Published as a conference paper at ICLR 2025

RETHINKING AND IMPROVING AUTOFORMALIZATION:
TOWARDS A FAITHFUL METRIC AND A DEPENDENCY
RETRIEVAL-BASED APPROACH

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao*, Junchi Yan*'

Sch. of Computer Science & Sch. of Artificial Intelligence, Shanghai Jiao Tong University
{purewhite,void_zxh, luxudong2001, caoginxiang, yanjunchi}@sjtu.edu.cn
https://github.com/Purewhite2019/rethinking_autoformalization

ABSTRACT

As a central component in formal verification, statement autoformalization has
been widely studied including the recent efforts from machine learning commu-
nity, but still remains a widely-recognized difficult and open problem. In this
paper, we delve into two critical yet under-explored gaps: 1) absence of faith-
ful and universal automated evaluation for autoformalization results; 2) agnosia
of contextual information, inducing severe hallucination of formal definitions and
theorems. To address the first issue, we propose BEq (Bidirectional Extended
Definitional Equivalence), an automated neuro-symbolic method to determine the
equivalence between two formal statements, which is formal-grounded and well-
aligned with human intuition. For the second, we propose RAutoformalizer
(Retrieval-augmented Autoformalizer), augmenting statement autoformalization
by Dependency Retrieval, retrieving potentially dependent objects from formal
libraries. We parse the dependencies of libraries and propose to structurally infor-
malise formal objects by the topological order of dependencies. To evaluate OOD
generalization and research-level capabilities, we build a novel benchmark, Con-
NF, consisting of 961 informal-formal statement pairs from frontier mathemat-
ical researches. Experiments validate the effectiveness of our approaches: BEq
is evaluated on 200 diverse formal statement pairs with expert-annotated equiv-
alence label, exhibiting significantly improved accuracy (82.50% > 90.50%)
and precision (70.59% +— 100.0%). For dependency retrieval, a strong base-
line is devised. Our RAutoformalizer substantially outperforms SOTA baselines
in both in-distribution ProofNet benchmark (12.83% > 18.18%, BEq@8) and
OO0OD Con-NF scenario (4.58% +— 16.86%, BEq@8).

Philosophy is written in this grand book, the universe.
It is written in the language of mathematics.

Galileo Galilei, The Assayer

1 INTRODUCTION

Theorem provers, such as Lean (Moura & Ullrich, |2021), Coq (Bertot & Castéran, |2013) and Is-
abelle (Nipkow et al.,2002), can check the validity and correctness of mathematical statements and
proofs by strict algorithms, whose own soundness and completeness are proven in theory. However,
instead of directly working on natural language mathematics, these tools define their own formal
languages, which hinders the democratization of formal mathematics.

Statement autoformalization aims at translating mathematical statements from natural language to
formal verifiable statement. Readers unfamiliar with formal theorem proving are advised to read
Yang et al.| (2024). Due to its rigorously logical nature, this task is widely-recognized to be chal-
lenging, requiring profound understanding of both informal semantics and formal syntax (Li et al.,
2024a). Beyond a fundamental component in formal mathematics and software verification, strong
autoformalization methods have far broader impacts and could result in the creation of a general

*Equal correspondence. 'Also affiliated with Shanghai Artificial Intelligence Laboratory. This work was
in part supported by NSFC (92370201, 62222607) and Shanghai Municipal Science and Technology Major
Project under Grant 2021SHZDZX0102.

https://github.com/Purewhite2019/rethinking_autoformalization

Published as a conference paper at ICLR 2025

purpose reasoning module (Szegedy, 2020). Outside-the-box applications of autoformalization in-
clude synthesizing training dataset for formal theorem provers (Wu et al., [2022}; Xin et al., [2024),
especially AlphaProof (Castelvecchi, 2024), enhancing informal math reasoning by rejection sam-
pling (Zhou et al.,|2024), and automating code verification (Lin et al., [2024).

Current mainstream methods work in the following process. A large language model (LLM) is ei-
ther prompted (Wu et al.,[2022)) or fine-tuned (Azerbayev et al.|[2023; Jiang et al.,2023al) to directly
generate a formal statement given its informal counterpart. The predicted statements are then evalu-
ated by laborious human annotation (Azerbayev et al., [2023)) or unreliable proxy automated metrics
including machine translation metrics such as BLEU (Wu et al., |2022) and perplexity (Wang et al.,
2018)), symbolic type check pass rate (Lu et al.| | 2024) or LLM grader (Ying et al., 2024al).

Rethinking this paradigm, we find out two key limitations. Firstly, an effective, human-aligned and
universal automated evaluation metric is absent. Machine translation metrics are fragile to equiv-
alent transformations in human perspective, for example [3-reduction (function application). Type
check is too weak to filter out syntactically correct but semantically absurd autoformalization. It is
a necessary but not sufficient condition for the ideal equivalence. LLM graders are non-determinant
and highly dependent on prompts, and are easily misled by imperceptible but fundamental differ-
ences or huge but nonessential transformations. Murphy et al.| (2024) are pioneers to utilize SMT
solver for faithful automated evaluation, but is restricted to Euclidean geometry only. Secondly, the
current paradigm directly generates formal statements, ignoring the context of previously formal-
ized statements and definitions. This might result in severe hallucination of identifiers and syntax,
especially in out-of-distribution (OOD) cases. A similar issue is reported in Wu et al.|(2022), where
definition misalignment between informal mathematics and formal libraries is the major cause of
failure cases. Our experiments on both in-domain and OOD scenarios, shown in Table [3| show the
severity of this problem and exhibit a promising path to address it.

For the first issue, we propose BEq (Bidirectional Extended Definitional Equivalence), a neural-
symbolic equivalence relation between formal statements. This metric aligns well with collective
human opinions. In formal systems built upon dependent type theory (Univalent Foundations Pro-
gram, 2013)), such as Lean 4 (Moura & Ullrich,2021)), definitional equality is a symbolic equivalence
relation under a variety of intuitive transformations, such as bound variable renaming, function ap-
plication, and definition unfolding. However, it heavily relies on the definitions of objects and con-
version rules, hence it is too strict and inflexible from human perspective. For example, n + 0 and
n are definitional equal for a natural number n, but n and 0 + n are not. Worse still, definitional
equality struggle with handling metavariable differences. We extend definitional equivalence by 1)
equipping it with a restricted set of symbolic transformation primitives and a neural transformation
function aiming to convert one formal statement to be definitionally equivalent to the other, and
2) loosing the equivalence criteria to bidirectionally “convertible” under the transformation func-
tion. To evaluate its performance, we build a benchmark consisting of 200 formal statement pairs
with expert-annotated equivalence labels. BEq significantly outperforms previous SOTA methods,
improving the precision from 70.59% to 100% and the accuracy from 82.50% to 90.50% .

For the second, we propose a new task, Dependency Retrieval, and a new method, RAutoformalizer
(Retrieval-augmented Autoformalizer). Dependency retrieval seeks to select potentially dependent
formal objects given an informal statement. RAutoformalizer uses the retrievals to enhance autofor-
malization. To enable this new paradigm, we propose to parse the dependencies in formal libraries
and construct training data by topological informalization, informalizing formal objects by topolog-
ical order. An immense dataset of 243,797 formal objects (including 139,933 theorems) is synthe-
sized upon Mathlib 4. We also build the Con-NF benchmarkﬂ to evaluate out-of-distribution (ODD)
generalization and research-level capabilities of current methods. A baseline is built for dependency
retrieval, with 35.52% Recall@5 on ProofNet and 24.32% Recall@5 on Con-NF. RAutoformal-
izer exhibits substantial improvement over previous methods, improving BEq@8 from 12.83% to
18.18% on ProofNet and from 4.58% to 16.86% on Con-NF.

To sum up, we identify two key limitations in statement autoformalization: 1) absence of faithful
and universal automated evaluation; 2) agnosia of contextual information. The contributions are:

1) We give a neural-symbolic equivalence metric, BEq (Bidirectional Extended Definitional Equiv-
alence), extending Definition Equality in dependent type theory more aligned with human intuition.

'Based on Lean 4 Con(NF) library (A formal consistency proof of Quine’s set theory New Foundations)

Published as a conference paper at ICLR 2025

2) We propose a new dependency retrieval task and introduce a novel paradigm, RAutoformalizer
(Retrieval-Augmented Autoformalizer). We further propose fopological informalization to synthe-
size high-quality training data for these initiatives. To evaluate research-level autoformalization and
out-of-distribution (OOD) performance, we create a new benchmark, Con-NF, which consists of
961 informal-formal statement pairs from New Foundations (Holmes & Wilshaw, |[2024)).

3) We validate BEq by expert evaluation on 200 formal statement pairs and set a baseline for de-
pendency retrieval. Extensive experiments of RAutoformalizer show its superior performance on
statement autoformalization. Ablation studies further validate the effectiveness of our technical
modifications, and also exhibit the great potential of the retrieval-augment paradigm.

2 RELATED WORKS

Autoformalization. It aims to automatically translate the natural language (informal) mathemat-
ics into formal verified code. Current autoformalization methods can be roughly divided into three
levels. Statement autoformalization focuses on autoformalizing statements (Wang et al., [2020; [Wu
et al.} 2022; |Azerbayev et al.| 2023} Jiang et al., [2023a; |Gulati et al., [2024} Poiroux et al., [2024));
proof autoformalization focuses on translating informal proofs (and sometimes including corre-
sponding statements) into formal code (Cunningham et al., 2023} [Jiang et al., 2023b; |[Zhao et al.,
2023 Murphy et al., [2024; [Lu et al.l 2024)); theory autoformalization, translating a whole theory
including definitions, axioms, theorems, and proofs, remains under-explored. [Patel et al.| (2024)
proposes a three-stage plan to break the difficulty into easier subtasks.

Methods of Autoformalization. Autoformalization is notoriously challenging for prevalent data-
driven approaches (Li et al.| 2024b). Existing informal-formal parallel corpora are fairly scarce,
which impedes machine learning training. To alleviate this, researchers synthesize informal-formal
pairs by rule-based informalization (Wang et al., 2018 |Cunningham et al., 2023)), LLM-based back-
translation (Azerbayev et al., 2023} Jiang et al.l 2023a)), training with multilingual corpus (Jiang
et al.}[2023al), or utilizing in-context learning (ICL) capabilities (Wu et al.;, 2022). |Ying et al.[(2024a)
proposes an expert iteration pipeline by iteratively synthesizing and filtering training data.

A major difference from machine translation is the existence of verifiers. Another line of work
focuses on utilizing verifier feedbacks. [Poiroux et al.[(2024) uses rejection sampling to enhance aut-
oformalization by typecheck results; Lu et al.|(2024) introduces a neural step-level verifier and per-
form expert iteration; Jiang et al. (2023b)); Murphy et al.|(2024) combines LLM and formal verifier
for proof autoformalization, and |Zhao et al.|(2023) enhances it with subgoal-based demonstration.

Evaluation of Autoformalization. There are many benchmarks for statement autoformalization,
covering undergraduate-level math problems (Azerbayev et al., [2023)), more complex areas from
Mathlib 4 (Gulati et al.,|2024), and Euclidean geometry (Murphy et al., [2024)).

