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ABSTRACT

As a central component in formal verification, statement autoformalization has
been widely studied including the recent efforts from machine learning commu-
nity, but still remains a widely-recognized difficult and open problem. In this
paper, we delve into two critical yet under-explored gaps: 1) absence of faithful
and universal automated evaluation for autoformalization results; 2) agnosia of
contextural information, inducing severe hallucination of formal definitions and
theorems. To address the first issue, we propose BEq (Bidirectional Extended
Definitional Equivalence), an automated neuro-symbolic method to determine the
equivalence between two formal statements, which is formal-grounded and well-
aligned with human intuition. For the second, we propose RAutoformalizer
(Retrieval-augmented Autoformalizer), augmenting statement autoformalization
by Dependency Retrieval, retrieving potentially dependent objects from formal
libraries. We parse the dependencies of libraries and propose to structurally infor-
malise formal objects by the topological order of dependencies. To evaluate OOD
generalization and research-level capabilities, we build a novel benchmark, Con-
NF, consisting of 961 informal-formal statement pairs from frontier mathematical
researches. Extensive experiments validate the effectiveness of our proposed ap-
proaches. In particular, BEq is evaluated on 200 diverse formal statement pairs
with expert-annotated equivalence label, exhibiting significantly improved accu-
racy (82.50% 7→ 90.50%) and precision (70.59% 7→ 100.0%). For dependency
retrieval, a baseline with excellent performance is established. The proposed
RAutoformalizer substantially outperforms SOTA baselines in both in-distribution
ProofNet benchmark (12.83% 7→ 18.18%, BEq@81) and OOD Con-NF scenario
(4.58% 7→ 16.86%, BEq@8). Code, data, and models will be available.

Philosophy is written in this grand book, the
universe. It is written in the language of
mathematics.

Galileo Galilei, The Assayer1 INTRODUCTION

Theorem provers, such as Lean (Moura & Ullrich, 2021), Coq (Bertot & Castéran, 2013) and Is-
abelle (Nipkow et al., 2002), can check the validity and correctness of mathematical statements and
proofs by strict algorithms, whose own soundness and completeness are proven in theory. However,
instead of directly working on natural language mathematics, these tools define their own formal
languages, which hinders the democratization of formal mathematics.

Statement autoformalization2 aims at translating mathematical statements from natural language to
formal verifiable statement. Due to its rigorously logical nature, this task is widely-recognized to
be challenging, requiring profound understanding of both informal semantics and formal syntax (Li
et al., 2024a). Beyond a fundamental component in formal mathematics and software verification,
strong autoformalization methods have far broader impacts and could result in the creation of a
general purpose reasoning module (Szegedy, 2020). Outside-the-box applications of autoformaliza-
tion include synthesizing training dataset for formal theorem provers (Wu et al., 2022; Xin et al.,

1BEq@k indicates the portion of samples where predictions are equivalent to ground-truths under BEq at
least once in k attempts, defined in Equation 7.

2Readers unfamiliar with formal theorem proving are advised to read Yang et al. (2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024), especially AlphaProof (Castelvecchi, 2024), enhancing informal math reasoning by rejection
sampling (Zhou et al., 2024), and automating code verification (Lin et al., 2024).

Current mainstream methods work in the following process. A large language model (LLM) is ei-
ther prompted (Wu et al., 2022) or fine-tuned (Azerbayev et al., 2023; Jiang et al., 2023a) to directly
generate a formal statement given its informal counterpart. The predicted statements are then evalu-
ated by laborious human annotation (Azerbayev et al., 2023) or unreliable proxy automated metrics
including machine translation metrics such as BLEU (Wu et al., 2022) and perplexity (Wang et al.,
2018), symbolic type check pass rate (Lu et al., 2024) or LLM grader (Ying et al., 2024a).

Rethinking this paradigm, we find out two key limitations. Firstly, an effective, human-aligned and
universal automated evaluation metric is absent. Machine translation metrics are fragile to equiv-
alent transformations in human perspective, for example β-reduction (function application). Type
check is too weak to filter out syntactically correct but semantically absurd autoformalization. It is
a necessary but not sufficient condition for the ideal equivalence. LLM graders are non-determinant
and highly dependent on prompts, and are easily misled by imperceptible but fundamental differ-
ences or huge but nonessential transformations. Murphy et al. (2024) are pioneers to utilize SMT
solver for faithful automated evaluation, but is restricted to Euclidean geometry only. Secondly, the
current paradigm directly generates formal statements, ignoring the context of previously formal-
ized statements and definitions. This might result in severe hallucination of identifiers and syntax,
especially in out-of-distribution (OOD) cases. A similar issue is reported in Wu et al. (2022), where
definition misalignment between informal mathematics and formal libraries is the major cause of
failure cases. Our experiments on both in-domain and OOD scenarios, shown in Table 3, show the
severity of this problem and exhibit a promising path to address it.

For the first issue, we propose BEq (Bidirectional Extended Definitional Equivalence), a neural-
symbolic equivalence relation between formal statements. This metric aligns well with collective
human opinions. In formal systems built upon dependent type theory (Univalent Foundations Pro-
gram, 2013), such as Lean 4 (Moura & Ullrich, 2021), definitional equality is a symbolic equivalence
relation under a variety of intuitive transformations, such as bound variable renaming, function ap-
plication, and definition unfolding. However, it heavily relies on the definitions of objects and con-
version rules, hence it is too strict and inflexible from human perspective. For example, n + 0 and
n are definitional equal for a natural number n, but n and 0 + n are not. Worse still, definitional
equality struggle with handling metavariable differences. We extend definitional equivalence by 1)
equipping it with a restricted set of symbolic transformation primitives and a neural transformation
function aiming to convert one formal statement to be definitionally equivalent to the other, and
2) loosing the equivalence criteria to bidirectionally “convertible” under the transformation func-
tion. To evaluate its performance, we build a benchmark consisting of 200 formal statement pairs
with expert-annotated equivalence labels. BEq significantly outperforms previous SOTA methods,
improving the precision from 70.59% to 100% and the accuracy from 82.50% to 90.50% .

For the second, we propose a new task, Dependency Retrieval, and a new method, RAutoformalizer
(Retrieval-augmented Autoformalizer). Dependency retrieval seeks to select potentially dependent
formal objects given an informal statement. RAutoformalizer uses the retrievals to enhance autofor-
malization. To enable this new paradigm, we propose to parse the dependencies in formal libraries
and construct training data by topological informalization, informalizing formal objects by topolog-
ical order. An immense dataset of 243,797 formal objects (including 139,933 theorems) is synthe-
sized upon Mathlib 4. We also build the Con-NF benchmark3 to evaluate out-of-distribution (ODD)
generalization and research-level capabilities of current methods. A baseline is built for dependency
retrieval, with 35.52% Recall@5 on ProofNet and 24.32% Recall@5 on Con-NF. RAutoformal-
izer exhibits substantial improvement over previous methods, improving BEq@8 from 12.83% to
18.18% on ProofNet and from 4.58% to 16.86% on Con-NF.

To sum up, in this paper, we identify two key limitations in statement autoformalization: the absence
of faithful and universal automated evaluation, and the agnosia of contextural information. The
contributions of our work are listed as follows:

1) We introduce a new neural-symbolic equivalence metric, BEq (Bidirectional Extended Defini-
tional Equivalence), which extends Definition Equality in dependent type theory to be more aligned
with human intuition.

3Based on Lean 4 Con(NF) library (A formal consistency proof of Quine’s set theory New Foundations)
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2) We propose a new dependency retrieval task and introduce a novel paradigm, RAutoformalizer
(Retrieval-Augmented Autoformalizer). We further propose topological informalization to synthe-
size high-quality training data for these initiatives. To evaluate research-level autoformalization and
out-of-distribution (OOD) performance, we create a new benchmark, Con-NF, which consists of
961 informal-formal statement pairs from New Foundations (Holmes & Wilshaw, 2024).

3) We validate BEq by expert evaluation on 200 formal statement pairs and set a baseline for de-
pendency retrieval. Extensive experiments of RAutoformalizer show its superior performance on
statement autoformalization. Ablation studies further validate the effectiveness of our technical
modifications, and also exhibit the great potential of the retrieval-augment paradigm.

2 RELATED WORKS

Autoformalization. It aims to automatically translate natural language (informal) mathematics into
formal verified code. Current autoformalization methods can be roughly divided into three levels.
Statement autoformalization focuses on autoformalizing statements (Wang et al., 2020; Wu et al.,
2022; Azerbayev et al., 2023; Jiang et al., 2023a; Gulati et al., 2024; Poiroux et al., 2024); proof
autoformalization focuses on translating informal proofs (and sometimes including corresponding
statements) into formal code (Cunningham et al., 2023; Jiang et al., 2023b; Zhao et al., 2023; Mur-
phy et al., 2024; Lu et al., 2024); theory autoformalization, translating a whole theory including
definitions, axioms, theorems, and proofs, remains under-explored. Patel et al. (2024) proposes a
three-stage plan to break the difficulty into easier subtasks.

Methods of Autoformalization. Autoformalization is notoriously challenging for prevalent data-
driven approaches (Li et al., 2024b). Existing informal-formal parallel corpora are fairly scarce,
which impedes machine learning training. To alleviate this, researchers synthesize informal-formal
pairs by rule-based informalization (Wang et al., 2018; Cunningham et al., 2023), LLM-based back-
translation (Azerbayev et al., 2023; Jiang et al., 2023a), training with multilingual corpus (Jiang
et al., 2023a), or utilizing in-context learning (ICL) capabilities (Wu et al., 2022). Ying et al. (2024a)
proposes an expert iteration pipeline by iteratively synthesizing and filtering training data.

A major difference from machine translation is the existence of verifiers. Another line of work
focuses on utilizing verifier feedbacks. Poiroux et al. (2024) uses rejection sampling to enhance aut-
oformalization by typecheck results; Lu et al. (2024) introduces a neural step-level verifier and per-
form expert iteration; Jiang et al. (2023b); Murphy et al. (2024) combines LLM and formal verifier
for proof autoformalization, and Zhao et al. (2023) enhances it with subgoal-based demonstration.

Evaluation of Autoformalization. There are many benchmarks for statement autoformalization,
covering undergraduate-level math problems (Azerbayev et al., 2023), more complex areas from
Mathlib 4 (Gulati et al., 2024), and Euclidean geometry (Murphy et al., 2024).

