENERALITY OF CODE MODEL MERGING

To verify that our model merging strategy is not limited to LLMs with Qwen2.5 backbones, we
further conduct experiments using llava-llama3.1-8b (Zhang et al., 2024a), an MLLM based on the
Llama-3.1 (Dubey et al., 2024) architecture. Specifically, we merge llava-llama3.1-8b with the code
task vector (τcode) obtained from DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI, 2025), following

2https://huggingface.co/modelscope/llava-llama3.1-8b
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the same procedure as in our previous Qwen2.5VL experiments. As shown in Table 7, the merged
model consistently outperforms the non-merged baseline across all multimodal coding tasks. The
performance improvement is particularly significant on the MMCode benchmark, where pass@1
increases from 4.2 to 6.5. These results, which are consistent with our findings on Qwen2.5VL,
demonstrate the general effectiveness and broad applicability of the code model merging strategy.

Table 7: Ablation on model merging for llava-llama3.1-8b and DeepSeek-R1-Distill-Llama-8B.
Results compare models with and without the merging strategy.

Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

w/o model merge 82.8 90.5 70.7 68.2 4.2
w model merge 83.3 90.7 70.9 68.8 6.5

B.4 POST-MERGE UNFREEZING ABLATION

To further investigate whether weight interpolation introduces any cross-modal distribution shift
after model merging, we conduct additional ablation studies by unfreezing different subsets of visual
modules during post-merge supervised fine-tuning. Specifically, we compare three tuning strategies:
(1) tuning only the LLM backbone (our default approach), (2) additionally unfreezing the cross-modal
projector, and (3) unfreezing both the projector and the ViT encoder.

As shown in Table 8, unfreezing visual components does not lead to consistent performance improve-
ments across benchmarks. All variants yield comparable results on Design2Code, ChartMimic, and
MMCode. This indicates that the merged model maintains robust cross-modal alignment without
requiring further adaptation of visual modules. Consequently, our parameter-efficient strategy of
tuning only the LLM backbone remains both effective and computationally preferable.

Table 8: Post-merge Unfreezing Ablation. Comparison of different tuning scopes. We report the
performance when training specific components while keeping others frozen. LLM (VisCodex-8B)
represents our default strategy.

Tunable Modules Design2Code ChartMimic MMCode
Low-level High-level Low-level High-level pass@1

Baseline (Qwen2.5-VL-7B-Instruct) 83.4 87.6 39.5 38.3 5.3

LLM (VisCodex-8B) 90.1 90.9 74.8 74.1 11.0
LLM + Projector 89.9 90.7 73.4 74.1 9.5
LLM + Projector + ViT 90.1 90.9 74.6 74.7 10.6

B.5 COMPARISON WITH LORA FINE-TUNING STRATEGIES

To further validate the superiority of our Model Merging strategy over standard parameter-efficient
adaptation methods, and to investigate the impact of tuning different modules, we conducted a
comprehensive comparison with LoRA (Hu et al., 2022) fine-tuning. We established two distinct
baselines:

• LoRA (LLM): Applying LoRA tuning exclusively to the language model backbone, serving as
a parameter-efficient counterpart to our language-only tuning strategy.

• LoRA (ViT + Proj + LLM): Jointly tuning the vision encoder, projector, and language model
using LoRA. This setting was designed to test whether broader parameter adaptation (i.e.,
including the vision encoder) could bridge the performance gap.

As shown in Table 9, VisCodex significantly outperforms all LoRA baselines, even when the vision
encoder is tuned (ViT + Proj + LLM), with substantial margins of 9.0% on ChartMimic (Low-L) and
4.2% on MMCode. While broader vision tuning offers slight gains over LLM-only LoRA, it still fails
to match VisCodex. Crucially, since both SFT (Full) and VisCodex employ the same full fine-tuning
strategy, our superior performance confirms that Model Merging initialization provides a robust
“knowledge injection” of code capabilities that standard SFT initialization cannot replicate.
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Table 9: Comparison of VisCodex with Full Fine-tuning and LoRA tuning strategies on the MCD
dataset. VisCodex consistently outperforms baselines, demonstrating the effectiveness of model
merging initialization combined with full parameter tuning.

Method Strategy Tunable Modules Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

Base Model
Qwen2.5-VL-7B-Instruct - - 83.4 87.6 39.5 38.3 5.3

Standard Initialization (w/o Model Merge)
SFT (LoRA) LoRA LLM 87.7 89.2 64.0 65.1 5.7
SFT (LoRA) LoRA ViT + Proj + LLM 88.2 89.6 65.8 67.0 6.8
SFT (Full) Full FT LLM 89.6 90.7 73.4 70.6 6.8

Ours (w/ Model Merge)
VisCodex-8B Full FT LLM 90.1 90.9 74.8 74.1 11.0

B.6 DATA EFFICIENCY AND ROBUSTNESS IN LOW-RESOURCE SETTINGS

To investigate the potential of model merging in data-scarce scenarios and its efficiency in transferring
prior knowledge, we conducted two sets of additional experiments: (1) training with strictly limited
data volumes (Data Scaling), and (2) training without specific algorithmic reasoning data (Domain-
Specific Scarcity).

Performance under Data-Scarce Conditions. To evaluate the model’s performance when overall
training data is limited, we trained VisCodex-8B on randomly sampled subsets of the MCD dataset:
1% (6k samples), 5% (30k samples), and 10% (60k samples). We compared our model merging
strategy against the standard fine-tuning baseline (w/o model merge).

Table 10 presents the results. Our model merging strategy consistently outperforms the baseline across
all data scales. Notably, in the extremely low-resource setting (1% data), the standard approach suffers
from catastrophic forgetting in reasoning tasks, with MMCode performance dropping significantly
from 5.3 (Zero-shot Baseline) to 3.4. In contrast, VisCodex effectively retains the baseline reasoning
capability (5.3) due to the strong prior injected via model merging. Furthermore, even with only 5%
of the data (30k), VisCodex achieves robust performance improvements, highlighting the significant
data efficiency gained from the merged code priors.

Table 10: Performance comparison on limited training data (Data Scaling). We report the results of
training on 1%, 5%, and 10% subsets of the MCD dataset.

Data Scale Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

0% (Baseline) Qwen2.5-VL-7B-Instruct 83.4 87.6 39.5 38.3 5.3

1% (6k) w/o model merge 87.9 89.5 60.1 62.1 3.4
w/ model merge (Ours) 89.2 89.5 61.6 63.0 5.3

5% (30k) w/o model merge 88.9 89.8 68.2 68.6 3.8
w/ model merge (Ours) 89.1 89.8 70.2 70.7 5.3

10% (60k) w/o model merge 89.4 90.1 69.5 69.1 3.8
w/ model merge (Ours) 89.8 90.4 70.6 71.0 7.6

Efficiency in Domain-Specific Data Scarcity. To simulate a scenario where task-specific data is
unavailable, we conducted an ablation study by removing the entire “Algorithm” category (129k
samples) from the MCD dataset. Crucially, the “Algorithm” category in MCD consists of text-only
code problems. Since MCD does not contain multimodal algorithmic data to begin with, removing
this category implies that the model is fine-tuned without any exposure to algorithmic reasoning data
(neither text-only nor multimodal).

As shown in Table 11, when explicit algorithmic training data is absent, the standard SFT approach
(w/o model merge) fails to generalize to the multimodal reasoning task (MMCode), resulting in a low
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score of 3.4. However, VisCodex achieves a score of 6.8 even without seeing any algorithmic training
samples. These results validate that our model merging strategy significantly enhances efficiency by
leveraging injected code reasoning capabilities, making the model robust even when specific domain
data is entirely absent.

