Under review as a conference paper at ICLR 2026

VISCODEX: UNIFIED MULTIMODAL CODE
GENERATION VIA MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) have significantly advanced the inte-
gration of visual and textual understanding. However, their ability to generate code
from multimodal inputs remains limited. In this work, we introduce VisCodex, a
unified framework that seamlessly merges vision and coding language models to
empower MLLMs with strong multimodal code generation abilities. Leveraging
a task vector-based model merging technique, we integrate a state-of-the-art cod-
ing LLM into a strong vision-language backbone, while preserving both visual
comprehension and advanced coding skills. To support training and evaluation,
we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse
collection of 598k samples, including high-quality HTML code, chart image-code
pairs, image-augmented StackOverflow QA, and algorithmic problems. Further-
more, we propose InfiBench-V, a novel and challenging benchmark specifically
designed to assess models on visually-rich, real-world programming questions that
demand a nuanced understanding of both textual and visual contexts. Extensive
experiments show that VisCodex achieves state-of-the-art performance among
open-source MLLMs and approaches proprietary models like GPT-40, highlighting
the effectiveness of our model merging strategy and new datasets.

1 INTRODUCTION

Multimodal large language models (MLLMs) have achieved remarkable success in recent years,
demonstrating an impressive ability to understand and reason about the world by integrating informa-
tion from both visual and textual domains (Zhu et al., 2023} [L1u et al., 2023; |Bai et al., [2023)). These
models have pushed the boundaries of what is possible in tasks like visual question answering (VQA),
image captioning, and general multimodal conversation. However, a critical and highly practical
domain remains relatively underexplored: the generation of functional code from visual inputs.

This task, which we term multimodal code generation, presents a distinct set of challenges. It demands
not only a nuanced interpretation of visual elements—such as UI layouts, data chart structures, or
programming-related screenshots—but also the ability to translate these insights into syntactically
flawless and functionally correct code. While today’s multimodal models excel at visual description,
they often lack the deep programming knowledge required for robust code generation. This gap is
critical, as many modern development tasks, like translating a Ul mockup into HTML or replicating a
data chart, demand a seamless fusion of visual understanding and coding proficiency.

To bridge the gap between visual perception and code generation, we introduce VisCodex. Rather
than relying on costly pre-training, our approach efficiently creates a unified model by arithmetically
merging the parameters of a state-of-the-art vision-language model and a dedicated coding LLM.
Specifically, we adopt a model merging technique based on task vectors, which capture the parameter
shifts resulting from fine-tuning on specific domains (e.g., vision-language, coding). By linearly
combining these task vectors in the language model backbone—while keeping the vision encoder
and cross-modal projection modules intact—we jointly integrate advanced code understanding and
generation capabilities with nuanced visual perception. This enables the resulting model to simulta-
neously retain strong visual understanding and robust code generation ability, thereby significantly
enhancing its performance on multimodal coding tasks. Our experiments show that the merged model
significantly outperforms the original vision-language model on multimodal coding tasks.

Under review as a conference paper at ICLR 2026

To address the lack of high-quality, large-scale training data for multimodal code generation, We intro-
duce the Multimodal coding Dataset (McD), a comprehensive, instruction-tuning dataset comprising
598k samples. McD is meticulously curated from four diverse sources: (1) aesthetically enhanced
and structurally sound HTML code generated from webpage screenshots, (2) high-quality chart-to-
code pairs from real-world and synthetic sources, (3) image-augmented question-answer pairs from
StackOverflow, and (4) foundational algorithmic coding problems to preserve core reasoning abilities.

Furthermore, to rigorously assess the real-world performance of models on multimodal coding
QA task, we develop InfiBench-V, a new and challenging benchmark. InfiBench-V consists of
visually rich programming-related questions derived from real user scenarios where the images are
indispensable for arriving at the correct solution. It provides a more realistic and demanding testbed
than existing benchmarks that often focus on either text-only code QA or simpler visual tasks.

Our primary contributions are threefold:

1. We propose VisCodex, a novel approach for creating powerful multimodal code generators
by merging vision and coding models, demonstrating a new and efficient path to capability
enhancement.

2. We introduce McCD, a large-scale, high-quality dataset for instruction-tuning MLLMs on a wide
spectrum of multimodal coding tasks, and InfiBench-V, a challenging benchmark for realistic
evaluation. We will release both the dataset and benchmark to facilitate reproducibility and future
research.

3. We conduct extensive experiments showing that VisCodex significantly outperforms existing
open-source MLLMs and achieves performance competitive with leading proprietary models like
GPT-4o0, thereby setting a new state of the art for open-source multimodal code generation.

@ @ Enhanced HTML
You are a helpful assistant. You are a helpful assistant. Please = . o
Please provide the python provide the python code to plot a line = S
code to generate the image chart with four curves in red, green,
below: [blue, and orange, respectively. The T ‘,’ Chart Image t
- data for each curve are as follows: e de D:
with the vertical axis labeled 'acc' Multimodal _— & .

and the horizontal axis labeled
'SNR!

Coding
Dataset

(]
[-
¥ - 1
2t Algorithmic Code
Vision-Language Coding Language -
Model Model 598k in total
@ Primarily composed of backend Primarily composed of frontend languages,

languages, e.g., JAVA and PHP. e.g., CSS and JavaScripts,

Mobile and desktop development,
e.g., Dart

VisCodex InfiBench-V

1 obile &
Desktop
13%

You are a helpful
assistant. Please
provide the python
code to generate
the image right:

il e ..

Data science & machine learning,
Primarily written in Python and R

IT operations, Primarily written in Bash.

Span 13 programming languages

Figure 1: Illustration of the VisCodex pipeline. (a) Model merging strategy for unifying vision-
language and coding LLMs; (b) Data distribution and representative cases of MCD; (c) Category
breakdown and representative cases of InfiBench-V.

2 VISCODEX

2.1 MODEL ARCHITECTURE

A typical multimodal large language model (MLLM) is comprised of three primary components: a
vision encoder, a language model backbone, and a projection module to connect the two modalities
[20244). The vision encoder’s role is to extract visual features from input images. These features
are then projected by the projector module into the language embedding space. Subsequently, the

Under review as a conference paper at ICLR 2026

language model integrates these visual representations with textual inputs, enabling multimodal
understanding and reasoning.

Many existing MLLMs, such as earlier versions of Qwen-VL [Bai et al.[(2023)) and LLaVA [Li et al.
(2024a)), are limited by fixed image input resolutions, which curtails their flexibility in processing
images of varying sizes (Bai et al., [2023}; [Liu et al., [2023)). To overcome this limitation, Qwen2.5-
VL Wang et al.| (2024)); Bai et al.| (2025)) introduces a 2D Rotary Position Embedding (RoPE) (Su
et al.,[2024) mechanism within its Vision Transformer (ViT) Dosovitskiy et al.| (2021). This allows
for the flexible processing of images with arbitrary resolutions by dynamically generating visual
tokens. This approach preserves the absolute scale and spatial relationships of objects within the
image. Given its enhanced flexibility and performance, we adopt the Qwen2.5-VL architecture as our
foundation model.

2.2 MODEL MERGING

To enhance the coding capabilities of our multimodal large language model without undertaking costly
retraining from scratch, we employ model merging (Jin et al.;2022). By arithmetically combining the
parameters of specialized models, we can integrate distinct skills and create a unified, more versatile
model without requiring access to the original training data (see Figure[I](a) for an overview of the
model merging pipeline).

Task Vectors. Central to model merging are fask vectors (Ilharco et al.| [2022), which quantify
parameter shifts resulting from fine-tuning a base model on a specific task. Given a pretrained base
model Oy, and its task-specific fine-tuned variant g, a task vector is formally defined as:

Ttask — 9ft - 0base (1)

Such vectors encapsulate the parameter changes necessary for a model to specialize in a particular
domain or capability and serve as modular, transferable units of knowledge across models and tasks.

Multimodal and Code Capabilities. Our goal is to enhance the multimodal large language model by
incorporating advanced code understanding and generation capabilities. Considering that code-related
expertise predominantly resides in the language model backbone, we restrict our merging process to
this component. We retain the original visual encoder and cross-modal projection modules unchanged
to preserve the intrinsic visual understanding capabilities of the MLLM.