Due to the high flexibility of natural language and the rigor of formal language, faithfully evaluating
autoformalization is widely-recognized to be challenging and under-explored (Szegedy, 2020; Azer-
bayev et al., 2023; Jiang et al., 2023a; Murphy et al., 2024). Wu et al. (2022); Jiang et al. (2023a);
Ying et al. (2024a) evaluate autoformalization results by human experts. Wang et al. (2018) reports
identical matching accuracy. Proxy metrics, including perplexity (Wang et al., 2018), BLEU4 (Wang
et al., 2018; Poiroux et al., 2024; Azerbayev et al., 2023; Wu et al., 2022) and compiler typecheck
pass rate (Lu et al., 2024; Azerbayev et al., 2023; Jiang et al., 2023a) are utilized to automate evalu-
ation. Ying et al. (2024a); Gulati et al. (2024) prompts LLMs to determine the equivalence between
predicted formal statement and ground-truth. Murphy et al. (2024) propose to use SMT solver to
evaluate the equivalence between formal statements in Euclidean geometry.

For proof autoformalization, current evaluation focuses on theorem proving, only verifying formal
proofs’ correctness while potentially overlooking semantic inconsistencies between informal and
formal proofs. The evaluation of theory autoformalization is also insufficiently researched.

Retrieval-augmented Generation. Retrieval-augmented generation has been extensively studied in
natural language processing. In terms of code generation, code documentations (Zhou et al., 2023),
APIs (Zan et al., 2022), repository files (Zhang et al., 2023) and dynamic knowledge soup (Su et al.,
2024) are retrieved to augment generation. In formal verification, Azerbayev et al. (2023) proposes

4BLEU (Papineni et al., 2002) is a metric for evaluating machine translation based on n-gram matching.
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theorem sQ {G : Type*} [Group G] 
[Fintype G] (hG2 : Even (card G))
: ∃ (a : G), a ≠ 1 ∧ a = a⁻¹

Statement sQ
theorem sQ {G : Type*} [Group G] 
[Fintype G] (hG2 : Even (card G))
: ∃ (a : G), a ≠ 1 ∧ a = a⁻¹

Statement sQ

theorem sP {G : Type*} [Group G] 
[Fintype G] (h : Fintype.card G % 2 = 0) 
: ∃ a : G, a ≠ 1 ∧ a = a⁻¹

Statement sP
theorem sP {G : Type*} [Group G] 
[Fintype G] (h : Fintype.card G % 2 = 0) 
: ∃ a : G, a ≠ 1 ∧ a = a⁻¹

Statement sP

Bidirectional Extended Definitional Equivalence

sP ~B sQ

Unidirectional Definitional Implication

sP ←U sQ ⇔ sP ~D T(sQ | sP, 𝓡) 

Unidirectional Definitional Implication

sQ ←U sP ⇔ sQ ~D T(sP | sQ, 𝓡) 
...

T(sQ | sP, 𝓡)T(sQ | sP, 𝓡)

theorem sQ {G : Type*} [Group G] [Fintype 
G] (hG2 : Even (card G)) :

∃ (a : G), a ≠ 1 ∧ a = a⁻¹ := by
  sorry

theorem sP {G : Type*} [Group G] [Fintype 
G] (h : Fintype.card G % 2 = 0) :

∃ a : G, a ≠ 1 ∧ a = a⁻¹ := by

  _____

theorem sQ {G : Type*} [Group G] [Fintype 
G] (hG2 : Even (card G)) :

∃ (a : G), a ≠ 1 ∧ a = a⁻¹ := by
  sorry

theorem sP {G : Type*} [Group G] [Fintype 
G] (h : Fintype.card G % 2 = 0) :

∃ a : G, a ≠ 1 ∧ a = a⁻¹ := by

  _____?

  have hG : Even (card G) := by exact?
  exact sQ hG
  have hG : Even (card G) := by exact?
  exact sQ hG

exact
exact?
have
...

𝓡 (tactics)

exact
exact?
have
...

𝓡 (tactics)

Figure 1: Illustration of BEq (Bidirectional Extended Definitional Equivalence) and Unidirectional
Definitional Implication. sP ∼B sQ if and only if both sP ←U sQ and sQ ←U sP hold. To deter-
mine the first, we assume sQ holds. Then the transformation function (implemented with a LLM) T
is called to generate transformation (proof of sP using sQ) conditioned on sQ and transformation
primitive (tactic) set R. If the transformation holds, we conclude that sP ←U sQ. Otherwise, we
believe sP ̸←U sQ. Vice versa for the second direction.

to augment statement autoformalization by retrieving relevant prompt. ReProver (Yang et al., 2024)
enhances theorem proving with premise selection.

3 BIDIRECTIONAL EXTENDED DEFINITIONAL EQUIVALENCE

A fundamental problem for all generative tasks is to faithfully and effectively evaluate the results. In
statement autoformalization, let S denote the set of all formal statements, given a predicted formal
statement spred ∈ S and the corresponding ground-truth sgt ∈ S, we need an equivalence relation
∼: S× S to determine whether the autoformalization is correct. The relation (· ∼ ·) should satisfy:

• (· ∼ ·) is an equivalence relation, which is a binary relation with reflexivity, symmetry and
transitivity.

• (· ∼ ·) is well aligned with human intuition.

• (· ∼ ·) is universally applicable in all domains.

Definitional Equality. In Lean 4 (Moura & Ullrich, 2021), two expressions are definitionally equal
if they are equivalent w.r.t. a series of conversion rules, such as α-conversion (renaming bound vari-
able), η-expansion (modifying unused arguments in functions), proof irrelevance (proofs of the same
Prop), β-reduction (function application), ζ-reduction (eliminating let-in definitions), δ-reduction
(unfolding variable and constant definitions), ι-reduction (application of recursive functions defined
on inductive types to an explicit constructor) (Bailey et al., 2024). This equality is a binary relation
with reflexivity, symmetry and transitivity, and applicable in all math areas formalized in Lean 4.
And it has many intriguing characteristics that fits more closely with human instinct. For exam-
ple, fun (b:Nat) => b is equivalent to fun (u:Nat) => u because definitional equality
allows α-conversion, in which bound variable b is renamed to u.

However, several critical weaknesses hinder definitional equality from becoming a good and intu-
itive metric for autoformalization. Firstly, some expressions that are naturally “equivalent” from a
human perspective are not definitionally equal. For example, for a natural number n:Nat, n + 0
and n are definitionally equal, but 0 + n and n are not definitionally equal. Definitional equality
heavily relies on the definitions of objects and conversion rules, while many intuitive equivalences,
are neglected. Worse still, typecheck often get stuck in typeclass instance problems due to metavari-
ables, which hinders evaluating definitional equality between statements.

3.1 EXTENDING DEFINITIONAL EQUALITY

Formulation. Suppose there are two formal statements, sP and sQ. Without loss of generality,
sP and sQ are assumed syntactically valid, since it is nonsense to talk about equivalence between
invalid formal statements. Definitional equality is denoted as ∼D.

The main reason behind the aforementioned limitations of definitional equality is its strictness on
reductions and conversions. We hence loose the limitation and extend definitional equality to align
with human intuition. Let R be the set of all transformation primitives, U(s,R) : S×2R 7→ 2S to be

4
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the set of all valid formal statements that can be constructed by applying transformations inR ⊂ R
on s, and T : (S× (S× 2R)) 7→ S to be a restricted transformation function such that

T (sP |sQ,R) =
{
s′P , s′P ∈ U(sP ,R) ∧ sQ ∼D s

′
P

⊥, ∀s′P ∈ U(sP ,R), sQ ̸∼D s
′
P

(1)

Intuitively, given transformation primitives R ⊂ R, T transforms sP definitionally equal to sQ if
possible and returns the transformed statement. Otherwise, it returns a dummy statement ⊥, which
is not definitionally equal to any other valid statement (e.g., an invalid statement).

In Lean 4, a formal statement can be converted to a proof goal by entering tactic mode. A proof
goal ({sP,i}ni=1, sQ) consists of some assumptions {sP,i}ni=1 and a conclusion sQ, where all sP,i

and sQ are statements, and n can be 0. Then tactics, which are metaprograms, reduce a goal to
another, which is often easier to solve by assumptions. For example, transforming ({S}, R → S)
to ({R,S}, S) by tactic intro and trivially prove it by exact. A formal statement sP can be
transformed to a proof goal by simply setting assumptions to be empty set and conclusion to be sP ,
resulting in the proof goal (∅, sP ). And a proof goal ({sP,i}ni=1, sQ) can be transformed back to a
formal statement sP,1∧sP,2∧· · ·∧sP,n → sQ. These transformations occur in syntax level, leaving
semantics unchanged. Therefore, we can determine semantic equivalence in the space of proof goals
and concretize R to be the set of all tactics in Lean. The restricted transformation function T can be
approximated by sampling tactic sequences from a large language model and symbolically executing
on Lean kernel for multiple times, until a valid s′P is found, or the time limit exceeds. With a slight
abuse of notation, we denote both the formal statement sP and its corresponding proof goal as sP .

Then, Unidirectional Definitional Implication (· ←U ·) is defined as

sP ←U sQ ⇐⇒ sP ∼D T (sQ|sP ,R) (2)

Intuitively, this implication from sQ to sP indicates whether the proof goal of the statement sP can
be definitionally equal to a restrictively transformed sQ by T . Correspondingly, BEq (Bidirectional
Extended Definitional Equivalence) (· ∼B ·) is defined as

sP ∼B sQ ⇐⇒ sP ←U sQ ∧ sQ ←U sP (3)

which is

• a superset of definitional equality: LetR = ∅, then, T becomes identity mapping ∆(·) and

sP ∼B sQ ⇐⇒ sP ∼D ∆(sQ) ∧ sQ ∼D ∆(sP )

⇐⇒ sP ∼D sQ

• an equivalence relation, which is a binary relation with
1. Reflexivity: sP ∼B sP holds because sP ∼D sP .
2. Symmetry: sP ∼B sQ ⇐⇒ sQ ∼B sP holds by unfolding the definition of BEq.
3. Transitivity: If sP ∼B sQ and sQ ∼B sR holds, we have sP ∼D T (sQ|sP ,R) and

sQ ∼D T (sR|sQ,R). Suppose T (sQ|sP ,R) applies tactic sequence [t
(i)
QP ]

m
i=1 to

transform proof goal sQ to be definitionally equal to sP , and T (sR|sQ,R) applies
[t
(j)
RQ]

n
j=1. Therefore, by applying Concat([t(j)RQ]

n
j=1, [t

(i)
QP ]

m
i=1) on sR, we can trans-

form proof goal sR to be definitionally equal to sP . Therefore, sP ∼D T (sR|sP ,R).