Table 11: Ablation study on removing “Algorithm” training data (Efficiency in Domain-Specific
Scarcity). The models are trained on the MCD dataset excluding the Algorithm category.

Method Design2Code ChartMimic MMCode
Low-L High-L Low-L High-L pass@1

w/o model merge 89.3 90.3 73.2 70.5 3.4
w/ model merge (Ours) 90.0 90.4 74.2 74.6 6.8

B.7 STATISTICAL SIGNIFICANCE OF PERFORMANCE GAINS AT SCALE

To address concerns regarding whether the performance improvements observed in larger models
(specifically the 33B variant) are statistically significant or merely attributable to random variance,
we conducted a rigorous robustness analysis. We performed 5 independent inference runs for both the
merged model and the standard fine-tuned baseline across all benchmarks. To account for generation
stochasticity, we utilized a sampling temperature of T = 0.6.

The results, summarized in Table 12, demonstrate that the proposed model merging method con-
sistently outperforms the baseline across all evaluated metrics. The performance gains range from
+0.5 to +1.4 points, with low standard deviations (σ ≤ 0.29), indicating high stability. Furthermore,
we conducted paired t-tests to quantify significance. The resulting p-values range from 1.4× 10−4

to 2.6 × 10−7, which are orders of magnitude below the conventional α = 0.05 threshold. These
findings confirm that the advantages of model merging remain robust and statistically significant even
at the 33B scale.

Table 12: Statistical significance analysis of the 33B model across 5 independent runs (T = 0.6).
We report the Mean ± Std. The “w/ model merge” method consistently outperforms the baseline
with statistically significant gains across all benchmarks (p < 0.05).

Method Design2Code Design2Code ChartMimic ChartMimic MMCode
Low High Low High pass@1

w/o model merge 89.68± 0.08 90.62± 0.08 78.36± 0.11 77.32± 0.13 14.38± 0.04
w/ model merge 90.56± 0.05 91.14± 0.05 79.74± 0.29 78.66± 0.11 15.68± 0.18

p-value 2.6× 10−7 8.8× 10−6 1.4× 10−4 1.5× 10−7 4.2× 10−5

B.8 NECESSITY OF VISUAL GROUNDING: COMPARISON WITH STANDALONE
CODE LLMS

To investigate whether the performance gains of VisCodex stem primarily from the inherent strength
of the code branch rather than true multimodal fusion, we evaluated several state-of-the-art 7B-scale
Code LLMs as standalone agents across our multimodal benchmarks. Specifically, we tested
Qwen2.5-Coder-7B-Instruct, OpenCodeReasoning-Nemotron-7B, and OpenThinker2-7B using the
same input prompts (text description + image placeholders) as the multimodal models.

As shown in Table 13, despite their exceptional text-only programming capabilities, these standalone
Code LLMs perform near-zero on tasks requiring visual grounding. The near-zero scores are not due
to a lack of coding ability, but rather because these models lack a visual encoder and cannot process
the essential image inputs.

• For instance, on DESIGN2CODE and CHARTMIMIC, which heavily rely on interpreting visual
UI elements and chart data, the code models fail to generate meaningful outputs, achieving
negligible scores (e.g., 0.0 on DESIGN2CODE Low-Level metrics).
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• Similarly, on INFIBENCH-V, the accuracy hovers around 1.2%–1.5%, confirming the models
cannot solve the problems without visual context.

In contrast, the base VLM (Qwen2.5-VL-7B-Instruct) demonstrates reasonable visual understand-
ing (83.4 on DESIGN2CODE) but lacks advanced code reasoning capabilities (5.3 on MMCODE).
VisCodex-8B significantly outperforms both the base VLM and the standalone Code LLMs across all
metrics. This empirical evidence confirms that neither visual ability alone nor code ability alone is
sufficient for these tasks; the performance improvements are driven by the effective fusion of visual
perception and code reasoning within our framework.

Table 13: Performance comparison of VisCodex against standalone Code LLMs. “Low” refers
to Low-level visual metrics (Block/Text/Position/Color match), and “pass@1” refers to reasoning
accuracy. The results demonstrate that strong code models alone cannot solve multimodal tasks
without visual grounding.

Model Type Design2Code ChartMimic MMCode InfiBench-V
(Low-Level) (Low-Level) (pass@1) (Acc)

Qwen2.5-Coder-7B-Instruct Code LLM 0.0 6.1 6.1 1.5
OpenCodeReasoning-Nemotron-7B Code LLM 0.2 2.8 1.5 1.2
OpenThinker2-7B Code LLM 0.0 2.4 1.9 1.2

Qwen2.5-VL-7B-Instruct Base VLM 83.4 39.5 5.3 54.0
VisCodex-8B (Ours) Merged VLM 90.1 74.8 11.0 72.1

B.9 COMPARISON WITH SPECIALIZED CHART MODEL

To further validate the effectiveness of VisCodex against specialized multimodal code models, we
conducted a direct comparative analysis with ChartCoder (Zhao et al., 2025a), a state-of-the-art model
explicitly optimized for chart-to-code generation. As shown in Table 14, VisCodex-8B consistently
outperforms the specialized ChartCoder across all evaluated benchmarks.

Even on the domain-specific ChartMimic benchmark, where ChartCoder is specifically tuned, Vis-
Codex achieves superior performance (74.8 vs. 72.5 on Low-Level metrics and 74.1 vs. 74.0 on
High-Level metrics). Furthermore, on generalized tasks such as Design2Code and InfiBench-V,
VisCodex demonstrates a significant advantage (e.g., 90.1 vs. 36.7 on Design2Code Low-Level).
These results highlight the core advantage of VisCodex: it functions as a unified multimodal code
generator that matches or exceeds the performance of domain-specific specialists while maintaining
robust versatility across diverse coding tasks.

Table 14: Performance comparison between ChartCoder and VisCodex-8B across multimodal coding
benchmarks. VisCodex outperforms the specialist model on its specific domain (ChartMimic) while
maintaining significantly higher performance on general tasks.

Model Design2Code ChartMimic MMCode InfiBench-V
Low-level High-level Low-level High-level pass@1 Acc.

ChartCoder (Specialist) 36.7 82.7 72.5 74.0 2.7 32.3
VisCodex-8B (Ours) 90.1 90.9 74.8 74.1 11.0 72.1

B.10 SENSITIVITY ANALYSIS OF MERGE COEFFICIENT λ

To address concerns regarding the heuristic selection of the balancing factor λ and to evalu-
ate the robustness of our model merging strategy, we conducted a comprehensive sensitivity
analysis. We evaluated the performance of VisCodex-8B across a range of mixing coefficients
λ ∈ {0.0, 0.7, 0.8, 0.85, 0.9}. Recall that according to Equation 4, λ controls the weight of the
vision-language task vector (τvlm), while (1− λ) controls the coding task vector (τcode).

As presented in Table 15, the merged model exhibits a high degree of robustness rather than relying
on a narrow heuristic optimum:

• Broad Performance Plateau: For λ values between 0.7 and 0.9, visual understanding capa-
bilities (measured by Design2Code and ChartMimic) remain consistently high, with minimal
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variance. This suggests that the semantic directions of the two task vectors do not destructively
interfere.

• Reasoning vs. Vision Trade-off: As λ decreases (increasing the influence of τcode), we observe
a steady improvement in algorithmic reasoning, with MMCode pass@1 increasing from 7.2 to
11.0.

• Necessity of Multimodal Alignment: Critically, setting λ = 0.0 (effectively using only the
code adaptation shift) results in a significant performance drop on visually intensive tasks (e.g.,
ChartMimic average score drops from 74.5 to 69.8). This confirms that the VLM task vector
(τvlm) provides essential multimodal alignment that cannot be supplied by the code model alone.