Due to the high flexibility of natural language and the rigor of formal language, faithfully evaluating
autoformalization is widely-recognized to be challenging and under-explored (Szegedy, 2020; Azer-
bayev et al., [2023} Jiang et al., 2023a; Murphy et al., [2024). |Wu et al.| (2022); Jiang et al.| (2023a);
Ying et al.| (2024a) evaluate autoformalization results by human experts. Wang et al.| (2018) reports
identical matching accuracy. Proxy metrics, including perplexity (Wang et al.,[2018]), BLEUE](Wang
et al., [2018; |Poiroux et al., 2024} |Azerbayev et al., 2023} |Wu et al.| 2022) and compiler typecheck
pass rate (Lu et al., 2024} |Azerbayev et al} 2023} Jiang et al.,|2023a)) are utilized to automate evalu-
ation. |Ying et al.| (2024a)); Gulati et al.| (2024} prompts LLMs to determine the equivalence between
predicted formal statement and ground-truth. Murphy et al.| (2024)) propose to use SMT solver to
evaluate the equivalence between formal statements in Euclidean geometry.

For proof autoformalization, current evaluation focuses on theorem proving, only verifying formal
proofs’ correctness while potentially overlooking semantic inconsistencies between informal and
formal proofs. The evaluation of theory autoformalization is also insufficiently researched.

Retrieval-augmented Generation. It has been extensively studied in NLP. For code generation,
code documentations (Zhou et al., 2023), APIs (Zan et al.l 2022), repository files (Zhang et al.,
2023)) and dynamic knowledge soup (Su et al.,[2024) are retrieved to augment generation. In formal
verification, Azerbayeyv et al.|(2023) proposes to augment statement autoformalization by retrieving
relevant prompts. ReProver (Yang et al.,|2024) enhances theorem proving with premise selection.

’BLEU (Papineni et al.,[2002) is a metric for evaluating machine translation based on n-gram matching.

Published as a conference paper at ICLR 2025

Statement sp theorem sQ {G : Type*} [Group G] [Fintype R (tactics)
theorem sP {G : Type*} [Group G] G] (hG2 : Even (card G)) :
[Fintype G] (h : Fintype.card G % 2 = @) || ynidirectional Definitional Implication 3(a:G),a#slnra=at:=by
!

t?
a:G,a#1Aa=a? . . . T . sorry exac
Sp <y Sq & Sp ~p T(Sq | S, R) have

exact

Bidirectional Extended Definitional Equivalence theorem sP {G : Type*} [Group G] [Fintype
G] (h : Fintype.card G % 2 = @) :

a:G, a#1Aa=a?:=by — l
1 A

Sp ~B SQ

Statement sq — H
theorem sQ {G : Type*} [Group G] —F———— - — = — = |
[Fintype G] (hG2 : Even (card G)) | have hG : Even (card G) := by exact? P
:3(a:6),a*l1Aa=a? L exact sQ h6 _!

aln

T(sq['sp, R)

Figure 1: Illustration of BEq (Bidirectional Extended Definitional Equivalence) and Unidirectional
Definitional Implication. sp ~p sq if and only if both sp <y sg and sg <y sp hold. To deter-
mine the first, we assume s holds. Then the transformation function (implemented with a LLM) T'
is called to generate transformation (proof of sp using sg) conditioned on s¢ and transformation
primitive (tactic) set R. If the transformation holds, we conclude that sp <y sg. Otherwise, we
believe sp -1 s¢. Vice versa for the second direction.

3 BIDIRECTIONAL EXTENDED DEFINITIONAL EQUIVALENCE

3.1 BACKGROUND

A fundamental problem for all generative tasks is to faithfully, effectively, and interpretably evaluate
the results. In statement autoformalization, we follow prevalent benchmarks such as ProofNet (Azer-
bayev et al.,|2023) and LeanEuclid (Murphy et al.,|2024) to evaluate by comparing model predictions
with ground-truths: let S denote the set of all formal statements, given a predicted formal statement
Spred € S and the corresponding ground-truth sy € S, an equivalence relation ~: S x S used to
determine the correctness of autoformalization should be:

* (- ~ -) equivalence relation: a binary relation with reflexivity, symmetry and transitivity.

o (- ~) is well aligned with human intuition.

* (- ~ -) is universally applicable in all domains.

Intuitively, equivalence from a human perspective is generally one that can be quickly determined
and reasoned. Hence, the key lies in defining an equivalence relation that can be demonstrated
through brief proofs. We choose to build an equivalence relation that aligns with humans by 1)
extending definitional equality, and 2) restricting the degree of proof automation.

Definitional Equality. In Lean 4 (Moura & Ullrich} 2021)), two expressions are definitionally equal
if they are equivalent w.r.t. a series of conversion rules, such as a-conversion (renaming bound vari-
able), n-expansion (modifying unused arguments in functions), proof irrelevance (proofs of the same
Prop), B-reduction (function application), (-reduction (eliminating let-in definitions), §-reduction
(unfolding variable and constant definitions), ¢-reduction (application of recursive functions defined
on inductive types to an explicit constructor) (Bailey et al., 2024). This equality is a binary relation
with reflexivity, symmetry, and transitivity, and it is applicable in all math areas formalized in Lean
4. And it has many intriguing characteristics that fit more closely with human instinct. For exam-
ple, fun (b:Nat) => Db isequivalent to fun (u:Nat) => u because definitional equality
allows a-conversion, in which bound variable b is renamed to u.

However, several critical weaknesses hinder definitional equality from becoming a good and intu-
itive metric for autoformalization. Firstly, some expressions that are naturally “equivalent” from a
human perspective are not definitionally equal. For example, for a natural number n:Nat, n + 0
and n are definitionally equal, but 0 + n and n are not definitionally equal. Definitional equality
heavily relies on the definitions of objects and conversion rules, while many intuitive equivalences,
are neglected. Worse still, typecheck often get stuck in typeclass instance problems due to metavari-
ables, which hinders evaluating definitional equality between statements.

3.2 EXTENDING DEFINITIONAL EQUALITY

Formulation. Suppose there are two formal statements, sp and sg. Without loss of generality,
sp and s(are assumed syntactically valid, since it is nonsense to talk about equivalence between
invalid formal statements. Definitional equality is denoted as ~p,.

The main reason behind the aforementioned limitations of definitional equality is its strictness on
reductions and conversions. We hence loose the limitation and extend definitional equality to align

Published as a conference paper at ICLR 2025

with human intuition. Let R be the set of all transformation primitives, (s, R) : S x 2% + 25 to be
the set of all valid formal statements that can be constructed by applying transformations in & C R
ons,and T : (S x (S x 2®)) = S to be a restricted transformation function such that

sp, Sp€U(sp,R)Nsq~p sp
4, VS/p € Z/{(SP,R),SQ 2p SIP

Intuitively, given transformation primitives ® C R, T transforms sp definitionally equal to sq if
possible and returns the transformed statement. Otherwise, it returns a dummy statement 1, which
is not definitionally equal to any other valid statement (e.g., an invalid statement).

T(splsg.R) { 1)

In Lean 4, a formal statement can be converted to a proof goal by entering tactic mode. A proof
goal ({sp;}i,8¢q) consists of some assumptions {sp;}?" ; and a conclusion s¢, where all sp;
and s are statements, and n can be 0. Then tactics, which are metaprograms, reduce one goal to
another, which is often easier to solve by assumptions. For example, transforming ({S}, R — 5)
to ({R, S}, S) by tactic intro and trivially prove it by exact. A formal statement sp can be
transformed to a proof goal by simply setting assumptions to be empty set and conclusion to be
sp, resulting in the proof goal ((}, sp). And a proof goal ({sp;}I;,S¢g) can be transformed back
to a formal statement sp; A spa A--- A sp, — Sg. These transformations occur at the syntax
level, leaving semantics unchanged. Therefore, we can determine semantic equivalence in the space
of proof goals and concretize R to be the set of all tactics in Lean. The restricted transformation
function 7' can be approximated by sampling tactic sequences from a large language model and
symbolically executing on Lean kernel multiple times, until a valid s/, is found, or the time limit ex-
ceeds. With a slight abuse of notation, we denote both the formal statement s p and its corresponding
proof goal as sp.

Then, Unidirectional Definitional Implication (- <y -) is defined as
Sp <u SQ < Sp NDT(SQ‘SP,R) 2)

Intuitively, this implication from s to sp indicates whether the proof goal of the statement sp can
be definitionally equal to a restrictively transformed s by 1. Correspondingly, BEq (Bidirectional
Extended Definitional Equivalence) (- ~y -) is defined as

Sp ~p 8SQ <= Sp < uSQ/\SQ <uSPp 3)

which is

* asuperset of definitional equality: Let R = (), then, T becomes identity mapping A(-) and

sp ~p 8Q <= sp ~p A(sg) N sg ~p A(sp)
<= sp ~p 8¢
* an equivalence relation, which is a binary relation with
1. Reflexivity: sp ~p sp holds because sp ~p sp.
2. Symmetry: sp ~g SQ <= S ~p Sp holds by unfolding the definition of BEq.
3. Transitivity: If sp ~p sg and sg ~p sg holds, we have sp ~p T(sg|sp, R) and
sg ~p T(srlsg,R). Suppose T'(sg|sp,R) applies tactic sequence [tS)P];il to

transform proof goal s¢ to be definitionally equal to sp, and T'(sr|sqg, R) applies

[t%]};l- Therefore, by applying COHC&t([tg%)]?:u [tg)P]gL) on Sp, We can trans-

form proof goal sp to be definitionally equal to sp. Therefore, sp ~p T(sgr|sp, R).

Implementation. An overview of BEq is depicted in Figure [I] To implement the transformation
function 7', we perform 5-shot prompting InternLM-Math-Plus-20B (Ying et al.l [2024b) served on
vLLM (Kwon et al.}|2023). If not mentioned otherwise, model prediction is sampled by beam search
where temperature 7' = 0.0, attempt number n = 8, and beam size b = 8. The choice of trans-
formation primitives is sophisticated and critical for aligning with humans. We set R = {apply,
cases’, constructor, exact, exact?, ext, have, intro,intros, rw, use} to extend
vanilla definitional equality (for higher recall) while preventing ¢/(-, R) and the equivalence class
being too large (for higher precision). More experiments on the choices of attempt numbers, trans-
formation primitives, and sampling strategies can be found in Appendix

Published as a conference paper at ICLR 2025

Table 1: Comparison of automated evaluation metrics for statement autoformalization. R, S, T
denote reflexivity, symmetry, and transitivity, respectively. Universal indicates whether a metric is
applicable in all domains; 0/0 denotes division by zero; I and D denote InternL.M2-Math-Plus-20B
and Deepseek-V2.5, respectively; ~ represents the metric is unsuitable for the method. *We report
the best results among all thresholds; fReflexivity and symmetry depends on the implementation.

Binary Relation Alignment with Human

Metric Universal
R S T PrecisionT Recallt Accuracy?t
_Identity Match _ Y _ v __ 00 ___000%__ 6500% ___v___
_Typecheck __ ___ _____ Y. 35.00% _ 100.00% _ 35.00% _ _ v _ __
_BLEU Threshold IO x| 6296%7 24.20%° 6850%7 v
_Majority Voting () x__x __x __40.00% _ 94.29% _ 4850% _ v ___
Majority Voting (D) X X X 70.59% 85.71% 82.50% v
" Definitional Equality v v v 100.00% 11.43% 69.00% <
B3 (Murphy etall2024) v v v o~ x
BEq v v v 100.00% 72.86% 90.50% v

Given two formal statements sp and sq, we first check sp <y sg. sq is assumed to be true by
closing its proof with sorry. Then, symbolic heuristic exact ? is called to generate a proof for
sp. If it fails, n candidates are sampled from the LLMEI, given tactic restriction R and sg. If there
exists at least one successful proof that uses sg, sp <—y sg holds. Otherwise, sp <—y s does not
hold. Then sqg <y sp is similarly checked. If and only if both directions hold, sp ~5 s holds.

