
DynaMo: Accelerating Language Model Inference with Dynamic
Multi-Token Sampling

Anonymous ACL submission

Abstract

Traditional language models operate autore-001
gressively, i.e., they predict one token at a002
time. Rapid explosion in model sizes has re-003
sulted in high inference times. In this work,004
we propose DynaMo, a suite of multi-token005
prediction language models that reduce net in-006
ference times. Our models dynamically pre-007
dict multiple tokens based on their confidence008
in the predicted joint probability distribution.009
We propose a lightweight technique to train010
these models, leveraging the weights of tradi-011
tional autoregressive counterparts. Moreover,012
we propose novel ways to enhance the esti-013
mated joint probability to improve text gener-014
ation quality, namely co-occurrence weighted015
masking and adaptive thresholding. We also016
propose systematic qualitative and quantitative017
methods to rigorously test the quality of gen-018
erated text for non-autoregressive generation.019
One of the models in our suite, DynaMo-7.3B-020
T3, achieves same-quality generated text as the021
baseline (Pythia-6.9B) while achieving 2.57×022
speed-up with only 5.87% and 2.67% parame-023
ter and training time overheads, respectively.024

1 Introduction025

Recent research has demonstrated the tremendous026

promise of large language models (LLMs) as com-027

petent artificial intelligence (AI) assistants (Tou-028

vron et al., 2023b). This has led to their rapid029

and widespread adoption as chatbots in diverse030

applications, e.g., healthcare, e-commerce, educa-031

tion, etc. However, the high computational require-032

ments of LLM training and inference and the use033

of massive closed-source corpora have restricted034

their development to a few laboratories. The in-035

creasing number of open-source LLMs, including036

Pythia (Biderman et al., 2023) and LLaMA-2 (Tou-037

vron et al., 2023b), democratizes research in natural038

language processing (NLP). For instance, Vicuna-039

13B (Chiang et al., 2023), an instruction-finetuned040

LLaMA model (Touvron et al., 2023a), has gained041

significant interest among researchers due to its ex- 042

ceptional instruction-following capabilities for its 043

relatively compact size. Nevertheless, access and 044

study of LLMs remain limited due to challenges 045

involved in their efficient evaluation on resource- 046

constrained devices. 047

1.1 Challenges and Motivation 048

LLM training and inference are typically limited 049

to large GPU clusters in data centers, causing high 050

latencies and privacy concerns for end-users. Edge 051

computing offers a promising solution by process- 052

ing data closer to the source, reducing latency and 053

costs while enhancing data security and privacy. 054

However, efficient deployment of conversational 055

AI agents on resource-constrained edge platforms 056

remains challenging, as even compact language 057

models result in significant latencies (Wang et al., 058

2020a; Tuli and Jha, 2023b). Increasing model 059

sizes exacerbates this issue (Kaplan et al., 2020), 060

highlighting the need for significant inference/text- 061

generation speed-ups and a range of models tai- 062

lored to diverse platforms with varying resource 063

constraints. 064

Existing models, trained with the causal lan- 065

guage modeling (CLM) objective, predict one to- 066

ken at a time (Radford et al., 2019; Brown et al., 067

2020). We conceptualize such models as V -way 068

(V is the vocabulary size) classifiers or unigram 069

predictors. Mathematically, given the context, i.e., 070

the set of past tokens x1:t := x1,x2, . . . ,xt, tra- 071

ditional LLMs model the probability distribution 072

p(xt+1|x1:t) = fθ(x1:t), where fθ is the LLM 073

parameterized by θ. In this context, traditional 074

models generate sequences of text autoregressively. 075

In other words, we sample xt+1 from fθ(x1:t) 076

and then concatenate it with the input sequence 077

to produce x1:t+1 := x1,x2, . . . ,xt,xt+1. Then, 078

we sample xt+2 from the predicted distribution 079

fθ(x1:t+1). Fig. 1(a) shows a schematic of this 080

process with existing autoregressive LLMs. 081

1

Lorem ipsum

LRR

Lorem ipsum

L

This is an

amazing

LRR

This is an amazing

idea

LRR

Lorem ipsum

L

LRR

This is an amazing idea

!

This is an

amazing idea !

(a) (b)

Input/Output
Embedding

Decoder
Layer

Sampling

Figure 1: Multi-token prediction in DynaMo. (a) Traditional autoregressive prediction requires three forward passes. (b)
Non-autoregressive multi-token prediction requires only one forward pass.