Table 15: Sensitivity analysis of the merge coefficient λ on VisCodex-8B performance. The “Avg”
columns represent the average of Low-Level and High-Level scores for the respective benchmarks.

λ Design2Code (Avg) ChartMimic (Avg) MMCode (pass@1)
0.9 90.6 73.5 7.2
0.85 90.5 74.1 7.6
0.8 90.5 74.2 8.0
0.7 90.5 74.5 11.0
0.0 89.7 69.8 11.0

B.11 ROBUSTNESS ANALYSIS UNDER VISUAL DEGRADATION

To assess the robustness of VisCodex under degraded visual conditions, we constructed a Composite
Noisy Dataset derived from the Design2Code benchmark. For each sampled instance, we randomly
applied either Gaussian Blur or Low-Resolution Downsampling to simulate realistic low-quality
images found in real-world scenarios. We evaluated both our model and the baseline under this
mixed-noise setting.

As shown in Table 16, VisCodex-8B exhibits stronger resilience to noise compared to the baseline.
While the baseline Qwen2.5-VL-7B-Instruct loses 0.8 points on High-Level metrics, VisCodex drops
only 0.2 points. Furthermore, on Low-Level metrics, our model maintains a high score of 89.6 even
under noisy conditions, significantly outperforming the baseline’s original performance (83.4). These
results indicate that merging code priors does not weaken visual robustness; rather, it appears to
stabilize structural inference even when visual details are degraded.

Table 16: Robustness analysis on the Composite Noisy Dataset (Design2Code). The “Noisy” condi-
tion includes random application of Gaussian Blur or Downsampling. ∆indicates the performance
drop under noisy conditions.

Model Condition Low-Level High-Level
Qwen2.5-VL-7B-Instruct Original 83.4 87.6
Qwen2.5-VL-7B-Instruct Noisy 82.7-0.7 86.8-0.8

VisCodex-8B Original 90.1 90.9
VisCodex-8B Noisy 89.6-0.5 90.7-0.2

B.12 IMPACT ON GENERAL VISUAL QUESTION ANSWERING

A potential concern with model merging is catastrophic forgetting, where enhancing code capabilities
might degrade general visual understanding. To evaluate this, we assessed the model on three general
vision-language benchmarks: TextVQA (Singh et al., 2019), ChartQA (Masry et al., 2022), and
GQA (Hudson & Manning, 2019).

As presented in Table 17, the performance differences between VisCodex and the baseline are minimal
(< 1.3 on TextVQA and < 0.8 on GQA) and fall within typical variance observed in model merging
studies. This indicates no meaningful catastrophic forgetting. Crucially, these minor fluctuations are
acceptable trade-offs given the substantial absolute gains achieved across multimodal code-generation
tasks (e.g., +6.7 points on Design2Code, +35.3 points on ChartMimic, and +5.7 points on MMCode).
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It is also worth noting that while general TextVQA drops slightly, domain-specific UI text recognition
(measured by Design2Code Low-Level metrics) actually improves significantly from 83.4 to 90.1.

Table 17: Assessment of Catastrophic Forgetting on general VQA benchmarks. The slight decreases
in performance are negligible compared to the significant gains in coding tasks.

Model TextVQA ChartQA GQA
Baseline (Qwen2.5-VL-7B-Instruct) 84.53 93.96 60.36
Model Merge 83.23 92.96 59.65

C TRAINING PARAMETERS AND TRAINING COST

All models are trained on our instruction-tuning dataset of 598K examples from MCD. We employ
the AdamW optimizer with a 10% linear warm-up followed by a cosine learning rate decay. The
maximum learning rate is set to 1× 10−5, with a batch size of 128 and a maximum sequence length
of 8K tokens. Training the 8B model for two epochs takes approximately 16 hours on 8 nodes, each
equipped with 8×A100 GPUs with 40 GB VRAMs. Training the 33B model under the same setup
takes approximately 2 days.

D HUMAN EVALUATION

To assess the alignment between automatic evaluation and human expert judgment, we randomly
sampled 100 questions from InfiBench-V and selected five MLLMs for evaluation: GPT-4o-mini,
VisCodex-33B, VisCodex-8B, Qwen2.5-VL-7B-Instruct, and Qwen2.5-VL-32B-Instruct. Each model
was tasked with generating responses to all sampled questions, resulting in a total of 500 model
outputs.

Annotator Details and Protocol. We employed three annotators, all of whom are graduate students
in computer science with strong domain expertise relevant to the benchmark tasks. Although all
annotators are non-native English speakers, they are proficient in English and familiar with the style
and requirements of the benchmark questions.

Before the main evaluation, the annotators underwent a comprehensive training and calibration
process, including practice with a subset of the dataset, review of the evaluation criteria, and targeted
feedback to ensure consistent understanding of the annotation standards. A final readiness test was
conducted to confirm alignment among annotators prior to the main evaluation phase.

During evaluation, all model-generated responses were anonymized and presented in a standardized
format, removing all identifying information about the originating model. Annotators indepen-
dently evaluated the samples without communication or influence from others, ensuring impartiality
throughout the process.

For each question, the annotators were provided with the question, the model-generated answer, and
the accepted StackOverflow answer as a reference. Each annotator was asked to indicate whether the
model’s answer correctly solved the problem (1 for correct, 0 for incorrect).

Automatic Evaluation. For the automatic InfiBench-V evaluation, we adopted the same metrics as
described in the main text, assigning a score in the range 0–100 to each response. For the purpose
of agreement analysis with human annotations, we further mapped these scores to binary “pass” or
“fail” labels according to a defined threshold. This binarization enabled direct comparison between
the automatic evaluation and the binary judgments provided by human annotators.

Agreement Analysis. Table 18 reports the pairwise agreement ratios (as in MT-Bench (Zheng
et al., 2023)) among InfiBench-V and the human annotators, as well as between human annotators
themselves. On average, InfiBench-V achieved an agreement rate of 86.07% with human annotators,
which is higher than the inter-annotator agreement (79.33%). Notably, the agreement rate of InfiBench-
V is comparable to that reported in previous works (Li et al., 2024c) (85.1%), demonstrating the
reliability of our evaluation method.
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Table 18: Agreement ratios between InfiBench-V and human annotators, as well as between annota-
tors.

Judge A-1 A-2 A-3 Average

InfiBench-V 87.00% 87.00% 84.20% 86.07%
A-1 – 80.80% 79.20% 80.00%
A-2 80.80% – 78.00% 79.40%
A-3 79.20% 78.00% – 78.60%

Threshold Sensitivity Analysis To rigorously determine the optimal mapping from continuous
0–100 scores to binary pass/fail labels, we conducted a comprehensive threshold sweep. We evaluated
thresholds τ ranging from 0 to 100 with a step size of 5. For each threshold, a model response with
a score S ≥ τ was classified as a “pass,” and the resulting labels were compared against human
expert annotations to calculate the agreement rate. As shown in Table 19, the agreement rate steadily
increases with the strictness of the threshold, peaking at 86.07% for thresholds of 80 and 85. Based
on this sensitivity analysis, we selected τ = 85 as the decision boundary to maximize alignment with
human judgment.

Table 19: Threshold sweep analysis for InfiBench-V. We evaluated agreement rates between automatic
scores and human annotations across thresholds from 0 to 100. The highest agreement (86.07%) is
achieved at thresholds of 80 and 85.