Implementation. An overview of BEq is depicted in Figure 1. To implement the transformation
function T , we perform 5-shot prompting IntermLM-Math-Plus-20B (Ying et al., 2024b) served
on vLLM (Kwon et al., 2023). If not mentioned otherwise, model prediction is sampled by beam
search where temperature T = 0.0, attempt number n = 8 and beam size b = 8. The choice
of transformation primitives is sophisticated and is critical for the alignment with human. We set
R = {apply, cases’, constructor, exact, exact?, ext, have, intro,intros, rw,
use} to extend vanilla definitional equality (for higher recall) while preventing U(·,R) and the
equivalence class being too large (for higher precision). More experiments on the choices of attempt
numbers, transformation primitives and sampling strategies can be found in Appendix A.1.

Given two formal statements sP and sQ, we first check sP ←U sQ. sQ is assumed to be true by
closing its proof with sorry. Then, symbolic heuristic exact? is called to generate a proof for

5
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Table 1: Comparison of automated evaluation metrics for statement autoformalization. R, S, T
denote reflexivity, symmetry, and transitivity, respectively. Universal indicates whether a metric is
applicable in all domains; 0/0 denotes division by zero; I and D denote InternLM2-Math-Plus-20B
and Deepseek-V2.5, respectively; ∼ represents the metric is unsuitable for the method. *We report
the best results among all thresholds; †Reflexivity and symmetry depends on the implementation.

Metric Binary Relation Alignment with Human Universal
R S T Precision↑ Recall↑ Accuracy↑

Identity Match ✓ ✓ ✓ 0/0 0.00% 65.00% ✓

Typecheck ∼ 35.00% 100.00% 35.00% ✓

BLEU Threshold ✓† ×† × 62.96%∗ 24.29%∗ 68.50%∗ ✓

Majority Voting (I) × × × 40.00% 94.29% 48.50% ✓

Majority Voting (D) × × × 70.59% 85.71% 82.50% ✓

Definitional Equality ✓ ✓ ✓ 100.00% 11.43% 69.00% ✓

E3 (Murphy et al., 2024) ✓ ✓ ✓ ∼ ×
BEq ✓ ✓ ✓ 100.00% 72.86% 90.50% ✓

sP . If it fails, n candidates are sampled from the LLM5, given tactic restriction R and sQ. If there
exists at least one successful proof that uses sQ, sP ←U sQ holds. Otherwise, sP ←U sQ does not
hold. Then sQ ←U sP is similarly checked. If and only if both directions hold, sP ∼B sQ holds.

3.2 EVALUATION OF BEQ

Human Equivalence Benchmark. To fairly and reliably evaluate BEq and baseline metrics, we
uniformly sampled 200 formal statements from the typechecked predictions generated by RAuto-
formalizer and OpenAI o1-preview (100 predictions from each). Then the statements are paired
with the ground-truths in ProofNet (Azerbayev et al., 2023)6. Experts in math and formal verifica-
tion are invited to discuss and label the equivalence in their opinion for the 200 statement pairs. The
discipline distribution of these samples is visualized in Appendix A.4.

Experiment Setting. In our evaluation, identical matching is optimized to neglect spaces in for-
mal statements. BLEU computation is identical to Azerbayev et al. (2023). To determine pairwise
equivalence, we binarize BLEU by a threshold. The best results over all possible thresholds are
reported. The precision, recall, and accuracy curves of different thresholds can be found in Ap-
pendix A.5. For LLM grader, we use the prompts5 in Ying et al. (2024a) but a stronger setting:
InternLM2-Math-Plus-20B (Ying et al., 2024b) and Deepseek-V2.5 (DeepSeek-AI, 2024) with 16-
shot majority voting and temperature T = 0.7. E3 (Murphy et al., 2024) is not evaluated on this
benchmark, since it is only available on Euclidean Geometry. BEq also samples 16 tactic sequences
candidates for each sample.

Experiment Results.7 As summarized in Table 1, BEq reaches 100.0% precision and 90.50% ac-
curacy, showing landslide advantages over baselines. However, BEq falls short on recall (−12.85%
compared with “Majority Voting (D)”) because of 1) rigor of formal verification systems; and 2)
failure of approximated transformation function (the LLM), as analyzed in Appendix A.4. For
baselines, Azerbayev et al. (2023) concludes that BLEU has low correlation with ground-truth ac-
curacy, with which our experiment result agrees. The distribution of BLEU scores of equivalent
and inequivalent pairs is visualized in Appendix A.5. LLM Majority Voting sets a strong baseline,
reaching 82.50% accuracy, but at the expense of precision. As a subset of BEq, definitional equality
performs well in precision, but has too many false negatives.

With BEq, we can better evaluate statement autoformalization. In the following journey, we will
address the second issue, agnosia of context.

5Detailed prompt template can be found in Appendix A.7.
6All relevant open-source libraries are summarized in Appendix A.9.
7More comprehensive results can be found in Appendix A.2.1.
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Prove that if $|G|=2907$ then $G$ is not simple.
Informal Statement

Prove that if $|G|=2907$ then $G$ is not simple.
Informal Statement

class Group (G: Type u) extends DivInvMonoid: 
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class Div (α: Type u): Type u…
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class Group ...

- Code:
class Group (G : Type u) 
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- Comment:
A ̀ Group`  is a `Monoid` ...

Informalizations
Mathlib 4

Class `Group` 
represents a monoid 
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- Comment:
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theorem thm_Q {G : Type u_1} [Group G] 
[Fintype G] (h_G : Fintype.card G = 2907) : 
¬ IsSimpleGroup G := by sorry

Formal Statement
theorem thm_Q {G : Type u_1} [Group G] 
[Fintype G] (h_G : Fintype.card G = 2907) : 
¬ IsSimpleGroup G := by sorry
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Figure 2: Pipeline of RAutoformalizer. Train: ①Dependencies in a library (e.g., Mathlib 4) are
parsed. Formal objects are informalized by topological order, each given its own and dependencies’
information. The resulting parallel data is used to train the retriever (encoder) and autoformalizer.
Inference: ②Each informal statement is encoded into a dense embedding, whose cosine similarities
are computed with pre-computed library embeddings. ③Objects corresponding to top-k similarities
are retrieved. ④Conditioned on the informal statement and retrieved dependencies, autoformalizer
predicts formal statements.

4 RETRIEVAL-AUGMENTED AUTOFORMALIZATION

The current autoformalization paradigm suffers from the agnosia of context. Autoformalizers, with-
out a priori knowledge of previously formalized definitions and theorems, frequently hallucinate
formal objects which are nonexistent in the library. This drawback is also observed as definition
misalignment by Wu et al. (2022); Azerbayev et al. (2023); Jiang et al. (2023a). Although these hal-
lucinated identifiers and function applications are semantically correct from the human perspective,
formal verification fails because of the soundness of symbolic verifiers. Our preliminary experiments
support this observation, with hallucination worsening in OOD scenarios like frontier research.

4.1 RAUTOFORMALIZER

We propose RAutoformalizer (Retrieval-Augmented Autoformalizer), which addresses the issue by
incorporating dependency retrieval, selecting relevant formal objects for a given informal statement.

Dependency Retrieval. Suppose we are autoformalizing an informal statement lP with a ground-
truth formal statement sP . Dependency retrieval aims to retrieve a subset of formal objects D from a
formal library D (e.g., Mathlib 4), maximizing the number of dependent formal objects of sP while
minimizing the inclusion of irrelevant ones, i.e.,

arg max
D∈2D

|D ∩ sP | − |DC ∩ sP | (4)

Our retriever, ψθ : S 7→ Sh, which embeds a string onto the surface of a h-dimensional unit sphere,
uses Dense Retrieval (Karpukhin et al., 2020) for its popularity, simplicity, and efficiency. Before
inference, the embeddings of the whole library are precomputed as {ψθ(sd) | sd ∈ D}. Then, when
an informal statement lP is provided, we only need a single forward pass to embed it as ψθ(lP ) and
retrieve formal objects with top-k maximal cosine similarities, see Figure 2 (Upper Right).

D = argmaxD∈2D,|D|≤k

∑
sd∈D

⟨ψθ(lP ),ψθ(sd)⟩ (5)

Dataset. We build the dependency graphs for Mathlib 4, illustrated in Figure 2 (Bottom Left), by pars-
ing the declarations of all formal objects and linking identifiers with accessible formal objects in the
corresponding context. In total, 243,797 formal objects (including 139,933 theorems) are collected
along with their full names, positions, types, declarations, code, comments, and dependencies.
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We propose to topologically informalize Mathlib 4 to synthesize a training dataset. Concretely,
all formal objects are topologically sorted and split into 24 topological generations based on their
dependency graph. Informalization is performed from the bottom (e.g., basic definitions) to the
top (more sophisticated concepts), as Figure 2 (Bottom Middle) shows. We use 10-shot prompted
InternLM2-Math-Plus-20B (Ying et al., 2024b) as the informalizer. For a formal object, the infor-
malizer is provided with the object’s declaration, code8, comment, and its dependencies’ informal-
izations. The high quality of informalizations is shown in subsequent experiments.

RAutoformalizer. Building upon dependency retrieverψθ, a LLM pϕ can predict formal statements
given informal statements and retrieval results, as in Figure 2 (Bottom Right):

ŝP ∼ pθ(·|lP , D) (6)

The retriever ψθ is fine-tuned from BGE-M3 (Chen et al., 2023) using informalized theorems and
dependencies in Mathlib 4 and hyperparameters in Appendix A.8. We retrieve the top-100 candi-
dates using pretrained BGE-M3, remove true dependencies, and take the remainings as hard nega-
tives (Xiao et al., 2023). By default, formal declarations of objects are used to generate embeddings.

For each theorem object, top-5 retrievals ofψθ are collected to fine-tune the autoformalizer pϕ from
InternLM2-Math-Base-7B (Ying et al., 2024b) using the training recipe in Appendix A.8.

During inference, given an informal statement lP and a formal library D, the retriever ψθ selects
top-5 candidates from the library, then the autoformalizer pϕ generates formal statements based on
the informal statement and retrievals.