Specifically, we define the task vector for the language model component of the Vision-Language
Model (VLM) as:

Tvim = Ovim — Opase)

where 7,1, captures the parameter shift that enables the language model to effectively handle multi-
modal inputs by jointly processing visual and textual information.

Analogously, we define the task vector for the coding model, encapsulating its capability for code
comprehension and generation:

Tcode = ocode - ebase (3)

Merging Strategy. Following the linear merging method of [Ilharco et al.|(2022)) and its application
to enhancing multimodal mathematical reasoning in|Chen et al.| (2025)), we adopt a similar strategy to
transfer code reasoning abilities into an MLLM. The updated language model parameters, combining
both multimodal and code-related knowledge, are computed as follows:

QVisCOdex = ebase + ATyim + (1 - A)Tcode (4)

where the hyperparameter A € [0, 1] controls the trade-off between retaining original multimodal
representations and integrating new code expertise. Oyiscodex 1S the initialization of the parameters of
our VisCodex.

Implementation Details. Our model merging process targets only the language backbone of the
VLM, leaving the vision encoder and cross-modal projection modules unaltered. This selective

Under review as a conference paper at ICLR 2026

merging approach allows for a clear attribution of performance gains while significantly reducing
computational overhead. To construct our primary code task vector (7..4.), We select a coding model
that shares the same architectural foundation as the VLM’s language backbone. Since Qwen2.5-VL'’s
language model is derived from Qwen2.5, we utilize OpenCodeReasoning-Nemotron-1.1-7B (Ahmad
et al.,2025). For our 33B scale model, we correspondingly use the OpenCodeReasoning-Nemotron-
1.1-32B (Ahmad et al.| |2025) variant. Furthermore, in our ablation studies, we create and evaluate code
task vectors from two other prominent code-specialized models, Qwen2.5-Coder-7B-Instruct (Hui
et al.,2024) and OpenThinker2-7B (Guha et al.| 2025), to verify the effectiveness of merging with a
code-specialized task vector, as shown in Table 3|

2.3 MODEL TRAINING

After model merging, we perform supervised fine-tuning on our Multimodal Coding Dataset (McD),
further aligning the merged model with multimodal coding tasks. To efficiently leverage both the
pretrained visual grounding and newly integrated code abilities, we freeze the vision encoder and
projection modules, fine-tuning only the language model backbone.

3 McD DATASET

We introduce the Multimodal Coding Dataset (McD), a new large-scale dataset designed for
instruction-tuning multimodal models on coding tasks. McCD is constructed from four primary
components, each targeting a distinct aspect of multimodal code understanding and generation:

1. Enhanced HTML Code: We generate aesthetically and structurally improved HTML code by
redesigning and augmenting existing webpages.

2. Chart Image-Code Pairs: We construct high-quality chart-code pairs by sourcing Python mat-
plotlib code from GitHub, which are then refined through a multi-stage filtering and rewriting
process.

3. Image-Augmented Code QA: We extract real-world, image-augmented question and answer
pairs from StackOverflow and subject them to rigorous cleaning and refinement.

4. Algorithmic Code: We aggregate and curate data from established algorithmic coding datasets to
preserve and enhance the model’s core reasoning and problem-solving abilities.

The data distribution and representative cases for the four domains are illustrated in Figure|l|(b), and
more comprehensive statistics are available in the Appendix [E.I} The following sections describe
each component in detail.

3.1 ENHANCED HTML CODE

A review of the existing Web2Code dataset (Yun et al.,2024) revealed several shortcomings, including
broken image links, rudimentary CSS, and visually unappealing designs. Our initial approach to
address these issues involved using GPT-4o to directly rewrite the existing HTML code. However,
this method proved suboptimal, as the constraints of the original code structure frequently led to
rendering artifacts and visually incongruous layouts.

To overcome this, we adopted a novel, image-driven generation pipeline. We first curated 560,000
webpage images from Web2Code to serve as stylistic seeds. GPT-40 was then prompted to design
entirely new webpages inspired by these seeds. The resulting HTML was rendered using Play-
wright'|to capture screenshots. A rigorous filtering pipeline was then applied to discard rendering
failures, images with anomalous dimensions, and other visual artifacts. This process yielded 200,000
high-quality, newly generated code-image pairs. These pairs were subsequently converted into an
instruction-following format using the framework provided by Web2Code.

3.2 CHART IMAGE TO CODE DATA

To build a diverse and high-quality chart dataset, we incorporate both synthetic and real-world data
sources. For synthetic data, we include the 164,000 synthetic Chart2Code samples released by

"https://github.com/microsoft/playwright-python

Under review as a conference paper at ICLR 2026

ChartCoder (Zhao et al.| [2025b)) as part of our training data. For real-world data, we curated 46,000
chart-code pairs from GitHub.

Inspired by data engineering strategies (Ding et al., [2023; |Chiang et al., |2023; Xu et al.| [2023), we
first collected 129,000 real-world Python matplotlib scripts from GitHub. This raw data, however,
suffered from significant quality issues, including non-executable code, inconsistent formatting, and
potentially harmful snippets. To mitigate these issues, we employed GPT-4o to systematically rewrite
and normalize the code, while simultaneously classifying each script by chart type. Subsequently, a
multi-stage, rule-based filtering pipeline was applied to eliminate low-quality samples. This pipeline
removed scripts that failed to execute, produced blank or improperly sized images, or generated
visually corrupted outputs (e.g., heavily pixelated charts). As a final quality assurance step, we
leveraged GPT-4o to score the aesthetic and functional quality of the generated charts, retaining the
top 46,000 high-quality image-code pairs.

The final dataset combines the 164,000 synthetic samples with our 46,000 curated real-world ex-
amples, resulting in a comprehensive collection of 210,000 chart image-code pairs for instruction
tuning.

3.3 IMAGE-AUGMENTED CODE QA

StackOverflow represents a rich repository of real-world, code-centric QA data, particularly valuable
when augmented with illustrative images. Our collection process involved crawling StackOverflow
for QA threads containing images, followed by an initial filtering step to retain only those with an
accepted answer containing either Python or HTML code.

A rigorous data cleaning pipeline was implemented to ensure quality, removing entries with exces-
sively short or verbose answers, invalid URLs, broken image links, and blank or oversized images.
We also identified that many accepted answers were suboptimal for training, being either too terse for
clarity or overly verbose. To address this, we utilized GPT-4o to refine these answers by removing
sensitive content, rewriting unclear sections, and enhancing overall conciseness and clarity. This
multi-stage pipeline yielded a final dataset of 59,000 high-quality, image-augmented StackOverflow
QA pairs suitable for instruction tuning.

3.4 ALGORITHMIC CODE

To maintain the model’s proficiency in algorithmic reasoning and code generation, we incorporate
algorithm-related code data from Kodcode (Xu et al., 2025). Specifically, we select samples from five
categories: LeetCode (Hartford, 2023)), Codeforces (Jurlcekl, 2022), TACO (Li et al., 2023), Code
Contests (Li et al., 2022}, and Algorithm (The Algorithms| [2023; Keon, 2018)). The final collection
contains 129,000 algorithm-related instruction-following examples.

4 INFIBENCH-V

We introduce InfiBench-V, a new benchmark designed to evaluate the ability of multimodal large
language models to answer complex programming questions that integrate both text and images.
While existing benchmarks like InfiBench (Li et al.| |2024c) focus on text-based code QA, InfiBench-
V is specifically constructed to assess multimodal reasoning, where visual context is critical to
formulating a correct answer.

4.1 DATA CURATION

Our benchmark is built upon a rigorous, multi-stage curation pipeline using data from Stack Overflow.
The process began by scraping an initial set of approximately 1 million image-based questions that
included a community-verified “accepted answer” to ensure solution quality. We then narrowed this
pool to 40,000 recent and high-engagement questions. The most critical refinement step involved
using GPT-40 to isolate samples where the image is indispensable, filtering out questions solvable by
text alone. This yielded a core set of 10,000 high-relevance, multimodal questions.