3.3 EVALUATION OF BEQ

Human Equivalence Benchmark. To fairly and reliably evaluate BEq and baseline metrics, we
uniformly sampled 200 formal statements from the typechecked predictions generated by RAuto-
formalizer and OpenAl ol-preview (100 predictions from each). Then the statements are paired
with the ground-truths in ProofNet (Azerbayev et al., ZOZSﬂ Experts in math and formal verifica-
tion are invited to discuss and label the equivalence in their opinion for the 200 statement pairs. The
discipline distribution of these samples is visualized in Appendix [A.4]

Experiment Setting. In our evaluation, identical matching is optimized to neglect spaces in formal
statements. BLEU computation is identical to|Azerbayev et al.|(2023)). To determine pairwise equiv-
alence, we binarize BLEU by a threshold. The best results over all possible thresholds are reported.
Precision, recall, and accuracy curves of different thresholds can be found in Appendix For
LLM grader, we use the prompts’ in |Ying et al.| (2024a) but a stronger setting: InternLM2-Math-
Plus-20B (Ying et al.,[2024b) and DeepSeek-V2.5 (DeepSeek-Al, 2024) with 16-shot majority vot-
ing and temperature 7' = 0.7. E3 (Murphy et al.} |2024) is not evaluated, as it is only available in
Euclidean Geometry. BEq also samples 16 tactic sequences candidates for each sample.

Experiment ResultsE] As summarized in Table BEq reaches 100.0% precision and 90.50% ac-
curacy, showing landslide advantages over baselines. However, BEq falls short on recall (—12.85%
compared with “Majority Voting (D)) because of 1) rigor of formal verification systems; and 2)
failure of approximated transformation function (the LLM), as analyzed in Appendix For
baselines, |Azerbayev et al| (2023) concludes that BLEU has a low correlation with ground-truth
accuracy, with which our experiment result agrees. The distribution of BLEU scores of equivalent
and inequivalent pairs is visualized in Appendix LLM Majority Voting sets a strong baseline,
reaching 82.50% accuracy, but at the expense of precision. As a subset of BEq, definitional equal-
ity performs well in precision but has too many false negatives. With BEq, we can better evaluate
statement autoformalization. In the following, we will address the second issue, agnosia of context.

4 RETRIEVAL-AUGMENTED AUTOFORMALIZATION

The current autoformalization paradigm suffers from the agnosia of context. Autoformalizers, with-
out a priori knowledge of previously formalized definitions and theorems, frequently hallucinate

3Detailed prompt template can be found in Appendix
4 All relevant open-source libraries are summarized in Appendix
>More comprehensive results can be found in Appendix A.2.1l

Published as a conference paper

at ICLR 2025

[
Informal Statement

Dense Embedding

|class DivInvMonoid (G: Type u) extends
IMonoid, Inv...
}class Div (a: Type u): Type u..

Prove that if §|G|=2907$ then G is not simple. — ‘ . .
Mathiib 4 — Eoder | @ @ @
Formal Data Informalizations p

** 2)E
; Qkncoe @ @ @
|class Group (G: Type u) extends DivInvMonoid: Class Group represents
|Type u...
|structure_field Monoid.npow: N » M » M. —) = . . . ArgMax

Function Monoid.npow takes a natural number and...
Class DivinvMonoid represents the concept of ...
Class Div represents the concept of division, which is a...

T _ _ .

Cosine
Similarity

Encoder . . .

Class " Group®

Grouy
P represents a monoid
|with an additional

Dependencies:
DivinvMonoid: Class DivinvMonoid

linverse ..

— Group
(3)Retrieve Fintype @)

s e | eclaration: i (#)Generate Autoformalizer
Nar class Group ... ¥
- Code: — Formal Statement
class Group (G : Type u)
Ml theorem thm_Q {G : Type u_1} [Group G]
i i - Comment: Informalizer [Fintype G] (h_G : Fintype.card G = 2907) :
@Topologlcal Informalize A Group' isa ‘Monoid" ... - IsSimpleGroup G := by sorry

Figure 2: RAutoformalizer. Train: @Dependencies in a library (e.g. Mathlib 4) are parsed. Formal
objects are informalized by topological order, each given its own and dependencies’ information.
The resulting parallel data is used to train the retriever (encoder) and autoformalizer. Inference:
@Each informal statement is encoded to an embedding, whose cosine similarities are computed
with pre-computed library embeddings. ®Objects corresponding to top-k similarities are retrieved.
@Conditioned on the informal statement and retrieved dependencies, it predicts formal statements.

formal objects that are nonexistent in the library. This drawback is also observed as definition
misalignment by [Wu et al.|(2022);|Azerbayev et al.|(2023)); Jiang et al.|(2023a)). Although these hal-
lucinated identifiers and function applications are semantically correct from the human perspective,
formal verification fails because of the soundness of symbolic verifiers. Our preliminary experiments
support this observation, with hallucination worsening in OOD scenarios like frontier research.

4.1 RAUTOFORMALIZER

We propose RAutoformalizer (Retrieval-Augmented Autoformalizer), which addresses the issue by
incorporating dependency retrieval, selecting relevant formal objects for a given informal statement.

Dependency Retrieval. Suppose we are autoformalizing an informal statement [p with a ground-
truth formal statement s p with dependencies D p from a formal library D (e.g., Mathlib 4). Depen-
dency retrieval aims to retrieve a subset of formal objects D, maximizing the number of dependent
formal objects of sp in D while minimizing the inclusion of irrelevant ones, i.e.,

arg max |DﬁDp|—|DﬂD?3\ ()]
De2Pb

Our retriever, 1 : S — S”, which embeds a string onto the surface of a h-dimensional unit sphere,
uses Dense Retrieval (Karpukhin et al, [2020) for its popularity, simplicity, and efficiency. Before
inference, the embeddings of the whole library are precomputed as {1g(s4) | sa € D}. Then, when
an informal statement I p is provided, we only need a single forward pass to embed it as ¥ (I p) and
retrieve formal objects with top-k maximal cosine similarities, see Figure [2](Upper Right).

D= argmaxpeon | p|<k Z (Yo(lp), Po(sa))
sq€D

&)

Dataset. We build the dependency graphs for Mathlib 4, illustrated in Figure[2](Bottom Left), by pars-
ing the declarations of all formal objects and linking identifiers with accessible formal objects in the
corresponding context. In total, 243,797 formal objects (including 139,933 theorems) are collected
along with their full names, positions, types, declarations, code, comments, and dependencies.

We propose to topologically informalize Mathlib 4 to synthesize a training dataset. Concretely,
all formal objects are topologically sorted and split into 24 topological generations based on their
dependency graph. Informalization is performed from the bottom (e.g., basic definitions) to the
top (more sophisticated concepts), as Figure 2] (Bottom Middle) shows. We use 10-shot prompted

Published as a conference paper at ICLR 2025

InternL.M2-Math-Plus-20B (Ying et al., [2024b)) as the informalizer. For a formal object, the infor-
malizer is provided with the object’s declaration, codeﬂ comment, and its dependencies’ informal-
izations. The high quality of informalizations is shown in subsequent experiments.

RAutoformalizer. Building upon dependency retriever 1pg, an LLM pg can predict formal state-
ments given informal statements and retrieval results, as in Figure 2| (Bottom Right):

sp ~pe(|lp, D) (6)

The retriever g is fine-tuned from BGE-M3 (Chen et al., |2023)) using informalized theorems and
dependencies in Mathlib 4 and hyperparameters in Appendix We retrieve the top-100 candi-
dates using pretrained BGE-M3, remove true dependencies, and take the remainings as hard nega-
tives (Xiao et al., 2023). By default, formal declarations of objects are used to generate embeddings.

For each theorem object, top-5 retrievals of 1) are collected to fine-tune the autoformalizer py from
InternLM2-Math-Base-7B (Ying et al., 2024b) using the training recipe in Appendix [A.8]

During inference, given an informal statement I p and a formal library D, the retriever g selects
top-5 candidates from the library, then the autoformalizer py generates formal statements based on
the informal statement and retrievals.

Con-NF: OOD Benchmark. Existing benchmarks (Azerbayev et al., [2023; [Zheng et al., [2022;
Tsoukalas et al.| 2024} [Liu et al) 2023} Murphy et al., |2024) rely on Mathlib 4 and concentrate
on high-school or undergraduate level mathematics. To evaluate the out-of-distribution generaliza-
tion capabilities and research-level mathematics, we build a novel benchmark, Con-NF, based on
Lean 4 Con(NF) (Holmes & Wilshawl [2024) library. Con(NF) is a recently published digitization of
Randall Holmes’ proof (Holmes| 2015)) that Quine’s New Foundations (Quine, [1951])) is consistent.
We parse dependencies in this library, topologically informalize all 85,762 formal objects, dedupli-
cate theorems from Mathlib 4, and eliminate unused formal objects of the remaining theorems. The
cleaned benchmark consists of 961 theorems based on a different theoretical basis to merely Mathlib
4, along with a total of 1,348 formal objects and their informalizations.

4.2 EVALUATION OF RETRIEVAL AND AUTOFORMALIZATION

Dependency Retrieval. We choose pretrained BGE-M3 and BM25 (Robertson et al.,2009)) as base-
lines. BGE-M3 is a state-of-the-art embedding model that can perform accurate semantic retrieval
for more than 100 languages. BM25 is a classical information retrieval method based on frequency
and document length and is the main baseline in ReProver (Yang et al.,|2024). For BGE-M3 baseline,
we evaluate the pretrained model; For BM25, a BPE tokenizer with 30,000 vocabularies is trained
on the topologically informalized Mathlib 4 dataset. For each ablative setting in experiments, we
separately fine-tuned one retriever with the same recipe in Appendix [A.8] Evaluation is conducted
on the ProofNet (Azerbayev et al.| 2023) and the Con-NF benchmark.

Results in Table [2] suggest the superiority of our method. Models fine-tuned on dependency re-
trieval dataset show landslide victory over baselines, exhibiting more than 10x improvement of
recall on ProofNet and 2x on Con-NF. The huge performance gap between baselines focused on
semantic similarity and our model indicates that dependency retrieval is a novel retrieval task, which
relies more on logical dependency. For a more intuitive analysis, a case study can be found in Ap-
pendix[A.6] Ablative results on topological informalization also demonstrate a consistent advantage
over vanilla informalization, especially in OOD generalization (Con-NF), where relative improve-
ments can reach 50% on Recall@5 and Precision@5. Comparisons between formattings of formal
objects indicate that incorporating informalizations in dependency embedding might introduce noise
and degrade retrieval performance in in-distribution settings but improve OOD performance. We
leave the exploration of this intriguing phenomenon for future work.

Statement Autoformalization. We evaluate a wide range of baselines, including in-context learn-
ing (Wu et al.;,[2022)) using GPT-40 (OpenAl et al., 2024) and DeepSeek-V2.5 (DeepSeek-Al |2024),
and fine-tuning on MMA (Jiang et al.| 2023a), PDA (Lu et al., 2024), and Lean-Workbook (Ying
et al.l [2024a)). Since LLM API calling does not support beam search with 7' = 0.0, DeepSeek is
evaluated using temperature decoding 7" = 0.7, and GPT-40 using version gpt-40-2024-08-06

SFor theorems, we only use their declarations since their code (except proofs) is identical with their decla-
rations in semantics.

Published as a conference paper at ICLR 2025

Table 2: Comparisons between our dependency retriever and baselines, and ablations of topological informal-
ization. Cyan numbers in brackets show ablative improvements over vanilla informalization (U); Bold numbers
emphasize the highest values in each benchmark; Fmt indicates the method to format a formal object into
a string to embed, where F denotes using only formal declarations and F+IF means using both formal dec-
larations and informalizations; DR represents dense retrieval; Dataset indicates the training dataset, where P
means directly using pretrained model, U represents unstructurally informalized dataset, and T represents topo-
logically informalized dataset; R@k and P@E denote the recall and precision of top-k retrievals, respectively.