Con-NF: OOD Benchmark. Existing benchmarks (Azerbayev et al., 2023; Zheng et al., 2022;
Tsoukalas et al., 2024; Liu et al., 2023; Murphy et al., 2024) rely on Mathlib 4 and concentrate
on high-school or undergraduate level mathematics. To evaluate the out-of-distribution generaliza-
tion capabilities and research-level mathematics, we build a novel benchmark, Con-NF, based on
Lean 4 Con(NF) (Holmes & Wilshaw, 2024) library. Con(NF) is a recently published digitization of
Randall Holmes’ proof (Holmes, 2015) that Quine’s New Foundations (Quine, 1951) is consistent.
We parse dependencies in this library, topologically informalize all 85,762 formal objects, dedupli-
cate theorems from Mathlib 4, and eliminate unused formal objects of the remaining theorems. The
cleaned benchmark consists of 961 theorems based on a different theoretical basis to merely Mathlib
4, along with a total of 1,348 formal objects and their informalizations.

4.2 EVALUATION OF RETRIEVAL AND AUTOFORMALIZATION

Dependency Retrieval. We choose pretrained BGE-M3 and BM25 (Robertson et al., 2009) as
baselines. BGE-M3 is a state-of-the-art embedding model which can perform accurate semantic
retrieval for more than 100 languages. BM25 is a classical information retrieval method based on
frequency and document length, and is the main baseline in ReProver (Yang et al., 2024). For BGE-
M3 baseline, we evaluate the pretrained model; For BM25, a BPE tokenizer with 30,000 vocabulary
is trained on the topologically informalized Mathlib 4 dataset. For each ablative setting in experi-
ments, we separately fine-tuned one retriever with the same recipe in Appendix A.8. Evaluation is
conducted on the ProofNet (Azerbayev et al., 2023) and the Con-NF benchmark.

Results in Table 2 suggest the superiority of our method. Models fine-tuned on dependency re-
trieval dataset shows landslide victory over baselines, exhibiting more than 10× improvement of
recall on ProofNet and 2× on Con-NF. The huge performance gap between baselines focused on
semantic similarity and our model indicates that dependency retrieval is a novel retrieval task, which
relies more on logical dependency. For more intuitive analysis, a case study can be found in Ap-
pendix A.6. Ablative results on topological informalization also demonstrates the consistent ad-
vantage over vanilla informalization, especially in OOD generalization (Con-NF), where relative
improvements can reach 50% on Recall@5 and Precision@5. Comparisons between formattings of
formal objects indicate that incorporating informalizations in dependency embedding might intro-
duce noise and degrade retrieval performance in in-distribution settings but improves OOD perfor-
mance. We leave the exploration of this intriguing phenomenon for future work.

Statement Autoformalization. We evaluate a wide range of baselines, including in-context learn-
ing (Wu et al., 2022) using GPT-4o (OpenAI et al., 2024) and Deepseek-V2.5 (DeepSeek-AI, 2024),

8For theorems, we only use their declarations since their code (except proofs) is identical with their decla-
rations in semantics.
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Table 2: Comparisons between our dependency retriever and baselines, and ablations of topological informal-
ization. Cyan numbers in brackets show ablative improvements over vanilla informalization (U); Bold numbers
emphasize the highest values in each benchmark; Fmt indicates the method to format a formal object into
a string to embed, where F denotes using only formal declarations and F+IF means using both formal dec-
larations and informalizations; DR represents dense retrieval; Dataset indicates the training dataset, where P
means directly using pretrained model, U represents unstructurally informalized dataset, and T represents topo-
logically informalized dataset; R@k and P@k denote the recall and precision of top-k retrievals, respectively.

Bench Fmt Method Dataset R@5↑ R@10↑ R@100↑ P@5↑ P@10↑ P@100↑

ProofNet

F

BM25 T 0.16% 0.16% 1.00% 0.11% 0.05% 0.03%

DR
P 1.93% 2.13% 7.14% 1.02% 0.61% 0.24%
U 33.74% 40.31% 65.30% 21.55% 13.61% 2.22%
T 35.52% (1.79%) 43.63% (3.32%) 67.71% (2.42%) 22.89% (1.34%) 14.57% (0.96%) 2.25% (0.03%)

F+IF

BM25 T 0.00% 0.11% 0.29% 0.00% 0.05% 0.01%

DR
P 0.41% 0.98% 5.46% 0.32% 0.40% 0.20%
U 28.66% 34.57% 63.55% 18.18% 11.28% 2.16%
T 32.47% (3.81%) 40.35% (5.78%) 67.33% (3.78%) 20.32% (2.14%) 12.81% (1.52%) 2.26% (0.11%)

Con-NF

F

BM25 T 4.41% 7.31% 31.13% 2.37% 2.23% 1.06%

DR
P 5.66% 9.10% 34.50% 3.73% 3.02% 1.15%
U 15.28% 20.31% 72.70% 7.95% 5.47% 2.39%
T 24.32% (9.04%) 37.44% (17.13%) 88.86% (16.16%) 14.05% (6.10%) 11.29% (5.82%) 3.19% (0.80%)

F+IF

BM25 T 9.86% 14.95% 34.50% 6.95% 5.28% 1.26%

DR
P 13.84% 19.19% 44.16% 9.51% 6.72% 1.59%
U 17.34% 23.10% 84.25% 10.39% 7.29% 3.05%
T 27.91% (10.57%) 37.00% (13.90%) 86.43% (2.18%) 17.57% (7.18%) 11.99% (4.69%) 3.21% (0.16%)

and fine-tuning on MMA (Jiang et al., 2023a), PDA (Lu et al., 2024), and Lean-Workbook (Ying
et al., 2024a). Since LLM API calling does not support beam search with T = 0.0, Deepseek is
evaluated using temperature decoding T = 0.7, and GPT-4o using version gpt-4o-2024-08-06
and default hyperparameters. For both, we set repeat count t = 8 (retry if fail to extract formal state-
ment from model outputs) and use 3-shot demonstrations. Notably, ProofNet participates in the data
synthesis process of Lean-Workbook. But we still include it as a strong baseline. For fairness, all
fine-tuning methods use InternLM2-Math-Base-7B (Ying et al., 2024b)9 as base model and train-
ing recipe in Appendix A.8. We also report the performance of RAutoformalizer without retrieval
module (RA -R) and given ground-truth dependencies (RA +R). Both are fine-tuned respectively on
correspondingly constructed dataset. For ProofNet, additional objects defined beyond Mathlib 4 are
retrieved in priority. For reproducibility, all fine-tuning methods are evaluated using beam search
with temperature T = 0.0, generation number n = 8, and beam size b = 8.

We use BEq (introduced in Section 3.1) to evaluate the equivalence between model predictions
and ground-truth formal statements. We define BEq@k as the portion of samples where predicted
statements are BEq to ground-truths at least once in k attempts:

BEq@k =
1

N

N∑
i=1

max
j∈{1,...,k}

Iŝi,k∼Bsi
(7)

where N is the number of samples; k is the number of attempts; I is the indicator function, and ŝi,k
is the j-th generation attempt for the i-th sample. Similarly, Typecheck@k is defined as the portion
of samples where model predictions pass Lean typecheck at least once in k attempts.

Typecheck@k =
1

N

N∑
i=1

max
j∈{1,...,k}

ILeanTypecheck(ŝi,k) (8)

We report BEq@1, BEq@8, Typecheck@1 and Typecheck@8 for a more thorough evaluation.

Table 3 shows the great superiority of RAutoformalizer over baselines. On in-distribution ProofNet
benchmark, the non-retrieval ablative model already surpasses all baseline methods, including Lean-
Workbook (Ying et al., 2024a) (by 6.69% in BEq@8), showing the high quality of our topological in-
formalizations. RAutoformalizer further improves 1.60%. The ideal model reaches 23.26% BEq@1
and 31.28% BEq@8, exhibiting the potential of dependency retrieval.

On OOD Con-NF benchmark, without retrieval, all methods, including large-scale-pretrained GPT-
4o and Deepseek-V2.5, results in extremely low performance. Among these methods, the non-
retrieval ablative model still shows highest BEq@1 and BEq@8 among them. With retrieval-
augment, RAutoformalizer has 3× improvement on BEq@1 and BEq@8, and the oracle model

9Another group of experiments fine-tuned on Deepseek-Math-Base-7B can be found in Appendix A.3.
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Table 3: Comparisons between RAutoformalizer and baselines, and ablations of retrieval-augment. Cyan num-
bers in brackets show ablative improvements over bare autoformalizer (“RA -R”); Bold numbers emphasize the
highest values excluding oracle (“RA +R”) results; BEq@k indicates the portion of samples where predictions
are equivalent to ground-truths under BEq at least once in k attempts, defined in Eq. 7; Typecheck@k indi-
cates the portion of samples where predictions pass typecheck at least once in k attempts, defined in Eq. 9;
ICL (D) and ICL(4o) represents in-context learning using Deepseek-V2.5 and GPT-4o, respectively; MMA,
MMA (Lean), PDA, and LW represents fine-tuning on MMA, MMA’s Lean subset, PDA, and Lean-workbook,
respectively; RA is the main method; RA -R is the ablation removing dependency retrieval; RA +R is the ab-
lation using oracle dependencies.

Method ProofNet Con-NF
Typecheck@1↑ BEq@1↑ Typecheck@8↑ BEq@8↑ Typecheck@1↑ BEq@1↑ Typecheck@8↑ BEq@8↑

ICL (D) 40.37% 9.89% 51.07% 10.96% 9.37% 2.81% 16.23% 4.27%
ICL (4o) 43.58% 7.22% 66.31% 12.83% 9.78% 1.46% 20.71% 4.16%
MMA 12.57% 1.87% 22.99% 2.94% 3.64% 1.98% 8.74% 4.37%
MMA (L) 10.96% 2.14% 23.53% 2.67% 3.33% 1.77% 8.01% 4.58%
PDA 14.71% 0.27% 24.33% 2.14% 4.37% 1.04% 10.61% 3.64%
LW 44.92% 8.56% 49.20% 9.89% 28.10% 0.94% 37.67% 1.04%
RA -R 52.14% 11.50% 71.39% 16.58% 8.12% 3.02% 11.97% 4.58%
RA 57.22% (5.08%) 12.30% (0.80%) 77.27% (5.88%) 18.18% (1.60%) 20.50% (12.38%) 11.45% (8.43%) 28.62% (16.65%) 16.86% (12.28%)

RA +R 72.99% (20.86%) 23.26% (11.76%) 80.48% (9.09%) 31.28% (14.71%) 60.46% (52.34%) 44.85% (41.83%) 72.11% (60.15%) 55.36% (50.78%)

exhibits over 10× potential for improvement. This significant gap demonstrates the necessity of
dependency retrieval and draws community attention to OOD settings10.