Research in psycholinguistics shows that hu-082

mans do not necessarily think of words one at083

a time when articulating thought (Sridhar, 2012);084

instead they employ a parallel network of cogni-085

tive and linguistic processes. In line with this,086

we propose predicting multiple tokens simulta-087

neously to accelerate inference. By estimating088

p(xt+1:t+3|x1:t) = fθ (now, a V 3-way classifier),089

we aim to achieve reliable multi-token prediction,090

potentially resulting in a 3× inference speed-up091

(assuming no latency overhead). However, simulta-092

neous prediction of three tokens may compromise093

generation quality (we provide sample generations094

in Appendix D). Hence, there is a need to dynam-095

ically back off to lower-order n-gram prediction096

when the model lacks confidence.097

1.2 Our Contributions098

In this work, we propose DynaMo: a suite of099

dynamic multi-token prediction language models.100

We target inference speed-up by improving upon101

traditional LLMs in terms of model architecture,102

training methodology, and non-autoregressive de-103

coding schemes. Further, we propose novel meth-104

ods to evaluate multi-token prediction for the next105

generation of non-autoregressive models. More106

concretely, we summarize the contributions of this107

work next.108

• We augment the suite of Pythia (Biderman109

et al., 2023) models for multi-token prediction.110

We explore various architectures for multi-111

token prediction (label shifts, masking strate-112

gies, multi-token heads, etc.). Further, we de-113

vise efficient ways to train augmented versions114

of existing pre-trained LLMs for multi-token115

prediction.116

• We propose novel ways to dynamically pre-117

dict multiple tokens based on the current con-118

text and probabilities of predicted tokens. We 119

model the joint probability distributions of 120

predicted tokens and back off to lower-order 121

n-gram prediction when the joint probabili- 122

ties are not above a given threshold (ϵb). We 123

propose co-occurrence weighted masking and 124

adaptive thresholding to improve generated 125

text quality. 126

• We perform rigorous experiments to evalu- 127

ate the downstream performance of our pro- 128

posed models. We show that training with our 129

modified-CLM objective enhances the first 130

token prediction quality as well. We eval- 131

uate the open-ended text generation quality 132

of our models and its dependence on model 133

size, desired speed-up, and multi-token pre- 134

diction hyperparameters (e.g., ϵb). In fact, this 135

is the first non-greedy, non-batched-parallel- 136

decoding work that proves to deliver same- 137

quality generation as the base model with sys- 138

tematic qualitative and quantitative tests. 139

The rest of the article is organized as follows. 140

Section 3 details the multi-token prediction method- 141

ology adopted in the DynaMo suite of models along 142

with the proposed evaluation methods. Section 4 143

presents the experimental results. Section 5 dis- 144

cusses the implications of multi-token prediction 145

and points out future work directions. Finally, Sec- 146

tion 6 concludes the article. 147

2 Background and Related Works 148

Previous research explores various approaches 149

to reduce token prediction latency in LLMs. It 150

includes distillation (Hinton et al., 2015), com- 151

plexity reduction (Wang et al., 2020b), sparsifi- 152

cation (Jaszczur et al., 2021), quantization (Shen 153

et al., 2020), etc., to reduce model size or complex- 154

ity, leveraging specialized hardware (Tuli and Jha, 155

2

2023a). Other engineering solutions include Flash156

attention (Dao et al., 2022) that reduces memory157

reads/writes. Recently, skeleton-of-thought decod-158

ing (Ning et al., 2023) was proposed, wherein the159

LLM first generates the skeleton of the answer and160

then conducts batched decoding to complete the161

contents of each skeleton point in parallel.162

Speculative decoding (Stern et al., 2018; Chen163

et al., 2023a) is yet another approach that has164

gained recent prominence. It leverages a small165

draft model (which can be combined with the main166

model, Cai et al. 2023) to anticipate the main model167

and queries it for batch verification. The batch size168

depends on the targeted number of token positions169

in the future, for draft prediction, and the number170

of top-k samples at each position. Despite attempts171

at improving inference efficiency (Spector and Re,172

2023; Liu et al., 2023), such methods incur high173

computational overhead due to high-batch opera-174

tions and result in poor compute utilization (e.g.,175

sparse tree attention used by Cai et al. 2023; Spec-176

tor and Re 2023). For the greedy decoding scheme,177

such methods enable up to n× speed-up, however,178

at the cost of at least n× the compute. Instead,179

in this work, we propose a low-compute approach180

that directly maps the joint probability distribution181

and implements co-occurrence weighted masking182

and adaptive thresholding, obviating the need for183

batched verification. Further, Medusa (Cai et al.,184

2023) exploits simple feed-forward layers for draft185

prediction. This work explores various architec-186

tural modifications for draft prediction. Neverthe-187

less, the abovementioned approaches are orthog-188

onal to the proposed method and can be used in189

conjunction to further boost performance.190

3 Method191

In this section, we discuss the implementation de-192

tails of multi-token prediction in the DynaMo suite.193

3.1 Going Beyond One-token Prediction194

We propose a modified-CLM objective for multi-195

token prediction,196

LTn = − 1

N

N∑
j=1

L−n+1∑
t=1

log p(xj
t+n|x

j
1:t) (1)197

for the nth-token head. Here, N is the number of198

sequences in the training set and the length of the199

jth sequence is L. The first-token head predicts the200

labels shifted by one position. The second-token201

head predicts the labels shifted by two positions, 202

and so on. Note that the above equation trains each 203

token head to predict the tokens independently. We 204

approximate the joint probability distribution using 205

independent token predictions. We represent this 206

mathematically as follows: 207

p(xt+1:t+n|x1:t) =

n∏
i=1

p(xt+i|x1:t+i−1)

≈
n∏

i=1

p(xt+i|x1:t) =

n∏
i=1

f i
θ(x1:t)

(2)

208

where f i
θ(x1:t) is the prediction by the i-th-token 209

head in the DynaMo model. 210

We use the Pythia (Biderman et al., 2023) suite 211

of models as base models. All decoder layers up to 212

the penultimate layer form the model “stem” (like 213

the stem of a plant). The final decoder layer of 214

the base model and the output embedding form 215

the first-token-predicting head (or simply the first- 216

token head). Fig. 1 shows the data flow for the 217

base model in blue. It assumes a base model with 218

only two decoder layers. The first layer of the 219

base model forms the stem for the DynaMo model, 220

while the second layer is part of the first-token 221

head. The other decoder layers (dataflows shown 222

in green) are part of the second and third-token 223

heads. The output embeddings for these heads 224

reuse the weights of that of the first head. Hence, 225

the extra parameters for this three-token model are 226

from only two extra decoder layers. 227

Thanks to the above weight transfer process, 228

most weights (the model stem and the first-token 229

head) in an initialized DynaMo model are already 230

trained. Therefore, we train the DynaMo models 231

on a much smaller dataset (5% randomly sampled 232

version of the Pile dataset, Gao et al. 2020) relative 233

to that used to train the Pythia models. This limits 234

the computational overhead of training our models. 235

We provide further details on the training and eval- 236

uation methods for our models in Appendix A.1. 237

3.2 Dynamic Text Generation 238

Fig. 2 summarizes the proposed dynamic text gen- 239

eration pipeline. We extend the popular top-k sam- 240

pling scheme (Fan et al., 2018; Radford et al., 2019) 241

for autoregressive language models to multi-token 242

generation. First, we obtain logits for all token 243

heads. We then obtain the top-k probabilities for 244

the predictions. Then, since we approximate the 245

3

LRR

Lorem ipsum

L

Joint Estimation

Co-occurrence
Weighted Masking Adaptive Thresholding

Joint >
No

Yes

Back o�

Figure 2: Flowchart of the proposed dynamic multi-token prediction pipeline.

predicted tokens to be independent, we estimate246

the joint probability using Eq. (2). We bridge the247

gap between the true and the estimated (using inde-248

pendent predictions) joint probability distributions249

using co-occurrence weighted masking, taking in-250

spiration from optimal transport (Peyré et al., 2019).251

We fix the sparsity in higher-dimensional distribu-252

tions using adaptive thresholding and backing off253

to lower-order n-gram prediction. We then sample254

from the joint probability distribution to output the255

generated sequence of tokens. Hence, DynaMo256

dynamically generates one or more tokens based257

on the given context and the model’s confidence in258

its predictions. We describe the abovementioned259

methods next.260

3.2.1 Co-occurrence Weighted Masking261

To bridge the gap between the true and the es-262

timated joint probability distribution in Eq. (2),263

we mask the estimated distribution using the co-264

occurrence weights. Mathematically,265

p(xt+1:t+n|x1:t)

=

n∏
i=1

p(xt+i|x1:t)
p(xt+1:t+n|x1:t)∏n
i=1 p(xt+i|x1:t)

≈
n∏

i=1

f i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)︸ ︷︷ ︸

co-occurrence mask
(3)

266

where p̂(xt+1:t+n) and p̂(xt+i) are sampled esti-267

mates of the joint probability and the prediction of268

i-th token, respectively. We estimate these proba-269

bilities based on the token counts in the training270

dataset. Note that the approximation in Eq. (3)271

ignores the history x1:t.272

Theorem 1. When the cost function273

c(xt+1,xt+2, . . . ,xt+n) = − log
(p̂(xt+1:t+n)∏n

i=1 p̂(xt+i)

)
274

and ϵ2 = 0 [defined in Eq. (5)], the joint probabil-275

ity distribution in Eq. (3) is the optimal solution to 276

the optimal transport problem (Peyré et al., 2019). 277

We describe the optimal transport problem in the 278

multi-token prediction setting and provide a proof 279

of the above theorem in Appendix B. 280

3.2.2 Dynamic Back-off and Adaptive 281

Thresholding 282

Intuitively, when generating multiple tokens, the 283

goal is to find the peaks in the predicted joint prob- 284

ability distribution and sample those peaks. If none 285

of the probability values is beyond a threshold (de- 286

termined by ϵb), i.e., there are no peaks in the joint 287

probability distribution, our model backs off to 288

lower-order n-gram prediction. To implement this, 289

we adopt a static threshold ϵb. If no probability 290

value is > ϵn−1
b , we back off to sampling a lower- 291

order joint probability distribution. We set all prob- 292

abilities less than ϵb to 0. 293

Static thresholding is too naïve for joint proba- 294

bility distributions, which can vary with the pre- 295

dicted tokens and input context. Taking inspiration 296

from computer vision methods, we test adaptive 297

thresholding, leveraging Otsu’s binarization algo- 298

rithm (Otsu, 1979). It adapts the threshold for dy- 299

namic back-off based on the predicted joint proba- 300

bility distribution. We apply adaptive thresholding 301

on top of the static thresholding explained above. 302

In other words, we first set all values in the joint 303

probability distribution less than ϵb to 0. Then, we 304

set all values less than ϵAT to 0 (where ϵAT is the 305

threshold found using Otsu’s algorithm). In the 306

computer vision domain, researchers implement 307

Otsu’s algorithm after applying Gaussian blur to 308

the input image. We thus explore the effect of 309

using Gaussian blur and adaptive thresholding on 310

the predicted joint probability distribution (ablation 311

analysis in Appendix C.1). 312

Alg. 1 summarizes the multi-token generation 313

algorithm. We depict the probability distribution 314

4

Algorithm 1 DynaMo multi-token generation

Require: input sequence x1:t, DynaMo model
with token heads f i

θ, ∀ i = 1, . . . , n.
1: p(xt+1|x1:t)← f1

θ (x1:t),
2: p(xt+2|x1:t)← f2

θ (x1:t),
3: p(xt+3|x1:t)← f3

θ (x1:t),
4: n = 3 (for three-token model)
5: while n > 1 do
6: Obtain top-k values for token predictions

p(xt+i|x1:t)

7: J←
∏n

i=1 f
i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)

8: ▷ Co-occurrence weighted masking
9: J← adaptiveThresholding(J)

10: ▷ Adaptive thresholding
11: J← penalizeRepetition(J)
12: if j < ϵn−1

b , ∀ j ∈ J then
13: n← n− 1 ▷ Back-off
14: else
15: xt+1:t+n ← sample(J)
16: return xt+1:t+n