Bench ~ Fmt Method Dataset R@51 R@101 R@1007 P@st P@10t P@1001
BM25 T 0.16% 0.16% 1.00% 0.11% 0.05% 0.03%
F P 1.93% 2.13% 7.14% 1.02% 0.61% 0.24%
DR U 33.74% 4031% 65.30% 21.55% 13.61% 2.22%
ProofNet T 3552% 0w 43.63% oo 61.71% oo 22.89% 0w 1457% ove 225% oo
BM25 T 0.00% 0.11% 0.29% 0.00% 0.05% 0.01%
FAIF P 0.41% 0.98% 5.46% 0.32% 0.40% 0.20%
DR U 28.66% 34.57% 63.55% 18.18% 11.28% 2.16%
T 3R247%cne 4035% s 6733% cow 2032% oo 1281% e 2.26% o
BM25 T 441% 7.31% 31.13% 2.37% 223% 1.06%
r P 5.66% 9.10% 34.50% 3.73% 3.02% 1.15%
DR U 15.28% 2031% 72.70% 7.95% 5.47% 2.39%
Con.NF T 2432% 00 3T44% 11 88.86% noion 14.05% wion 11.29% s 3.19% wsn)
BM25 T 9.86% 14.95% 34.50% 6.95% 5.28% 1.26%
FAIF P 13.84% 19.19% 44.16% 9.51% 6.72% 1.59%
DR U 17.34% 23.10% 84.25% 10.39% 7.29% 3.05%
T 2791% 0w 37.00% o 8643% i 11.57% o 1199% o 3.21% o

and default hyperparameters. For both, we set repeat count ¢ = 8 (retry if fail to extract formal state-
ments from model outputs) and use 3-shot demonstrations. Notably, ProofNet participates in the
data synthesis process of Lean-Workbook. But we still include it as a strong baseline. For fairness,
all fine-tuning methods use InternL.M2-Math-Base-7B (Ying et al., 2024b as base model and train-
ing recipe in Appendix We also report the performance of RAutoformalizer without retrieval
module (RA -R) and given ground-truth dependencies (RA +R). Both are fine-tuned respectively
on correspondingly constructed datasets. For ProofNet, additional objects defined beyond Mathlib 4
are retrieved in priority. For reproducibility, all fine-tuning methods are evaluated using beam search
with temperature 7' = 0.0, generation number n = 8, and beam size b = 8.

We use BEq (introduced in Section [3.2) to evaluate the equivalence between model predictions
and ground-truth formal statements. We define BEq@F as the portion of samples where predicted
statements are BEq to ground-truths at least once in & attempts:

N
BEq@k = — Is, ~ps, 7
q N 2]e?llaxk} 8 n~pSi N
where [V is the number of samples; k is the number of attempts; I is the indicator function, and $; 4,
is the j-th generation attempt for the i-th sample. Similarly, Typecheck@¥ is defined as the portion
of samples where model predictions pass Lean typecheck at least once in k attempts.
T
TypeCheCk@k = N ra je?llax,k} HLeanTypecheck(éiﬁk) (3)
We report BEq@1, BEq@8, Typecheck@ 1, and Typecheck @8 for a more thorough evaluation.

Table 3| shows the great superiority of RAutoformalizer over baselines. On in-distribution ProofNet
benchmark, the non-retrieval ablative model already surpasses all baseline methods, including Lean-
Workbook (Ying et al.|[2024a)) (by 6.69% in BEq@8), showing the high quality of our topological in-
formalizations. RAutoformalizer further improves 1.60%. The ideal model reaches 23.26% BEq@1
and 31.28% BEq@8, exhibiting the potential of dependency retrieval.

On OOD Con-NF, without retrieval, all methods, including large-scale-pretrained GPT-40 and
DeepSeek-V2.5, result in poor performance. The non-retrieval ablative model still shows the highest

” Another group of experiments fine-tuned on DeepSeek-Math-Base-7B can be found in Appendix

Published as a conference paper at ICLR 2025

Table 3: Comparisons and ablations of retrieval-augment. Cyan numbers in brackets show ablative improve-
ments over bare autoformalizer (“RA -R”); Bold numbers emphasize the highest values excluding oracle (“RA
+R”) results; BEq @£ indicates the portion of samples where predictions are equivalent to ground-truths under
BEq at least once in k attempts, defined in Eq. [/} Typecheck @£ indicates the portion of samples where predic-
tions pass typecheck at least once in k attempts, defined in Eq.[9} ICL (D) and ICL(4o0) represents in-context
learning using Deepseek-V2.5 and GPT-4o, respectively; MMA, MMA (Lean), PDA, and LW represent fine-
tuning on MMA, MMA’s Lean subset, PDA, and Lean-workbook, respectively; RA is the main method; RA
-R is the ablation removing dependency retrieval; RA +R is the ablation using oracle dependencies.

Method ProofNet Con-NF

Typecheck@171 BEq@11 Typecheck @871 BEq@81 Typecheck@17 BEq@11 Typecheck @87 BEq@81
ICL (D) 40.37% 9.89% 51.07% 10.96% 9.37% 2.81% 16.23% 4.27%
ICL (40) 43.58% 7.22% 66.31% 12.83% 9.78% 1.46% 20.71% 4.16%
MMA 12.57% 1.87% 22.99% 2.94% 3.64% 1.98% 8.74% 4.37%
MMA (L) 10.96% 2.14% 23.53% 2.67% 3.33% 1.77% 8.01% 4.58%
PDA 14.71% 0.27% 24.33% 2.14% 4.37% 1.04% 10.61% 3.64%
LW 44.92% 8.56% 49.20% 9.89% 28.10% 0.94% 37.67% 1.04%

"RAR | s2.04% 150% 7139% 1658% | 812% 302% 11.97% ¢ 458%

RA 57.22% .08 12.30% o5 77.27% s 18.18% (1.« 20.50% (2350 11.45% a3 28.62% (oosny 16.86% 12254
RA +R 72.99% cosey 23.26% 190w 80.48% w0 31.28%)| 60.46% 2300 44.85% sy T2.11% woise) 55.36% 0.7

BEq@1 and BEq@8 among them. With retrieval-augment, RAutoformalizer has 3x improvement
on BEq@1 and BEq@8, and the oracle model exhibits over 10x potential for improvement. This
significant gap shows the necessity of dependency retrieval and draws community attention to OOD
settings. A more detailed ablative study can be found in Appendix[A.2]

5 CONCLUSION

We have presented a thorough rethink on existing statement autoformalization paradigms, identi-
fying and addressing two critical problems: absence of universal human-aligned evaluation metric
and agnosia of contextual information. For the first, we propose BEq (Bidirectional Extended Def-
initional Equivalence), a faithful, effective and universal neural-symbolic approach to determine
the equivalence between formal statements. For the second, we propose a new task, Dependency
Retrieval, finding dependent formal objects from math libraries, and a new paradigm, RAutofor-
malizer (Retriever-augmented Autoformalizer), enhancing statement autoformalization with depen-
dency retrieval. We also propose to parse dependencies and topologically informalize formal objects
to synthesize high-quality data. For more comprehensive evaluation, we extend ProofNet benchmark
for dependency retrieval and construct a novel research-level OOD benchmark, Con-NF.

6 LIMITATION AND BROADER IMPACTS

Limitations of BEq. As an equivalence metric between formal statements, the accuracy of BEq
depends on the quality of the ground-truth formal statements of the benchmarks. Therefore, BEq is
not suitable for benchmarks with low-quality ground-truths or those lacking formal ground-truths.

Moreover, human opinions on equivalence are diverse. Therefore, carefully designing the limitation
of transformation primitives ‘R (available tactics) and the approximation of transformation function
T (the LLM) is crucial, for which extensive experiments are conducted in Appendix [A.I] For the
more detailed case study of BEq, please refer to Appendix We sincerely invite community
efforts to delve into refining BEq and set a domain standard to facilitate subsequent research.

Limitations of RAutoformalizer For retrieval-augment generation, high-ranking retrievals mainly
impact its performance (Cuconasu et al., [2024). Although RAutoformalizer surpasses all baselines
by a significant margin, the experiment of oracle retrieval (RA +R) exhibits large room to improve
the retriever. This project focuses on setting a basic working baseline for dependency retrieval
and leaves sophisticated upgrades such as multi-vector embeddings (Khattab & Zaharia, 2020), re-
ranking (Zhuang et al.,[2022)) and query augmentation (Gao et al., 2024) for future work.

Broader Impacts. We hope the idea of bidirectionally “convertible” under restricted transforma-
tions can inspire more areas, such as neural-symbolic, formal verification, and general reasoning.
For example, faithful automated evaluation in other symbolic generative tasks. Furthermore, re-
searchers can also extend RAutoformalizer to broader neural-symbolic tasks such as the autofor-
malization of specifications, proof, and even theories.

10

Published as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

It aims to contribute to the field of statement autoformalization by proposing a faithful equivalence
metric, a research-level benchmark, and a new paradigm for mitigating agnosia of context and en-
hancing OOD generalization. We fully understand the importance of reproducibility in scientific
research and therefore, details of datasets, models, and experiments are summarized as follows:

* Implementation details of BEq in Section
* Experiment settings and baselines for BEq in Section [3.3}

* Training dataset for dependency retriever and RAutoformalizer in Section .1} and string
formatting details in Appendix

* Construction and composition of the Con-NF benchmark in Section .1}

* For dependency retriever, implementation details and experiment setting in Section [4.2]
and detailed training recipe in Appendix

* For RAutoformalizer, implementation details, experiment setting, and evaluation metric in
Section and detailed training recipe in Appendix

* All dependent open-source libraries, along with their repository URLs and versions in Ap-

pendix[A.9]

Evaluation results are uploaded as supplementary materials. Code, data, and model checkpoints are
released athttps://github.com/Purewhite2019/rethinking_autoformalization|

REFERENCES

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and Jeremy
Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics, 2023. URL
https://arxiv.org/abs/2302.12433.

Chris Bailey, Pietro Monticone, Martin Dvofak, Kevin C, and Kitamado. Type checking in lean 4. https:
//github.com/ammkrn/type_checking_in_lean4, 2024.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program development: Coq’Art: the calculus
of inductive constructions. Springer Science & Business Media, 2013.

Davide Castelvecchi. Deepmind hits milestone in solving maths problems—ai’s next grand challenge. Nature,
632(8024):236-237, 2024.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-
lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation, 2023.

XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. |https://github.com/
InternLM/xtuner) 2023.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano, Yoelle Maarek,
Nicola Tonellotto, and Fabrizio Silvestri. The power of noise: Redefining retrieval for rag systems. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, volume 17 of SIGIR 2024, pp. 719-729. ACM, July 2024. doi: 10.1145/3626772.3657834. URL
http://dx.doi.org/10.1145/3626772.3657834.

Garett Cunningham, Razvan C. Bunescu, and David Juedes. Towards autoformalization of mathematics and
code correctness: Experiments with elementary proofs, 2023. URL https://arxiv.org/abs/2301.
02195.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model, 2024.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine for mathlib4,
2024. URL https://arxiv.org/abs/2403.13310.

Aryan Gulati, Devanshu Ladsaria, Shubhra Mishra, Jasdeep Sidhu, and Brando Miranda. An evaluation bench-
mark for autoformalization in lean4, 2024. URL https://arxiv.org/abs/2406.06555,

M Randall Holmes. New foundations is consistent. Change, 5:23, 2015.