5 CONCLUSION

We have presented a thorough rethink on existing statement autoformalization paradigms, identi-
fying and addressing two critical problems: absence of universal human-aligned evaluation metric
and agnosia of contextural information. For the first, we propose BEq (Bidirectional Extended Def-
initional Equivalence), a faithful, effective and universal neural-symbolic approach to determine
the equivalence between formal statements. For the second, we propose a new task, Dependency
Retrieval, finding dependent formal objects from math libraries, and a new paradigm, RAutofor-
malizer (Retriever-augmented Autoformalizer), enhancing statement autoformalization with depen-
dency retrieval. We also propose to parse dependencies and topologically informalize formal objects
to synthesize high-quality data. For more comprehensive evaluation, we extend ProofNet benchmark
for dependency retrieval and construct a novel research-level OOD benchmark, Con-NF.

6 LIMITATION AND BROADER IMPACTS

Limitations of BEq. BEq is an equivalence metric between formal statements. For the evaluation of
autoformalization, the quality of ground-truth statements limits the upper-bound of BEq. This limi-
tation is unavoidable throughout the machine learning community, where even for ImageNet (Deng
et al., 2009), at least 4% of labels are incorrect (Van Horn et al., 2015).

Moreover, human opinions on equivalence are diverse. Therefore, carefully designing the limitation
of transformation primitives R (available tactics) and the transformation function T (the LLM) is
crucial, for which extensive experiments are conducted in Appendix A.1. For more detailed case
study of BEq, please refer to Appendix A.4. We sincerely invite community efforts to delve into
refining BEq and set a domain standard to facilitate subsequent research.

Limitations of RAutoformalizer For retrieval-augment generation, high-ranking retrievals mainly
impact its performance (Cuconasu et al., 2024). Although RAutoformalizer surpasses all baselines
by a significant margin, the experiment of oracle retrieval (RA +R) exhibits large room to improve
the retriever. This project focuses on setting a basic working baseline for dependency retrieval
and leave sophisticated upgrades such as multi-vector embeddings (Khattab & Zaharia, 2020), re-
ranking (Zhuang et al., 2022) and query augmentation (Gao et al., 2024) for future work.

Broader Impacts. We hope the idea of bidirectionally “convertible” under restricted transforma-
tions can inspire more areas, such as neural-symbolic, formal verification, and general reasoning.
For example, faithful automated evaluation in other symbolic generative tasks. Furthermore, re-
searchers can also extend RAutoformalizer to broader neural-symbolic tasks such as the autofor-
malization of specifications, proof, and even theories.

10More detailed ablative study can be found in Appendix A.2
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7 REPRODUCIBILITY STATEMENT

Our research aims to contribute to the field of statement autoformalization by proposing a faithful
equivalence metric, a research-level benchmark, and a new paradigm for mitigating agnosia of con-
text and enhancing OOD generalization. We fully understand the importance of reproducibility in
scientific research and therefore, details of datasets, models, and experiments are summarized as
follows:

• Implementation details of BEq in Section 3.1;
• Experiment settings and baselines for BEq in Section 3.2;
• Training dataset for dependency retriever and RAutoformalizer in Section 4.1, and string

formatting details in Appendix A.8;
• Construction and composition of the Con-NF benchmark in Section 4.1;
• For dependency retriever, implementation details and experiment setting in Section 4.2,

and detailed training recipe in Appendix A.8;
• For RAutoformalizer, implementation details, experiment setting and evaluation metric in

Section 4.2, and detailed training recipe in Appendix A.8;
• All dependent open-source libraries, along with their repository urls and versions in Ap-

pendix A.9.

Moreover, we will upload our evaluation results as supplementary materials. While code, data, and
model checkpoints will be released after acceptance. They may also be made available during the
rebuttal phase for review purposes only.
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A APPENDIX

A.1 COMPARATIVE EXPERIMENTS ON HYPERPARAMETERS OF BEQ

Extensive experiments are conducted to evaluate the influence of different engineering choices, as
shown in Table 4. Experiment dimensions include the restrictions of transformation primitives,
choices between BEq and only Unidirectional Definitional Implication, number of attempts to gen-
erate transformations, and sampling strategy.

As for the restrictions, Basic denotes only {exact, exact?, have} are allowed, Normal
additionally includes {apply, cases’, constructor, ext, intro, intros, rw, use},
Advanced additionally allows more powerful tactics {assumption, by cases, by contra,
change, choose, convert, exfalso, left, nth rw, obtain, rcases, refine, rfl,
right, rintro, specialize, triv}, and All denotes all tactics are allowed. Experiment
results show that Basic setting is enough for most cases and Normal setting shows superior perfor-
mance, while Advanced and All may lead to false positives.

Comparison between “Bidirectional” and “Unidirectional” shows landslide advantage of “Bidirec-
tional”. Experiments of K show that symbolic heuristic exact? is able to handle most cases, but
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Table 4: Comparative experiments of the proposed equivalence metric on the human-annotated equivalence
benchmark. Green-backgrounded numbers are those reported in Table 1; Red-backgrounded numbers high-
light false positives, which we’re trying our best to avoid. Restriction represents the allowed transformation
primitives.; Bidirectional indicates to determine equivalence by BEq; Unidirectional indicates to determine
equivalence by Unidirectional Definitional Implication; K denotes the number of attempts to generate trans-
formations; T=0.0 means beam-search with temperature T = 0; T=0.7 means temperature sampling with
T = 0.7; FP denotes the number of false positives.

T=0.0 T=0.7Restriction Direction K FP Precision Recall Accuracy FP Precision Recall Accuracy
0 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
2 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
4 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
8 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%

Bidirectional

16 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
0 16 75.00% 68.57% 81.00% 16 75.00% 68.57% 81.00%
1 18 73.91% 72.86% 81.50% 18 74.29% 74.29% 82.00%
2 18 74.29% 74.29% 82.00% 19 73.61% 75.71% 82.00%
4 19 73.61% 75.71% 82.00% 19 74.32% 78.57% 83.00%
8 19 74.32% 78.57% 83.00% 21 72.37% 78.57% 82.00%

Basic

Unidirectional

16 23 71.25% 81.43% 82.00% 23 70.89% 80.00% 81.50%
0 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
2 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
4 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
8 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%

Bidirectional

16 0 100.00% 72.86% 90.50% 0 100.00% 72.86% 90.50%
0 16 75.00% 68.57% 81.00% 16 75.00% 68.57% 81.00%
1 17 74.63% 71.43% 81.50% 18 74.29% 74.29% 82.00%
2 18 74.29% 74.29% 82.00% 18 74.29% 74.29% 82.00%
4 19 73.97% 77.14% 82.50% 18 74.29% 74.29% 82.00%
8 19 74.32% 78.57% 83.00% 19 74.32% 78.57% 83.00%

Normal

Unidirectional

16 22 71.79% 80.00% 82.00% 20 74.03% 81.43% 83.50%
0 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 70.00% 89.50% 0 100.00% 71.43% 90.00%
2 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
4 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
8 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%

Bidirectional

16 0 100.00% 72.86% 90.50% 1 98.08% 72.86% 90.00%
0 16 75.00% 68.57% 81.00% 16 75.00% 68.57% 81.00%
1 18 73.53% 71.43% 81.00% 17 75.36% 74.29% 82.50%
2 18 74.29% 74.29% 82.00% 17 75.71% 75.71% 83.00%
4 18 75.00% 77.14% 83.00% 19 74.32% 78.57% 83.00%
8 22 71.43% 78.57% 81.50% 22 71.79% 80.00% 82.00%

Advanced

Unidirectional

16 24 70.37% 81.43% 81.50% 26 68.29% 80.00% 80.00%
0 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 68.57% 89.00% 0 100.00% 68.57% 89.00%
2 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
4 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
8 0 100.00% 71.43% 90.00% 1 98.04% 71.43% 89.50%

Bidirectional

16 0 100.00% 72.86% 90.50% 3 94.44% 72.86% 89.00%
0 16 75.00% 68.57% 81.00% 16 75.00% 68.57% 81.00%
1 17 75.36% 74.29% 82.50% 18 74.29% 74.29% 82.00%
2 18 74.29% 74.29% 82.00% 19 73.24% 74.29% 81.50%
4 20 73.33% 78.57% 82.50% 19 73.97% 77.14% 82.50%
8 22 71.43% 78.57% 81.50% 20 72.97% 77.14% 82.00%

All

Unidirectional

16 26 68.67% 81.43% 80.50% 25 68.35% 77.14% 79.50%

the incorporation of large language models can solve more cases. It also reveals that our current
implementation, few-shot prompting LLM, is not capable of handling more difficult cases. Failure
case analysis is done in Appendix A.4. The sampling strategy does not have much influence, so we
use beam-search with temperature T = 0 in the main experiments.

A.2 MORE RESULTS ON RAUTOFORMALIZER

A.2.1 COMPREHENSIVE HUMAN EVALUATION OF BEQ

Table 3 compares the autoformalization performance of RA with other baselines on ProofNet and
OOD Con-NF using two automated metrics: Typecheck and BEq. Because the robustness of BEq
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Table 5: Human evaluation results. RA is the main method; RA -R is the ablation removing depen-
dency retrieval; RA +R is the ablation using oracle dependencies; TP, TN, FP, FN are the number
of true-positives, true-negatives, false-positives and false-negatives of BEq, respectively.

Benchmark Method BEq
TP TN FP FN Precision Recall Accuracy

ProofNet
RA -R 22 70 0 9 100.00% 70.97% 91.09%

RA 22 67 0 11 100.00% 66.67% 89.00%
RA +R 32 57 0 12 100.00% 72.73% 88.12%

Con-NF
RA -R 29 49 0 0 100.00% 100.00% 100.00%

RA 55 44 0 1 100.00% 98.21% 99.00%
RA +R 74 23 0 3 100.00% 96.10% 97.00%

Table 6: Human-rectified results centering in RAutoformalizer ablative experiments. RA is the main method;
RA -R is the ablation removing dependency retrieval; RA +R is the ablation using oracle dependencies;
BEq@1 indicates the portion of samples where predictions are equivalent to ground-truths under BEq in one
attempt, defined in Eq. 7; Typecheck@1 indicates the portion of samples where predictions pass typecheck in
one attempt, defined in Eq. 9; Human@1 indicates the estimated portion of samples where model predictions
pass Human evaluation.

Method ProofNet Con-NF
Typecheck@1 BEq@1 Human@1 Typecheck@1 BEq@1 Human@1

RA-R 52.14% 11.50% 16.00% 8.12% 3.02% 3.02%
RA 57.22% 12.30% 18.88% 20.50% 11.45% 11.48%
RA+R 72.99% 23.26% 31.80% 60.46% 44.85% 46.55%

itself is limited as discussed above, the significance of the table results is compromised unless human
evaluations are provided.