We categorized these samples based on programming domain and, guided by the class distribution
and sampling principles of InfiBench, domain experts manually selected 322 questions to form the

Under review as a conference paper at ICLR 2026

final benchmark. These span 13 programming languages, each mapped to one of five high-level
categories: front-end, back-end, data science & machine learning (DS&ML), mobile and desktop
development, and IT operations (ITOps). The detailed category breakdown and representative cases
are shown in Figure [T (c)

To ensure quality and prevent model memorization in pre-training, we implemented a prompt
paraphrasing process. Domain experts rewrote each question in a concise and directive manner while
preserving its semantic content. Each question is also annotated with its evaluation category and
associated metrics, including a set of key phrases and a reference answer to support robust scoring.

4.2 EVALUATION CRITERIA

To objectively assess the quality of answers across a diverse range of question types, we adopt a
three-pronged evaluation strategy inspired by InfiBench. For each benchmark question, domain
experts select one or more evaluation methods, and the final score for that question is obtained by
averaging the normalized results of the selected methods.

* Keyword Matching. We observed that for a majority of questions, answer quality is closely tied
to the presence of specific keywords. Our domain experts craft a set of rules for each question,
specifying essential terms and phrases. To capture nuanced requirements, these rules can be
simple checks, regular expressions, or complex logical statements. When multiple keywords are
required, they can be individually weighted to ensure that the most critical components of the
answer contribute more significantly to the final score.

* Unit Testing. For questions where the answer is primarily a block of code, we verify its
correctness using unit tests. To facilitate automated evaluation, domain experts supplement the
question with precise requirements, like function names and expected I/O formats. They also
provide the necessary setup and teardown scripts, creating a complete and executable environment
for programmatic validation.

* GPT-40 Judge. For questions that rely heavily on natural language understanding, we leverage
GPT-40 to score MLLM responses by comparing them with the accepted reference answer. The
evaluation considers both answer correctness and completeness across two dedicated scoring
dimensions.

5 EXPERIMENTAL SETUP

Evaluated Benchmarks. We evaluate our model on four multimodal benchmarks to assess a range
of multimodal-related coding skills:

* Design2Code (Si et al., 2024): This benchmark measures the ability to translate visual UI designs
into executable code. We report the average performance on both Low-Level (Low-L) features
(Block, Text, Position, Color) and High-Level (High-L) semantic fidelity.

* ChartMimic (Shi et al.,2024): This benchmark evaluates the generation of chart specifications
from images. We adopt the Direct Mimic task on the test-mini subset and report both Low-Level
(Low-L) and GPT-40-assessed High-Level (High-L) scores.

* MMCode (Li et al., 2024b): This benchmark assesses algorithmic problem-solving in visually
rich contexts. Performance is measured by pass@1 accuracy (Chen et al.| 2021).

* InfiBench-V (Ours): For our proposed benchmark, we report the average score across all defined
evaluation metrics.

Training Settings. In our main experiments with the 8B model, which uses the code task vector from
OpenCodeReasoning-Nemotron-1.1-7B, we determined the optimal merge coefficient A\ by evaluating
performance on the MMCode benchmark. From a set of candidate values {0.7,0.8,0.85,0.9}, we
selected A = 0.7. According to our merging formula[d] this applies a weight of 0.7 to the vision-
language task vector (7,;,,) and 0.3 to the code task vector (7,.4.). Detailed training hyperparameters
and training costs are provided in the Appendix

Under review as a conference paper at ICLR 2026

6 EXPERIMENTAL RESULTS

6.1 MAIN RESULTS

Table 1: Performance comparison between proprietary and open-source models across various
benchmarks. Low-L stands for Low-Level features (e.g., Block, Text, Position), and High-L stands
for High-Level semantic fidelity. Best results are in bold.

Model Size Design2Code ChartMimic MMCode InfiBench-V Average
Low-L High-L Low-L High-L pass@1 Acc
Proprietary Models
GPT-40-mini - 85.8 87.3 68.4 68.5 12.2 71.9 65.7
GPT-40 - 90.2 90.4 79.0 83.5 17.0 79.9 73.3
Open-Source Small Language Models
MiniCPM-V-2_6 8B 78.1 84.2 21.8 45.2 3.8 453 46.4
InternVL3-8B 8B 85.3 87.6 43.1 47.2 6.8 66.1 56.0
Qwen2.5-VL-7B-Instruct 8B 83.4 87.6 39.5 38.3 53 54.0 514
Llama-3.2-11B-Vision-Instruct 11B 72.7 84.8 27.7 26.5 23 52.7 444
InternVL3-14B 15SB 829 88.3 539 55.0 11.4 70.5 60.3
VisCodex-8B 8B 90.1 90.9 74.8 74.1 11.0 72.1 68.8
Open-Source Large Language Models
Qwen2.5-VL-32B-Instruct 33B 88.0 89.4 72.5 68.7 13.7 73.0 67.6
llava-onevision-qwen2-72b 73B 75.2 85.7 55.8 52.1 5.7 64.7 56.5
Qwen2.5-VL-72B-Instruct 73B 869 88.7 66.7 68.7 15.2 75.2 66.9
InternVL3-78B 78B 853 89.1 64.9 64.2 144 71.3 65.9
VisCodex-33B 33B 905 91.1 79.3 78.5 15.6 78.6 72.3

As shown in Table[I] our models achieve state-of-the-art performance across all evaluated multimodal
coding benchmarks. Our smaller model, VisCodex-8B, not only outperforms all open-source models
in its size class (7-15B) but also surpasses the proprietary GPT-40-mini, with an average score of
68.8. Our larger model, VisCodex-33B, further establishes its superiority by achieving an average
score of 72.3, which is on par with the state-of-the-art proprietary model, GPT-40 (73.3). These
results demonstrate that our VisCodex family sets a new standard for open-source multimodal code
generation.

Our models show exceptional strength in UI and chart understanding. On the Design2Code bench-
mark, both VisCodex-8B (90.1/90.9) and VisCodex-33B (90.5/91.1) achieve scores comparable to or
exceeding GPT-40. On ChartMimic, our models also secure the top positions among open-source
models, demonstrating robust visual data translation capabilities.

6.2 ANALYSIS

Efficacy of the Model Merging. As demonstrated in Table [2] model merging yields consistent
performance gains across all benchmarks and
scales. At the 8B scale, merging improves De-
sign2Code (90.1 vs. 89.6), ChartMimic (74.8
vs. 73.4), and MMCode (11.0 vs. 6.8). The
33B model shows similar enhancements. The

Table 2: Ablation on model merging for VisCodex.
“w/o model merge” denotes the variant without
applying our model merging strategy.

.. . - Method Design2Code ChartMimic MMCode
most significant improvements on ChartMimic Low-L High-L | Low-L High-L | pass@]I
and MMCode confirm that this strategy effec- visCodex-88 901 909 ‘ 748 741 ‘ 11.0
tively augments code-generation capabilities _W/omodelmeree | 8.6 907 | 734 70.6 638

. : : : VisCodex-33B | 905 911 | 793 785 15.6
while preserving visual understanding. wlo model merge | 897 907 ‘ %1 771 ‘ aa

Effect of Different Code LLMs in Merge. As shown in the Table [3} we study how the choice of
the merged LLM affects performance. All code-specialized LLMs present consistent gains across all
benchmarks compared to general-purpose LLM. Compared to the general LLM, OpenThinker2-7B
and Qwen2.5-Coder-7B improve both Design2Code and ChartMimic, while Nemotron-1.1-7B further
boosts MMCode pass@1 from 6.8 to 11.0. These results indicate that merging with code-specialized

Under review as a conference paper at ICLR 2026

Table 3: Ablation on Backbone LLM choice. Per- Table 4: Performance comparison of model merg-
formance when merging the same multimodal ing vs. backbone replacement. The “Replace (1-
backbone with either a general-purpose or code- stage)” strategy directly replaces the LLM back-

specialized LLM. bone in a single stage. The “Replace (2-stage)”
strategy first trains a projector, then fine-tunes the

Backbone LLM Design2Code ChartMimic | MMCode {u]] MLLM (V]T projector and LLM)

Low-L High-L | Low-L High-L | pass@1 ’ ’

Bascline (Qwen2.5-VL) | 834 87.6 | 395 383 | 53

General LLM Strategy Design2Code ChartMimic MMCode

Qwen2.5-7B-Instruct | 89.5 907 | 732 725 | 68 Low-L High-L | Low-L High-L | pass@l

Code LLM Baseline | 834 876 | 395 383 | 53

OpenThinker2-7B 902 910 | 743 738 8.0 Replace (1-stage) 887 907 | 704 692 11.0

Qwen2.5-Coder-7B 90.0 90.7 75.1 74.5 8.4 Replace (2-stage) 88.2 90.6 734 70.9 11.0

Nemotron-1.1-7B 9.1 909 | 748 741 11.0 Model Merge (Ours) | 90.1 909 | 748 741 11.0

LLMs is crucial for robust multimodal code generation, enhancing executable correctness while
maintaining strong visual grounding and UI-to-code translation.

