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Abstract

Depth-first search schemes are
known to be more cost-effective for
solving graphical models tasks than
Best-First Search schemes. In this
paper we show however that any-
time Best-First algorithms recently
developed for path-finding prob-
lems, can fare well when applied
to graphical models. Specifically,
we augment best-first schemes
designed for graphical models
with such anytime capabilities and
demonstrate their potential when
compared against one of the most
competitive depth-first branch and
bound scheme. Though Best-First
search using weighted heuristics is
successfully used in many domains,
the crucial question of weight
parameter choice has not been
systematically studied and presents
an interesting machine learning
problem.

1. Introduction

In recent years we have seen a variety extensions
of best-first search algorithms into flexible anytime
scheme making these algorithms more practical
approximate algorithms. The most popular algo-
rithms are based on Weighted A* (WA*) (Pohl,

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

1970). The idea is to inflate the heuristic values by
a constant factor of w ≥ 1, making the heuristic
inadmissible to a degree controlled by w, but still
guaranteeing a solution cost within a factor of w
from the optimal one while typically yielding faster
search. If the approximate solution is found quickly
and additional time is available, the search for a
better solution with smaller weight resumes. Several
anytime weighted best-first search schemes were in-
vestigated in the past decade (Hansen and Zhou,
2007; Likhachev, Gordon, and Thrun, 2003;
van den Berg et al., 2011; Richter, Thayer, and Ruml,
2010) and shown to be quite effective.

All these developments were conducted primarily in
the context of path-finding problems (e.g., plan-
ning problems) for which best-first strategies are
the method of choice. In contrast, for combi-
natorial optimization over graphical models, such
as MAP/MPE or WCSP, depth-first branch and
bound are the preferred schemes. These algo-
rithms were extensively studied for finding both exact
and approximate solutions (Kask and Dechter, 2001;
Marinescu and Dechter, 2009b; Otten and Dechter,
2011; de Givry et al., 2005). Best-first search al-
gorithms, though known to be more time efficient
(Dechter and Pearl, 1985), are rarely considered due
to their inherently large memory requirements and
lack of anytime behavior. Moreover, since in graphical
models all solutions have the same length, the main
benefit of best-first search of avoiding the exploration
of unbounded paths, becomes irrelevant.

Some recent studies (Marinescu and Dechter, 2009b)
showed that if given sufficient memory, best-first can
be superior to depth-first search, while otherwise, it
will often fail. Therefore, the recent extensions of Best-
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first search into anytime methods raise the hope that
the algorithm’s qualities can be brought to bear, lead-
ing to this investigation in their potential as anytime
search schemes for graphical models as well.

Contributions. We extended several variants
of weighted A* into graphical models by apply-
ing the ideas to the AOBF class of algorithms
(Marinescu and Dechter, 2009b). The simplest ex-
tension we consider, denoted wAOBF, runs AOBF
with the weighted heuristic iteratively, decreasing
the weight at each iteration, until either w =
1 or until a time bound is reached. Addition-
ally we extend Anytime Repairing A* (ARA*)
(Likhachev, Gordon, and Thrun, 2003) and Anytime
AO* (Bonet and Geffner, 2012), yielding wR-AOBF
and p-AOBF respectively. We investigated empir-
ically the effectiveness of each of the schemes and
its guiding parameters as an anytime scheme and
compared the emerging schemes against Breadth-
Rotating AND/OR Branch-and-Bound (BRAOBB)
(Otten and Dechter, 2011), one of the best anytime
schemes for graphical models.

Our results show that weighted best-first schemes can
provide a useful addition to the class of anytime com-
binatorial optimization scheme for graphical models.
The scheme was superior to BRAOBB on various in-
stances, although BRAOBB was more cost-effective
on the majority of the instances. In particular, the
weighted scheme performed well when the heuristic
evaluation function is of weak or medium strength.
Our study is only at its initial phase however. To
get more conclusive results we plan to conduct fur-
ther investigation into weight policies and aim to iden-
tify problem’s features and parameters of the algo-
rithms that favor anytime best-first search over any-
time depth-first search for graphical models.