To more reliably evaluate BEq and RAutoformalizer, for each experiment on each benchmark, about
100 model predictions that pass the typecheck are sampled for human evaluation. To reduce the
variance, we perform stratified sampling in 3 groups: 1) both directions of UDI (Unidirectional
Definitional Implication) fail; 2) one single directional UDI succeeds; 3) both directions of UDI
succeed (BEq). The results are shown in Table 5.

Results on ProofNet benchmark are consistent with Table 1. Moreover, BEq demonstrates nearly
perfect accuracy on Con-NF. Therefore, BEq is robust as an automated evaluation metric for auto-
formalization tasks.

A.2.2 HUMAN-RECTIFIED RESULTS

According to the human evaluation results in Appendix A.2.1, we can estimate the gold accuracy of
our methods as

Human@1 = Typecheck@1× HumanAcc|Typecheck (9)
where Typecheck@1 is the portion of samples where predictions pass typecheck in one attempt;
HumanAcc|Typecheck is the human evaluated model accuracy among sampled typechecked predictions
in Appendix A.2.1. Results are shown in Table 6, which demonstrates clear ablative improvement
among RA -R, RA and RA +R on the estimated goal accuracies.

A.2.3 TYPECHECK ERROR DISTRIBUTION

To quantitatively delve into the underlying mechanics of the ablative improvement brought by RAut-
oformalizer, for each experiment, we count all Lean errors in samples that fail to typecheck and
classify them into two sources: “Hallucination” (error caused by hallucination of identifiers) and
“Others” (all other errors). The results are in Table 7, which show retrieval-augment can reduce
both types of errors, especially Hallucination errors.

The detailed error taxonomy is as follows:

• function expected: Others
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• invalid field notation: Hallucination

• type expected, got: Others

• unknown constant: Hallucination

• failed to synthesize instance: Others

• application type mismatch: Others

• unknown identifier: Hallucination

• invalid pattern, constructor or constant marked with : Others

• invalid pattern variable, must be atomic: Others

• unexpected end of input: Others

• unexpected token: Others

• invalid coercion notation, expected type is not known: Others

• cannot coerce to function: Others

• typeclass instance problem is stuck, it is often due to
metavariables: Others

• type mismatch: Others

• invalid {...} notation, expected type is not known: Hallucination

• stuck at solving universe constraint: Others

• invalid binder annotation, type is not a class instance: Hallu-
cination

• invalid parametric local instance, parameter with type: Others

• invalid constructor 〈...〉, expected type must be an
inductive type : Hallucination

• overloaded, errors : Others

• expected token: Others

• ambiguous, possible interpretations : Others

• don’t know how to synthesize placeholder: Others

• invalid field, the environment does not contain: Hallucination

• invalid {...} notation, expected type is not of the form (C
...): Others

• invalid dotted identifier notation, expected type is not of
the form (... → C ...) where C is a constant: Others

• unexpected identifier: Others

• (deterministic) timeout at ’whnf maximum number of
heartbeats (200000) has been reached (use ’set option
maxHeartbeats <num>’ to set the limit): Others

• failed to synthesize: Others

• failed to prove index is valid, possible solutions:: Others

• cannot coerce to sort: Others

• invalid argument name: Hallucination

• don’t know how to synthesize implicit argument: Others

• invalid projection: Hallucination

• elaboration function has not been implemented: Others

• failed to infer binder type: Others

• invalid occurrence: Others

• invalid universe level: Others
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Table 7: Distribution of typecheck errors in RAutoformalizer ablative experiments. RA is the main method;
RA -R is the ablation removing dependency retrieval; RA +R is the ablation using oracle dependencies; Hallu-
cination denotes the number of errors caused by hallucination, and Others denotes the number of other errors.
Cyan numbers highlights the percentage of errors reduced relative to RA -R.

Method ProofNet Con-NF
Hallucination Others Hallucination Others

RA -R 434 1790 8902 14842
RA 320 (-26.27%) 1500 (-16.20%) 5217 (-41.40%) 13386 (-9.81%)
RA +R 65 (-85.02%) 1173 (-34.47%) 1134 (-87.26%) 5882 (-60.37%)

• expected no space before: Others
• tactic failed: Others
• invalid constructor: Others
• missing end of character literal: Others
• unused universe parameter: Others
• unknown tactic: Hallucination
• unsolved goals: Others
• (kernel) declaration has metavariables: Others
• invalid use of field notation with ‘@‘ modifier: Others
• invalid {...} notation, structure type expected: Others
• unexpected syntax: Others
• expected ’;’ or line break: Others
• invalid binder name: Hallucination
• not a field of structure: Hallucination
• too many explicit universe levels: Others
• type class instance expected: Others
• fields missing: Hallucination
• invalid use of explicit universe parameters: Others
• is not a structure: Hallucination
• don’t know how to synthesize placeholder for argument: Others
• cannot coerce: Others
• unknown universe level: Others
• expected structure: Others
• has already been declared: Others
• simp made no progress: Others
• missing cases:: Others
• invalid dotted identifier notation, unknown identifier: Hallu-

cination
• invalid ’import’ command, it must be used in the beginning
of the file: Others

• (↑) must have a function type, not: Others
• not a structure: Others

A.3 EXPERIMENT RESULTS ON DEEPSEEK-MATH-BASE-7B

We also evaluate all fine-tuning-based methods using Deepseek-Math-Base-7B (Shao et al., 2024)
as the base model and the training recipe shown in Appendix A.8. The results are in Table 8,
which demonstrate consistent (and even clearer) advantage of our methods over all baselines, and
the ablative improvement of Dependency Retrieval.
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Table 8: Experiment results of fine-tuning-based autoformalization methods reproduced on Deepseek-Math-
Base-7B. Cyan numbers in brackets show ablative improvements over bare autoformalizer (“RA -R”); Bold
numbers emphasize the highest values excluding oracle (“RA +R”) results; BEq@k indicates the portion of
samples where predictions are equivalent to ground truths under BEq at least once in k attempts, defined in
Eq. 7; Typecheck@k indicates the portion of samples where predictions pass typecheck at least once in k
attempts, defined in Eq. 9; MMA, MMA (Lean), PDA, and LW represent fine-tuning on MMA, MMA’s
Lean subset, PDA, and Lean-workbook, respectively; RA is the main method; RA -R is the ablation removing
dependency retrieval; RA +R is the ablation using oracle dependencies.

Method ProofNet Con-NF
Typecheck@1↑ BEq@1↑ Typecheck@8↑ BEq@8↑ Typecheck@1↑ BEq@1↑ Typecheck@8↑ BEq@8↑

MMA 15.78% 1.87% 31.02% 5.08% 3.23% 1.66% 7.28% 4.06%
MMA (L) 17.65% 2.41% 31.02% 5.61% 2.71% 1.35% 7.39% 4.37%
PDA 14.71% 2.14% 27.54% 5.61% 4.89% 1.77% 10.82% 4.47%
LW 36.10% 8.56% 53.74% 10.16% 4.89% 1.98% 11.13% 2.08%
RA -R 51.34% 10.96% 69.79% 15.24% 8.22% 3.12% 12.59% 4.27%
RA 59.36% (8.02%) 10.96% (0.00%) 75.94% (6.15%) 17.91% (2.67%) 17.59% (9.37%) 9.68% (6.56%) 25.49% (12.90%) 15.30% (11.03%)
RA +R 72.73 (13.37%) 23.80 (12.83%) 83.69 (7.75%) 32.62 (14.71%) 60.56 (42.98%) 44.02 (34.34%) 75.96 (50.47%) 59.00 (43.70%)

Figure 3: Disciplines distribution in the benchmark for human evaluation.

Informal Statement Show that there are infinitely many primes congruent to −1 modulo 6.

Formalization P
theorem sP :

Infinite {p : Nat.Primes // p ≡ -1 [ZMOD 6]} :=
sorry
Formalization Q
theorem sQ :
Set.Infinite {p : N | Nat.Prime p ∧ p % 6 = 5} :=

sorry

Figure 4: Failure case of BEq: small semantic gap for natural language mathematics might be huge
for formal verifier

A.4 HUMAN EVALUATION FOR BEQ

Human Equivalence Benchmark. We use an early version of RAutoformalizer with oracle
dependency (RA +R) and OpenAI o1-preview to predict formal statements for all samples in
ProofNet (Azerbayev et al., 2023) benchmark. RAutoformalizer uses greedy decoding, while o1-
preview uses temperature decoding with default hyperparameters from OpenAI. Generated state-
ments are then filtered by typecheck and deduplicated by string matching. Then we uniformly
sample 100 statement pairs from each model’s generation, invite human experts from diverse back-
grounds to label them as “equivalent” or “inequivalent”, resulting in our Human Equivalence Bench-
mark. In total, 4 experts, one from formal verification and three from computer science participate
in the labeling. They first separately evaluate the equivalence between formal statements, and dis-
cuss in round-table to reach an agreement for each sample. The distribution of disciplines in this
benchmark is visualized in Figure 3
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Informal Statement Let R be a ring in which x3 = x for every x ∈ R. Prove that R is commutative.

Formalization P
theorem sP {R : Type*} [Ring R]
(h : ∀ x : R, x ˆ 3 = x) :
CommRing R :=

sorry
Formalization Q
theorem sQ {R : Type u_1} [Ring R]
(h : ∀ (x : R), x ˆ 3 = x) (x : R) (y : R) :
x * y = y * x :=

sorry
Failed Proof
have h_comm := exercise_4_2_5 h
have h_xy := h_comm.mul_comm x y
h_xy

---

type mismatch
h_xy

has type
@HMul.hMul R R R (@instHMul R NonUnitalNonAssocSemiring.toMul) x y = y * x : Prop

but is expected to have type
@HMul.hMul R R R (@instHMul R NonUnitalNonAssocRing.toMul) x y = y * x : Prop

Figure 5: Failure case of BEq: imperceptible differences in type are intolerable in Lean.

Informal Statement Prove that no group of order pq, where p and q are prime, is simple.