Effectiveness of the Model Merge Strategy. To evaluate the effectiveness of our proposed model
merge strategy compared to direct backbone replacement, we conducted comparative experiments
using two distinct approaches: (i) directly replacing the LLM backbone of Qwen2.5-VL-7B-Instruct
with OpenCodeReasoning-Nemotron-1.1-7B (Ahmad et al., |2025), and (ii) employing the two-stage
training procedure from LLaVA-OneVision (Li et al., 2024al)), which initially trains the projector on
BLIP-558K, followed by joint fine-tuning of the ViT, projector, and LLM on McD.

Our results indicate that the model merge strategy achieves overall superior performance across the
evaluated tasks, as shown in Table d] It demonstrates particularly strong gains on visually-intensive

benchmarks such as Design2Code and ChartMimic, where successful code generation heavily relies
on accurate visual-semantic alignment. This is because directly replacing the LLM backbone often
disrupts previously learned visual grounding. In contrast, the model merge approach preserves these
visual alignment abilities while simultaneously incorporating enhanced code generation capabilities.
This confirms the effectiveness of model merging in maintaining multimodal comprehension and
boosting performance in multimodal coding tasks.

Additional Analyses. Further results are provided in the Appendix, including comparisons with
existing Web2Code datasets (Appendix [B.I)), the generalizability of MCD (Appendix [B.2)), and the
generality of our code model merging strategy (Appendix [B.3).

6.3 CASE STUDY

We further conducted case studies to qualitatively compare the performance of VisCodex-8B against
GPT-4o0, InternVL3-78B, and Qwen2.5-VL-7B on the ChartMimic and Design2Code benchmarks.
As shown in Figure 2] VisCodex-8B consistently generates outputs that more closely match the
ground truth in both chart reconstruction and HTML generation tasks, surpassing the fidelity of
results produced by GPT-40-mini and other open-source baselines. These observations underscore
VisCodex-8B’s superior multimodal code generation capabilities. For additional case studies on
MMCode, InfiBench-V, and further examples, please refer to Appendix [G]

7 RELATED WORK

7.1 MULTIMODAL CODE GENERATION

The ability of MLLMs to generate code has attracted increasing attention in recent years. De-
sign2Code (S1 et al.,|2024)) evaluates the HTML generation capabilities of MLLMs. Extending earlier
datasets like WebSight (Laurencon et al.l 2024) and Pix2Code (Beltramelli, 2018)), Web2Code (Yun
et al., 2024), Webcode2M |Gui et al.| (2025) provides a webpage-to-code dataset to improve HTML
generation. Benchmarks like MMCode (Li et al., 2024b) and Human-V (Zhang et al., 2024b) focus
on assessing MLLMs in algorithmic coding tasks that incorporate visual inputs. Similarly, Chart-
Mimic (Shi et al.}[2024) and Plot2Code (Wu et al.,|[2024) evaluate MLLMs’ capabilities to translate
raw data into scientific charts. ChartCoder (Zhao et al.,[2025a)) addresses chart generation explicitly

Under review as a conference paper at ICLR 2026

VisCodex-8B

Ground Truth (Ours)

GPT-40 InternVL3-78B Qwen2.5-VL-7B

Figure 2: Case study comparing VisCodex-8B and baseline models on Design2Code and ChartMimic
tasks, demonstrating the superior multimodal code generation capabilities of VisCodex-8B.

through a large dataset of 160k examples. Additionally, CodeV (Zhang et al.l|2024c)) integrates visual
data to improve large language models’ problem-solving abilities. Despite recent progress, to the
best of our knowledge, existing work falls short of providing a complete and unified solution to
multimodal code generation.

7.2 MODEL MERGING FOR MLLMS

Model merging has become a widely used approach for integrating the capabilities of multiple models
within the parameter space. A basic method involves simple weighted averaging (Wortsman et al.
2022), while more advanced strategies have been developed in recent years (Ilharco et al., [2022;
Matena & Raffel, [2022; Jin et al., 2022} |Yadav et al.l 2023; Bandarkar et al., [2024). Recently,
several studies have applied model merging to enhance the capabilities of multimodal large language
models. For example, REMEDY (Zhu et al.,2025a) improves multitask performance and zero-shot
generalization in VQA tasks. (Akiba et al., [2025)) enhance Japanese language understanding and
generation, while (Chen et al.| (2025 improve mathematical reasoning abilities. [Li et al.| (2025)
enable textual preference transfer by integrating a text-based reward model into an MLLM, without
additional training. Our study demonstrates that model merging can effectively endow MLLMs with
strong abilities in multimodal code understanding and generation.

8 CONCLUSION

In conclusion, we have presented VisCodex, a unified multimodal framework that effectively in-
tegrates advanced visual comprehension with sophisticated code-generation capabilities through a
novel task vector-based model merging strategy. By leveraging this efficient approach, VisCodex
significantly enhances multimodal large language models without incurring the costs associated with
full-scale retraining. We also introduced the Multimodal Coding Dataset (McCD), a comprehensive
resource comprising 598k diverse, high-quality instruction-tuning examples, along with InfiBench-V,
arigorous benchmark designed specifically for realistic multimodal coding assessments. Extensive
experiments confirm that VisCodex establishes a new state-of-the-art performance among open-source
multimodal code generators, demonstrating capabilities competitive with leading proprietary models
such as GPT-4o.

Under review as a conference paper at ICLR 2026

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943|

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. Nature Machine Intelligence, 7(2):195-204, 2025.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, and Bing
Liu. Layer swapping for zero-shot cross-lingual transfer in large language models. arXiv preprint
arXiv:2410.01335, 2024.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In
Proceedings of the ACM SIGCHI symposium on engineering interactive computing systems, pp.
1-6, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and
Junxian He. Bring reason to vision: Understanding perception and reasoning through model
merging. arXiv preprint arXiv:2505.05464, 2025.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April 2023), 2(3):6,
2023.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,

10

https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2010.11929

Under review as a conference paper at ICLR 2026

Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Bohua Chen, Yi Su, Dongping Chen, Siyuan
Wu, Xing Zhou, et al. Webcode2m: A real-world dataset for code generation from webpage
designs. In Proceedings of the ACM on Web Conference 2025, pp. 18341845, 2025.

Eric Hartford. LeetCode Solutions, 2023. URL https://www.kaggle.com/datasets/
erichartford/leetcode-solutionsl Accessed: 2025-02-11.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Jurlcek. Codeforces Dataset, 2022. URL https://github.com/Jurlcek/
codeforces—dataset. Accessed: 2025-02-11.

Keon. Pythonic Data Structures and Algorithms, 2018. URL https://github.com/keon/
algorithmsl Accessed: 2025-02-11.

Hugo Laurencon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into
html code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Chen-An Li, Tzu-Han Lin, Yun-Nung Chen, and Hung yi Lee. Transferring textual preferences to
vision-language understanding through model merging, 2025. URL https://arxiv.org/
abs/2502.13487.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-
modal code large language models with visually rich programming problems. arXiv preprint
arXiv:2404.09486, 2024b.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. Advances in Neural Information Processing Systems, 37:128668-128698,
2024c.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th international conference on World Wide Web, pp. 141-150,
2007.