For weighted search algorithms, including wAOBF
and wR-AOBF, the weight parameter controls the
trade off between the solution accuracy and the time
and space requirements. The questions of how to
choose the starting weight and how to decrease it over
time have yet to receive a thorough study and such
choices are usually made manually in ad hoc manner.
At this point we experimented with several human-
constructed weighting policies. However, it is desir-
able to learn the starting weight and weight policy that
could yield the best anytime behaviour based on the
problem parameters. Currently such automatic weight
policy choice is a work in progress.

2. Anytime Heuristic Search
Algorithms

In this section, we describe the anytime algorithms
which we explore later in our empirical evaluation sec-
tion. The main focus of the experiments is on the two
anytime Best First schemes: wAOBF and wR-AOBF.

Iterative Weighted AOBF (wAOBF): Since the
accuracy of a solution found by Weighted AOBF is
bounded by w, it is possible to formulate a simple any-
time scheme, called wAOBF, that executes Weighted
AOBF iteratively, starting with an initial weight, and
decreasing the weight at each iteration according to
some predetermined rule. Clearly this approach, sim-
ilar to the Restarting Weighted A* by Richter at al.
(Richter, Thayer, and Ruml, 2010), results in a series
of solutions, each with a sub-optimality factor equal to
w. We experimented with multiple weight decreasing
schedules, discussion of which we defer till the next
section.

Anytime Repairing AOBF (wR-AOBF): Run-
ning each search iteration from scratch, as wAOBF
does, is wasteful, since the same search sub-
space might be explored multiple times. To rem-
edy this problem, we propose Anytime Repairing
AOBF scheme, wR-AOBF, which is based on an
idea of Anytime Repairing A* (ARA*) algorithm
(Likhachev, Gordon, and Thrun, 2003). At each it-
eration, wR-AOBF keeps track of the partially ex-
plored AND/OR graph and, after decreasing w, it per-
forms a bottom-up update of all node values starting
from the leaf nodes (whose h-values are inflated with
the new weight) and continuing upwards towards the
root node. Then, the search continues with the newly
identified best partial solution tree. Like ARA*, wR-
AOBF provides the same guarantees with respect to
the quality of the suboptimal solutions found.

We compare and contrast the performance of our any-
time BF algorithms with the following two schemes:

Anytime Stochastic AOBF (p-AOBF): Another
anytime scheme for AND/OR spaces is the Anytime
AO* algorithm (Bonet and Geffner, 2012) introduced
recently for solving finite-horizon MDPs. The idea is
to allow AO* to also expand nodes that otherwise may
not be on any optimal solution. Specifically, at each
step the algorithm expands a tip node that does not
belong to the current best partial solution graph with
a fixed probability (1 − p). The algorithm does not
provide any theoretical guarantees on the quality of
the intermediate solutions. The extension of the algo-
rithm to the context minimal AND/OR search graph
for graphical models is straightforward and is called
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p-AOBF. As we show in experimental section, for
optimization problems over graphical models p-AOBF
rarely demostrates truly anytime behavior.

Anytime AND/OR Branch and Bound
(BRAOBB): Depth first AND/OR Branch-
and-Bound (AOBB) (Marinescu and Dechter, 2009a)
is a powerful search scheme for graphical models. The
algorithm, however, lacks a proper anytime behavior
because at each AND node all but one independent
child subproblems have to be solved completely,
before the last one is even considered. Breadth-
Rotating AND/OR Branch-and-Bound (BRAOBB)
(Otten and Dechter, 2011) remedies this deficiency
of AOBB by combining depth-first exploration of
the search space with the notion of rotating through
different subproblems in a breadth-first manner.
Empirically, BRAOBB outputs the first subopti-
mal solutions significantly faster than plain AOBB
(Otten and Dechter, 2011).

3. Experiments

We compare the anytime behavior of all the algo-
rithms described above when exploring the same con-
text minimal AND/OR graph for each problem in-
stance. The search space is determined by a common
variable ordering. All the algorithms are guided by
the mini-bucket heuristics (Dechter and Rish, 2003),
whose strength is controlled by a parameter called i-
bound (higher i-bounds typically yield more accurate
heuristics). The algorithms output solutions at differ-
ent times until the optimal solution is found.

We considered 3 benchmarks: 16 pedigree networks, 17
binary grids, 6 SPOT5 Weighted CSPs and 4 driverlog
problems. The task solved was Most Probable Expla-
nation (max-prod), so higher costs are better. Each
instance was solved for 11 different values of i-bound,
ranging from 2 to 22.