Threshold Agreement (%) Threshold Agreement (%) Threshold Agreement (%)

0 68.29 35 75.54 70 85.40
5 68.90 40 77.85 75 85.91

10 68.90 45 78.39 80 86.07
15 69.31 50 81.98 85 86.07
20 69.92 55 84.01 90 85.40
25 73.10 60 84.62 95 83.33
30 73.64 65 85.40 100 81.98

E DATA STATISTICS

E.1 DATA STATISTICS OF MCD

To ensure a fair evaluation and prevent data contamination, we performed deduplication between our
dataset and the evaluation benchmarks using SimHash (Manku et al., 2007), removing any data with
a similarity score greater than 0.9 to the benchmark test samples. After deduplication, the resulting
dataset contains a total of 598k examples across four domains: HTML, Chart, QA, and Algorithm.
Table 20 presents the statistics of the dataset, including the number of examples and the average token
length (with standard deviation) for each domain.

Table 20: Statistics of the MCD by domain. For each domain, the number of samples and the average
token length (mean ± standard deviation) are reported.

Data HTML Chart QA Algorithm
Size 200k 210k 59k 129k
Avg Length 632±144 551±190 1022±776 969±321

E.2 DISTRIBUTION OF SELECTED BENCHMARK QUESTIONS IN INFIBENCH-V

Table 21 presents the detailed distribution of questions in InfiBench-V across various programming
domains and languages. The benchmark consists of five main categories: Front-End, Back-End,
Data Science & Machine Learning (DS & ML), IT Operations (IT Ops), and Mobile & Desktop
development, covering a total of 13 programming languages and 322 carefully curated questions.
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Table 21: Distribution of InfiBench-V questions across programming domains and languages.

Category Language Count Category Total

Front-End
CSS 30

100HTML 39
JavaScript 31

Back-End

Java 30

75

PHP 24
Go 5
Ruby 5
Rust 6
C++ 5

DS & ML Python 90 95R 5

IT Ops Bash 11 11

Mobile & Desktop Dart 41 41

Total 322 322

E.3 IMAGE QUALITY ANALYSIS OF INFIBENCH-V

To address concerns regarding the robustness of InfiBench-V against realistic visual noise, we
conducted a quantitative analysis of image quality across all 322 benchmark samples. This analysis
focuses on image resolution and clarity (measured via the Variance of Laplacian) to ensure the
benchmark accurately reflects real-world scenarios.

Resolution and Blurriness. As shown in Table 22, the dataset retains a natural distribution of image
qualities found in developer communities. Specifically, 10.56% of the samples are low-resolution
(< 50k pixels), typically representing small UI elements or cropped error messages. Additionally,
4.66% of the images are detected as blurry (Laplacian variance < 100), with extreme cases scoring as
low as 1.28. This confirms that InfiBench-V includes challenging, low-quality visual inputs, testing
the model’s ability to reason under imperfect conditions.

Verification of Consistency. Despite the variation in image quality, the visual-text consistency is
guaranteed by the source. We strictly filter for Stack Overflow questions with an Accepted Answer,
ensuring that the provided images—regardless of their resolution—contain sufficient information for
human experts to solve the problem.

Table 22: Image quality statistics of InfiBench-V. The presence of low-resolution and blurry images
confirms that the benchmark evaluates robustness against real-world visual noise.

Metric Value
Total Samples 322
Average Resolution 918× 552
Low Resolution (< 50, 000 pixels) 10.56%
Blurry Images (Laplacian Var < 100) 4.66%
Extreme Blur Case (Min Variance) 1.28

E.4 CHART CATEGORY STATISTICS

We provide a statistical analysis of the chart categories contained in the Chart-to-Code portion of
the MCD dataset. The chart data spans a broad range of visualization types, including common
statistical plots (e.g., bar, line, pie), multi-dimensional charts (e.g., treemap, heatmap, violin), and
specialized forms such as candlestick, quiver, radar, and density plots. Table 23 reports the percentage
distribution across all 28 chart categories.
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Table 23: Percentage distribution of chart categories within the MCD dataset (206,000 chart samples).

Category bar pie line radar 3d area combination quiver scatter box
Percent (%) 15.84 12.06 10.02 4.36 4.35 4.34 4.14 4.04 3.63 3.42
Category violin heatmap rose treemap multi-axes bar num candlestick bubble funnel
Percent (%) 3.03 3.03 3.03 3.03 2.95 2.56 2.17 2.17 2.10
Category ring graph errorbar error point inset histogram density
Percent (%) 2.10 1.89 1.24 1.24 0.93 0.93 0.93

F ANALYSIS OF MODEL MERGE

F.1 TASK VECTOR PARAMETER-SPACE ANALYSIS
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(a) 8B Scale: Cosine similarity between τvlm and τcode
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(b) 33B Scale: Cosine similarity between τvlm and τcode

Figure 3: Layer-wise cosine similarity analysis of the task vectors used to construct VisCodex. (a)
illustrates the orthogonality at the 7B scale (between Qwen2.5-VL-7B-Instruct and the Code LLM),
and (b) illustrates the orthogonality at the 33B scale (between Qwen2.5-VL-32B-Instruct and the Code
LLM). The consistently low similarity scores across all layers confirm that the parameter updates
for visual grounding (τvlm) and code reasoning (τcode) occupy disjoint subspaces, minimizing bias
accumulation during merging.

To understand how the two task vectors interact during model merging, we conduct a layer-wise
geometric analysis of the vision–language task vector (τvlm) and the coding task vector (τcode). For
each transformer layer l, we compute their cosine similarity:

Sl = cos(τ lvlm, τ lcode) =
τ lvlm · τ lcode
|τ lvlm||τ lcode|

. (5)

Figure 3 reports the cosine similarity for both the 8B and 33B scales. Across layers, the cosine values
remain consistently small, with global means of 0.026 for the 8B model and 0.009 for the 33B model,
indicating that the two task vectors exhibit only weak directional correlation in parameter space. This
suggests that the update directions induced by visual–language training and code-reasoning training
differ substantially across the depth of the network.
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In addition to directional similarity, we also examine the layer-wise magnitudes of the task vec-
tors. On average, τvlm has a substantially larger norm than τcode, with mean values of 48.31 and
18.40, respectively, yielding an average magnitude ratio of 2.69. While vector magnitude does not
directly correspond to functional importance, these measurements provide complementary geometric
information about the relative strength of the updates contributed by each task.

Taken together, the low cosine similarity and the observed magnitude relationship indicate that the
two task vectors influence the parameter space in distinct and non-overwriting ways. Although this
geometric analysis does not fully characterize the functional interactions between the two tasks,
it offers supportive evidence consistent with our empirical finding that linear merging can retain
capabilities from both vision–language and code-reasoning domains.

F.2 REPRESENTATIONAL SIMILARITY ANALYSIS
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Figure 4: Layer-wise Representational Similarity Analysis (CKA). The plot illustrates three key
phases: (1) Visual Processing Robustness to Parameter Shifts in early layers under multimodal inputs,
(2) Deep Integration of code reasoning in layers 20–26, and (3) Output Interface Re-alignment at the
final layer.

To better understand the mechanism behind our model merging strategy, we conduct a layer-wise
Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008) using Centered Kernel
Alignment (CKA) (Kornblith et al., 2019). We compare the internal hidden states of the merged
model against its two source models—the Base VLM (Qwen2.5-VL-7B-Instruct) and the Code LLM
(OpenCodeReasoning-Nemotron-1.1-7B). We analyze representations using input samples drawn
from the MMCode (Li et al., 2024b) under two settings: (1) Text-only Inputs to probe reasoning
integration, and (2) Multimodal Inputs to investigate visual processing stability. The results are
illustrated in Figure 4.