17: end if
18: end while
19: return xt+1:t+n ← sample(p(xt+1|x1:t))

output by the i-th-token head by f i
θ. This prob-315

ability distribution is a vector of length V (or k316

after top-k sampling). We calculate the joint prob-317

ability distribution J by taking the outer product318

of the individual token predictions. The function319

adaptiveThresholding (line 9) implements adap-320

tive thresholding explained above. The function321

penalizeRepetition (line 11) divides all proba-322

bilities that correspond to repetitions by a penalty323

value (Keskar et al., 2019). The sample function324

(lines 15 and 19) samples the tokens using multino-325

mial sampling, i.e., weighted by the corresponding326

probability values. Based on n, we output the se-327

quence of generated tokens xt+1:. For the proposed328

set of DynaMo models, we set n = 3. Thus, we329

dynamically generate new tokens depending on the330

output predictions (and the corresponding probabil-331

ities). A low value of ϵb generates more tokens (a332

three-token model with ϵb = 0 will always gener-333

ate three tokens). On the other hand, a high value334

of ϵb results in few tokens being generated (ϵb = 1335

will always generate only one token).336

3.3 Evaluation Methods337

We propose various methods to evaluate our multi-338

token models. They include evaluating single-339

token prediction on standard natural language un- 340

derstanding (NLU) benchmarks, multi-token per- 341

plexity, and open-ended generation performance. 342

3.3.1 NLU Benchmarks 343

Evaluating multi-token prediction on NLU bench- 344

marks is challenging. This is because most down- 345

stream benchmarks only require one-word predic- 346

tion. Nevertheless, we test if stronger attentions 347

trained using multi-token prediction result in better 348

performance on downstream tasks. We evaluate our 349

models on popular benchmarks with the first-token 350

head. We use the lm-evaluation-harness (Gao 351

et al., 2021) to carry out our evaluations on com- 352

mon benchmarks in both zero-shot and few-shot 353

settings. For fair comparisons, we report the per- 354

formance of the corresponding base Pythia model 355

as well. 356

3.3.2 Multi-token Perplexity 357

To test multi-token text generation quality, we eval- 358

uate the models based on perplexity. However, the 359

traditional definition of perplexity is only defined 360

for single token prediction. We extend this to nth 361

token prediction and also n-gram prediction. Math- 362

ematically, 363

PPLn = exp

(
− 1

T

T−n∑
t=1

log p(xt+n|x1:t)

)
,

PPL1:n = exp

(
− 1

nT

T−n∑
t=1

log p(xt+1:t+n|x1:t)

)
(4)

364

For a three-token model, we calculate PPL1, PPL12, 365

and PPL123. We can also extend perplexity calcula- 366

tion to dynamic multi-token prediction, wherein we 367

decide n based on the joint probability distribution 368

and the back-off threshold. We refer to it as PPLd. 369

It varies with ϵb. 370

3.4 Open-ended Text Generation 371

Perplexity is a very restrictive evaluation measure. 372

It constrains model text generation to the text in 373

the validation set. A fairer approach to test multi- 374

token generation would be to evaluate open-ended 375

generated texts. (Zheng et al., 2023) propose us- 376

ing strong LLMs like GPT-3.5 (OpenAI, 2023a) 377

and GPT-4 (OpenAI, 2023b) and show that they 378

can match both controlled and crowdsourced hu- 379

man preferences in evaluating generated texts well. 380

Since human evaluation of open-ended generated 381

texts from our models would be very expensive and 382

5

time-consuming, we use a strong LLM to evalu-383

ate the quality of generated text from our DynaMo384

suite of models.385

Vicuna and MT benchmarks (Zheng et al., 2023)386

require the pre-trained LLM to be finetuned on387

instruction-following datasets. To disambiguate388

the effect of instruction-finetuning, we evaluate389

our models with different target speed-ups on a390

novel sentence-completion benchmark. The task391

is to complete a sentence for a given prompt. We392

categorize the sentences into simple declarative,393

compound declarative, W/H interrogative, Y/N in-394

terrogative, affirmative imperative, negative imper-395

ative, and exclamatory. We test the text genera-396

tions of our models for grammatical correctness,397

creativity, depth, logical flow, coherence, and infor-398

mativeness of the generated text. The benchmark399

has ten prompts. For every prompt, we generate400

ten sentences with different random seeds for ev-401

ery ϵb ∈ {0.00, 0.02, . . . , 1.00}. Thus, for every402

model, we generate 5100 sentences at different403

speed-ups. We evaluate the quality of every gen-404

erated sentence using single-mode and pairwise405

evaluations. For single-mode evaluation, we ask406

GPT-3.5 to score the generated response from one407

to ten. For pairwise evaluation, we ask GPT-3.5408

to compare the response against one generated by409

the corresponding Pythia base model. DynaMo ei-410

ther wins, loses, or ties against the baseline Pythia411

model. We provide further details on the sentence412

completion benchmark along with the evaluation413

setup in Appendix A.3.414

Finally, we also evaluate the performance of415

instruction-finetuned DynaMo models on the Vi-416

cuna benchmark. We use the Alpaca dataset (Taori417

et al., 2023) filtered by GPT-3.5 for high-quality418

instruction-response pairs (Chen et al., 2023b). The419

dataset contains 9,229 instruction-response pairs.420

We follow the evaluation setup from (Zheng et al.,421

2023).422

4 Experiments423

In this section, we present experimental results424

and comparisons of the proposed approach with425

the Pythia baseline, which we used to instantiate426

the DynaMo models. We provide test results for427

architectural and training variations in multi-token428

prediction in Appendix C.2.429

4.1 Downstream Performance 430

We hypothesize that training the attention heads 431

using the second- and third-token loss terms makes 432

them stronger. We test this hypothesis next. 433

We consider eight standard common sense 434

reasoning benchmarks: ARC challenge (ARC- 435

c) and ARC easy (ARC-e, Clark et al. 2018), 436

BoolQ (Clark et al., 2019), COPA (Roemmele 437

et al., 2011), HellaSwag (Zellers et al., 2019), 438

OpenBookQA (OBQA, Mihaylov et al. 2018), 439

PIQA (Bisk et al., 2020), and WinoGrande 440

(WinoG, Sakaguchi et al. 2021). We perform 441

evaluations in the zero-shot setting as done in the 442

language modeling community. Table 1 shows a 443

comparison between each model in the DynaMo 444

suite with that of the corresponding baseline Pythia 445

model. As we can see, DynaMo models outperform 446

their respective baselines on most benchmarks. We 447

report additional downstream performance results 448

in Appendix C.3. 449

4.2 Multi-token Perplexity 450

Table 2 shows the multi-token perplexity on the 451

validation set for all models in the DynaMo and 452

Pythia suites. The DynaMo models achieve lower 453

PPL1 relative to their Pythia counterparts due to 454

further training of the first-token head and stronger 455

attention heads in the model stem (i.e., all layers 456

up to the penultimate layer). We provide further 457

test results in Appendix C.2.3. The multi-token per- 458

plexity drops as models become larger, making the 459

prediction of multiple tokens easier and better. We 460

describe results for dynamic multi-token perplexity 461

(PPLd) in Appendix C.4. 462

4.3 Text Generation Performance and 463

Speed-up 464

We now compare the open-ended text generation 465

performance of the DynaMo models with that 466

of the baseline Pythia models on the sentence- 467

completion benchmark. 468

Since pairwise evaluations by strong LLMs bet- 469

ter align with human evaluations (Zheng et al., 470

2023), we evaluate our models against the Pythia 471

baseline in the pairwise-mode (details in Ap- 472

pendix A.3; single-mode evaluations in Ap- 473

pendix C.5.1). As ϵb increases, the text quality 474

improves, but the speed-up decreases. Thus, the 475

win rate (i.e., the number of wins/losses against the 476

baseline) decreases as speed-up increases. 477

Fig. 3 shows the effect of speed-up on the win 478

6

Table 1: Zero-shot performance on common sense reasoning tasks.