11

https://arxiv.org/abs/2506.04178
https://www.kaggle.com/datasets/erichartford/leetcode-solutions
https://www.kaggle.com/datasets/erichartford/leetcode-solutions
https://github.com/Jur1cek/codeforces-dataset
https://github.com/Jur1cek/codeforces-dataset
https://github.com/keon/algorithms
https://github.com/keon/algorithms
https://arxiv.org/abs/2502.13487
https://arxiv.org/abs/2502.13487

Under review as a conference paper at ICLR 2026

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703-17716, 2022.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating Imm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far are
we from automating front-end engineering? arXiv e-prints, pp. arXiv—2403, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

The Algorithms. Python Algorithms, 2023. URL https://github.com/TheAlgorithms/
Python. Accessed: 2025-02-11.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/
abs/2503.02951.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36:7093-7115, 2023.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy
Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and Zhigiang Shen. Web2code: A
large-scale webpage-to-code dataset and evaluation framework for multimodal 1lms. arXiv preprint
arXiv:2406.20098, 2024.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-1lms:
Recent advances in multimodal large language models, 2024a. URL https://arxiv.org/
abs/2401.13601l

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large
multimodal models through coding tasks. arXiv preprint arXiv:2410.12381, 2024b.

Linhao Zhang, Daoguang Zan, Quanshun Yang, Zhirong Huang, Dong Chen, Bo Shen, Tianyu Liu,
Yongshun Gong, Pengjie Huang, Xudong Lu, et al. Codev: Issue resolving with visual data. arXiv
preprint arXiv:2412.17315, 2024c.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, and
Maosong Sun. Chartcoder: Advancing multimodal large language model for chart-to-code genera-
tion. arXiv preprint arXiv:2501.06598, 2025a.

12

https://github.com/TheAlgorithms/Python
https://github.com/TheAlgorithms/Python
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601

Under review as a conference paper at ICLR 2026

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, and
Maosong Sun. Chartcoder: Advancing multimodal large language model for chart-to-code genera-
tion, 2025b. URL https://arxiv.org/abs/2501.06598.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Didi Zhu, Yibing Song, Tao Shen, Ziyu Zhao, Jinluan Yang, Min Zhang, and Chao Wu. Remedy:
Recipe merging dynamics in large vision-language models. In The Thirteenth International
Conference on Learning Representations, 2025a.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025b.

13

https://arxiv.org/abs/2501.06598
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

A large language model (ChatGPT) was used to aid and polish the writing of the paper, including
minor grammar correction and language refinement.

B ADDITIONAL ANALYSIS EXPERIMENTS

B.1 COMPARISON WITH EXISTING WEB2CODE DATASETS

As demonstrated in Table [5] our dataset outperforms prior Web2Code corpora across all metrics.
Compared to Webcode2M |Gui et al.| (2025) and Web2Code |Yun et al.| (2024)), McD achieves the
highest scores on both low-level (Block-Match, Text, Position, and Color) and high-level evaluation.
The gains are especially notable on layout-sensitive metrics and visual fidelity, indicating that MCD
provides more accurate structural alignment and visual grounding for Ul-to-code generation, while
also improving semantic consistency.

Table 5: Performance comparison of MCD with WebCode2M and Web2Code on the Design2Code
benchmark.

Data Block-Match Text Position Color \ CLIP
Baseline 85.4 95.8 77.3 75.3 87.6
WebCode2M 82.1 96.0 72.4 72.6 86.3
Web2Code 84.4 934 76.2 79.6 88.8
MCD 89.6 97.2 84.7 86.8 90.7

B.2 GENERALIZABILITY OF McD

To assess the generalizability of our dataset MCD, we conducted supervised fine-tuning experi-
ments on two strong open-source MLLMs: InternVL3-8B (Zhu et al., 2025b) and llava-llama3.1-
8 (Zhang et al.| 2024a)). We evaluated the models on multiple established benchmarks, as shown in
Table|6| The results demonstrate that fine-tuning with MCD consistently and significantly enhances
the multimodal coding abilities of both base models. In particular, we observe substantial improve-
ments in both the Design2Code and ChartMimic tasks, as well as noticeable gains on the MMCode
benchmark. These findings validate the robustness and strong transferability of MCD across different
model architectures and suggest its value as a general-purpose resource for advancing multimodal
code generation.

Table 6: Generalization performance of McD: Results of supervised fine-tuning on InternVL3-8B
and llava-1lama3.1-8b across multiple multimodal coding benchmarks.

Model Design2Code | ChartMimic | MMCode
Low High | Low High pass@1
InternVL3-8B 853 87.6 | 43.1 46.6 6.8
InternVL3-8B-SFT 882 899 | 726 704 7.6
llava-llama3.1-8b 7.3 78.4 6.2 4.8 2.3
llava-llama3.1-8b-SFT | 82.8 90.5 | 70.7 68.2 4.2

B.3 GENERALITY OF CODE MODEL MERGING

To verify that our model merging strategy is not limited to LLMs with Qwen2.5 backbones, we
further conduct experiments using llava-llama3.1-8b (Zhang et al.,|2024a), an MLLM based on the
Llama-3.1 (Dubey et al., 2024) architecture. Specifically, we merge llava-llama3.1-8b with the code
task vector (7.0qc) obtained from DeepSeek-R1-Distill-Llama-8B (DeepSeek-AlL[2025)), following

https://huggingface.co/modelscope/llava-1lama3.1-8b

14

https://huggingface.co/modelscope/llava-llama3.1-8b

Under review as a conference paper at ICLR 2026

the same procedure as in our previous Qwen2.5VL experiments. As shown in Table[/| the merged
model consistently outperforms the non-merged baseline across all multimodal coding tasks. The
performance improvement is particularly significant on the MMCode benchmark, where pass@1
increases from 4.2 to 6.5. These results, which are consistent with our findings on Qwen2.5VL,
demonstrate the general effectiveness and broad applicability of the code model merging strategy.

Table 7: Ablation on model merging for llava-llama3.1-8b and DeepSeek-R1-Distill-Llama-8B.
Results compare models with and without the merging strategy.

Method Design2Code ChartMimic MMCode
Low-L High-L | Low-L High-L | pass@1

w/o model merge 82.8 90.5 70.7 68.2 4.2

w model merge 83.3 90.7 70.9 68.8 6.5

C TRAINING PARAMETERS AND TRAINING COST

All models are trained on our instruction-tuning dataset of 598K examples from McD. We employ
the AdamW optimizer with a 10% linear warm-up followed by a cosine learning rate decay. The
maximum learning rate is set to 1 x 1075, with a batch size of 128 and a maximum sequence length
of 8K tokens. Training the 8B model for two epochs takes approximately 16 hours on 8 nodes, each
equipped with 8 X A100 GPUs with 40 GB VRAMs. Training the 33B model under the same setup
takes approximately 2 days.

D HuUMAN EVALUATION

To assess the alignment between automatic evaluation and human expert judgment, we randomly
sampled 100 questions from InfiBench-V and selected five MLLMs for evaluation: GPT-40-mini,
VisCodex-33B, VisCodex-8B, Qwen2.5-VL-7B-Instruct, and Qwen2.5-VL-32B-Instruct. Each model
was tasked with generating responses to all sampled questions, resulting in a total of 500 model
outputs.

Annotator Details and Protocol. We employed three annotators, all of whom are graduate students
in computer science with strong domain expertise relevant to the benchmark tasks. Although all
annotators are non-native English speakers, they are proficient in English and familiar with the style
and requirements of the benchmark questions.

Before the main evaluation, the annotators underwent a comprehensive training and calibration
process, including practice with a subset of the dataset, review of the evaluation criteria, and targeted
feedback to ensure consistent understanding of the annotation standards. A final readiness test was
conducted to confirm alignment among annotators prior to the main evaluation phase.

During evaluation, all model-generated responses were anonymized and presented in a standardized
format, removing all identifying information about the originating model. Annotators indepen-
dently evaluated the samples without communication or influence from others, ensuring impartiality
throughout the process.

For each question, the annotators were provided with the question, the model-generated answer, and
the accepted StackOverflow answer as a reference. Each annotator was asked to indicate whether the
model’s answer correctly solved the problem (1 for correct, O for incorrect).

Automatic Evaluation. For the automatic InfiBench-V evaluation, we adopted the same metrics as
described in the main text, assigning a score in the range 0—100 to each response. For the purpose
of agreement analysis with human annotations, we further mapped these scores to binary “pass” or
“fail” labels according to a defined threshold. This binarization enabled direct comparison between
the automatic evaluation and the binary judgments provided by human annotators.