11

https://github.com/Purewhite2019/rethinking_autoformalization
https://arxiv.org/abs/2302.12433
https://github.com/ammkrn/type_checking_in_lean4
https://github.com/ammkrn/type_checking_in_lean4
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner
http://dx.doi.org/10.1145/3626772.3657834
https://arxiv.org/abs/2301.02195
https://arxiv.org/abs/2301.02195
https://arxiv.org/abs/2403.13310
https://arxiv.org/abs/2406.06555

Published as a conference paper at ICLR 2025

M. Randall Holmes and Sky Wilshaw. Nf is consistent, 2024. URL https://arxiv.org/abs/1503.
01406.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization, 2023a. URL
https://arxiv.org/abs/2311.03755.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja Jam-
nik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=SMa9EA0vVKMCL

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 6769—-6781, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.
emnlp-main.550.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized late
interaction over bert. In Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR *20, pp. 39-48, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450380164. doi: 10.1145/3397271.3401075. URL https:
//doi.orqg/10.1145/3397271.3401075,

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention, 2023. URL https://arxiv.org/abs/2309.06180,

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A
survey on deep learning for theorem proving. In First Conference on Language Modeling, 2024a. URL
https://openreview.net/forum?id=z1w6AHwukB.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A
survey on deep learning for theorem proving, 2024b. URL https://arxiv.org/abs/2404.09939.

Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao Lu, Zhengying Liu, Lingi Song, and
Xiaodan Liang. Fvel: Interactive formal verification environment with large language models via theorem
proving, 2024. URL https://arxiv.org/abs/2406.14408,

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang Zheng,
Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge formal dataset for automated theorem
proving, 2023. URL https://arxiv.org/abs/2309.04295,

Jianqgiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang, Haiming Wang, Zhicheng Yang, Jing Tang, and
Zhijiang Guo. Process-driven autoformalization in lean 4, 2024. URL https://arxiv.org/abs/
2406.01940.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction—-CADE 28: 28th International Conference on Automated Deduction, Virtual Event,
July 12-15, 2021, Proceedings 28, pp. 625-635. Springer, 2021.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autoformalizing
euclidean geometry, 2024. URL |https://arxiv.org/abs/2405.17216.

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for higher-order
logic, volume 2283. Springer Science & Business Media, 2002.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoft, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fish-
man, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,

12

https://arxiv.org/abs/1503.01406
https://arxiv.org/abs/1503.01406
https://arxiv.org/abs/2311.03755
https://openreview.net/forum?id=SMa9EAovKMC
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://arxiv.org/abs/2309.06180
https://openreview.net/forum?id=zlw6AHwukB
https://arxiv.org/abs/2404.09939
https://arxiv.org/abs/2406.14408
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2405.17216

Published as a conference paper at ICLR 2025

Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz
Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin,
Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc-
Grew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa,
Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev
Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki,
Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam,
Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick
Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ] Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel
Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah
Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia
Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.), Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pp. 311-318, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URLhttps:
//aclanthology.org/P02-1040.

Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization, 2024. URL https:
//arxiv.org/abs/2310.07957.

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and Antoine Bosselut. Improving autoformalization using type
checking, 2024. URL https://arxiv.org/abs/2406.07222|

WYV Quine. On the consistency of “new foundations”. Proceedings of the National Academy of Sciences, 37
(8):538-540, 1951.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024. URL https://arxiv.org/abs/2402.03300,

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao Yu. Arks:
Active retrieval in knowledge soup for code generation, 2024. URL https://arxiv.org/abs/2402.
12317.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In Christoph
Benzmiiller and Bruce Miller (eds.), Intelligent Computer Mathematics, pp. 3-20, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-53518-6.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathe-
matical competition, 2024. URL https://arxiv.org/abs/2407.11214,

13

https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2310.07957
https://arxiv.org/abs/2310.07957
https://arxiv.org/abs/2406.07222
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.12317
https://arxiv.org/abs/2402.12317
https://arxiv.org/abs/2407.11214

Published as a conference paper at ICLR 2025

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of informal to
formal mathematics, 2018. URL https://arxiv.org/abs/1805.06502.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine translation
in autoformalization of mathematics in mizar. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, volume 5 of POPL 20, pp. 85-98. ACM, January 2020. doi:
10.1145/3372885.3373827. URL http://dx.doi.orqg/10.1145/3372885.3373827.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Christian Szegedy.
Autoformalization with large language models, 2022. URL https://arxiv.org/abs/2205.12615|

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to advance
general chinese embedding, 2023.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan
Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data, 2024. URL
https://arxiv.org/abs/2405.14333.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J Prenger,
and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented language models.
Advances in Neural Information Processing Systems, 36, 2024.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-scale
lean problem set formalized from natural language math problems, 2024a. URL https://arxiv.org/
abs/2406.03847.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang
Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen, and Dahua Lin. Internlm-math:
Open math large language models toward verifiable reasoning, 2024b. URL https://arxiv.org/
abs/2402.06332

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji Wang, and Jian-Guang Lou. When language model
meets private library, 2022. URL https://arxiv.org/abs/2210.17236}

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval and generation.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 2471-2484, Singapore, December 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.emnlp-main.151. URL https://aclanthology.org/
2023 .emnlp-main.151.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demonstration
learning for formal theorem proving, 2023. URL https://arxiv.org/abs/2305.16366

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics, 2022. URL https://arxiv.org/abs/2109.00110,

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu. Don’t trust:
Verify — grounding llm quantitative reasoning with autoformalization, 2024. URL https://arxiv.
org/abs/2403.18120,

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig. Docprompting:
Generating code by retrieving the docs, 2023. URL https://arxiv.org/abs/2207.05987,

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and Michael
Bendersky. Rankt5: Fine-tuning t5 for text ranking with ranking losses, 2022. URL https://arxiv.
org/abs/2210.10634.

14

https://homotopytypetheory.org/book
https://arxiv.org/abs/1805.06502
http://dx.doi.org/10.1145/3372885.3373827
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2210.17236
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151
https://arxiv.org/abs/2305.16366
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2403.18120
https://arxiv.org/abs/2403.18120
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2210.10634
https://arxiv.org/abs/2210.10634

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 COMPARATIVE EXPERIMENTS ON HYPERPARAMETERS OF BEQ

Extensive experiments are conducted to evaluate the influence of different engineering choices, as shown in
Table 4] Experiment dimensions include the restrictions of transformation primitives, choices between BEq
and only Unidirectional Definitional Implication, number of attempts to generate transformations, and sampling
strategy.

As for the restrictions, Basic denotes only {exact, exact?, have} are allowed, Normal additionally in-
cludes {apply, cases’, constructor, ext, intro, intros, rw, use}, Advanced additionally allows
more powerful tactics {assumption, by_cases, by_contra, change, choose, convert, exfalso,
left, nth_rw, obtain, rcases, refine, rfl, right, rintro, specialize, triv}, and All de-
notes all tactics are allowed. Experiment results show that Basic setting is enough for most cases and Normal
setting shows superior performance, while Advanced and All may lead to false positives.

Comparison between “Bidirectional” and “Unidirectional” shows landslide advantage of “Bidirectional”. Ex-
periments of K show that symbolic heuristic exact ? is able to handle most cases, but the incorporation of
large language models can solve more cases. It also reveals that our current implementation, few-shot prompt-
ing LLM, is not capable of handling more difficult cases. Failure case analysis is done in Appendix[A:4] The
sampling strategy does not have much influence, so we use beam-search with temperature 7" = 0 in the main
experiments.

A.2 MORE RESULTS ON RAUTOFORMALIZER

A.2.1 COMPREHENSIVE HUMAN EVALUATION OF BEQ

Table 3 compares the autoformalization performance of RA with other baselines on ProofNet and OOD Con-NF
using two automated metrics: Typecheck and BEq. Because the robustness of BEq itself is limited as discussed
above, the significance of the table results is compromised unless human evaluations are provided.

To more reliably evaluate BEq and RAutoformalizer, for each experiment on each benchmark, about 100 model
predictions that pass the typecheck are sampled for human evaluation. To reduce the variance, we perform
stratified sampling in 3 groups: 1) both directions of UDI (Unidirectional Definitional Implication) fail; 2) one
single directional UDI succeeds; 3) both directions of UDI succeed (BEq). The results are shown in Table[5]

Results on ProofNet benchmark are consistent with Table[T} Moreover, BEq demonstrates nearly perfect accu-
racy on Con-NF. Therefore, BEq is robust as an automated evaluation metric for autoformalization tasks.

A.2.2 HUMAN-RECTIFIED RESULTS

According to the human evaluation results in Appendix[A.2.T} we can estimate the gold accuracy of our methods
as

Human@1 = Typecheck@1 x HumanAcc|rypecheck)

where Typecheck@1 is the portion of samples where predictions pass typecheck in one attempt;
HumanAcc|typecheck is the human evaluated model accuracy among sampled typechecked predictions in Ap-
pendix [A2.1} Results are shown in Table[6} which demonstrates clear ablative improvement among RA -R,
RA and RA +R on the estimated goal accuracies.

A.2.3 TYPECHECK ERROR DISTRIBUTION

To quantitatively delve into the underlying mechanics of the ablative improvement brought by RAutoformalizer,
for each experiment, we count all Lean errors in samples that fail to typecheck and classify them into two
sources: “Hallucination” (error caused by hallucination of identifiers) and “Others” (all other errors). The
results are in Table |/} which show retrieval-augment can reduce both types of errors, especially Hallucination
errors.

The detailed error taxonomy is as follows:
e function expected: Others
e invalid field notation: Hallucination

* type expected, got: Others

e unknown constant: Hallucination

15

Published as a conference paper at ICLR 2025

Table 4: Comparative experiments of the proposed equivalence metric on the human-annotated equivalence
benchmark. Green-backgrounded numbers are those reported in Table [T} Red-backgrounded numbers high-
light false positives, which we’re trying our best to avoid. Restriction represents the allowed transformation
primitives.; Bidirectional indicates to determine equivalence by BEq; Unidirectional indicates to determine
equivalence by Unidirectional Definitional Implication; K denotes the number of attempts to generate trans-
formations; T=0.0 means beam-search with temperature 7' = 0; T=0.7 means temperature sampling with
T = 0.7; FP denotes the number of false positives.