Model ARC-c ARC-e BoolQ COPA HellaSwag OBQA PIQA WinoG

Pythia-70M 15.5±1.0 38.7±1.0 55.9±0.8 53.0±5.0 26.6±0.4 14.6±0.2 58.6±1.2 50.8±1.4

DynaMo-77M-T3 17.3±1.1 41.0±1.0 55.7±0.9 56.0±5.0 26.9±0.4 14.7±1.6 59.8±1.1 49.8±1.4

Pythia-160M 20.7±1.2 44.0±1.0 49.4±0.9 65.0±4.8 29.1±0.5 17.0±1.7 62.0±1.1 50.6±1.4

DynaMo-180M-T3 19.4±1.1 45.3±1.0 48.0±0.9 66.0±4.8 29.3±0.5 16.6±1.7 62.7±1.1 51.7±1.4

Pythia-410M 20.5±1.2 51.6±1.0 58.6±0.9 71.0±4.6 34.5±0.5 17.8±1.7 67.2±1.1 53.3±1.4

DynaMo-430M-T3 21.2±1.2 52.6±1.0 57.1±0.9 70.0±4.6 34.6±0.5 17.9±1.7 67.5±1.1 53.3±1.4

Pythia-1B 24.3±1.2 58.5±1.0 60.8±0.9 74.0±4.4 38.9±0.5 21.8±1.8 70.1±1.1 52.9±1.4

DynaMo-1.1B-T3 25.3±1.3 58.4±1.0 60.9±0.9 76.0±4.3 38.9±0.5 22.2±1.9 70.2±1.1 53.8±1.4

Pythia-1.4B 27.3±1.3 61.8±1.0 58.0±0.9 76.0±4.3 41.7±0.5 22.8±1.9 72.0±1.0 56.9±1.4

DynaMo-1.5B-T3 27.7±1.3 61.5±1.0 59.2±0.9 78.0±4.2 41.9±0.5 22.4±1.9 72.5±1.0 56.0±1.4

Pythia-2.8B 29.9±1.3 53.5±1.0 64.2±0.8 75.0±4.4 45.4±0.5 24.0±1.9 74.1±1.0 58.2±1.4

DynaMo-2.9B-T3 30.4±1.3 64.7±1.0 64.0±0.8 80.0±4.0 45.7±0.5 24.3±1.9 74.2±1.0 59.1±1.4

Pythia-6.9B 33.2±1.4 68.5±1.0 64.4±0.8 74.0±4.4 49.6±0.5 27.0±1.9 75.7±1.0 62.7±1.4

DynaMo-7.3B-T3 33.6±1.4 68.1±1.0 65.1±0.8 76.0±4.3 49.9±0.5 28.0±2.0 75.7±1.0 62.9±1.4

Table 2: Multi-token perplexity results for models in the
DynaMo and Pythia suites.

Model PPL1 PPL2 PPL3 PPL12 PPL123

Pythia-70M 20.2±1.5 - - - -
DynaMo-77M-T3 18.3±1.5 111.4±1.7 262.0±1.6 45.2±1.5 81.2±1.6

Pythia-160M 13.5±1.4 - - - -
DynaMo-180M-T3 12.9±1.4 78.5±1.6 199.4±1.6 31.8±1.5 58.7±1.5

Pythia-410M 9.9±1.4 - - - -
DynaMo-430M-T3 9.6±1.4 59.8±1.6 162.4±1.6 24.0±1.5 45.4±1.5

Pythia-1B 8.5±1.4 - - - -
DynaMo-1.1B-T3 8.4±1.4 44.1±1.6 116.6±1.7 19.3±1.5 35.1±1.6

Pythia-1.4B 7.9±1.6 - - - -
DynaMo-1.5B-T3 7.8±1.6 41.9±2.0 112.7±2.1 18.3±1.9 33.6±1.9

Pythia-2.8B 7.4±1.6 - - - -
DynaMo-2.9B-T3 7.1±1.9 37.1±2.7 100.3±3.0 16.2±2.2 29.8±2.4

Pythia-6.9B 6.6±1.8 - - - -
DynaMo-7.3B-T3 6.5±1.8 31.4±2.6 83.5±3.0 14.4±2.2 25.8±2.4

rate of the proposed models (we describe how we479

obtain this plot in Appendix C.5.2). When the480

win rate is 1.0, the text generation quality would,481

on an average, be the same for the models being482

compared. We call the speed-up for this case the483

“same-quality speed-up." If the win rate for a model484

is always greater than 1.0, we extrapolate the plot485

to obtain the “theoretical same-quality speed-up."486

However, in further discussions, we refer to the487

minimum of (theoretical) same-quality speed-up488

and 3× (for three-token models) as, simply, the489

“speed-up."490

4.4 Instruction Finetuning491

We finetune models in the Pythia and DynaMo492

suites on an instruction-following dataset (details493

in Section 3.4). Fig. 4 shows the pairwise perfor-494

mance of the DynaMo (with respect to Pythia) mod-495

els on the Vicuna benchmark (Zheng et al., 2023).496

We run the DynaMo models at different speed-ups497

(we set ϵb = 1.0, 0.75, 0.5, 0.25, 0.0) shown on the498

Figure 3: Win rate vs. speed-up for pairwise comparisons
on the sentence-completion benchmark with corresponding
Pythia models as baselines. GPT-3.5 is used as a judge. Re-
gression plotted with 95% confidence intervals. Same-quality
speed-ups are shown in parentheses. Theoretical same-quality
speed-ups are marked with an asterisk (*).

x-axis. We compare each model against the corre- 499

sponding Pythia baseline. In the case of compar- 500

isons with small models, neither model results in a 501

reasonable answer. Hence, GPT-4 classifies many 502

response pairs as ties. The number of ties decreases 503

as model sizes increase. As the speed-up increases, 504

the win rate decreases. DynaMo-7.3B-T3 provides 505

around the same-quality responses as Pythia-6.9B 506

(win rate = 0.98) even for a high speed-up of 2.57× 507

(we ablate the effect of dynamic text generation 508

methods in Appendix C.1). 509

5 Discussion 510

In this section, we discuss the implications of the 511

proposed DynaMo suite of multi-token prediction 512

models and future work directions. 513

Table 3 shows comparisons with other ap- 514

proaches that target inference speed-up. Specula- 515

7

Figure 4: Pairwise performance of the DynaMo and Pythia models on the Vicuna benchmark. GPT-4 was used as a judge. Wins,
ties, and losses are colored green, yellow, and red, respectively.

Table 3: Comparisons with other approaches. ∗Ning et al.
(2023) evaluate models of different sizes.

Method Base Model Size FLOPS Overhead Speed-up

Speculative Sampling 70B 340% 1.92-2.46×

Skeleton-of-Thought 7B-13B∗ 560% 1.13-2.39×

RecycleGPT 1.3B 15% 1.34-1.40×

DynaMo-77M-T3 70M 8.95% 3.00×
DynaMo-180M-T3 160M 8.73% 2.19×
DynaMo-430M-T3 410M 6.22% 3.00×
DynaMo-1.1B-T3 1B 9.95% 2.15×
DynaMo-1.5B-T3 1.4B 7.12% 2.07×
DynaMo-2.5B-T3 2.4B 5.67% 2.06×
DynaMo-7.3B-T3 6.9B 5.87% 2.57×