For wAOBF and wR-AOBF we decided on a large ini-
tial weight equal to 64 due to our desire to obtain
the initial solutions quickly and solve hard instances,
many of which are infeasible for the algorithms using
non-weighted heuristic.

Our empirical evaluation consists of two sets of ex-
periments, results of which we report separately: 1)
the comparison between wAOBF and wR-AOBF with
the simplest weighting policies and the competing
BRAOBB and p-AOBF algorithms, 2) the exploration
of more sophisticated weighting policies.

3.1. Anytime weighted BFS vs Depth-First BB

At the first stage of the evaluation the anytime BF
schemes used the two most straightforward weight-
ing policies: 1) substract(0.1) - at each iteration the
weight is decreased by a fixed amount 0.1; 2) divide(2)
- at each iteration the weight is divided by 2. Prelim-
inary experiments, omitted for lack of space, showed
that for wR-AOBF the first policy provides better re-
sults, while for wAOBF the second policy was prefer-
able.

We compare these two resulting schemes (denoted wR-
AOBF and wAOBF-H respectively) with BRAOBB
and p-AOBF (p=0.5), reporting the results in two
ways: 1) by showing the performance on a set of repre-
sentative problems that demonstrate the trends com-
mon to the majority of instances; 2) by summarizing
statistics over all the instances in each benchmark.

The time limit for this set of experiments was 1 hour,
memory limit was 4 Gb.

3.1.1. Results on a selected set of instances

Figures 1 and 2 show the anytime profiles of wAOBF-
H, wR-AOBF, BRAOBB and p-AOBF on select in-
stances from all our benchmarks. For each instance
the results for two i-bounds are displayed side by side:
the left column corresponds to a weaker heuristic and
the right one to a stronger one.

Comparing the anytime schemes on these representa-
tive problems we immediately see that p-AOBF is not
competitive. On the grid and pedigree instances it
either directly outputs the exact solution (e.g. pedi-
gree38, i=12) or a solution close to optimal (e.g. 50-
18-5, i=10) after a considerable time, contrary to the
desirable anytime behaviour, namely quickly obtaining
the initial solution and improving it over time. More-
over, p-AOBF fails to produce any solution within the
time limit for instances with weak heuristic (e.g. 50-
18-5, i=2) or for any of the SPOT5 or driverlog
problems (e.g. 505). As clearly unpromising algorithm
p-AOBF is excluded from the subsequent discussion.

The performance of wAOBF, wR-AOBF and
BRAOBB greatly depends on the benchmark and the
heuristic strength. The following common trends can
be distinguished:

Grids: wAOBF and wR-AOBF are often superior to
BRAOBB when the heuristic is weak, i.e. the i-bound
is considerably lower than the problem’s induced width
(e.g. 50-18-5, i=2). However, when the heuristic is
stronger, BRAOBB is the fastest to find the optimal
solution (e.g. 50-19-5, i=20). For easy problems solved
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Figure 1. Grids and pedigrees, cost as a function of time (wAOBF-H, wR-AOBF, BRAOBB, p-AOBF). Starting weight
= 64. C∗ - optimal cost, i - i-bound, n - number of variables, k - domain size, w - induced width, h - pseudo-tree height,
w! - weight at termination. Time limit - 1 hour, memory limit - 4 Gb.

optimally in under 30 seconds, which are not presented
here due to being of little interest, BRAOBB is almost
always superior for all i-bounds.

Comparing the two BF schemes we see that wAOBF-
H is inferior to wR-AOBF on most grid instances, due
to both inefficient re-exploring of a large portion of the
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Figure 2. SPOT5 and driverlog WCSPs, cost as a function of time (wAOBF-H, wR-AOBF, BRAOBB, p-AOBF). Starting
weight = 64, C∗ - optimal cost, i - i-bound, n - number of variables, k - domain size, w - induced width, h - pseudo-tree
height, w! - weight at termination. Time limit - 1 hour, memory limit - 4 Gb.

search space and fast decreasing of the weight, which
leads to fast increase in memory requirements. How-
ever, there are some exceptions, such as 50-18-5, i=2,

where wAOBF-H achieves better results.