Formalization P
theorem sP {G : Type*} [Group G] [Fintype G] {p q : N}
(hp : Prime p) (hq : Prime q) (hG : card G = p*q) :
IsSimpleGroup G =⇒ False :=

sorry
Formalization Q
theorem sQ

(p q : N)
(hp : Nat.Prime p)
(hq : Nat.Prime q)
(G : Type _) [Group G] [Fintype G]
(hG : Fintype.card G = p * q)
: ¬ IsSimpleGroup G :=

sorry
Equivalence Proofs
sP ∼B T (sQ|sP ,R)
have hpp : Prime p := by exact Nat.prime_iff.mp hp
have hqq : Prime q := by exact Nat.prime_iff.mp hq
exact sP hpp hqq hG
sQ ∼B T (sP |sQ,R)
have hpp : Nat.Prime p := by exact Nat.prime_iff.mpr hp
have hqq : Nat.Prime q := by exact Nat.prime_iff.mpr hq
exact sQ p q hpp hqq G hG

Figure 6: Failure case of BEq: transformation function fails to generate the transformation.
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Informal Statement Assume that f : R → R satisfies |f(t)− f(x)| ≤ |t−x|2 for all t, x. Prove that
f is constant.

Formalization P
theorem sP {f : R 7→ R}
(hf : ∀ x y, |f x - f y| ≤ |x - y| ˆ 2) :
∃ c, f = λ x => c :=

sorry
Formalization Q
theorem sQ (f : R 7→ R )
(h : ∀ (t x : R ), |f t - f x| ≤ |t - x| ˆ 2)
(x : R ) (y : R ) : f x = f y :=

sorry
Equivalence Proofs
sP ∼B T (sQ|sP ,R)
have hc := sQ f hf
use f 0
ext x
exact hc x 0
sQ ∼B T (sP |sQ,R)
have hc := sP h
cases’ hc with c hc
have hx : f x = c := by exact congrFun hc x
have hy : f y = c := by exact congrFun hc y
rw [hx, hy]

Figure 7: Failure case of BEq: transformation function fails to generate the transformation.

Informal Statement Show that sin(π/12) is an algebraic number.

Formalization P
theorem sP : IsAlgebraic Q (sin (pi/12)) :=
sorry

Formalization Q
theorem sQ : IsAlgebraic Q (Real.sin (Real.pi/12)) :=
sorry

Figure 8: Success case of BEq: These two formalizations are not equivalent. Note that pi in
Formalization P is an implicit argument of an arbitrary real number, instead of π.

Failure Case Analysis. Our BEq reaches 100% precision, thus there are no false positives. For false
negatives, we analyze them in detail and find roughly 2 error patterns:

• Semantic gaps between informal mathematics and formal verification. 9 out of 19 false
negatives stem from it. Some subtle differences in informal mathematics may result in
large differences between formalizations. As illustrated in Figure 4, formalization P and
Q are identical in semantics, but they are formalized under different bases, one by subtype
and the other by set. Another example is Figure 5, where model-generated proof fails due
to a subtle but fatal difference in the underlying types.

• Transformation function failure. 10 out of 19 false negatives stem from it. Proving unidi-
rectional definitional implication is a novel task, hence the prohibitive lack of supervised
data makes it impossible to fine-tune a capable model. Our implementation utilizes a 5-shot
prompted 20B model, which is relatively weak and fails to generate proper transformation
for more complex scenarios, as illustrated in Figure 6 and Figure 7.
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Informal Statement Prove that x6 + 30x5 − 15x3 + 6x− 120 is irreducible in Z[x].
Formalization P
theorem sP : Irreducible
(X̂ 6 + 30*X̂ 5 - 15*X̂ 3 + 6*X - 120 : Polynomial Z) :=

sorry
Formalization Q
theorem sQ
(f : Polynomial Z := X̂ 6 + 30*X̂ 5 - 15*X̂ 3 + 6*X - 120)
: Irreducible f :=

sorry

Figure 9: Success case of BEq: These two formalizations are not equivalent. Note that f
: Polynomial Z :=Xˆ6+30*Xˆ5-15*Xˆ3+6*X-120 in Formalization P means f is of
type Polynomial Z with default parameter Xˆ6+30*Xˆ5-15*Xˆ3+6*X-120, instead of
f=Xˆ6+30*Xˆ5-15*Xˆ3+6*X-120.

Figure 10: Distribution of BLEU in the benchmark and precision, recall, accuracy of different BLEU
thresholds.

Success Case Analysis. Due to its symbolic nature, BEq can easily find fundamental differences
between formalizations that are misleading for human expert. We demonstrate two examples in
Figure 8 and Figure 9.

A.5 VISUALIZATION OF BLEU DISTRIBUTION

The distribution of BLEU scores between formal statement pairs from the Human Equivalence
Benchmark are visualized in Figure 10, along with the precision, recall, and accuracy curves w.r.t.
different thresholds.

A.6 CASE STUDY OF BM25 RETRIEVAL

Formally, BM25 (Robertson et al., 2009) can be defined as follows:

BM25(d, q) =
n∑

i=1

IDF(qi,D)
(k1 + 1)f(qi,d)

f(qi,d) + k1(1− b+ b · Len(d)
Mean({Len(d′)|d′∈D}) )

IDF(qi,D) = log(
N − |{qi ∈ d|d ∈D}+ 0.5

|{qi ∈ d|d ∈D}|+ 0.5
+ 1)

where q = {qi}ni=1 is a query with n tokens q1, . . . , qn; D = {di}Ni=1 is a document collection
with N documents di, . . . ;dN , k1 and b are hyperparameters; IDF(qi,D) is the inverse document
frequency of token qi in documentD.
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Query
Suppose that f is holomorphic in an open set Ω. Prove that if Re(f) is constant, then f is constant.
Ground-truth Document
Function ‘Set’ maps a given type to a proposition, which means that for each element of that type, it
determines whether that element belongs to the set. A set a collection of elements of some type α.
Irrelevant Document 1
If a function ‘f’ from a complex manifold ‘M’ to a complex normed space ‘F’ is holomorphic on a
preconnected, compact, and open set ‘U’, and ‘a’ and ‘b’ are points in ‘U’, then ‘f a = f b’.
Irrelevant Document 2
If a function ‘f’ from a topological space ‘X’ to a type ‘Y’ is locally constant, then for any point ‘x’ in
‘X’, there exists an open set ‘U’ containing ‘x’ such that ‘f’ is constant on ‘U’.

Figure 11: Failure case of BM25: BM25 prefers semantic similarity to logical dependency.

As Figure 11 shows, BM25 prefers “semantic similarity” to “logical dependency” during retrieval.
We focus on 3 keywords, holomorphic, set, and constant in the query. The query depends on the
definition of “Set”, but the frequencies of two keywords holomorphic and constant are 0 in the
definition of “Set”. Instead, the first irrelevant document shares similar frequency of set and holo-
morphic, while the second irrelevant one is similar in set and constant. Subsequently, both irrelevant
documents have higher BM25 scores than the ground-truth.

A.7 PROMPT TEMPLATES

A.7.1 PROMPT TEMPLATE OF BEQ

Given two Lean 4 theorems, please prove ‘thm_Q‘ with ‘thm_P‘.
You can only use the following tactics: {ALLOWED_TACTICS}
‘thm_P‘ should be used at least once in the proof.
DO NOT add any extra explanation.
Here are some examples:

Input:
‘‘‘
import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators
noncomputable section

theorem thm_P : \not \exists (x : Rat), ( x ˆ 2 = 12 ) :=
sorry

theorem thm_Q (q : Rat ) :q ˆ 2 \neq 12 := by
‘‘‘
Output:
‘‘‘
exact (not_exists.mp thm_P) q
‘‘‘

---

Input:
‘‘‘
import Mathlib

open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
noncomputable section
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theorem thm_P {p q r : Nat} {G : Type*} [Group G]
[Fintype G] (hpqr : p < q \and q < r)
(hpqr1 : p.Prime \and q.Prime \and r.Prime)(hG : card G = p*q*r) :
Nonempty (Sylow p G) \or Nonempty (Sylow q G) \or Nonempty (Sylow r G) :=

sorry

theorem thm_Q {p : Nat } {q : Nat } {r : Nat } {G : Type u_1} [Group G] [Fintype G] (hp
: Nat.Prime p) (hq : Nat.Prime q) (hr : Nat.Prime r) (hpq : p < q) (hqr : q < r)
(hG : Fintype.card G = p * q * r) :Nonempty (Sylow p G) \or Nonempty (Sylow q G)
\or Nonempty (Sylow r G) := by

‘‘‘
Output:
‘‘‘
exact thm_P (And.intro hpq hqr) (And.intro hp (And.intro hq hr)) hG
‘‘‘

---

Input:
‘‘‘
import Mathlib

open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators

theorem thm_P {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] (S T : End F V) :
(S * T).Eigenvalues = (T * S).Eigenvalues :=

sorry

theorem thm_Q {K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] (S :
Module.End K V) (T : Module.End K V) :Module.End.Eigenvalues (S * T) =
Module.End.Eigenvalues (T * S) := by

‘‘‘
Output:
‘‘‘
exact @thm_P K V _ _ _ S T
‘‘‘

---

Input:
‘‘‘
import Mathlib

open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
noncomputable section

theorem thm_P
{p : Nat} {hp : Nat.Prime p} (h : \exists r : Nat, p = 2 ˆ r + 1) :
\exists (k : Nat), p = 2 ˆ (2 ˆ k) + 1 :=

sorry

theorem thm_Q {p : Nat } (hp : Nat.Prime p) (h : \exists (r : Nat ), p = 2 ˆ r + 1)
:\exists (k : Nat ), p = 2 ˆ 2 ˆ k + 1 := by

‘‘‘
Output:
‘‘‘
exact @thm_P p hp h
‘‘‘

---

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Input:
‘‘‘
import Mathlib

open Fintype Set Real Ideal Polynomial
open scoped BigOperators
noncomputable section

theorem thm_P {G : Type*} [Group G]
[Fintype G] (hG2 : Even (card G)) :
\exists (a : G), a \neq 1 \and a = a\-1 :=

sorry

theorem thm_Q {G : Type*} [Group G] [Fintype G] (h : Fintype.card G % 2 = 0) :
\exists a : G, a \neq 1 \and a = a\-1 := by

‘‘‘
Output:
‘‘‘
have hG : Even (card G) := by exact?
exact thm_P hG
‘‘‘

---

According to the task description and examples, given the following two Lean 4
theorems, please prove ‘thm_Q‘ with ‘thm_P‘.

Input:
‘‘‘
{THMS_TO_EVALUATE}
‘‘‘
Output:

To apply this template, {ALLOWED TACTICS} should be replaced to the list of allowed tactics and
{THMS TO EVALUATE} be replaced to the two statements to evaluate.