Restriction Direction K T=0.0 =07
FP Precision Recall Accuracy | FP Precision Recall Accuracy
0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
Bidirectional 2 | 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
4 | 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
8 0 100.00% 70.00% 89.50% 0 100.00% 70.00% 89.50%
Basic 16 | 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
0 [16 7500% 6857% 81.00% 16 75.00% 6857% 81.00%
1|18 7391% 72.86% 81.50% 18 7429% 74.29% 82.00%
Unidirectional 2 | 18 7429% 74.29% 82.00% 19 73.61% 7571% 82.00%
4 119 7361% 7571% 82.00% 19 7432% 7857% 83.00%
8 | 19 7432% 78.57% 83.00% 21 7237% 7857% 82.00%
16 | 23 71.25% 81.43% 82.00% 23 70.89% 80.00% 81.50%
0 [0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
Bidirectional 2 | 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
4 1 0 100.00% 7143% 90.00% 0 100.00% 71.43% 90.00%
8 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
Normal 16| 0 100.00% 72.86% 90.50% 0 100.00% 72.86% 90.50%
0 [16 7500% 6857% 81.00% 16 75.00% 6857% 81.00%
1|17 7463% 7143% 81.50% 18 7429% 7429% 82.00%
Unidirectional 2 | 18 7429% 74.29% 82.00% 18 7429% 7429% 82.00%
4 119 7397% 71.14% 82.50% 18 7429% 74.29% 82.00%
8 | 19 7432% 78.57% 83.00% 19 7432% 7857% 83.00%
16 | 22 71.79% 80.00% 82.00% 20 74.03% 81.43% 83.50%
0| 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 70.00% 89.50% 0 100.00% 71.43% 90.00%
Bidirectional 2 | 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
4 1 0 100.00% 7143% 90.00% 0 100.00% 71.43% 90.00%
8 0 100.00% 71.43% 90.00% 0 100.00% 71.43% 90.00%
Advanced 16| 0 100.00% 72.86% 90.50% 1 98.08% 72.86% 90.00%
0 [16 7500% 6857% 81.00% 16 75.00% 6857% 81.00%
1 | 18 7353% 71.43% 81.00% 17 7536% 74.29% 82.50%
Unidirectional 2 | 18 7429% 74.29% 82.00% 17 7571% 7571% 83.00%
4 118 75.00% 77.14% 83.00% 19 7432% 7857% 83.00%
8 |22 T7143% 7857% 81.50% 22 71.79% 80.00% 82.00%
16 | 24 70.37% 81.43% 81.50% 26 68.29% 80.00% 80.00%
0| 0 100.00% 67.14% 88.50% 0 100.00% 67.14% 88.50%
1 0 100.00% 68.57% 89.00% 0 100.00% 68.57% 89.00%
Bidirectional 2 | 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
4 1 0 100.00% 71.43% 90.00% 0 100.00% 70.00% 89.50%
8 0 100.00% 71.43% 90.00% 1 98.04% 71.43% 89.50%
All 16| 0 100.00% 72.86% 90.50% 3 94.44% 72.86% 89.00%
0 [16 7500% 6857% 81.00% 16 75.00% 68.57% 81.00%
1|17 7536% 7429% 82.50% 18 7429% 74.29% 82.00%
Unidirectional 2 | 18 7429% 7429% 82.00% 19 7324% 7429% 81.50%
4 120 7333% 1857% 82.50% 19 7397% 71.14% 82.50%
8 |22 7143% 7857% 81.50% 20 7297% 77.14% 82.00%
16 | 26 68.67% 81.43% 80.50% 25 6835% 77.14% 79.50%

e failed to synthesize instance: Others

* application type mismatch: Others

e unknown identifier: Hallucination

* invalid pattern, constructor or constant marked with : Others
e invalid pattern variable, must be atomic: Others

¢ unexpected end of input: Others

e unexpected token: Others

* invalid coercion notation, expected type is not known: Others

e cannot coerce to function: Others

16

Published as a conference paper at ICLR 2025

Table 5: Human evaluation results. RA is the main method; RA -R is the ablation removing depen-
dency retrieval; RA +R is the ablation using oracle dependencies; TP, TN, FP, FN are the number
of true-positives, true-negatives, false-positives and false-negatives of BEq, respectively.

BE

Benchmark | Method o1 —pp—FN T Precision Recall | Accuracy
RAR [22 70 0 9 | 10000% 70.97% | 91.09%
ProofNet RA |22 67 0 11 | 10000% 66.67% | 89.00%
RA+R | 32 57 0 12 | 10000% 7273% | 88.12%

RA-R [29 49 0 0 | 100.00% T100.00% | T00.00%
Con-NF RA |55 44 0 1 | 10000% 9821% | 99.00%
RA+R | 74 23 0 3 | 10000% 96.10% | 97.00%

Table 6: Human-rectified results centering in RAutoformalizer ablative experiments. RA is the main method;
RA -R is the ablation removing dependency retrieval; RA +R is the ablation using oracle dependencies;
BEq@1 indicates the portion of samples where predictions are equivalent to ground-truths under BEq in one
attempt, defined in Eq. |7} Typecheck @1 indicates the portion of samples where predictions pass typecheck in
one attempt, defined in Eq.[9} Human@1 indicates the estimated portion of samples where model predictions
pass Human evaluation.

Method ProofNet Con-NF
Typecheck@l BEq@1 Human@1 | Typecheck@l BEq@1 Human@1

RA-R 52.14% 11.50% 16.00% 8.12% 3.02% 3.02%
RA 57.22% 12.30% 18.88% 20.50% 11.45% 11.48%
RA+R 72.99% 23.26% 31.80% 60.46% 44.85% 46.55%

¢ typeclass instance problem is stuck, it is often due to

metavariables: Others
* type mismatch: Others
e invalid {...} notation, expected type is not known: Hallucination

stuck at solving universe constraint: Others

invalid binder annotation,

type is not a class instance: Hallucination

invalid parametric local instance,

invalid constructor (...),

: Hallucination
overloaded, errors
expected token: Others

ambiguous,

: Others

parameter with type: Others

expected type must be an inductive type

possible interpretations : Others

e don’t know how to synthesize placeholder: Others

e invalid field, the environment does not contain: Hallucination

e invalid {...} notation, expected type is not of the form (C ...):

Others

e invalid dotted identifier notation,

form (... =+ C

cannot

(deterministic)
(200000)
to set

failed
failed

timeout at
has been reached
the limit): Others

unexpected identifier: Others

to synthesize: Others

coerce to sort: Others

invalid argument name: Hallucination

invalid projection: Hallucination

17

expected type is not of the
.) where C is a constant: Others

don’t know how to synthesize implicit argument: Others

"whnf maximum number of heartbeats
(use ’'set_option maxHeartbeats <num>’

to prove index is valid, possible solutions:: Others

Published as a conference paper at ICLR 2025

Table 7:

Distribution of typecheck errors in RAutoformalizer ablative experiments. RA is the main method;

RA -Ris the ablation removing dependency retrieval; RA +R is the ablation using oracle dependencies; Hallu-

cination

denotes the number of errors caused by hallucination, and Others denotes the number of other errors.

Cyan numbers highlights the percentage of errors reduced relative to RA -R.

Method ProofNet Con-NF
Hallucination Others Hallucination Others

RA -R 434 1790 8902 14842

RA 320 (-26.27%) 1500 (-16.20%) | 5217 (-41.40%) 13386 (-9.81%)

RA +R 65 (-85.02%) 1173 (-34.47%) | 1134 (-87.26%) 5882 (-60.37%)

elaboration function has not been implemented: Others
failed to infer binder type: Others

invalid occurrence: Others

invalid universe level: Others

expected no space before: Others

tactic failed: Others

invalid constructor: Others

missing end of character literal: Others

unused universe parameter: Others

unknown tactic: Hallucination

unsolved goals: Others

(kernel) declaration has metavariables: Others

invalid use of field notation with ‘@" modifier: Others
invalid {...} notation, structure type expected: Others
unexpected syntax: Others

expected ’;’ or line break: Others

invalid binder name: Hallucination

not a field of structure: Hallucination

too many explicit universe levels: Others

type class instance expected: Others

fields missing: Hallucination

invalid use of explicit universe parameters: Others

is not a structure: Hallucination

don’t know how to synthesize placeholder for argument: Others
cannot coerce: Others

unknown universe level: Others

expected structure: Others

has already been declared: Others

simp made no progress: Others

missing cases:: Others

invalid dotted identifier notation, unknown identifier: Hallucination

invalid ’import’ command, it must be used in the beginning of the
file: Others

(1) must have a function type, not: Others

not a structure: Others

18

Published as a conference paper at ICLR 2025

Table 8: Experiment results of fine-tuning-based autoformalization methods reproduced on DeepSeek-Math-
Base-7B. Cyan numbers in brackets show ablative improvements over bare autoformalizer (“RA -R”); Bold
numbers emphasize the highest values excluding oracle (“RA +R”) results; BEq@Fk indicates the portion of
samples where predictions are equivalent to ground truths under BEq at least once in £ attempts, defined in
Eq. |’Z|; Typecheck@F£ indicates the portion of samples where predictions pass typecheck at least once in k
attempts, defined in Eq. MMA, MMA (Lean), PDA, and LW represent fine-tuning on MMA, MMA’s
Lean subset, PDA, and Lean-workbook, respectively; RA is the main method; RA -R is the ablation removing
dependency retrieval; RA +R is the ablation using oracle dependencies.

Method ProofNet Con-NF

Typecheck@11 BEq@171 Typecheck @81 BEq@871 Typecheck@11 BEq@171 Typecheck@81 BEq@871
MMA 15.78% 1.87% 31.02% 5.08% 3.23% 1.66% 7.28% 4.06%
MMA (L) 17.65% 2.41% 31.02% 5.61% 2.71% 1.35% 7.39% 4.37%
PDA 14.71% 2.14% 27.54% 5.61% 4.89% 1.77% 10.82% 4.47%

Lw 36.10% 8.56% 53.74% 10.16% 4.89% 1.98% 11.13% 2.08%
"RAR | T5134% T 1096% ~ =~ ¢ 69.79% ~ 1524% ~ 7|7 7 822% 312% T 1259% ¢ 427%
RA 59.36% (8.02%) 10.96% (0.00%) 75.94% (6.15%) 17.91% (2.67%) | 17.59% (9.37%) 9.68% (6.56%) 25.49% (12.90%) 15.30% (11.03%)
RA+R 72.73% (13.37%) 23.80% (12.83%) 83.69% (7.75%) 32.62% (14.71%) [60.56% (42.98%) 44.02% (34.34%) 75.96% (50.47%) 59.00% (43.70%)

Examinations

Linear Algebra

Abstract Algebra

Analysis

Topology

Figure 3: Disciplines distribution in the benchmark for human evaluation.

A.3 EXPERIMENT RESULTS ON DEEPSEEK-MATH-BASE-7B

We also evaluate all fine-tuning-based methods using DeepSeek-Math-Base-7B (Shao et al., [2024) as the base
model and the training recipe shown in Appendix[A-8] The results are in Table[§] which demonstrate consistent
(and even clearer) advantage of our methods over all baselines, and the ablative improvement of Dependency
Retrieval.

A.4 HUMAN EVALUATION FOR BEQ

Human Equivalence Benchmark. We use an early version of RAutoformalizer with oracle dependency (RA
+R) and OpenAl ol-preview to predict formal statements for all samples in ProofNet (Azerbayev et al., [2023))
benchmark. RAutoformalizer uses greedy decoding, while ol-preview uses temperature decoding with default
hyperparameters from OpenAl. Generated statements are then filtered by typecheck and deduplicated by string
matching. Then we uniformly sample 100 statement pairs from each model’s generation, invite human experts
from diverse backgrounds to label them as “equivalent” or “inequivalent”, resulting in our Human Equivalence
Benchmark. In total, 4 experts, one from formal verification and three from computer science participate in
the labeling. They first separately evaluate the equivalence between formal statements, and discuss in round-
table to reach an agreement for each sample. The distribution of disciplines in this benchmark is visualized in
Figure[3]

Failure Case Analysis. Our BEq reaches 100% precision, thus there are no false positives. For false negatives,
we analyze them in detail and find roughly 2 error patterns:

* Semantic gaps between informal mathematics and formal verification. 9 out of 19 false negatives
stem from it. Some subtle differences in informal mathematics may result in large differences be-
tween formalizations. As illustrated in FigureEl formalization P and () are identical in semantics,
but they are formalized under different bases, one by subtype and the other by set. Another example
is Figureﬂ where model-generated proof fails due to a subtle but fatal difference in the underlying
types.

¢ Transformation function failure. 10 out of 19 false negatives stem from it. Proving unidirectional
definitional implication is a novel task, hence the prohibitive lack of supervised data makes it im-
possible to fine-tune a capable model. Our implementation utilizes a 5-shot prompted 20B model,

19

Published as a conference paper at ICLR 2025

Informal Statement Show that there are infinitely many primes congruent to —1 modulo 6.