tive sampling (Chen et al., 2023a) and skeleton-of-516

thought decoding (Ning et al., 2023) are orthogonal517

to the DynaMo approach and can be used in con-518

junction with the proposed multi-token generation519

scheme to boost performance further. Nevertheless,520

DynaMo can be seen to require the least overhead521

in FLOPS-per-generation and provides the highest522

speed-up. The high computational efficiency of Dy-523

naMo is attributed to its avoidance of high-batch524

operations necessitated by speculative sampling525

and skeleton-of-thought decoding.526

We show the performance of the DynaMo527

models on most downstream benchmarking tasks.528

These results show that stronger attention heads529

trained using loss terms for predicting subsequent530

tokens generally result in improved downstream531

performance while incurring no significant adverse532

effect on the model’s bias and misinformation abil-533

ities (see Appendix C.3.4). While Mukherjee et al.534

(2023) suggest evaluating world knowledge acqui-535

sition through tasks like AGIEval (Zhong et al.,536

2023) and Big-Bench Hard (Suzgun et al., 2023),537

we defer assessing larger multi-token models on 538

such complex benchmarks to future work. 539

6 Conclusion 540

In this work, we presented DynaMo, a suite 541

of multi-token prediction language models. We 542

trained the proposed model suite efficiently by 543

reusing weights of existing pre-trained LLMs. We 544

proposed novel ways to dynamically predict multi- 545

ple tokens for a given context. The DynaMo mod- 546

els dynamically back off to lower-order n-gram 547

prediction based on a threshold. We also proposed 548

adaptive thresholding and co-occurrence weighted 549

masking on the modeled joint probability distribu- 550

tion to improve text generation quality. One of our 551

proposed models, DynaMo-7.3B-T3, achieved the 552

same-quality generated text as the baseline (Pythia- 553

6.9B) while achieving 2.57× speed-up with only 554

5.87% and 2.67% parameter and training time over- 555

heads (see Appendix A.2), 556

7 Limitations 557

We trained DynaMo models on only 5% of the Pile 558

dataset (Gao et al., 2020). However, training the 559

models on the entire dataset would further boost 560

performance due to improved estimates of the joint 561

probability distributions. Future multi-token mod- 562

els can directly be trained on the entire language 563

corpus without the complex multi-LR learning em- 564

ployed here (details in Appendix A.1). Finally, the 565

current suite of DynaMo models was trained with 566

the Pythia backbone. One could also leverage state- 567

of-the-art open-source foundation models (Touvron 568

et al., 2023b) to train the DynaMo suite. 569

8

References570

Stella Biderman, Hailey Schoelkopf, Quentin Gregory571
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-572
lahan, Mohammad Aflah Khan, Shivanshu Purohit,573
USVSN Sai Prashanth, Edward Raff, et al. 2023.574
Pythia: A suite for analyzing large language models575
across training and scaling. In Proceedings of the In-576
ternational Conference on Machine Learning, pages577
2397–2430.578

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,579
et al. 2020. PIQA: Reasoning about physical com-580
monsense in natural language. In Proceedings of581
the AAAI Conference on Artificial Intelligence, vol-582
ume 34, pages 7432–7439.583

Tom Brown, Benjamin Mann, Nick Ryder, Melanie584
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind585
Neelakantan, Pranav Shyam, Girish Sastry, Amanda586
Askell, et al. 2020. Language models are few-shot587
learners. Advances in Neural Information Processing588
Systems, 33:1877–1901.589

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,590
and Tri Dao. 2023. Medusa: Simple framework for591
accelerating llm generation with multiple decoding592
heads.593

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,594
Jean-Baptiste Lespiau, Laurent Sifre, and John595
Jumper. 2023a. Accelerating large language model596
decoding with speculative sampling. arXiv preprint597
arXiv:2302.01318.598

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa599
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-600
vasan, Tianyi Zhou, Heng Huang, et al. 2023b. Al-601
paGasus: Training a better Alpaca with fewer data.602
arXiv preprint arXiv:2307.08701.603

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,604
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan605
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion606
Stoica, and Eric P. Xing. 2023. Vicuna: An open-607
source chatbot impressing GPT-4 with 90%* Chat-608
GPT quality.609

Krishna Teja Chitty-Venkata, Murali Emani, Venkatram610
Vishwanath, and Arun K. Somani. 2022. Neural611
architecture search for transformers: A survey. IEEE612
Access, 10:108374–108412.613

Christopher Clark, Kenton Lee, Ming-Wei Chang,614
Tom Kwiatkowski, Michael Collins, and Kristina615
Toutanova. 2019. BoolQ: Exploring the surprising616
difficulty of natural yes/no questions. In Proceed-617
ings of the 2019 Conference of the North American618
Chapter of the Association for Computational Lin-619
guistics: Human Language Technologies, volume 1,620
pages 2924–2936.621

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,622
Ashish Sabharwal, Carissa Schoenick, and Oyvind623
Tafjord. 2018. Think you have solved question an-624
swering? Try ARC, the AI2 reasoning challenge.625
arXiv preprint arXiv:1803.05457.626

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 627
Christopher Ré. 2022. Flashattention: Fast and 628
memory-efficient exact attention with IO-awareness. 629
Advances in Neural Information Processing Systems, 630
35:16344–16359. 631

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah 632
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, 633
and Tinne Tuytelaars. 2021. A continual learning sur- 634
vey: Defying forgetting in classification tasks. IEEE 635
Transactions on Pattern Analysis and Machine Intel- 636
ligence, 44(7):3366–3385. 637

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi- 638
erarchical neural story generation. In Proceedings of 639
the 56th Annual Meeting of the Association for Com- 640
putational Linguistics, volume 1, pages 889–898. 641

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 642
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 643
race He, Anish Thite, Noa Nabeshima, et al. 2020. 644
The Pile: An 800GB dataset of diverse text for lan- 645
guage modeling. arXiv preprint arXiv:2101.00027. 646

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, 647
Anthony DiPofi, Charles Foster, Laurence Golding, 648
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, 649
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, 650
Ben Wang, Kevin Wang, and Andy Zou. 2021. A 651
framework for few-shot language model evaluation. 652

Xinyang Geng and Hao Liu. 2023. OpenLLaMA: An 653
open reproduction of LLaMA. 654

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 655
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 656
2021. In Proceedings of the International Conference 657
on Learning Representations. 658

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 659
Distilling the knowledge in a neural network. arXiv 660
preprint arXiv:1503.02531. 661

Edward J. Hu, Phillip Wallis, Zeyuan Allen-Zhu, 662
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 663
et al. 2021. LoRA: Low-rank adaptation of large lan- 664
guage models. In Proceedings of the International 665
Conference on Learning Representations. 666

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo- 667
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk 668
Michalewski, and Jonni Kanerva. 2021. Sparse is 669
enough in scaling transformers. Advances in Neural 670
Information Processing Systems, 34:9895–9907. 671

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 672
Brown, Benjamin Chess, Rewon Child, Scott Gray, 673
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 674
Scaling laws for neural language models. arXiv 675
preprint arXiv:2001.08361. 676

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, 677
Caiming Xiong, and Richard Socher. 2019. CTRL: A 678
conditional transformer language model for control- 679
lable generation. arXiv preprint arXiv:1909.05858. 680

9

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,681
and Eduard Hovy. 2017. RACE: Large-scale reading682
comprehension dataset from examinations. In Pro-683
ceedings of the Conference on Empirical Methods in684
Natural Language Processing, pages 785–794.685

Benjamin Lefaudeux, Francisco Massa, Diana686
Liskovich, Wenhan Xiong, Vittorio Caggiano,687
Sean Naren, Min Xu, Jieru Hu, Marta Tin-688
tore, Susan Zhang, Patrick Labatut, and Daniel689
Haziza. 2022. xFormers: A modular and hack-690
able transformer modelling library. https:691
//github.com/facebookresearch/xformers.692

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.693
TruthfulQA: Measuring how models mimic human694
falsehoods. In Proceedings of the 60th Annual Meet-695
ing of the Association for Computational Linguistics,696
volume 1, pages 3214–3252.697

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-698
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.699
2023. Online speculative decoding. arXiv preprint700
arXiv:2310.07177.701

Ilya Loshchilov and Frank Hutter. 2017. Decou-702
pled weight decay regularization. arXiv preprint703
arXiv:1711.05101.704

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish705
Sabharwal. 2018. Can a suit of armor conduct elec-706
tricity? A new dataset for open book question an-707
swering. In Proceedings of the Conference on Empir-708
ical Methods in Natural Language Processing, pages709
2381–2391.710

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-711
har, Sahaj Agarwal, Hamid Palangi, and Ahmed712
Awadallah. 2023. Orca: Progressive learning from713
complex explanation traces of GPT-4. arXiv preprint714
arXiv:2306.02707.715

Nikita Nangia, Clara Vania, Rasika Bhalerao, and716
Samuel R. Bowman. 2020. CrowS-pairs: A chal-717
lenge dataset for measuring social biases in masked718
language models. In Proceedings of the Conference719
on Empirical Methods in Natural Language Process-720
ing, pages 1953–1967.721

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,722
and Yu Wang. 2023. Skeleton-of-Thought: Large723
language models can do parallel decoding. arXiv724
preprint arXiv:2307.15337.725