Pedigrees: these instances have many similarities to
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Figure 3. % of instances, for which algorithm finds best
solution at a given time for a fixed heuristic strength.

the grids in terms of induced width, domain size and
amount of determinism, so the behaviour of the al-
gorithms on these two benchmarks are quite similar.
Note that on largest problems, such as pedigree7 and
pedigree38 shown here, BRAOBB is often inferior to
both BF schemes even for heuristics of considerable
strength (e.g. pedigree38, i=12), while wAOBF-H al-
most always performs worse than wR-AOBF.

SPOT5 WCSPs: these problems are more challeng-
ing for all our schemes. On some of the problems
BRAOBB reaches the optimal solution quickly, but
fails to prove it’s optimality withing the time limit
(e.g. 412, i=6), on others it outputs inferior bounds
(e.g. 505, i=6). Both BF schemes tend to run out
of memory before finding solutions of good accuracy
(e.g. 412, i=10). For the hardest instances, such as
505, none of the algorithms managed to produce exact
solution.

Drivelogs: the hardest of our benchmarks present
difficulties for all 3 algorithms. The cost of the opti-
mal solutions for these instances are unknown, though
the behaviour of BRAOBB on certain instances (e.g.
driverlog05ac, i=2) suggests that it did find the exact
solutions without proving their optimality within allo-
cated time. Unlike the previous benchmarks, wAOBF-
H is better than wR-AOBF, consistently outputting
more accurate solutions. Its success on these memory-
intensive instances can be attributed to more modest
memory requirements, since wR-AOBF needs to keep
track of the partially explored AND/OR graph during
each iteration.

3.1.2. Aggregated results

Figure 3 displays the fraction of instances, for which
a particular algorithm found the best solution at a
specific time point. The p-AOBF is discarded from
consideration as obviously inferior. For space reasons
we only display results for medium heuristic strength,
except for driverlogs, for which only weak heuristic is
feasible. We do not count the ties between algorithms
and thus the results not necessarily sum to 100% at
each time point.

For grids and driverlogs BRAOBB is the best scheme
in about 30% and 40% of instances respectively for all
the time points considered. For pedigrees wR-AOBF
finds the most accurate solution for about 12% of in-
stances and even wAOBF-H is superior in around 6%
of cases for a particular time point. On SPOT5 WC-
SPs wR-AOBF demonstrates clear superiority, obtain-
ing the best solutions in up to 2/3 of instances.
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Figure 4. wAOBF: solution cost vs time (left) and weight (right), starting weight = 64. C∗ - optimal cost, ”-i” - i-bound,
n - number of variables, k - domain size, w - induced width, h - pseudo-tree height, w! - weight at termination, C′ = w! ·C
- optimal solution estimation.

3.2. The influence of the weight on anytime
BF schemes.

Aiming to further improve the performance of anytime
BF schemes and to gain a better understanding of the
impact of weight on their performance we devised more
sophisticated weight policies than those discussed in
the previous subsection. We experimented with 5 dif-
ferent strategies for decreasing the weight, including
the substract and divide strategies mentioned above.

The notation is as follows: wi is the weight used at the
ith iteration, w1 = 64, k and d are real-valued policy
parameters. We tried the following policies, each for
several values of parameters:

• substract(k): wi = wi−1 − k

• divide(k): wi = wi−1/k

• inverse: wi = w1/i

• piecewise(k, d): if wi ≥ d then wi = w1/i else
wi = wi−1/k

• sqrt(k): wi =
√
wi−1/k

The substract and divide policies lay on the oppo-
site ends of the strategies spectrum. The first method
changes the weight very gradually and consistently,
leading to a slow improvement of the solution. The
second approach yields less smooth anytime behaviour,
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Figure 5. wR-AOBF: solution cost vs time (left) and weight (right), starting weight = 64. C
∗ - optimal cost, ”-i” -

i-bound, n - number of variables, k - domain size, w - induced width, h - pseudo-tree height, w! - weight at termination,
C

′ = w! · C - optimal solution estimation. Time limit - 1 hour, memory limit - 2 Gb.

since the weight rapidly approaches 1 and much fewer
intermediate solutions are found. This could poten-
tially allow the schemes to produce the exact solution
fast, but on hard instances presents a danger of leap-
ing directly to a prohibitively small weight and thus
failing, without exploring feasible weights that could
potentially produce good solutions. The other poli-
cies were constructed manually based on a following
intuition: we wanted to improve the solution rapidly
by decreasing the weight fast initially and then ”fine-
tune” the solution as much as the memory limit allows,
by decreasing the weight slowly as it approaches 1.