Formalization P
theorem sP :
Infinite {p : Nat.Primes // p = -1 [ZMOD 6]} :=

sorry
Formalization Q
theorem sQ :

Set.Infinite {p : N | Nat.Prime p A p % 6 = 5} :=
sorry

Figure 4: Failure case of BEq: small semantic gap for natural language mathematics might be huge
for formal verifier

Informal Statement Let R be a ring in which 2® = z for every z € R. Prove that R is commutative.

Formalization P
theorem sP {R : Typex} [Ring R]
(h:Vx:R x~ 3=x)
CommRing R :=
sorry
Formalization Q
theorem sQ {R : Type u_1} [Ring R]
(h:V (x:R, x " 3=x) (x:R) (y : R
X x Y=Y x X 1=

sorry

Failed Proof

have h_comm := exercise 4 2 5 h
have h_xy := h _comm.mul_comm x y
h xy

type mismatch

h xy
has type

@HMul.hMul R R R (@instHMul R NonUnitalNonAssocSemiring.toMul) x y =y * X : Prop
but is expected to have type

@HMul.hMul R R R (@instHMul R NonUnitalNonAssocRing.toMul) x y =y * x : Prop

Figure 5: Failure case of BEq: imperceptible differences in type are intolerable in Lean.

which is relatively weak and fails to generate proper transformation for more complex scenarios, as
illustrated in Figure[6]and Figure[7]

Success Case Analysis. Due to its symbolic nature, BEq can easily find fundamental differences between
formalizations that are misleading for human expert. We demonstrate two examples in Figure[8]and Figure 9]

A.5 VISUALIZATION OF BLEU DISTRIBUTION

The distribution of BLEU scores between formal statement pairs from the Human Equivalence Benchmark are
visualized in Figure[I0} along with the precision, recall, and accuracy curves w.r.t. different thresholds.

20

Published as a conference paper at ICLR 2025

Informal Statement Prove that no group of order pg, where p and q are prime, is simple.

Formalization P
theorem sP {G : Type*} [Group G] [Fintype G] {p q : N}
(hp : Prime p) (hg : Prime q) (hG : card G = p*q)
IsSimpleGroup G = False :=
sorry
Formalization Q
theorem sQ
P a:N)
(hp : Nat.Prime p)
(hg : Nat.Prime q)
(G : Type _) [Group G] [Fintype G]
(hG : Fintype.card G = p * Q)
: — IsSimpleGroup G :=
sorry
Equivalence Proofs
sp ~p T(sqlsp,R)
have hpp : Prime p := by exact Nat.prime iff.mp hp
have hgg : Prime g := by exact Nat.prime iff.mp hg
exact sP hpp hgg hG
sq ~B T(sp|sq,R)
have hpp : Nat.Prime p := by exact Nat.prime iff.mpr hp
have hgg : Nat.Prime g := by exact Nat.prime iff.mpr hg
exact sQ p g hpp hgg G hG

Figure 6: Failure case of BEq: transformation function fails to generate the transformation.

Informal Statement Assume that f: R — R satisfies | f(¢) — f(z)| < |t — z|? for all ¢, x. Prove that
f is constant.

Formalization P

theorem sP {f : R — R}
(hf : Vxy [fx-fyl <Ix-yl "2
Jec £=XAx=c:=

sorry

Formalization Q

theorem sQ (f : R — R)
(h:V tx:R), [ft-£fx < |t-x|]"2)
x:R) (y:R) :fx=£fy:=

sorry

Equivalence Proofs

sp ~p T(sqlsp,R)

have hc := sQ f hf

use £ 0

ext x

exact hc x 0

sq ~B T(sr|sq,R)

have hc := sP h

cases’ hc with ¢ hc

have hx : £ x = ¢ := by exact congrFun hc x
have hy : £ y = ¢ := by exact congrFun hc y
rw [hx, hy]

Figure 7: Failure case of BEq: transformation function fails to generate the transformation.

21

Published as a conference paper at ICLR 2025

Informal Statement Show that sin(7r/12) is an algebraic number.

Formalization P

theorem sP : IsAlgebraic Q (sin (pi/12)) :=
sorry

Formalization Q

theorem sQ : IsAlgebraic Q (Real.sin (Real.pi/12)) :=
sorry

Figure 8: Success case of BEq: These two formalizations are not equivalent. Note that pi in
Formalization P is an implicit argument of an arbitrary real number, instead of 7.

Informal Statement Prove that 2° 4- 302° — 1523 + 62 — 120 is irreducible in Z[z].

Formalization P
theorem sP : Irreducible
(X"6 + 30%X"5 — 15%xX"3 + 6%X — 120 : Polynomial Z) :=
sorry
Formalization Q
theorem sQ
(f : Polynomial Z := X"6 + 30%X"5 — 15%X"3 + 6xX — 120)
: Irreducible f :=
sorry

Figure 9: Success case of BEq: These two formalizations are not equivalent. Note that £

Polynomial Z :=X"6+30%*X"5-15xX"3+6xX-120 in Formalization P means f is of
type Polynomial Z with default parameter X~ 6+30+X"5-15+xX"3+6+xX-120, instead of
f=X"6+30+X"5-15%X"3+6xX-120.

5. -1.0
>
Qv
s
>
2 -0.75 3
; g
S -
a =
©
E -0.5 g
..E z.
g Equivalent g
e x Inequivalent _g>s5 '@
a1 Precision O
Recall 2
a.

Accuracy
0_.0 0.2 0.4 0.6 0.8 1._00

BLEU
Figure 10: Distribution of BLEU in the benchmark and precision, recall, accuracy of different BLEU

thresholds.

A.6 CASE STUDY OF BM25 RETRIEVAL

Formally, BM25 (Robertson et al.} 2009) can be defined as follows:

(k1 +1)f(g:, @)

Len(d
flgi,d) +ki(1=b+b- Mean({Len(d(’))\d’ED}))
N —|{g €dlde D} +0.5

{g; € d|d € D}|+0.5

BM25(d, q) = Y IDF(g;, D)
=1

IDF(g;, D) = log(+1)

22

Published as a conference paper at ICLR 2025

Query

Suppose that f is in an open set 2. Prove that if Re(f) is constant, then f is constant.
Ground-truth Document

Function ‘Set’ maps a given type to a proposition, which means that for each element of that type, it
determines whether that element belongs to the set. A set a collection of elements of some type a.
Irrelevant Document 1

If a function ‘f” from a complex manifold ‘M’ to a complex normed space ‘F’ is on a
preconnected, compact, and open set ‘U’, and ‘a’ and ‘b’ are points in ‘U’, then ‘fa=fb’.
Irrelevant Document 2

If a function ‘f” from a topological space ‘X’ to a type ‘Y’ is locally constant, then for any point ‘X’ in
‘X’, there exists an open set ‘U’ containing ‘x’ such that ‘f” is constant on ‘U’.

Figure 11: Failure case of BM25: BM25 prefers semantic similarity to logical dependency.

where ¢ = {q;}7— is a query with n tokens qi,...,qn; D = {d;}/L; is a document collection with N
documents d;, . . . ; dn, k1 and b are hyperparameters; IDF(g;, D) is the inverse document frequency of token
q; in document D.

As Figure |'1;1'| shows, BM25 prefers “semantic similarity” to “logical dependency” during retrieval. We focus
on 3 keywords, , set, and constant in the query. The query depends on the definition of “Set”, but
the frequencies of two keywords and constant are 0 in the definition of “Set”. Instead, the first
irrelevant document shares similar frequency of set and , while the second irrelevant one is similar
in set and constant. Subsequently, both irrelevant documents have higher BM25 scores than the ground-truth.

A.7 PROMPT TEMPLATES

A.7.1 PROMPT TEMPLATE OF BEQ

Given two Lean 4 theorems, please prove ‘thm Q' with ‘thm P‘.
You can only use the following tactics: {ALLOWED_ TACTICS}
‘thm P should be used at least once in the proof.

DO NOT add any extra explanation.

Here are some examples:

Input:

AN IRY

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators
noncomputable section

theorem thm P : \not \exists (x : Rat), (x ~ 2 =12) :=
sorry

theorem thm Q (g : Rat) :g ~ 2 \neq 12 := by

AR IRY

Output:

AR RY

exact (not_exists.mp thm P) g

AR IRY

Input:

A IRY

import Mathlib
open Fintype Subgroup Set Polynomial Ideal

open scoped BigOperators
noncomputable section

23

Published as a conference paper at ICLR 2025

theorem thm P {p g r : Nat} {G : Typex} [Group GI]
[Fintype G] (hpgr : p < g \and q < r)
(hpgrl : p.Prime \and g.Prime \and r.Prime) (hG : card G = pxgsr) :
Nonempty (Sylow p G) \or Nonempty (Sylow g G) \or Nonempty (Sylow r G) :=
sorry

theorem thm Q {p : Nat } {g : Nat } {r : Nat } {G : Type u_1l} [Group G] [Fintype G] (hp
: Nat.Prime p) (hg : Nat.Prime q) (hr : Nat.Prime r) (hpg : p < g) (hgr : g < r)
(hG : Fintype.card G = p * q * r) :Nonempty (Sylow p G) \or Nonempty (Sylow g G)
\or Nonempty (Sylow r G) := by

A IRY

Output:

A IRY

exact thm P (And.intro hpg hgr) (And.intro hp (And.intro hg hr)) hG

AN RY

Input:

A IRY

import Mathlib

open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators

theorem thm P {F V : Typex} [AddCommGroup V] [Field F]
[Module F V] (ST : End F V)
(S = T) .Eigenvalues = (T x S).Eigenvalues :=

sorry

theorem thm Q {K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] (S :
Module.End K V) (T : Module.End K V) :Module.End.Eigenvalues (S = T) =

Module.End.Eigenvalues (T * S) := by
Output:
exact @thm P KV _ _ _ ST
Input:

A IRY

import Mathlib

open Function Fintype Subgroup Ideal Polynomial Submodule Zsgrtd
open scoped BigOperators
noncomputable section

theorem thm P
{p : Nat} {hp : Nat.Prime p} (h : \exists r : Nat, p=2 "~ r + 1)
\exists (k : Nat), p=2 " (2 " k) +1 :=

sorry

theorem thm Q {p : Nat } (hp : Nat.Prime p) (h : \exists (r : Nat), p=2 "~ r + 1)
:\exists (k : Nat), p=2 "2 "k +1 :=Dby

ANRIRY

Output:

ARIRY

exact @thm P p hp h

A IRY

24

Published as a conference paper at ICLR 2025

Input:

A IRY

import Mathlib

open Fintype Set Real Ideal Polynomial
open scoped BigOperators
noncomputable section

theorem thm P {G : Typex} [Group G]

[Fintype G] (hG2 : Even (card G))

\exists (a : G), a \neq 1 \and a = a\-1 :=
sorry

theorem thm Q {G : Typex} [Group G] [Fintype G] (h : Fintype.card G % 2 = 0)
\exists a : G, a \neq 1 \and a = a\-1 := by

AN IRY

Output:
have hG : Even (card G) := by exact?
exact thm P hG

AN IRY

According to the task description and examples, given the following two Lean 4
theorems, please prove ‘thm Q' with ‘thm P‘.

Input:

AR RY

{THMS_TO_EVALUATE}

AN RY

Output:

To apply this template, {ALLOWED_TACTICS} should be replaced to the list of allowed tactics and
{THMS_TO_EVALUATE} be replaced to the two statements to evaluate.

A.7.2 PROMPT TEMPLATE OF LLM GRADER

Backtranslation Template

Given a Lean 4 theorem, please x*pbrieflyx* and *xconsisely** explain it in natural
language in one line.