Integration of Reasoning Capabilities (Layers 20–26). A critical question regarding model
merging is how distinct capabilities are combined in deeper layers. Our analysis shows that under
text-only reasoning prompts, the Base VLM and Code LLM exhibit representational divergence
in deep layers, with CKA similarity dropping to the 0.83–0.91 range. In this context, the merged
model maintains an extremely high similarity to the Base VLM (> 0.97) while simultaneously
exhibiting increased similarity to the Code LLM (> 0.86) compared to the baseline. This suggests
that rather than creating a distinct new “bridge” representation, the merging process effectively shifts
the VLM’s manifold towards the Code LLM’s reasoning subspace without disrupting its original
semantic continuity. This injection of code priors likely contributes to the data efficiency observed in
Appendix B.6, where the merged model facilitates robust reasoning capabilities even in the absence
of explicit algorithmic training data.
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Visual Processing Robustness to Parameter Shifts (Layers 3–10). When processing multimodal
inputs, we observe a notable trajectory in the shallow-to-middle layers (Layers 3–10), where the simi-
larity to the Base VLM drops to approximately 0.78. This divergence likely reflects the interference
introduced by the Code LLM task vector, which was trained solely on text and lacks alignment with
visual tokens. Crucially, this divergence is temporary; representations successfully converge back
to the VLM’s semantic space in deep layers (> 0.97 at Layer 20+). This pattern demonstrates the
intrinsic robustness of the VLM backbone: it effectively tolerates the parameter shifts induced by
the code task vector in early layers and recovers the necessary visual semantics for final reasoning.
This resilience aligns with the findings in the sensitivity analysis (Appendix B.10), where high visual
performance is maintained despite these representational perturbations.

Output Space Alignment (Layer 27). At the final layer, the model shows a decisive alignment
back towards the Base VLM distribution (similarity stays high at 0.91), while similarity to the Code
LLM decreases. This behavior is mechanistically consistent with the observation in Appendix F.1,
where the VLM task vector has a significantly larger magnitude than the Code task vector. The
dominance of the VLM direction at the output layer ensures that the enriched internal representations
are projected back into the VLM’s instruction-following subspace. This alignment preserves the
model’s conversational interface and general multimodal capabilities (e.g., TextVQA), mitigating
catastrophic forgetting as observed in Appendix B.12.

F.3 COMPARISON WITH BACKBONE REPLACEMENT STRATEGY

To further validate the superiority of our model merging strategy over the direct backbone replacement
baseline (as discussed in Table 4), we conducted a CKA analysis on the Design2Code task. This
analysis probes how well the models maintain representational alignment with the original VLM when
processing multimodal inputs (images + instructions). We compared the internal representations of
the Merged Model against the Backbone Replacement Model (i.e., using the Code LLM backbone
directly with the original vision encoder).
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Figure 5: CKA Analysis on Design2Code. Comparison of representational similarity to the original
VLM. The Merged Model (Blue) maintains high alignment across all layers. In contrast, the Backbone
Replacement Model (Orange) exhibits a significant Visual-Semantic Misalignment in the final
layers (CKA drops to ∼ 0.39). This divergence indicates that without the initialization provided by
model merging, the direct backbone replacement fails to preserve the critical alignment between the
visual encoder and the language reasoning space.
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The results, illustrated in Figure 5, reveal a critical representational divergence in the backbone
replacement strategy:

• Visual Semantic Alignment (Merged Model): The Merged Model maintains consistently
high CKA scores (> 0.91) across all transformer layers, achieving an overall average CKA of
0.994. This confirms that our merging process preserves the effective alignment between the
pre-trained vision projector and the language backbone. Consequently, the model effectively
interprets visual tokens and maps them to the appropriate semantic space without requiring
extensive re-alignment training.

• Visual-Semantic Misalignment (Backbone Replacement): While the Replacement Model
shows high similarity in shallow layers (attributable to the shared ancestry of the base models),
resulting in a high overall average CKA of 0.939, it exhibits a sharp divergence in the deep
layers (Layers 27–28), where CKA scores drop to ∼ 0.39. We identify this phenomenon as
visual-semantic misalignment: although low-level features are processed similarly, the pure
Code LLM backbone—lacking the ”mixed” initialization provided by merging—fails to project
these visual features into the correct instruction-following subspace at the output stage.

This analysis empirically demonstrates why Model Merging serves as a superior initialization strat-
egy. Unlike backbone replacement, which introduces a mismatch in visual-textual alignment and
necessitates substantial computational resources to re-align the projector, Model Merging seamlessly
grafts code capabilities while keeping the multimodal interface intact, enabling more efficient and
robust fine-tuning.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G PROMPT

G.1 PROMPT TEMPLATE FOR GPT-4O AUTOMATIC EVALUATION ON INFIBENCH-V

Prompt Template for GPT-4o Automatic Evaluation on InfiBench-V

You are a professional code assistant evaluation expert. Your task is to assess the quality
of a model-generated answer to a programming-related question by comparing it with the
gold reference answer. The question includes both text and a screenshot image (which may
contain code, error messages, or UI context). You must consider both modalities when
evaluating the answer.

Please first read the question (text + image), then read the model-generated answer, and
compare it carefully with the reference (gold) answer.

You must provide clear and detailed justifications before assigning scores. The scoring
dimensions are weighted as follows: Correctness (50 points) and Completeness (50 points).

Below is a programming question-answering example.

[Question] {question}

[Note] The screenshot image provided alongside this question is part of the question context.
You must use it to fully understand the problem being asked.
[Screenshot Image]
{base64 image}

[Model Answer]
{model answer}

[Reference Answer]
{reference answer}

Please evaluate the model’s answer based on the following two dimensions:

1. Correctness (0–50): Is the answer factually accurate and technically correct? Does it
address the problem without errors or misleading information?
2. Completeness (0–50): Does the answer cover all critical elements present in the reference
answer? Are any key details missing?

—
Justification:
1. Correctness: <Your reasoning here>
2. Completeness: <Your reasoning here>

Scores:
• Correctness: X/50
• Completeness: X/50

Total Score: X/100
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G.2 PROMPT TEMPLATE FOR IMAGE-DRIVEN HTML GENERATION

Prompt Template for Image-Driven HTML Generation

I will provide you with an HTML image. Please design a perfect HTML based on the style of
this image.
Include all CSS code in the HTML file itself. Do not assume or include any dependencies on
external files. There is no need to incorporate JavaScript for dynamic interactions. Ensure
careful attention to details such as element sizes, text formatting, positioning, colors, and the
overall layout. Ensure all content is fully visible within a single, non-scrollable screen, and
delete or redesign any parts that exceed this boundary. If the original style does not meet your
needs, feel free to change it.
{HTML Image}
Your response should include the complete content of the HTML and CSS file:
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H ADDITIONAL EXAMPLES

H.1 MMCODE CASE 1

Question: Alice has a binary string. She thinks a binary string is beautiful if and only if it
doesn’t contain the substring ”010”.
In one step, Alice can change a 0 to a 1 or vice versa. Count and print the minimum number of
steps needed to make Alice see the string as beautiful.
Example
b = 010
She can change any one element and have a beautiful string.
Sample Input 0
STDIN Function
----- --------
7 length of string n = 7
0101010 b = ’0101010’

Sample Output 0
2
Explanation 0:
In this sample, b = ”0101010”
The figure on the right shows a way to get rid of each instance of ”010”: Make the string
beautiful by changing 2 characters (b[2] and b[5]).