OpenAI. 2023a. ChatGPT.726

OpenAI. 2023b. GPT-4 technical report. arXiv preprint727
arXiv:2303.08774.728

Nobuyuki Otsu. 1979. A threshold selection method729
from gray-level histograms. IEEE Transactions on730
Systems, Man, and Cybernetics, 9(1):62–66.731

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-732
tional optimal transport: With applications to data733
science. Foundations and Trends in Machine Learn-734
ing, 11(5-6):355–607.735

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 736
Dario Amodei, Ilya Sutskever, et al. 2019. Language 737
models are unsupervised multitask learners. OpenAI 738
Blog, 1(8):9. 739

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 740
Know what you don’t know: Unanswerable ques- 741
tions for SQuAD. In Proceedings of the 56th Annual 742
Meeting of the Association for Computational Lin- 743
guistics, volume 2, pages 784–789. 744

Melissa Roemmele, Cosmin Adrian Bejan, and An- 745
drew S. Gordon. 2011. Choice of plausible alterna- 746
tives: An evaluation of commonsense causal reason- 747
ing. In Proceedings of the AAAI Spring Symposium 748
Series. 749

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 750
ula, and Yejin Choi. 2021. WinoGrande: An adver- 751
sarial Winograd schema challenge at scale. Commu- 752
nications of the ACM, 64(9):99–106. 753

Thibault Séjourné, Jean Feydy, François-Xavier Vialard, 754
Alain Trouvé, and Gabriel Peyré. 2019. Sinkhorn 755
divergences for unbalanced optimal transport. arXiv 756
preprint arXiv:1910.12958. 757

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei 758
Yao, Amir Gholami, Michael W. Mahoney, and Kurt 759
Keutzer. 2020. Q-BERT: Hessian based ultra low 760
precision quantization of BERT. In Proceedings of 761
the AAAI Conference on Artificial Intelligence, vol- 762
ume 34, pages 8815–8821. 763

Benjamin Frederick Spector and Christopher Re. 2023. 764
Accelerating llm inference with staged speculative 765
decoding. In Workshop on Efficient Systems for Foun- 766
dation Models@ ICML2023. 767

Shikaripur N. Sridhar. 2012. Cognition and Sentence 768
Production: A Cross-linguistic Study, volume 22. 769
Springer Science & Business Media. 770

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 771
2018. Blockwise parallel decoding for deep autore- 772
gressive models. Advances in Neural Information 773
Processing Systems, 31. 774

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 775
bastian Gehrmann, Yi Tay, Hyung Won Chung, 776
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny 777
Zhou, and Jason Wei. 2023. Challenging BIG-Bench 778
tasks and whether chain-of-thought can solve them. 779
In Proceedings of the Association for Computational 780
Linguistics, pages 13003–13051. 781

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 782
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 783
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: 784
An instruction-following LLaMA model. https:// 785
github.com/tatsu-lab/stanford_alpaca. 786

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 787
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 788
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 789

10

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://chat.openai.com
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Azhar, et al. 2023a. LLaMA: Open and effi-790
cient foundation language models. arXiv preprint791
arXiv:2302.13971.792

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-793
bert, Amjad Almahairi, Yasmine Babaei, Nikolay794
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti795
Bhosale, et al. 2023b. Llama 2: Open founda-796
tion and fine-tuned chat models. arXiv preprint797
arXiv:2307.09288.798

Shikhar Tuli and Niraj K. Jha. 2023a. AccelTran:799
A sparsity-aware accelerator for dynamic inference800
with transformers. IEEE Transactions on Computer-801
Aided Design of Integrated Circuits and Systems,802
42(11):4038–4051.803

Shikhar Tuli and Niraj K. Jha. 2023b. Edgetran: Device-804
aware co-search of transformers for efficient infer-805
ence on mobile edge platforms. IEEE Transactions806
on Mobile Computing, pages 1–18.807

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,808
Ligeng Zhu, Chuang Gan, and Song Han. 2020a.809
HAT: Hardware-aware transformers for efficient nat-810
ural language processing. In Proceedings of the 58th811
Annual Meeting of the Association for Computational812
Linguistics, pages 7675–7688.813

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,814
and Hao Ma. 2020b. Linformer: Self-attention with815
linear complexity. arXiv preprint arXiv:2006.04768.816

Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham817
Neubig, Florian Metze, Alan W. Black, and Shinji818
Watanabe. 2023. CTC alignments improve autore-819
gressive translation. In Proceedings of the 17th Con-820
ference of the European Chapter of the Association821
for Computational Linguistics, pages 1615–1631.822

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali823
Farhadi, and Yejin Choi. 2019. HellaSwag: Can824
a machine really finish your sentence? In Proceed-825
ings of the 57th Annual Meeting of the Association826
for Computational Linguistics, pages 4791–4800.827

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan828
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,829
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.830
Judging LLM-as-a-judge with MT-bench and chatbot831
arena. arXiv preprint arXiv:2306.05685.832

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,833
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,834
and Nan Duan. 2023. AGIEval: A human-centric835
benchmark for evaluating foundation models. arXiv836
preprint arXiv:2304.06364.837

11

https://doi.org/10.1109/TMC.2023.3328287
https://doi.org/10.1109/TMC.2023.3328287
https://doi.org/10.1109/TMC.2023.3328287
https://doi.org/10.1109/TMC.2023.3328287
https://doi.org/10.1109/TMC.2023.3328287

Table 4: Learning rates used for training different models in
the DynaMo suite.

Model LRB LRM LRMB

DynaMo-77M-T3 10−5 10−3 10−6

DynaMo-180M-T3 6× 10−6 6× 10−4 6× 10−7

DynaMo-430M-T3 3× 10−6 3× 10−4 3× 10−7

DynaMo-1.1B-T3 2× 10−6 2× 10−4 2× 10−7

DynaMo-1.5B-T3 2× 10−6 2× 10−4 2× 10−7

DynaMo-2.9B-T3 1.6× 10−6 1.6× 10−4 1.6× 10−7

DynaMo-7.3B-T3 1.2× 10−6 1.2× 10−4 1.2× 10−7

A Experimental Setup Details838

In this section, we provide details on the train-839

ing and evaluation processes along with other hy-840

perparameters. We then describe the sentence-841

completion benchmark. Finally, we present the842

overheads in training time for our DynaMo suite of843

models.844

A.1 Training and Evaluation Processes845

To train the DynaMo suite of models, we first trans-846

fer the weights from the base Pythia model. Then,847

we train the models on a randomly sampled 5%848

set of sentences in the Pile dataset1. We train for849

one epoch on this dataset. We choose a subset of850

the same dataset on which the base Pythia model851

was trained to avoid catastrophic forgetting when852

being trained on a different dataset. In the future,853

we plan to train the models on other datasets using854

standard continual learning approaches (De Lange855

et al., 2021).856

We now describe the training procedure for the857

DynaMo suite of models. First, we transfer the858

weights for the base model (i.e., the model stem859

and the final decoder layer). Then, we train the860

base model with a low learning rate (LRB). On the861

other hand, we train subsequent token heads using862

a higher learning rate (LRM) since we randomly863

initialize their weights. However, when backprop-864

agating those gradients to the model stem, we use865

a much lower learning rate (LRMB). We hypothe-866

size that when the attention heads learn from the867

first and subsequent token predictions, they make868

them stronger in predicting multiple tokens. Ta-869

ble 4 shows the learning rates used for different870

models in the DynaMo suite. Fig. 5 shows the gra-871

dient flow when training an example three-token872

DynaMo model.873

We train our models using the AdamW op-874

timizer (Loshchilov and Hutter, 2017) with the875

following hyperparameters: β1 = 0.9, β2 =876

1Dataset source: https://huggingface.co/datasets/
EleutherAI/pile-deduped-pythia-random-sampled.

Lorem ipsum

L

LRB LRM LRM

LRMB

Figure 5: Gradient flow when training a DynaMo model.

0 10000 20000 30000 40000 50000 60000 70000
Steps

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

DynaMo-77M-T3
DynaMo-180M-T3
DynaMo-430M-T3
DynaMo-1.1B-T3
DynaMo-1.5B-T3
DynaMo-2.9B-T3
DynaMo-7.3B-T3

Figure 6: Loss curves for three-token models in the DynaMo
suite.