The performance of our anytime BF schemes em-
ploying these weight policies on the representative in-

stances for each benchmark are shown in Figures 4
(wAOBF) and 5 (wR-AOBF). The left column dis-
plays the solution cost as a function of time, the right
one - as a function of the weight. This set of exper-
iments was conducted on a weaker machine that the
first one, thus the memory limit was 2 Gb, with time
limit of 1 hour. Several values of numerical parame-
ters for each policies were tried, the ones that yielded
the best performance are included here. The starting
weight equals 64, w! denotes the weight at the time of
algorithm termination.

Consider the left columns of Figures 4 and 5. The su-
perior policy is benchmark dependent. For most values
of i-bound both wR-AOBF and wAOBF algorithms
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achieve the best results for hard grids and pedigrees
using the sqrt policy, as shown here on the example of
instances 90-20-5 and pedigree31 respectively. How-
ever, for the SPOT5 WCSPs (e.g. 505) the results
are more varied. For higher values of i-bounds (e.g.
i=10) wAOBF achieves the best results using divide
policy, while for wR-AOBF piecewise is superior with
inverse coming close second. Weaker heuristics yield
problems that are too large for either of algorithm to
solve for any weight smaller than initial values of 64
and thus are not discussed.

The right columns of Figures 4 and 5 demonstrate
that, unsurprisingly, there is little variance between
different policies in terms of the dependency of the so-
lution cost on the weight. For the grid and pedigree
instances we also show the theoretical bounds, corre-
sponding to weights 1.5 and 2 (i.e. 1.5 ·C∗ and 2 ·C∗).
In practice the solutions found by both wAOBF and
wR-AOBF are better than suggested by theory. How-
ever, when the termination weights w! are close to 1
(e.g. for grid 50-20-5, i=10, sqrt(1.0) w! = 1.13879),
it allows us to obtain reasonably accurate theoretical
bounds, especially useful if the optimal solution is not
available, as is the case for problem 505. For this in-
stance we plot an estimation C′ equal to the best avail-
able bound w! · C. The true optimal solution would
lay between the lines corresponding to the algorithms’
outputs and C′.

Overall, it is clear that the new weighting policies, such
as sqrt allow to achieve better results than the simpler
substract and divide ones that we considered initially.
A thorough empirical evaluation of the superior poli-
cies using larger memory limit is currently a work in
progress.

3.3. Summary of the experimental results

The main conclusions that can be drawn from our ex-
periments are:

1. Both wAOBF and wR-AOBF are inferior to
BRAOBB in cases of: a) easy instances b) harder in-
stances with strong heuristics c) small memory limit;
The anytime BF schemes are competitive or superior
large problems and weak to medium heuristics. 2. The
performance of wAOBF and wR-AOBF is significantly
sensitive to the weight policies.

4. Conclusion

In this paper we conducted an extensive empirical
evaluation of several anytime best-first schemes for
graphical models, and showed that they have poten-
tial for providing an alternative to anytime branch-

and-bound search for some benchmarks. In particu-
lar, we found that even our simplest scheme wAOBF,
that iteratively solves the problem from scratch, grad-
ually decreasing the weight, can be reasonably effec-
tive for problems with high induced width, such as
some SPOT5 WCSPs, while the more sophisticated
wR-AOBF proved successful for many problems of
moderate difficulty, such as large grids and pedigrees.
We predict further improvement of the performance if
larger amount of memory is available.

The advantage of the weighted anytime schemes is that
they output the weighting parameter which provides
an upper-bound guarantee. This bound can be infor-
mative when the anytime scheme is employing small
weights and optimal solution is unknown.

We plan to further improve the performance of our
anytime best-first schemes by using sophisticated
weight policies and by investigating the connection be-
tween the weight, problem’s induced width and the al-
gorithm’s performance in order to automatically learn
the most effective weighting schedule instead of choos-
ing parameters ad-hoc. We are also exploring possible
non-parametric approaches.
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