Agreement Analysis. Table [8| reports the pairwise agreement ratios (as in MT-Bench (Zheng
et al.,|2023))) among InfiBench-V and the human annotators, as well as between human annotators

15

Under review as a conference paper at ICLR 2026

themselves. On average, InfiBench-V achieved an agreement rate of 86.07% with human annotators,
which is higher than the inter-annotator agreement (79.33%). Notably, the agreement rate of InfiBench-
V is comparable to that reported in previous works (L1 et al.l [2024c) (85.1%), demonstrating the
reliability of our evaluation method.

Table 8: Agreement ratios between InfiBench-V and human annotators, as well as between annotators.

Judge A-1 A-2 A-3 Average
InfiBench-V = 87.00% 87.00% 84.20% 86.07%

A-1 - 80.80% 79.20% 80.00%
A-2 80.80% - 78.00% 79.40%
A-3 79.20% 78.00% - 78.60%

E DATA STATISTICS

E.1 DATA STATISTICS OF McD

To ensure a fair evaluation and prevent data contamination, we performed deduplication between our
dataset and the evaluation benchmarks using SimHash (Manku et al., 2007), removing any data with
a similarity score greater than 0.9 to the benchmark test samples. After deduplication, the resulting
dataset contains a total of 598k examples across four domains: HTML, Chart, QA, and Algorithm.
Table 9 presents the statistics of the dataset, including the number of examples and the average token
length (with standard deviation) for each domain.

Table 9: Statistics of the MCD by domain. For each domain, the number of samples and the average
token length (mean + standard deviation) are reported.

Data HTML Chart QA Algorithm

Size 200k 210k 59k 129k
Avg Length 632+144 551+190 1022+776 969+321

Table 10: Distribution of InfiBench-V questions across programming domains and languages.

Category Language Count Category Total
CSS 30
Front-End HTML 39 100
JavaScript 31
Java 30
PHP 24
Go 5
Back-End Ruby 5 75
Rust 6
C++ 5
Python 90
DS & ML R 5 95
IT Ops Bash 11 11
Mobile & Desktop Dart 41 41
Total 322 322

E.2 DISTRIBUTION OF SELECTED BENCHMARK QUESTIONS IN INFIBENCH-V

Table[T0|presents the detailed distribution of questions in InfiBench-V across various programming
domains and languages. The benchmark consists of five main categories: Front-End, Back-End,

16

Under review as a conference paper at ICLR 2026

Data Science & Machine Learning (DS & ML), IT Operations (IT Ops), and Mobile & Desktop
development, covering a total of 13 programming languages and 322 carefully curated questions.

17

Under review as a conference paper at ICLR 2026

F PROMPT

Prompt Template for GPT-40 Automatic Evaluation on InfiBench-V

You are a professional code assistant evaluation expert. Your task is to assess the quality
of a model-generated answer to a programming-related question by comparing it with the
gold reference answer. The question includes both text and a screenshot image (which may
contain code, error messages, or Ul context). You must consider both modalities when
evaluating the answer.

Please first read the question (text + image), then read the model-generated answer, and
compare it carefully with the reference (gold) answer.

You must provide clear and detailed justifications before assigning scores. The scoring
dimensions are weighted as follows: Correctness (50 points) and Completeness (50 points).

Below is a programming question-answering example.
[Question] {question}

[Note] The screenshot image provided alongside this question is part of the question context.
You must use it to fully understand the problem being asked.

[Screenshot Image]

{base64_image}

[Model Answer]
{model_answer}

[Reference Answer]
{reference_answer}

Please evaluate the model’s answer based on the following two dimensions:

1. Correctness (0-50): Is the answer factually accurate and technically correct? Does it
address the problem without errors or misleading information?

2. Completeness (0-50): Does the answer cover all critical elements present in the reference
answer? Are any key details missing?

Justification:
1. Correctness: < Your reasoning here>
2. Completeness: < Your reasoning here>

Scores:

* Correctness: X/50

* Completeness: X/50
Total Score: X/100

\-

18

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXAMPLES

G.1 MMCODE CASE 1

Question: Alice has a binary string. She thinks a binary string is beautiful if and only if it
doesn’t contain the substring "010”.

In one step, Alice can change a 0 to a 1 or vice versa. Count and print the minimum number of
steps needed to make Alice see the string as beautiful.

Example

b = 010 o 1 2 3 4 6

She can change any one element and have a beautiful string. °

Sample Input 0 [oT To[o T o] muswing

. _— —

STDIN Function 010 010
___________ s Ce T T o T o] torcranong ces
7 length of string n =7 N N N N D N N bt
0101010 b="0101010" (o [T [T [0 0] aterchanging imtoxs

Sample Output 0

2

Explanation 0:

In this sample, b = ”0101010”

The figure on the right shows a way to get rid of each instance of "010”: Make the string
beautiful by changing 2 characters (b[2] and b[5]).

Qwen2.5-VL-7B-Instruct:

def beautifulBinaryString(b):
b = list(b)

count = 0
for 1 in range(len(b) - 2):
if b[i] == and b[i + 1] == and b[i + 2] ==
b[i] =
bli + 1] =

count += 2
return count

X

VisCodex-8B:

To solve the problem of making a binary string “beautiful” (i.e., removing all occurrences of the substring “010”), we need to identify and
count these substrings within the given binary string. For each occurrence of “010”, we will determine the minimal changes required to
eliminate it.

Here’s how we can approach the problem:

1. Identify Occurrences: Traverse through the string and find all instances of the substring “010”.

2. Count Changes: For each found “010”, determine the minimal number of changes required to break this pattern. Typically, changing either
the middle ‘1° to ‘0° or the last ‘0° to ‘1° suffices.

3. Sum Up Changes: Sum up the changes for all identified “010” substrings to get the total number of steps required.

Let’s implement this logic in Python:

def beautifulBinaryString(b):

1itialize the ounter for the number of changes
changes = 0

Iterate over he string to 1d all occurrences o "o10"
i=20

while i <= len(b) - 3:
if b[i:i+3] ==

We found a
changes += 1

"01l0" pattern

Move the index past this patter
i+= 3

else:
Move to the next character
i4=1

return changes

Figure 3: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.

G.2 MMCODE CASE 2

19

Under review as a conference paper at ICLR 2026

Question: You have most definitely heard the legend of King Arthur and the Knights of the
Round Table. Almost all versions of this story proudly point out that the roundness of the Round
Table is closely related to Arthur’s belief of equality among the Knights. That is a lie! In fact,
Arthur’s choice of table is conditioned by his childhood traumas.

In fact, Arthur was forced to clean up quadratic tables from a young age after a tournament
in pick-up sticks' had been played on them. After the tournament, typically there would be a \
bunch of sticks on the table that do not touch each other. In the spirit of the game, the organizers |

issued strict regulations for the table cleaners. More precisely, the sticks on the table need to be \

removed one by one in a way that the cleaners pull them in the shortest way towards the edge of
the table closest to where they are currently sitting. They also mustn’t rotate or touch the other
sticks while doing this (not even in the edge points).

In this task, we will represent the table in the coordinate system with a square that has opposite

points in the coordinates (0, 0) and (10 000, 10 000), whereas the sticks will be represented /
with straight line segments that lie within that square. We will assume that Arthur is sitting at the
edge of the table lying on the x-axis. Then the movement of the stick comes down to translating
the line segment along the shortest path towards the x-axis until the stick falls off the table (as
shown in the right image). It is your task to help Arthur determine the order of stick movements
that meets the requirements from the previous paragraph.