A.7.2 PROMPT TEMPLATE OF LLM GRADER

Backtranslation Template
Given a Lean 4 theorem, please **briefly** and **consisely** explain it in natural

language in one line.
Here are some examples:

Code:
‘‘‘
theorem putnam_1964_b3
(f : Real \imp Real)
(hf : Continuous f \and \forall \alpha > 0, Tendsto (fun n : Nat \mapsto f (n *

\alpha)) atTop (\nhds 0))
: (Tendsto f atTop (\nhds 0)) := sorry
‘‘‘
Summarization: Suppose f : R → R is continuous and for every α > 0, limn→∞ f(nα) = 0.

Prove that limx→∞ f(x) = 0.

---

Code:
‘‘‘
theorem putnam_1968_b2
[Group G]
(hG : Finite G)
(A : Set G)
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(hA : A.ncard > (Nat.card G : \Rat)/2)
: \forall g : G, \exists x \in A, \exists y \in A, g = x * y := by sorry
‘‘‘
Summarization: Let G be a finite group (with a multiplicative operation), and A be a

subset of G that contains more than half of G’s elements. Prove that every
element of G can be expressed as the product of two elements of A.

---

Code:
‘‘‘
theorem putnam_2022_a3
(p : Nat)
(hp : Nat.Prime p \and p > 5)
(f : Nat := {a : Nat \imp (ZMod p) | \forall n : Nat, a n \neq 0 \and a n * a (n + 2) =

1 + a (n + 1)}.ncard)
: f \equiv 0 [MOD 5] \or f \equiv 2 [MOD 5] := sorry
‘‘‘
Summarization: Let p be a prime number greater than 5. Let f(p) denote the number of

infinite sequences a1, a2, a3, . . . such that an ∈ {1, 2, . . . , p− 1} and
anan+2 ≡ 1 + an+1 (mod p) for all n ≥ 1. Prove that f(p) is congruent to 0 or 2
(mod 5).

Please **briefly** and **consisely** explain the following theorem in one line:
Code:
‘‘‘
{THM_CODE}
‘‘‘
Summarization:

To apply this template, {THM CODE} should be replaced to the formal statement to informalize.

Equivalence Determination Template
Please check following two math problems is same or different? Please consider each

statement in two problems, they are different if any statement is different.
Please point out any differences you found. Please reply **same** or **different**
in the final sentence with bold format.

Problem 1: {THM_1}

Problem 2: {THM_2}

To apply this template, {THM 1} and {THM 1} should be replaced to the informalizations of the
two formal statements to evaluate. Notably, when Majority Voting is adopted, it is recommended to
randomize the order of the two statements in multiple attempts.

A.7.3 PROMPT TEMPLATE OF ICL AUTOFORMALIZATION
Please translate mathematical propositions into Lean 4 theorems. ‘Mathlib‘ is the only

allowed import.
DO NOT add any imports into the translation, and DO NOT try to prove the theorem, ONLY

translate it.

Here are some examples:

Math Proposition:
’’’
Suppose f : R → R is continuous and for every α > 0, limn→∞ f(nα) = 0. Prove that

limx→∞ f(x) = 0.
’’’
Lean Theorem:
‘‘‘
theorem exercise

(f : Real \implies Real)
(hf : Continuous f \and \forall \alpha > 0, Tendsto (fun n : Nat \mapsto f (n *

\alpha)) atTop (\nhds 0))
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: (Tendsto f atTop (\nhds 0)) :=
sorry
‘‘‘

Math Proposition:
’’’
Let G be a finite group (with a multiplicative operation), and A be a subset of G

that contains more than half of G’s elements. Prove that every element of G can
be expressed as the product of two elements of A.

’’’
Lean Theorem:
‘‘‘
theorem exercise

[Group G]
(hG : Finite G)
(A : Set G)
(hA : A.ncard > (Nat.card G : Rat)/2)
: \forall g : G, \exists x \in A, \exists y \in A, g = x * y :=

sorry
‘‘‘

Math Proposition:
’’’
Let p be a prime number greater than 5. Let f(p) denote the number of infinite

sequences a1, a2, a3, . . . such that an ∈ {1, 2, . . . , p− 1} and anan+2 ≡ 1 + an+1 (mod p)
for all n ≥ 1. Prove that f(p) is congruent to 0 or 2 (mod 5).

’’’
Lean Theorem:
‘‘‘
theorem exercise

(p : Nat)
(hp : Nat.Prime p \and p > 5)
(f : Nat := {a : Nat \implies (ZMod p) | \forall n : Nat, a n \neq 0 \and a n * a

(n + 2) = 1 + a (n + 1)}.ncard)
: f \equiv 0 [MOD 5] \or f \equiv 2 [MOD 5] :=

sorry
‘‘‘

Please translate the following proposition:
Math Proposition:
’’’
{INFORMAL_STMT}
’’’
Lean Theorem:

To apply this template, {INFORMAL STMT} should be replaced to the informal statement to auto-
formalize.

Equivalence Determination Template

Please check following two math problems is same or different? Please consider each
statement in two problems, they are different if any statement is different.
Please point out any differences you found. Please reply **same** or **different**
in the final sentence with bold format.

Problem 1: {THM_1}

Problem 2: {THM_2}

To apply this template, {THM 1} and {THM 1} should be replaced to the informalizations of the
two formal statements to evaluate. Notably, when Majority Voting is adopted, it is recommended to
randomize the order of the two statements in multiple attempts.
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A.8 FINE-TUNING DETAILS

Dependency Retriever. We fine-tune dependency retriever based on BGE-M3 (Chen et al., 2023)
with FlagEmbedding library. Query string is identical to informalizations of theorems. The compo-
sition of document strings is as follows:

• F+IF: Formal Declaration:decl\nInformal Explanation:if stmt

• F: Formal Declaration:decl

where decl and if stmt represents formal declarations and informalizations, resepectively. Both
are clipped to 1536 characters at most before composition.

We follow the default hyperparameters of FlagEmbedding, which are as follows:

• Learning Rate: 5× 10−6

• Warmup Ratio: 0.1
• Weight Decay: 0.01
• Precision: fp16
• Train Epochs: 6
• Gradient Accumulation Steps: 32
• Per Device Train Batch Size: 2
• Training Devices: 8
• Dataloader Drop Last: True
• Normalized: True
• Temperature: 0.02
• Query Max Length: 1024
• Passage Max Length: 1024
• Training Group Size: 4
• Hard Negative Size: 2
• Negatives Cross Device: False
• Query Instruction For Retrieval: None
• Inbatch Negative: False

RAutoformalizer. RAutoformalizer and all fine-tuning experiments are fine-tuned from InternLM2-
Math-Base-7B (Ying et al., 2024b) using XTuner (Contributors, 2023) and the following hyperpa-
rameters:

• Max Sequence Length: 8192
• Variable-length Attention: True
• Batch size: 1
• Gradient Accumulation: 4
• Training Devices: 8
• Train Epochs: 1
• Optimizer: AdamW with learning rate 2× 10−5, β = (0.9, 0.999), weight decay 0, maxi-

mal gradient norm 1, warpup ratio 0.03 and float16 mixed precision training.
• Learning Rate Scheduler: Warmup using LinearLR with start factor 10−5, then train using

CosineAnnealingLR with ηmin = 0.0.

A.9 OPEN-SOURCE LIBRARIES

For reproducibility, all relevant open-source projects are summarized in Table 9. Special thanks to
the authors of these excellent projects.
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Table 9: Versions of open-source projects used in this project.

Name Github Link Version
FlagEmbedding https://github.com/FlagOpen/FlagEmbedding 76080ab83216d6d4156a597b220764a5bda45d92
Xtuner https://github.com/InternLM/xtuner 0.1.23
Lean 4 https://github.com/leanprover/lean4 4.7.0-rc2
Mathlib 4 https://github.com/leanprover-community/mathlib4 59fdb6b04d7d16825a54483d550d9572ff473abf
REPL https://github.com/leanprover-community/repl 2ab7948163863ee222891653ac98941fe4f20e87
Doc-Gen 4 https://github.com/leanprover/doc-gen4 780bbec107cba79d18ec55ac2be3907a77f27f98
ProofNet-lean4 https://github.com/rahul3613/ProofNet-lean4 60efffb605ee07bf723db4fb8058129a7c8a89bb
LeanDojo https://github.com/lean-dojo/LeanDojo 78cee9d37aa32e70cdd6119c4af70ae551b8b713
Con-NF https://github.com/leanprover-community/con-nf 16041ae6ea8b9a2ca79952afc7b927ccea18697b

Table 10: Experiment results of augmenting in-context learning methods by dependency retrieval. Bold num-
bers emphasize the highest values excluding oracle results; BEq@k indicates the portion of samples where
predictions are equivalent to ground truths under BEq at least once in k attempts, defined in Eq. 7; T@k in-
dicates the portion of samples where predictions pass typecheck at least once in k attempts, defined in Eq. 9;
ICL represents in-context learning using 3-shot demonstrations; ICL+RA represents in-context learning us-
ing 3-shot demonstrations, augmented by dependency retriever trained in Sec. 4.2; ICL+RA represents in-
context learning using 3-shot demonstrations, augmented with ground-truth dependencies; D-2.5 denotes using
Deepseek-V2.5.

Benchmark ProofNet Con-NF
LLM Method T@1 Beq@1 T@8 Beq@8 T@1 Beq@1 T@8 Beq@8

GPT-4o
ICL 43.58% 7.22% 66.31% 12.83% 9.78% 1.46% 20.71% 4.16%

ICL+RA 46.52% 6.95% 77.01% 13.37% 22.79% 6.66% 50.57% 12.59%
ICL+RA (+R) 58.56% 17.38% 81.28% 29.14% 54.84% 38.40% 75.75% 54.11%

D-2.5
ICL 40.37% 9.89% 51.07% 10.96% 9.37% 2.81% 16.23% 4.27%

ICL+RA 43.32% 6.42% 58.82% 10.96% 9.37% 1.87% 15.19% 3.12%
ICL+RA (+R) 61.50% 17.91% 72.99% 20.32% 48.18% 32.36% 62.02% 41.94%

A.10 EXPERIMENT OF AUGMENTING ICL METHODS BY DEPENDENCY RETRIEVAL

The performance of augmenting ICL (in-context learning) methods with Dependency-retrieval-
augmentation is shown in Table 10.

For GPT-4o, the results meet our expectations: RA consistently improves all metrics on all bench-
marks (except BEq@1 on ProofNet), and RA(+R) shows the potential of dependency retrieval.

However, for Deepseek-V2.5, RA doesn’t work well. We hypothesize this might be because the
instruction-following and long-context capabilities of Deepseek-V2.5 are limited, thus the noise in
retrieved dependencies degrades autoformalization. But RA (+R) shows significantly better perfor-
mance than expected.
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