0.95, ϵ = 1×10−8. We use the cosine learning rate 877

scheduler such that the learning rate warms up for 878

1% of the dataset (758 steps) and then drops to 0 at 879

the end of training. We use a batch size of 64 sen- 880

tences, i.e., 131,072 tokens (each sentence is 2,048 881

tokens long). The dataset has 5M sentences, which 882

we divide into a training set (97%) and validation 883

set (3%). Thus, a batch size of 64 results in 75,782 884

training steps in one training epoch. We evaluate 885

the model at every 5,000 steps. Fig. 6 shows the 886

three-token validation loss (logarithm of PPL123) 887

for models in the DynaMo suite. 888

We train the models on A100 GPUs with 889

80GB memory. For efficient implementation 890

of our models, we use the flash-attention li- 891

brary (Dao et al., 2022). Our models also sup- 892

port memory-efficient attention in the xformers 893

library (Lefaudeux et al., 2022). Since DynaMo- 894

7.3B-T3 did not fit in memory, we resorted to Py- 895

Torch’s fully-sharded data parallel (FSDP) training 896

feature. Table 5 provides the hyperparameters used 897

for the FSDP configuration. 898

For text generation, we use k = 50 for top-k de- 899

coding, temperature = 0.7, and repetition penalty 900

= 1.1. The default text generation hyperparame- 901

ters for the DynaMo models are αc = 1.0 (see Ap- 902

12

https://huggingface.co/datasets/EleutherAI/pile-deduped-pythia-random-sampled
https://huggingface.co/datasets/EleutherAI/pile-deduped-pythia-random-sampled

Table 5: FSDP configuration used for training DynaMo-7.3B-
T3.

Configuration Key Value

Sharding strategy SHARD_GRAD_OP
Transformer-based wrap DYNAMO_LAYER
All-gather backward prefetch policy BACKWARD_PRE
All-gather forward prefetch policy NONE
Mixed precision FP16

Table 6: Training (with overheads) and instruction-finetuning
times for the DynaMo suite of models.

Model Training GPU Hrs. Instruction-FT GPU Mins.

Pythia-70M 510 -
DynaMo-77M-T3 15 (2.94%) 8

Pythia-160M 1,030 -
DynaMo-180M-T3 36 (3.49%) 15

Pythia-410M 2,540 -
DynaMo-430M-T3 46 (1.81%) 30

Pythia-1B 4,830 -
DynaMo-1.1B-T3 80 (1.65%) 60

Pythia-1.4B 7,120 -
DynaMo-1.5B-T3 88 (1.24%) 72

Pythia-2.8B 14,240 -
DynaMo-2.9B-T3 176 (1.24%) 180

Pythia-6.9B 33,500 -
DynaMo-7.3B-T3 896 (2.67%) 864

pendix C.1), adaptive thresholding with Gaussian903

blur (kernel size = 3), and using co-occurrence904

weighted masking unless otherwise specified.905

A.2 Training Overheads906

Table 6 shows the overhead of training models in907

the DynaMo suite. We report training times for908

modified-CLM training on 5% of the Pile dataset909

and instruction-finetuning. We present the reported910

CLM training times for the Pythia models (Bider-911

man et al., 2023).912

A.3 Sentence-completion Benchmark913

In this section, we provide details of the sentence-914

completion benchmark. This benchmark is moti-915

vated by the Vicuna benchmark (Zheng et al., 2023).916

However, it is meant for pre-trained LLMs that are917

not instruction-finetuned. This dissociates any ef-918

fects of instruction-finetuning from model perfor-919

mance. The benchmark consists of ten prompts re-920

quiring the model to complete the sentence. These921

prompts correspond to sentences of different types.922

Table 7 outlines the prompts.923

To obtain the GPT score, we ask GPT-3.5 to924

rate the generated sentence on a scale from 1 to925

10. For pairwise evaluations, we ask GPT-3.5926

to compare the generated text (by our DynaMo927

Table 7: Prompts in the sentence-completion benchmark.

Prompt Type

I am a student at the Simple Declarative
This is going to be a very Simple Declarative
He wanted to play, but Compound Declarative
How can we W/H Interrogative
What will W/H Interrogative
Will you Y/N Interrogative
Please explain Affirmative Imperative
Do not Negative Imperative
Wow! I can’t believe that Exclamatory
This is amazing! We Exclamatory

Please act as an impartial judge
and evaluate the quality of
the response provided by an AI
assistant to the input prompt. The
AI assistant provides an open-ended
generation for the input prompt.
Your evaluation should be based
on the grammatical correctness,
creativity, depth, logical flow,
coherence, and based on how
informative the response is. Do
not let the length of the generated
text influence your evaluation. Be
as objective as possible. Begin
your evaluation by providing a
short explanation. Explain the
mistakes, if any. After providing
your explanation, you must rate the
response on a scale of 1 to 10
by strictly following this format:
"[[rating]]", for example: "Rating:
[[5]]"

Figure 7: Prompt template to rate the sentence quality of the
candidate assistant model on an absolute scale (single-mode
evaluation).

model) against a baseline (the corresponding base- 928

line Pythia model) and rate it as a “win," “lose," 929

or a “tie." We use gpt-3.5-turbo-0613 for our 930

evaluations. Fig. 7 shows the prompt template 931

used for single-mode evaluations and Fig. 8 shows 932

the prompt template used for pairwise evaluations. 933

However, this benchmark also suffers from the 934

same drawbacks as the Vicuna benchmark (Zheng 935

et al., 2023), which we attempt to alleviate. To 936

address position bias in pairwise comparisons, we 937

randomly order the responses of the assistants. 938

B Optimal Transport Theory 939

Eq. (2) approximates the output joint probability 940

by directly multiplying the independent marginal 941

distributions. This implicitly assumes that xt+2 is 942

independent of xt+1 conditioned on history x1:t, 943

13

Please act as an impartial
judge and evaluate the quality
of the responses provided by
two AI assistants to the input
prompt. Both AI assistants provide
open-ended generations for the
input prompt. You should choose
the assistant that produces a
better generation. Your evaluation
should be based on the grammatical
correctness, creativity, depth,
logical flow, coherence, and based
on how informative the responses
are. Do not let the lengths of
the generated texts influence your
evaluation. Do not favor certain
names of the assistants. Begin
your evaluation by comparing the
two responses and provide a short
explanation. Explain the mistakes,
if any. Avoid any positional biases
and ensure that the order in which
the responses were presented does
not influence your decision. Be
as objective as possible. After
providing your explanation, output
your final verdict by strictly
following this format: "[[A]]" if
assistant A is better, "[[B]]" if
assistant B is better, and "[[C]]"
for a tie.

Figure 8: Prompt template to rate the sentence quality of the
candidate assistant model against a baseline model (pairwise-
mode evaluation).

xt+3 is independent of xt+1 and xt+2, and so on.944

The downside of this decoding strategy is that it945

ignores the fact that the prediction of xt+2 depends946

heavily on which xt+1 is chosen (and similarly for947

subsequent predictions). A simple example is to948

consider x1:t = I; here, to is a plausible second-949

word prediction as many sentences lead to that950

word, such as I like to, I want to, and I went951

to. On the other hand, am is a plausible first-word952

prediction. However, as long as one chooses it, the953

weight for to as the second-word prediction should954

be minimal unless we want to make our English955

teacher cry. This motivates us to weight the joint956

probability distribution based on co-occurrence of957

words (or, more precisely, tokens).958

What follows is a theoretical motivation be-959

hind the use of co-occurrence weighted mask-960

ing. Formally, according to optimal transport the-961

ory (Peyré et al., 2019), we define a cost function962

c(xt+1, . . . ,xt+n), ∀ xt+1, . . . ,xt+n. Once we963

define the cost function, we pose the joint estima-964

tion problem as follows, 965

argmin
p

∫
p(xt+1:t+n|x1:t) c(xt+1, . . . ,xt+n)dxt+1 . . . dxt+n

+ ϵ1KL

(
p(xt+1:t+n|x1:t)||

n∏
i=1

f i
θ(x1:t)

)

+ ϵ2

n∑
i=1

KL
(
p(xt+i|x1:t)||f i

θ(x1:t)
)

(5)