Qwen2.5-VL-7B-Instruct:

import sys
input = sys.stdin.readline

def solve():
n = int (input())
1s =[]
for _ in range(n):
(x1, yl1, x2, y2) = map(int, input () .split())
ls.append((x1, v1, x2, y2))

ls.sort (key=lambda x: (x[1] - x[3], x[0]))
ans = []
for (x1, yl, x2, y2) in 1ls:

if yl == y2:

ans.append (1)
else:
ans.append (2)
print (xans)
solve ()

X
VisCodex-8B:

def remove_sticks_order (n, sticks):
Create a list of tuples where each tuple is (index, x1, yl, x2, y2)
indexed_sticks = [(i + 1, x1, yl, x2, y2) for i, (x1l, yl, x2, y2) in enumerate (sticks)]

Sort the sticks based on the y-coordinate in descending order
indexed_sticks.sort (key=lambda x: (-x[2], -x[4]))

Extract the indices of the sorted sticks
sorted_indices = [stick[0] for stick in indexed_sticks]

return sorted_indices

if _ name_
import sys
input = sys.stdin.read
data = input () .split ()

n = int (data[0])

sticks = []
index =1
for _ in range(n):
x1 = int (data[index])

[

yl = int (data[index + 11])

x2 = int (data[index + 2])

y2 = int (data[index + 3])
sticks.append((x1l, yl, x2, y2))
index += 4

result = remove_sticks_order (n, sticks)
print (.join(map (str, result)))

Figure 4: Examples of MMCode problems that are successfully solved by VisCodex-8B but not by
Qwen2.5-VL-7B-Instruct.

20

Under review as a conference paper at ICLR 2026

G.3 INFIBENCH-V CASE 1

Question: I have a dataset with absolute numbers for various variants over time, and I want to
create a plot similar to the one shown in the image, depicting the abundance of these variants
over time. I am working in Python, and I would prefer to use matplotlib, although other libraries
are also acceptable if necessary.

Does Python offer any specific function or tool for generating this type of plot? Additionally,
what is the common name for this kind of plot, as I have encountered it before but am having
trouble finding relevant resources online?

Response: The type of plot shown in the image is commonly known as an “area plot” or “stacked area plot.” In Python, you can create such plots using the
matplotlib library. Although there isn’t a specific function called "area plot” in matplotlib, you can use the stackplot function to generate this type of|
visualization.

Here’s a basic example of how you can create a stacked area plot using matplotlib:

import matplotlib.pyplot as plt

import numpy as np

Example data

dates = np.arange (, , dtype=)
variantl = np.random.rand(len (dates))
variant2 = np.random.rand(len (dates))
variant3 = np.random.rand(len (dates))

Normalize data to sum to 1 for each day
total = variantl + variant2 + variant3
variantl /= total

variant2 /= total

variant3 /= total

Create stacked area plot

plt.stackplot (dates, variantl, variant2, variant3, labels=[, , 1, alpha=0.8)
plt.legend(loc=)

plt.xlabel ()

plt.ylabel ()

plt.title()

plt.show()

In this example, variantl, variant2, and variant 3 are arrays representing the frequencies of different variants over time. You should replace these with your
actual data. Make sure your data is normalized (i.e., the sum of all variants for each time point should equal 1, or 100% if expressed in percentage terms) before
plotting.

If you prefer using pandas, you can also leverage its capabilities to simplify data manipulation and plotting:

import pandas as pd
import matplotlib.pyplot as plt

Example datez

: pd.date_range (start= , periods=60, freg=),
: np.random.rand(60),
np.random.rand (60),
np.random.rand (60)
}

df = pd.DataFrame (data)
df.set_index (, inplace=True)

Norma ze data to sum to for each

df = df.div(df.sum(axis=1), axis=0)

Plot

df.plot.area(alpha=0.8)

plt.ylabel ()

plt.title()
plt.show ()

This approach simplifies the handling of data, especially if it’s already in a pandas DataFrame format. Adjust the data and labels as needed for your specific dataset.

Category: DS & ML——Python

Evaluation Criteria: Keyword Matching & GPT-40
Keywords: stackplot, matplotlib

Keyword Matching Score: 100

GPT-40 Score: 100

Total Score: 100

Figure 5: A case of InfiBench-V from the DS & ML category.

21

Under review as a conference paper at ICLR 2026

G.4 INFIBENCH-V CASE 2

Question: T attempted to change the colors in my macOS Terminal by following a guide and
modifying my .bash_profile file. After creating and saving the .bash_profile, every
time I open the Terminal, I encounter the following errors as shown in the screenshot on the
right:

Despite deleting the .bash_profile, the issue persists. Every command I enter is followed
by these errors:

-bash: git: command not found
—bash: gt: command not found marcin — -bash — 84x47
-bash: /dev/null: Permission denied ' e

Here is the content I added to the .bash_profile file:

export CLICOLOR=1
export LSCOLORS=GxBxCxDxexegedabagaced
parse_git_branch() {

git branch 2> /dev/null |

sed -e -e

}
export PSl=

Please help me resolve these issues and understand why these errors are occurring.

Response:
The errors you’re encountering are likely due to incorrect syntax in your .bash_profile file. Let’s address each issue:

1. Incorrect Redirection Symbol: In your parse_git_branch () function, you used > ; instead of > for redirecting output to /dev/null. The correct
line should be:

git branch 2> /dev/null |
2. Extra Spaces in PS1: Your PS1 variable has some extra spaces that might cause issues. It should look like this:

export PSl=

Make sure there are no unintended spaces around special characters or within the escape sequences.

3. Check for Hidden Characters: Sometimes, copy-pasting from certain editors or websites can introduce hidden characters. Ensure your .bash-profile
doesn’t contain any non-printable characters. You can use a text editor that shows whitespace or use a command-line tool to check for them.

4. File Permissions: Ensure your .bash_profile file has the correct permissions. You can set it with:

chmod 644 ~/.bash_profile

5. Recreate .bash_profile: If the problem persists, try recreating the . bash_profile file manually without copying and pasting. Open a new terminal and type
the commands directly into a new file.

After making these changes, save the file and restart your terminal session. This should resolve the errors you’re seeing. If the problem continues, double-check for
any other syntax errors or unexpected characters in the file.

Category: IT Ops——Bash
Judge: GPT-40

1. Correctness:

« The model answer correctly identifies the primary issue with the . bash_profile file, which is the use of HTML entities (> ;) instead of the correct
characters (>). This aligns with the reference answer.

+ The model also addresses the potential for non-printable characters and file permissions, which, while not mentioned explicitly in the reference answer,|
are reasonable considerations given the symptoms described.

Additionally, the model suggests recreating the .bash_profile file to ensure there are no hidden characters, which is a practical troubleshooting step
that could help resolve the persistent issues.

* Opverall, the model’s suggestions are factually accurate and technically correct, directly addressing the syntax errors.
2. Completeness:

* The reference answer is concise and focuses solely on the issue of HTML entities, while the model answer provides a more comprehensive approach by
including additional troubleshooting steps (checking for hidden characters, file permissions, and recreating the file).

Although the model answer includes extra steps beyond the reference answer, it does not miss any critical elements present in the reference. Instead, it
enhances the response with additional useful advice for resolving the issue thoroughly.

* The model’s completeness is therefore high, as it covers the key issue identified in the reference answer and adds further depth.
Scores:
 Correctness: 50/50
« Completeness: 50/50
Total Score: 100/100

Figure 6: A case of InfiBench-V from the IT Ops category.

22

Under review as a conference paper at ICLR 2026

G.5 INFIBENCH-V CASE 3

Question: T am working on a 2D game in JavaScript and I am encountering a trigonometry
issue. The game involves a player shooting at a target, but there is an obstacle blocking the shot
between the player and the target. I need to find the coordinates of this obstacle.

Here is the information I have:

(x2,y2)

1. The starting coordinates of the shot are (z1, y1).

2. The ending coordinates of the shot are (2, y2). obstacle at (x?, y?)

3. The distance from the starting coordinates to the obstacle is known.

(x1,y1)

How can I calculate the (z, y) coordinates of the obstacle along the line of the shot? Addition-
ally, I would appreciate an efficient solution implemented in JavaScript.
Please refer to the attached image for a visual representation of the problem.

Response:
To solve the problem of finding the coordinates of the obstacle along the line of the shot, you can use vector mathematics. Given the starting point (z1, y1), the
ending point (2, y2), and the distance d from the starting point to the obstacle, you can calculate the coordinates of the obstacle as follows:

1. Calculate the direction vector from (1, y1) to (z2, y2):
direction = (z2 — 1, y2 — Y1)

2. Normalize the direction vector to get the unit vector in the direction of the shot:

magnitude = \/ (2 — 1)% + (y2 — ¥1)2

T2 — @ y2—y1)

unit_direction = (- s -
magnitude magnitude

3. Multiply the unit direction vector by the distance d to find the displacement vector from the starting point to the obstacle:
displacement = (d X unit.directiong;, d X unit-direction,,)
4. Add the displacement vector to the starting point to get the coordinates of the obstacle:
obstacle;, = x1 + displacement,,
obstacley, = y1 + displacemenly

Here’s how you can implement this in JavaScript:

This code will give you the coordinates of the obstacle along the line of the shot, given the specified distance from the starting point.