Qwen2.5-VL-7B-Instruct:

def beautifulBinaryString(b):
b = list(b)
count = 0
for i in range(len(b) - 2):

if b[i] == ’0’ and b[i + 1] == ’1’ and b[i + 2] == ’0’:
b[i] = ’1’
b[i + 1] = ’0’
count += 2

return count

✗

VisCodex-8B:
To solve the problem of making a binary string “beautiful” (i.e., removing all occurrences of the substring “010”), we need to identify and
count these substrings within the given binary string. For each occurrence of “010”, we will determine the minimal changes required to
eliminate it.
Here’s how we can approach the problem:
1. Identify Occurrences: Traverse through the string and find all instances of the substring “010”.
2. Count Changes: For each found “010”, determine the minimal number of changes required to break this pattern. Typically, changing either
the middle ‘1‘ to ‘0‘ or the last ‘0‘ to ‘1‘ suffices.
3. Sum Up Changes: Sum up the changes for all identified “010” substrings to get the total number of steps required.

Let’s implement this logic in Python:

def beautifulBinaryString(b):
# Initialize the counter for the number of changes
changes = 0

# Iterate over the string to find all occurrences of "010"
i = 0
while i <= len(b) - 3:

if b[i:i+3] == "010":
# We found a "010" pattern, increment the changes counter
changes += 1
# Move the index past this pattern
i += 3

else:
# Move to the next character
i += 1

return changes

✓

Figure 6: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.

H.2 MMCODE CASE 2
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Question: You have most definitely heard the legend of King Arthur and the Knights of the
Round Table. Almost all versions of this story proudly point out that the roundness of the Round
Table is closely related to Arthur’s belief of equality among the Knights. That is a lie! In fact,
Arthur’s choice of table is conditioned by his childhood traumas.
In fact, Arthur was forced to clean up quadratic tables from a young age after a tournament
in pick-up sticks1 had been played on them. After the tournament, typically there would be a
bunch of sticks on the table that do not touch each other. In the spirit of the game, the organizers
issued strict regulations for the table cleaners. More precisely, the sticks on the table need to be
removed one by one in a way that the cleaners pull them in the shortest way towards the edge of
the table closest to where they are currently sitting. They also mustn’t rotate or touch the other
sticks while doing this (not even in the edge points).
In this task, we will represent the table in the coordinate system with a square that has opposite
points in the coordinates (0, 0) and (10 000, 10 000), whereas the sticks will be represented
with straight line segments that lie within that square. We will assume that Arthur is sitting at the
edge of the table lying on the x-axis. Then the movement of the stick comes down to translating
the line segment along the shortest path towards the x-axis until the stick falls off the table (as
shown in the right image). It is your task to help Arthur determine the order of stick movements
that meets the requirements from the previous paragraph.

Qwen2.5-VL-7B-Instruct:

import sys
input = sys.stdin.readline

def solve():
n = int(input())
ls = []
for _ in range(n):

(x1, y1, x2, y2) = map(int, input().split())
ls.append((x1, y1, x2, y2))

ls.sort(key=lambda x: (x[1] - x[3], x[0]))
ans = []
for (x1, y1, x2, y2) in ls:

if y1 == y2:
ans.append(1)

else:
ans.append(2)

print(*ans)
solve()

✗

VisCodex-8B:

def remove_sticks_order(n, sticks):
# Create a list of tuples where each tuple is (index, x1, y1, x2, y2)
indexed_sticks = [(i + 1, x1, y1, x2, y2) for i, (x1, y1, x2, y2) in enumerate(sticks)]

# Sort the sticks based on the y-coordinate in descending order
indexed_sticks.sort(key=lambda x: (-x[2], -x[4]))

# Extract the indices of the sorted sticks
sorted_indices = [stick[0] for stick in indexed_sticks]

return sorted_indices

# Example usage:
if __name__ == "__main__":

import sys
input = sys.stdin.read
data = input().split()

n = int(data[0])
sticks = []
index = 1
for _ in range(n):

x1 = int(data[index])
y1 = int(data[index + 1])
x2 = int(data[index + 2])
y2 = int(data[index + 3])
sticks.append((x1, y1, x2, y2))
index += 4

result = remove_sticks_order(n, sticks)
print(" ".join(map(str, result)))

✓

Figure 7: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.
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H.3 INFIBENCH-V CASE 1

Question: I have a dataset with absolute numbers for various variants over time, and I want to
create a plot similar to the one shown in the image, depicting the abundance of these variants
over time. I am working in Python, and I would prefer to use matplotlib, although other libraries
are also acceptable if necessary.
Does Python offer any specific function or tool for generating this type of plot? Additionally,
what is the common name for this kind of plot, as I have encountered it before but am having
trouble finding relevant resources online?

Response: The type of plot shown in the image is commonly known as an ”area plot” or ”stacked area plot.” In Python, you can create such plots using the
matplotlib library. Although there isn’t a specific function called ”area plot” in matplotlib, you can use the stackplot function to generate this type of
visualization.
Here’s a basic example of how you can create a stacked area plot using matplotlib:

import matplotlib.pyplot as plt
import numpy as np

# Example data
dates = np.arange(’2021-01’, ’2021-03’, dtype=’datetime64[D]’)
variant1 = np.random.rand(len(dates))
variant2 = np.random.rand(len(dates))
variant3 = np.random.rand(len(dates))

# Normalize data to sum to 1 for each day
total = variant1 + variant2 + variant3
variant1 /= total
variant2 /= total
variant3 /= total

# Create stacked area plot
plt.stackplot(dates, variant1, variant2, variant3, labels=[’Variant 1’, ’Variant 2’, ’Variant 3’], alpha=0.8)
plt.legend(loc=’upper left’)
plt.xlabel(’Date’)
plt.ylabel(’Frequency (%)’)
plt.title(’Abundance of Variants Over Time’)
plt.show()

In this example, variant1, variant2, and variant3 are arrays representing the frequencies of different variants over time. You should replace these with your
actual data. Make sure your data is normalized (i.e., the sum of all variants for each time point should equal 1, or 100% if expressed in percentage terms) before
plotting.
If you prefer using pandas, you can also leverage its capabilities to simplify data manipulation and plotting:

import pandas as pd
import matplotlib.pyplot as plt

# Example data
data = {

’Date’: pd.date_range(start=’2021-01-01’, periods=60, freq=’D’),
’Variant1’: np.random.rand(60),
’Variant2’: np.random.rand(60),
’Variant3’: np.random.rand(60)

}

df = pd.DataFrame(data)
df.set_index(’Date’, inplace=True)

# Normalize data to sum to 1 for each day
df = df.div(df.sum(axis=1), axis=0)

# Plot
df.plot.area(alpha=0.8)
plt.ylabel(’Frequency (%)’)
plt.title(’Abundance of Variants Over Time’)
plt.show()

This approach simplifies the handling of data, especially if it’s already in a pandas DataFrame format. Adjust the data and labels as needed for your specific dataset.

Category: DS & ML——Python
Evaluation Criteria: Keyword Matching & GPT-4o
Keywords: stackplot, matplotlib
Keyword Matching Score: 100
GPT-4o Score: 100

Total Score: 100

Figure 8: A case of InfiBench-V from the DS & ML category.
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H.4 INFIBENCH-V CASE 2

Question: I attempted to change the colors in my macOS Terminal by following a guide and
modifying my .bash profile file. After creating and saving the .bash profile, every
time I open the Terminal, I encounter the following errors as shown in the screenshot on the
right:
Despite deleting the .bash profile, the issue persists. Every command I enter is followed
by these errors:

-bash: git: command not found
-bash: gt: command not found
-bash: /dev/null: Permission denied

Here is the content I added to the .bash profile file:

export CLICOLOR=1
export LSCOLORS=GxBxCxDxexegedabagaced
parse_git_branch() {

git branch 2> /dev/null |
sed -e ’/ˆ[ˆ*]/d’ -e ’s/* (.*)/ (\1)/’

}
export PS1="\e[0;35m->>

\e[1;34m\W\e[0;32m\$(parse_git_branch)\e[0;37m $ "

Please help me resolve these issues and understand why these errors are occurring.