Here are some examples:

Code:

theorem putnam 1964 _b3

(f : Real \imp Real)

(hf : Continuous f \and \forall \alpha > 0, Tendsto (fun n : Nat \mapsto f (n =
\alpha)) atTop (\nhds 0))

(Tendsto f atTop (\nhds 0)) := sorry

Summarization: Suppose f:R — R is continuous and for every a >0, limp_o f(na) =0.

Prove that limg—e f(x) = 0.

Code:

A IRY

theorem putnam 1968 b2
[Group G]
(hG : Finite G)

25

Published as a conference paper at ICLR 2025

(A : Set G)
(hA : A.ncard > (Nat.card G : \Rat)/2)

: \forall g : G, \exists x \in A, \exists y \in A, g = x * y := by sorry
Summarization: Let G be a finite group (with a multiplicative operation), and A be a
subset of GG that contains more than half of G’s elements. Prove that every

element of GG can be expressed as the product of two elements of A.

Code:

theorem putnam 2022_a3

(p : Nat)

(hp : Nat.Prime p \and p > 5)

(f : Nat := {a : Nat \imp (ZMod p) | \forall n : Nat, an \neq 0 \andan x a (n + 2) =
l1+a (n+1)}.ncard)

: £ \equiv 0 [MOD 5] \or f \equiv 2 [MOD 5] := sorry

Summarization: Let p be a prime number greater than 5. Let f(p) denote the number of
infinite sequences ai,az,as,... such that an € {1,2,...,p— 1} and
anant2 =14 any1 (mod p) for all m > 1. Prove that f(p) is congruent to 0 or 2
(mod 5).

Please *#prieflyxx and sxconsiselyxx explain the following theorem in one line:
Code:

AR RY

{THM_CODE}

AR IRY

Summarization:

To apply this template, { THM_CODE} should be replaced to the formal statement to informalize.

Equivalence Determination Template

Please check following two math problems is same or different? Please consider each
statement in two problems, they are different if any statement is different.
Please point out any differences you found. Please reply x*samexx or x*differentxx*
in the final sentence with bold format.

Problem 1: {THM 1}

Problem 2: {THM 2}

To apply this template, {THM_1} and {THM_1} should be replaced to the informalizations of the two formal
statements to evaluate. Notably, when Majority Voting is adopted, it is recommended to randomize the order of
the two statements in multiple attempts.

A.7.3 PROMPT TEMPLATE OF ICL AUTOFORMALIZATION

Please translate mathematical propositions into Lean 4 theorems. ‘Mathlib' is the only
allowed import.

DO NOT add any imports into the translation, and DO NOT try to prove the theorem, ONLY
translate it.

Here are some examples:

Math Proposition:

rrr

Suppose f:R — R is continuous and for every a > 0, limp_ o f(na) =0. Prove that
limy oo f(z) =0.

rrr

Lean Theorem:

AR RY

theorem exercise
(f : Real \implies Real)

26

Published as a conference paper at ICLR 2025

(hf : Continuous f \and \forall \alpha > 0, Tendsto (fun n : Nat \mapsto f (n =
\alpha)) atTop (\nhds 0))
(Tendsto f atTop (\nhds 0)) :=
sorry

A IRY

Math Proposition:

Let G be a finite group (with a multiplicative operation), and A be a subset of G
that contains more than half of G’s elements. Prove that every element of G can
be expressed as the product of two elements of A.

rrr

Lean Theorem:

A IRY

theorem exercise

[Group G]
hG : Finite G)

(

(A : Set G)

(hA : A.ncard > (Nat.card G : Rat)/2)

: \forall g : G, \exists x \in A, \exists y \in A, g =x * y :=
sorry

A IRY

Math Proposition:

rrr

Let p be a prime nurber greater than 5. lLet f (p) denote the number of infinite
sequences a1, az,as,... such that an € {1,2,...,p— 1} and anant2 =1+ ant1 (mod p)
for all n > 1. Prove that f(p) is congruent to 0 or 2 (mod 5).

rrr

Lean Theorem:
theorem exercise
(p : Nat)
(hp : Nat.Prime p \and p > 5)
(f : Nat := {a : Nat \implies (ZMod p) | \forall n : Nat, a n \neq 0 \and a n * a
n+2) =1+a (n+1)}.ncard)
: £ \equiv 0 [MOD 5] \or f \equiv 2 [MOD 5] :=
sorry

A IRY

Please translate the following proposition:

Math Proposition:
rrr

{INFORMAL_STMT}

rrr

Lean Theorem:

To apply this template, { INFORMAL_STMT } should be replaced to the informal statement to autoformalize.

Equivalence Determination Template

Please check following two math problems is same or different? Please consider each
statement in two problems, they are different if any statement is different.
Please point out any differences you found. Please reply xxsamex* or xxdifferentxx
in the final sentence with bold format.

Problem 1: {THM 1}

Problem 2: {THM 2}

To apply this template, {THM_1} and {THM_1} should be replaced to the informalizations of the two formal
statements to evaluate. Notably, when Majority Voting is adopted, it is recommended to randomize the order of
the two statements in multiple attempts.

27

Published as a conference paper at ICLR 2025

A.8 FINE-TUNING DETAILS

Dependency Retriever. We fine-tune dependency retriever based on BGE-M3 (Chen et al.,[2023)) with FlagEm-
bedding library. Query string is identical to informalizations of theorems. The composition of document strings
is as follows:

F+IF: Formal Declaration:decl\nInformal Explanation:if_stmt

F: Formal Declaration:decl

where decl and 1 £ _stmt represents formal declarations and informalizations, resepectively. Both are clipped
to 1536 characters at most before composition.

We follow the default hyperparameters of FlagEmbedding, which are as follows:

Learning Rate: 5 x 1076
Warmup Ratio: 0.1

Weight Decay: 0.01

Precision: fpl6

Train Epochs: 6

Gradient Accumulation Steps: 32
Per Device Train Batch Size: 2
Training Devices: 8

Dataloader Drop Last: True
Normalized: True

Temperature: 0.02

Query Max Length: 1024
Passage Max Length: 1024
Training Group Size: 4

Hard Negative Size: 2

Negatives Cross Device: False
Query Instruction For Retrieval: None

Inbatch Negative: False

RAutoformalizer. RAutoformalizer and all fine-tuning experiments are fine-tuned from InternLM2-Math-
Base-7B (Ying et al.,[2024b)) using XTuner (Contributors| |2023) and the following hyperparameters:

Max Sequence Length: 8192
Variable-length Attention: True
Batch size: 1

Gradient Accumulation: 4
Training Devices: 8

Train Epochs: 1

Optimizer: AdamW with learning rate 2x 107°, 3 = (0.9, 0.999), weight decay 0, maximal gradient
norm 1, warpup ratio 0.03 and £1oat 16 mixed precision training.

Learning Rate Scheduler: Warmup using LinearLR with start factor 10~°, then train using CosineAn-
nealinglL.R with min = 0.0.

A.9 OPEN-SOURCE LIBRARIES

For reproducibility, all relevant open-source projects are summarized in Table[0] Special thanks to the authors
of these excellent projects.

28

Published as a conference paper at ICLR 2025

Table 9: Versions of open-source projects used in this project.

Name Github Link Version

FlagEmbedding https://github.com/FlagOpen/FlagEmbedding 76080ab83216d6d4156a597b220764a5bdad5d92
Xtuner https://github.com/InternLM/xtuner 0.1.23

Lean 4 https://github.com/leanprover/lean4 4.7.0-rc2

Mathlib 4 https://github.com/leanprover-community/mathlib4, 59fdb6b04d7d16825a54483d550d9572ff473abf
REPL https://github.com/leanprover-community/repl 2ab7948163863ee222891653ac98941fed4f20e87
Doc-Gen 4 https://github.com/leanprover/doc-gend 780bbecl07cba79dl8ec55ac2be3907a77£27£98
ProofNet-lean4 https://github.com/rahul3613/ProofNet-lean4 60efffb605ee07bf723db4£fb8058129a7c8a89bb
LeanDojo https://github.com/lean-dojo/LeanDojo 78cee9d37aa32e70cdd6119c4af70ae551b8b713
Con-NF https://github.com/leanprover-community/con-nf 1604laebea8b9a2ca79952afc7b927cceal8697b

Table 10: Experiment results of augmenting in-context learning methods by dependency retrieval. Bold num-
bers emphasize the highest values excluding oracle results; BEq@Fk indicates the portion of samples where
predictions are equivalent to ground truths under BEq at least once in k attempts, defined in Eq. [/} T@k in-
dicates the portion of samples where predictions pass typecheck at least once in k attempts, defined in Eq.[9}
ICL represents in-context learning using 3-shot demonstrations; ICL+RA represents in-context learning us-
ing 3-shot demonstrations, augmented by dependency retriever trained in Sec. [£.2} ICL+RA represents in-
context learning using 3-shot demonstrations, augmented with ground-truth dependencies; D-2.5 denotes using
Deepseek-V2.5.

Benchmark ProofNet Con-NF
LLM Method T@1 Beq@1 T@8 Beq@8 T@1 Beq@1 T@8 Beq@8
ICL 43.58% 7.22% 66.31% 12.83% | 9.78% 1.46% 2071% 4.16%

GPT-40 ICL+RA 46.52% 695% 77.01% 13.37% | 22.79% 6.66% 50.57% 12.59%
ICL+RA (+R) | 58.56% 17.38% 81.28% 29.14% | 54.84% 38.40% 75.75% 54.11%

ICL 4037% 9.89% 51.07% 1096% | 937% 2.81% 16.23% 4.27%
D-2.5 ICL+RA 4332% 6.42% 58.82% 10.96% | 9.37% 1.87% 15.19% 3.12%
ICL+RA (+R) | 61.50% 17.91% 72.99% 20.32% | 48.18% 32.36% 62.02% 41.94%

A.10 EXPERIMENT OF AUGMENTING ICL METHODS BY DEPENDENCY RETRIEVAL
The performance of augmenting ICL (in-context learning) methods with Dependency-retrieval-augmentation
is shown in Table[10}

For GPT-40, the results meet our expectations: RA consistently improves all metrics on all benchmarks (except
BEq@1 on ProofNet), and RA(+R) shows the potential of dependency retrieval.

However, for Deepseek-V2.5, RA doesn’t work well. We hypothesize this might be because the instruction-
following and long-context capabilities of Deepseek-V2.5 are limited, thus the noise in retrieved dependencies
degrades autoformalization. But RA (+R) shows significantly better performance than expected.

29

https://github.com/FlagOpen/FlagEmbedding
https://github.com/InternLM/xtuner
https://github.com/leanprover/lean4
https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/repl
https://github.com/leanprover/doc-gen4
https://github.com/rahul3613/ProofNet-lean4
https://github.com/lean-dojo/LeanDojo
https://github.com/leanprover-community/con-nf

	Introduction
	Related Works
	Bidirectional Extended Definitional Equivalence
	Background
	Extending Definitional Equality
	Evaluation of BEq

	Retrieval-augmented Autoformalization
	RAutoformalizer
	Evaluation of Retrieval and Autoformalization

	Conclusion
	Limitation and Broader Impacts
	Reproducibility Statement
	Appendix
	Comparative Experiments on Hyperparameters of BEq
	More Results on RAutoformalizer
	Comprehensive Human Evaluation of BEq
	Human-rectified Results
	Typecheck Error Distribution

	Experiment Results on DeepSeek-Math-Base-7B
	Human Evaluation for BEq
	Visualization of BLEU Distribution
	Case Study of BM25 Retrieval
	Prompt Templates
	Prompt Template of BEq
	Prompt Template of LLM Grader
	Prompt Template of ICL Autoformalization

	Fine-tuning Details
	Open-source Libraries
	Experiment of Augmenting ICL Methods by Dependency Retrieval