Category: Front-End JavaScript

Evaluation Criteria: Unit Testing

Sample Test Case:

input: {"x1":0.0,"y1":0.0,"x2":10.0,"y2":0.0,"distance":5.0},
expected: [5.0, 0.01,

actual: [5.0, 0.0],

(only partial cases shown)

Total Score: 100

Figure 7: A case of InfiBench-V from the Front-End category.

23

Under review as a conference paper at ICLR 2026

G.6 INFIBENCH-V CASE 4

Question: Iam developing a Flutter application where I want to draw a square on the screen at the location
of a click. The square should be centered at the click point, but currently, it is being drawn at seemingly random
positions. I am using ‘event.pointerEvent.localPosition.dx‘ and ‘event.pointerEvent.localPosition.dy* to obtain
the click coordinates, and T am passing these coordinates to ‘Rect.fromCenter* to draw the square.

Below is my Flutter code, which includes the ‘SpriteSquare* widget and the ‘handleAdd* function from its
parent widget, ‘MySpriteGame*.

sprite_square.dart

class SpriteSquare extends NodeWithSize {

Color color;
Function handler;
double left;
double top; 126 - e,

Flutter Demo Home Page

SpriteSquare(size, this.color, this.handler, this.top, this.left)
super (size) {
userInteractionEnabled = true;

@override handleEvent (SpriteBoxEvent event) {
handler (event) ;
return true;

}

Qoverride
Future<void> paint (Canvas canvas) async {

canvas.drawRect (

Rect.fromLTWH (left, top, size.height, size.width)

Paint () ..color = color

)i
}

}

handleAdd

handleAdd (SpriteBoxEvent event) {
final _whitesquare = SpriteSquare (
const Size(50.0, 50.0),
const Color (0OXFFFFFFFF)
handleRemoveSelf,
Offset (event.pointerEvent.localPosition.dx,
event.pointerEvent.localPosition.dy)

)i
_background.addChild (_whitesquare);
return true;

Can you help me understand why the square is not being drawn centered at the click location and suggest how
to fix this issue?

Response:
The issue you’re experiencing with the square not being drawn centered at the click location is likely due to the way you’re calculating the position of the square. In
your current implementation, you're using ‘Rect.fromLTWH* to draw the rectangle, which takes the left and top coordinates as the starting point of the rectangle. This
means that the rectangle is drawn starting from the top-left corner at the specified coordinates, rather than being centered at those coordinates.
To center the square at the click location, you need to adjust the ‘left* and ‘top‘ values by subtracting half of the square’s width and height, respectively. Here’s how
you can modify your code:

In the ‘handleAdd* function, calculate the ‘left* and ‘top* values like this:

handleAdd (SpriteBoxEvent event) {
final clickX = event.pointerEvent.localPosition.dx;
final clickY = event.pointerEvent.localPosition.dy;

// Calculate the top-left corner of the square so that it is centered at the click location
final left = clickX - 25.0; // Half of the square
s height (50.0 / 2)

final _whitesquare = SpriteSquare (
const Size(50.0, 50.0),
const Color (0OXFFFFFFFF),
handleRemoveSelf
left,
top
)i
_background.addChild (_whitesquare) ;
return true;

}

By adjusting the ‘left* and ‘top* values in this way, the square will be centered at the click location. This is because you're effectively moving the top-left corner of the

square to a position that centers the square around the click point.

Category: Mobile & Desktop——Dart
Evaluation Criteria: GPT-40
Correctness Score: 35/50

Completeness Score: 25/50

Total Score: 60

Figure 8: A case of InfiBench-V from the Mobile & Desktop category.

24

Under review as a conference paper at ICLR 2026

G.7 INFIBENCH-V CASE 5

Question: In the context of a Ruby on Rails application using version 2.3.5 and Ruby 1.8.7, I am working
with three database tables: A, B, and C. The relationships are as follows: table A has multiple associated records

in table B, and table C also has multiple associated records in table B. There is no direct relationship between Atable
tables A and C.

I want to query records from table A and include associated records from tables B and C. I can include table B
in the query using the following code:

A.all(:conditions => { :id => id }, :include => [:B])

B table C table

However, I am unsure how to also include table C in the query. Despite extensive research, I have not found a
solution. How can I modify the query to include records from both tables B and C when querying table A’s

records?

Response:

To include associated records from both tables B and C when querying table A in a Ruby on Rails application, you need to ensure that the associations are set up
correctly in your models. Assuming you have the following associations:

- Table A has many records in table B (e.g., has.many :bs).

- Table C has many records in table B (e.g., has_many :cs).

You can use eager loading with : include to load associated records from both tables B and C. Here’s how you can modify your query:

A.all(:conditions => { :id => id }, :include => { :bs => :cs })

This assumes that:

- In model A, you have has_many :Dbs.

- In model B, you have belongs_to :aand has.many :cs.

- In model C, you have has_many :bs.

If the association between B and C is different, adjust the : include statement accordingly. If there is no direct relationship between A and C, but you want to
include C through B, make sure the association is correctly defined in your models.

Note: Since you’re using Rails 2.3.5 and Ruby 1.8.7, the syntax for eager loading is slightly different compared to newer versions of Rails. Make sure your models’
associations are set up correctly to reflect these relationships.

Category: Back-End——Ruby

Evaluation Criteria: GPT-40

1. Correctness (0-50): The model answer provides a solution using Rails’ eager loading feature with the : include option in a way that aligns with Rails 2.3.5
syntax. It correctly assumes that B acts as an intermediary between A and C. The proposed query modification A.all (:conditions => { :id => id
}, :iinclude => { :bs => :cs }) is avalid way to include associated records from both tables B and C through B. This matches the associations
depicted in the screenshot, where A is linked to B, and B is linked to C. The model answer elaborates on the associations needed in the models, which is technically
correct. However, the reference answer is more concise and directly points to the usage of :include => { :B => :C } without additional assumptions
about model setup. The model answer’s explanation about associations, while correct, is not necessary to resolve the specific query issue. Nonetheless, the
model’s proposed query would work given the correct associations. Therefore, the correctness of the model’s answer is high, albeit slightly verbose.

2. Completeness (0-50): The model answer provides a comprehensive response by explaining the underlying assumptions about the model associations, which
are essential to achieving the desired query behavior. It goes beyond the reference answer by elaborating on how associations should be set up in the models |
This additional detail provides a complete understanding of how the query interacts with the model structure. While the reference answer is more succinct, the
model answer’s thoroughness in explaining potential association configurations adds value and ensures that the user understands the prerequisites for the query to
function as intended. Thus, the model answer is complete but includes information that, although helpful, is not strictly necessary to address the question directly|

Scores:

- Correctness: 45/50

- Completeness: 45/50
Total Score: 90

Figure 9: A case of InfiBench-V from the Back-End category.

25

	Introduction
	VisCodex
	Model Architecture
	Model Merging
	Model Training

	McD Dataset
	Enhanced HTML Code
	Chart Image to Code Data
	Image-Augmented Code QA
	Algorithmic Code

	InfiBench-V
	Data Curation
	Evaluation Criteria

	Experimental Setup
	Experimental Results
	Main Results
	Analysis
	Case Study

	Related Work
	Multimodal Code Generation
	Model Merging for MLLMs

	Conclusion
	LLM Usage Statement
	Additional analysis experiments
	Comparison with Existing Web2Code Datasets
	Generalizability of McD
	Generality of Code Model Merging

	Training Parameters and Training Cost
	Human Evaluation
	Data Statistics
	Data Statistics of McD
	Distribution of selected benchmark questions in InfiBench-V

	Prompt
	Additional Examples
	MMCode Case 1
	MMCode Case 2
	InfiBench-V Case 1
	InfiBench-V Case 2
	InfiBench-V Case 3
	InfiBench-V Case 4
	InfiBench-V Case 5