Response:
The errors you’re encountering are likely due to incorrect syntax in your .bash profile file. Let’s address each issue:

1. Incorrect Redirection Symbol: In your parse git branch() function, you used &gt; instead of > for redirecting output to /dev/null. The correct
line should be:

git branch 2> /dev/null |

2. Extra Spaces in PS1: Your PS1 variable has some extra spaces that might cause issues. It should look like this:

export PS1="\e[0;35m&gt;&gt; \e[1;34m\W\e[0;32m\$(parse_git_branch)\e[0;37m $ "

Make sure there are no unintended spaces around special characters or within the escape sequences.
3. Check for Hidden Characters: Sometimes, copy-pasting from certain editors or websites can introduce hidden characters. Ensure your .bash profile

doesn’t contain any non-printable characters. You can use a text editor that shows whitespace or use a command-line tool to check for them.
4. File Permissions: Ensure your .bash profile file has the correct permissions. You can set it with:

chmod 644 ˜/.bash_profile

5. Recreate .bash profile: If the problem persists, try recreating the .bash profile file manually without copying and pasting. Open a new terminal and type
the commands directly into a new file.

After making these changes, save the file and restart your terminal session. This should resolve the errors you’re seeing. If the problem continues, double-check for
any other syntax errors or unexpected characters in the file.

Category: IT Ops——Bash
Judge: GPT-4o

1. Correctness:

• The model answer correctly identifies the primary issue with the .bash profile file, which is the use of HTML entities (&gt;) instead of the correct
characters (>). This aligns with the reference answer.

• The model also addresses the potential for non-printable characters and file permissions, which, while not mentioned explicitly in the reference answer,
are reasonable considerations given the symptoms described.

• Additionally, the model suggests recreating the .bash profile file to ensure there are no hidden characters, which is a practical troubleshooting step
that could help resolve the persistent issues.

• Overall, the model’s suggestions are factually accurate and technically correct, directly addressing the syntax errors.

2. Completeness:

• The reference answer is concise and focuses solely on the issue of HTML entities, while the model answer provides a more comprehensive approach by
including additional troubleshooting steps (checking for hidden characters, file permissions, and recreating the file).

• Although the model answer includes extra steps beyond the reference answer, it does not miss any critical elements present in the reference. Instead, it
enhances the response with additional useful advice for resolving the issue thoroughly.

• The model’s completeness is therefore high, as it covers the key issue identified in the reference answer and adds further depth.

Scores:

• Correctness: 50/50

• Completeness: 50/50

Total Score: 100/100

Figure 9: A case of InfiBench-V from the IT Ops category.
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H.5 INFIBENCH-V CASE 3

Question: I am working on a 2D game in JavaScript and I am encountering a trigonometry
issue. The game involves a player shooting at a target, but there is an obstacle blocking the shot
between the player and the target. I need to find the coordinates of this obstacle.
Here is the information I have:

1. The starting coordinates of the shot are (x1, y1).

2. The ending coordinates of the shot are (x2, y2).

3. The distance from the starting coordinates to the obstacle is known.

How can I calculate the (x, y) coordinates of the obstacle along the line of the shot? Addition-
ally, I would appreciate an efficient solution implemented in JavaScript.
Please refer to the attached image for a visual representation of the problem.

Response:
To solve the problem of finding the coordinates of the obstacle along the line of the shot, you can use vector mathematics. Given the starting point (x1, y1), the
ending point (x2, y2), and the distance d from the starting point to the obstacle, you can calculate the coordinates of the obstacle as follows:

1. Calculate the direction vector from (x1, y1) to (x2, y2):

direction = (x2 − x1, y2 − y1)

2. Normalize the direction vector to get the unit vector in the direction of the shot:

magnitude =
√

(x2 − x1)2 + (y2 − y1)2

unit direction =

(
x2 − x1

magnitude
,

y2 − y1

magnitude

)
3. Multiply the unit direction vector by the distance d to find the displacement vector from the starting point to the obstacle:

displacement = (d × unit directionx, d × unit directiony)

4. Add the displacement vector to the starting point to get the coordinates of the obstacle:

obstaclex = x1 + displacementx

obstacley = y1 + displacementy

Here’s how you can implement this in JavaScript:

This code will give you the coordinates of the obstacle along the line of the shot, given the specified distance from the starting point.

Category: Front-End——JavaScript
Evaluation Criteria: Unit Testing
Sample Test Case:
input: {"x1":0.0,"y1":0.0,"x2":10.0,"y2":0.0,"distance":5.0},
expected: [5.0, 0.0],

actual: [5.0, 0.0], ...

(only partial cases shown)
Total Score: 100

Figure 10: A case of InfiBench-V from the Front-End category.
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H.6 INFIBENCH-V CASE 4

Question: I am developing a Flutter application where I want to draw a square on the screen at the location
of a click. The square should be centered at the click point, but currently, it is being drawn at seemingly random
positions. I am using ‘event.pointerEvent.localPosition.dx‘ and ‘event.pointerEvent.localPosition.dy‘ to obtain
the click coordinates, and I am passing these coordinates to ‘Rect.fromCenter‘ to draw the square.
Below is my Flutter code, which includes the ‘SpriteSquare‘ widget and the ‘handleAdd‘ function from its
parent widget, ‘MySpriteGame‘.
sprite square.dart

class SpriteSquare extends NodeWithSize {

Color color;
Function handler;
double left;
double top;

SpriteSquare(size, this.color, this.handler, this.top, this.left) :
super(size){

userInteractionEnabled = true;
}

@override handleEvent(SpriteBoxEvent event) {
handler(event);
return true;

}

@override
Future<void> paint(Canvas canvas) async {
canvas.drawRect(
Rect.fromLTWH(left, top, size.height, size.width),
Paint()..color = color

);
}

}

handleAdd

handleAdd(SpriteBoxEvent event) {
final _whitesquare = SpriteSquare(
const Size(50.0, 50.0),
const Color(0xFFFFFFFF),
handleRemoveSelf,
Offset(event.pointerEvent.localPosition.dx,

event.pointerEvent.localPosition.dy)
);
_background.addChild(_whitesquare);
return true;

}

Can you help me understand why the square is not being drawn centered at the click location and suggest how
to fix this issue?

Response:
The issue you’re experiencing with the square not being drawn centered at the click location is likely due to the way you’re calculating the position of the square. In
your current implementation, you’re using ‘Rect.fromLTWH‘ to draw the rectangle, which takes the left and top coordinates as the starting point of the rectangle. This
means that the rectangle is drawn starting from the top-left corner at the specified coordinates, rather than being centered at those coordinates.
To center the square at the click location, you need to adjust the ‘left‘ and ‘top‘ values by subtracting half of the square’s width and height, respectively. Here’s how
you can modify your code:
In the ‘handleAdd‘ function, calculate the ‘left‘ and ‘top‘ values like this:

handleAdd(SpriteBoxEvent event) {
final clickX = event.pointerEvent.localPosition.dx;
final clickY = event.pointerEvent.localPosition.dy;

// Calculate the top-left corner of the square so that it is centered at the click location
final left = clickX - 25.0; // Half of the square’s width (50.0 / 2)
final top = clickY - 25.0; // Half of the square’s height (50.0 / 2)

final _whitesquare = SpriteSquare(
const Size(50.0, 50.0),
const Color(0xFFFFFFFF),
handleRemoveSelf,
left,
top

);
_background.addChild(_whitesquare);
return true;

}

By adjusting the ‘left‘ and ‘top‘ values in this way, the square will be centered at the click location. This is because you’re effectively moving the top-left corner of the
square to a position that centers the square around the click point.

Category: Mobile & Desktop——Dart
Evaluation Criteria: GPT-4o
Correctness Score: 35/50
Completeness Score: 25/50
Total Score: 60

Figure 11: A case of InfiBench-V from the Mobile & Desktop category.
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H.7 INFIBENCH-V CASE 5

Question: In the context of a Ruby on Rails application using version 2.3.5 and Ruby 1.8.7, I am working
with three database tables: A, B, and C. The relationships are as follows: table A has multiple associated records
in table B, and table C also has multiple associated records in table B. There is no direct relationship between
tables A and C.
I want to query records from table A and include associated records from tables B and C. I can include table B
in the query using the following code:

A.all(:conditions => { :id => id }, :include => [:B])

However, I am unsure how to also include table C in the query. Despite extensive research, I have not found a
solution. How can I modify the query to include records from both tables B and C when querying table A’s
records?

Response:
To include associated records from both tables B and C when querying table A in a Ruby on Rails application, you need to ensure that the associations are set up
correctly in your models. Assuming you have the following associations:
- Table A has many records in table B (e.g., has many :bs).
- Table C has many records in table B (e.g., has many :cs).
You can use eager loading with :include to load associated records from both tables B and C. Here’s how you can modify your query:

A.all(:conditions => { :id => id }, :include => { :bs => :cs })

This assumes that:
- In model A, you have has many :bs.
- In model B, you have belongs to :a and has many :cs.
- In model C, you have has many :bs.
If the association between B and C is different, adjust the :include statement accordingly. If there is no direct relationship between A and C, but you want to
include C through B, make sure the association is correctly defined in your models.
Note: Since you’re using Rails 2.3.5 and Ruby 1.8.7, the syntax for eager loading is slightly different compared to newer versions of Rails. Make sure your models’
associations are set up correctly to reflect these relationships.

Category: Back-End——Ruby
Evaluation Criteria: GPT-4o
1. Correctness (0–50): The model answer provides a solution using Rails’ eager loading feature with the :include option in a way that aligns with Rails 2.3.5

syntax. It correctly assumes that B acts as an intermediary between A and C. The proposed query modification A.all(:conditions => { :id => id
}, :include => { :bs => :cs }) is a valid way to include associated records from both tables B and C through B. This matches the associations
depicted in the screenshot, where A is linked to B, and B is linked to C. The model answer elaborates on the associations needed in the models, which is technically
correct. However, the reference answer is more concise and directly points to the usage of :include => { :B => :C } without additional assumptions
about model setup. The model answer’s explanation about associations, while correct, is not necessary to resolve the specific query issue. Nonetheless, the
model’s proposed query would work given the correct associations. Therefore, the correctness of the model’s answer is high, albeit slightly verbose.

2. Completeness (0–50): The model answer provides a comprehensive response by explaining the underlying assumptions about the model associations, which
are essential to achieving the desired query behavior. It goes beyond the reference answer by elaborating on how associations should be set up in the models.
This additional detail provides a complete understanding of how the query interacts with the model structure. While the reference answer is more succinct, the
model answer’s thoroughness in explaining potential association configurations adds value and ensures that the user understands the prerequisites for the query to
function as intended. Thus, the model answer is complete but includes information that, although helpful, is not strictly necessary to address the question directly.

Scores:
- Correctness: 45/50
- Completeness: 45/50
Total Score: 90

Figure 12: A case of InfiBench-V from the Back-End category.
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H.8 FAILURE CASE

Despite achieving state-of-the-art performance, VisCodex exhibits limitations when handling highly
complex 3D spatial relationships or information-dense UI elements. As illustrated in Figure 13, we
identify primary failure modes in 3D spatial reconstruction (Row 1) and fine-grained UI content
generation (Row 4), where the model struggles to precisely reconstruct coordinate connectivity or
render detailed inner content.

Crucially, we observe that the backbone model, Qwen2.5-VL-7B-Instruct, exhibits similar failure
patterns on these challenging samples. Since VisCodex-8B is built upon the Qwen2.5-VL-7B-Instruct
architecture, it inherently inherits the visual perception capabilities—and effectively the limitations—
of this foundation model. This implies that the current visual understanding bottleneck stems primarily
from the base model rather than the merging strategy itself. Consequently, we anticipate that future
improvements in the visual capabilities of base models will directly drive further enhancements
in our framework’s multimodal code generation performance.

Ground Truth VisCodex-8B (Ours) GPT-4o Qwen2.5-VL-7B

Figure 13: Failure case analysis on ChartMimic and Design2Code. The model struggles with 3D
spatial structure and fine-grained UI details. Notably, these perceptual limitations mirror those of the
backbone model, Qwen2.5-VL-7B-Instruct, indicating that VisCodex-8B’s visual understanding is
bounded by its foundational architecture. Future advancements in base visual models are expected to
mitigate these issues.
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I TRAINING STABILITY AND THEORETICAL FOUNDATIONS OF TASK-VECTOR
MERGING

We analyze both the empirical optimization behavior and the theoretical underpinnings of task vector-
based model merging to demonstrate that VisCodex maintains stable training dynamics and operates
within a theoretically sound merging regime.

I.1 TRAINING STABILITY AND LOSS DYNAMICS
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(a) Training loss of VisCodex-8B during SFT.
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(b) Training loss of VisCodex-33B during SFT.

Figure 14: Smoothed training loss curves for VisCodex-8B and VisCodex-33B. Both models show
stable, monotonic loss reduction throughout SFT, indicating that task-vector merging does not
introduce gradient conflict or destabilize optimization.
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We examine the optimization dynamics of VisCodex-8B and VisCodex-33B during supervised
fine-tuning (SFT), following the one-shot task-vector merge.

As shown in Figure 14, training proceeds smoothly for both model sizes, with no spikes, oscillations,
or irregularities. This confirms that the merged initialization forms a stable starting point for
downstream training and does not cause accumulated bias or interfering gradients.

I.2 THEORETICAL FOUNDATIONS OF TASK-VECTOR COMPOSITION

Our empirical findings align with established theoretical results on model merging and task arithmetic.

Linear composition with minimal interference. Task vectors encode low-curvature directions
in parameter space corresponding to task-specific transformations. Prior work shows they can
be linearly combined to transfer capabilities across domains without retraining and with limited
interference (Ilharco et al., 2022). Fisher-weighted and interference-aware analyses further demon-
strate that successful merging occurs when tasks modify disjoint or weakly overlapping parameter
subsets (Matena & Raffel, 2022; Yadav et al., 2023).

Our case satisfies this condition:

• near-orthogonality between τvlm and τcode,
• smooth λ-sensitivity curves (Appendix B.10),
• high deep-layer CKA similarity >0.97 after merging (Appendix F.2).

These observations indicate that VisCodex lies in the theoretical regime where task-vector composition
is expected to succeed.

Cross-domain ability fusion. Recent studies show that merging supports the combination of
heterogeneous skills— such as vision + mathematical reasoning (Chen et al., 2025) or textual
preference integration into multimodal models (Li et al., 2025a)—because the underlying capabilities
tend to occupy separated parameter subspaces. Our results extend this direction: vision–language
understanding and code reasoning also exhibit such structural compatibility, enabling reliable fusion
via linear task-vector arithmetic.
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