966

Although solving an optimal transport prob- 967

lem is fast, using the celebrated Sinkhorn algo- 968

rithm (Séjourné et al., 2019), we propose the use 969

of Eq. (3) as an approximation that works well in 970

practice, as we demonstrate in our experimental 971

results. Next, we show that the approximation in 972

Eq. (3) is indeed the closest to preserving the true 973

joint probability distribution. 974

Proof of Theorem 1. Recall that the optimiza- 975

tion in Eq. (5) is subject to the constraint 976∫
p(xt+1:t+n|x1:t)dxt+1 . . . dxt+n = 1. Thus, the 977

Lagrangian of the objective is given by 978

L =

∫
p(xt+1:t+n|x1:t) c(xt+1, . . . ,xt+n)dxt+1 . . . dxt+n 979

+ ϵ1KL

(
p(xt+1:t+n|x1:t)||

n∏
i=1

f i
θ(x1:t)

)
980

+ ϵ2

n∑
i=1

KL
(
p(xt+i|x1:t)||f i

θ(x1:t)
)

981

+ λ

(∫
p(xt+1:t+n|x1:t)dxt+1 . . . dxt+n − 1

)
982

Setting the derivative of L w.r.t. p(xt+1,xt+2|x1:t) 983

to zero, we get 984

p∗(xt+1:t+n|x1:t) 985

∝
n∏

i=1

f i
θ(x1:t) exp (c(xt+1, . . . ,xt+n)/ϵ1) 986

=

n∏
i=1

f i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)

987

988

C Additional Results 989

In this section, we report additional supporting re- 990

sults. 991

14

(a) (b) (c)

(d) (e) (f)

Figure 9: Joint probability distribution with top 10 tokens sorted in decreasing order of probabilities using the DynaMo-2.9B-T2
model for the input prompt: Please explain. Probabilities corresponding to repetition have been penalized by a factor of 100.
(a) and (d) are vanilla distributions. Co-occurrence masked distribution with (b) αc = 0.5 [CO-0.5] and (c) αc = 1.0 [CO].
Adaptive thresholding (e) without Gaussian blur [AT] and (f) with Gaussian blur (kernel size = 3) [AT + G-3].

C.1 Ablation of Dynamic Text Generation992

Methods993

In this section, we ablate the effect of adaptive994

thresholding (with and without Gaussian blur) and995

co-occurrence weighted masking (see Section 3.2).996

Figs. 9(a)-(c) show the effect of co-occurrence997

masking on the two-token joint probability with de-998

creasing masking transparency αc. Mathematically,999

we modify Eq. (3) for the two-token prediction case1000

as follows:1001

p(xt+1,xt+2|x1:t)

≈ f1
θ (x1:t)f

2
θ (x1:t)

(
p̂(xt+1,xt+2)

p̂(xt+1) p̂(xt+2)

)αc

(6)

1002

where αc = 1.0 implies that the co-occurrence1003

weights mask the joint probability distribution with1004

no transparency. On the other hand, we do not use1005

co-occurrence masking when αc = 0.0. Neverthe-1006

less, αc = 0.5 partially masks the joint probabil-1007

ity distribution using the co-occurrence weights.1008

Figs. 9(d)-(f) show the effect of adaptive threshold-1009

ing with and without Gaussian blur.1010

Fig. 10 shows the win rates vs. speed-up for1011

DynaMo-77M-T3, where we generated the texts1012

Figure 10: Ablation analysis using adaptive thresholding
(with and without Gaussian blur) and co-occurrence mask-
ing. Win rates for pairwise tests against Pythia-70M on the
sentence-completion benchmark are shown for different speed-
ups. GPT-3.5 is used as the judge. Theoretical same-quality
speed-ups are marked with an asterisk (*).

in the sentence-completion benchmark using dif- 1013

ference schemes. We observe that co-occurrence 1014

masking (with αc = 1.0, i.e., the default setting 1015

used in our experiments) used along with adaptive 1016

thresholding (after application of Gaussian blur 1017

with a kernel size = 3) results in the flattest win 1018

rate vs. speed-up curve, thus, providing the highest 1019

15

(a) (b)

Figure 11: Multi-token prediction using a single-token head. The input sequence is shown below the transformer layer. The
model predicts the output sequence above. Attention arrows correspond to the modified CLM objective. The attention masks are
shown below the input sequences. (a) T1-L2-M0: labels are shifted by two positions (i.e., the model predicts x′

t+2 with xt as
input). Under the modified CLM objective, the model learns to predict x′

t+2 = xt+2. (b) T1-L2-M(-1)R: labels are shifted by
two positions but masks are shifted in the opposite direction (i.e., for predicting x′

t+2, the model can sometimes see xt+1).

Table 8: Ablations analysis of dynamic text generation meth-
ods with the instruction-finetuned DynaMo-7.3B-T3 model
on the Vicuna benchmark. We use ϵb = 0.5.

Method Speed-up Win rate

CO + AT + G-3 2.57× 0.98
CO + AT 2.44× 0.96
CO 2.61× 0.82
CO-0.5 + AT + G3 2.55× 0.77
AT + G-3 2.49× 0.38

theoretical same-quality speed-up.1020

We ablate the effect of dynamic text generation1021

methods with the instruction-finetuned DynaMo-1022

7.3B-T3 model on the Vicuna benchmark in Ta-1023

ble 8. We take the case ϵb = 0.5 (that re-1024

sults in 2.57× speed-up in Fig. 4) and present1025

the win rates against Pythia-6.9B. Leveraging co-1026

occurrence weighted masking along with adaptive1027

thresholding using Gaussian blur (kernel size = 3)1028

results in the highest win rate.1029

C.2 Other Multi-token Prediction Methods1030

In this section, we provide a detailed overview of1031

various architectural and training variations tested1032

for multi-token prediction.1033

C.2.1 Design Variations1034

Under the CLM objective, the attention mask pre-1035

vents the model from seeing future tokens, i.e., we1036

only compute the attentions corresponding to the1037

lower triangular matrix (we refer to this case as1038

M0). In summary, we represent traditional autore-1039

gressive models as T1-L1-M0. We study different1040

variations of the above formulation for multi-token1041

prediction. These include multiple token heads, 1042

label-shifts, and mask-shifts. We explore them be- 1043

low. After testing various approaches, we observe 1044

that for, say, three-token prediction, the T3-L1-M0 1045

set of choices performs the best. Thus, in all dis- 1046

cussions in the main paper, we represent DynaMo- 1047

T3-L1-M0 as simply DynaMo-T3. 1048

Fig. 11 shows the information flow for T1-L2- 1049

M0 and T1-L2-M(-1)R cases. In the former case, 1050

for predicting xt+2, the model only sees the input 1051

context x1:t. Hence, we shift the mask in the latter 1052

case. However, T1-L2-M(-1) would be equivalent 1053

to the traditional T1-L1-M0 (ignoring residual con- 1054

nections that result in information leakage). Hence, 1055

we randomly mask out some tokens so that the 1056

model learns to predict the next and the second-next 1057

token at each position. Another position-equivalent 1058

modeling approach to T1-L2-M(-1)R is T1-L1- 1059

M1R. However, both these modeling approaches 1060

suffer from information leakage. T1-L2-M(-1)R 1061

suffers from information leakage due to expanding 1062

receptive fields along model depth. We fix this by 1063

incorporating negative mask shifts only in the first 1064

layer of the LLM. T1-L1-M1R suffers from infor- 1065

mation leakage due to the residual/skip connections 1066

in the LLM. Hence, we do not use this approach 1067

and test T1-L2-M(-1)R instead. 1068

Fig. 12 shows different architectural variations 1069

of the two-token model we tested. We initialize 1070

all these models from the base Pythia-70M model. 1071

Fig. 12(a) shows the schematic of DynaMo-96M- 1072

T2 that randomly initializes the output embedding 1073

16

LRR

Lorem ipsum

*

LRR

LoRA

LRR

*

*

LRR

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

LRR

Lorem ipsum

. .
 .

(a) (b) (c)

(d) (e) (f)

Figure 12: Architectural variations of the two-token predic-
tion model that we tested: (a) DynaMo-96M-T2, (b) DynaMo-
74M-T (C), (c) DynaMo-70M-T2 (LoRA), (d) DynaMo-99M-
T2, (e) DynaMo-74M-T2 (NP), and (f) DynaMo-77M-T2.

for the second-token head (we denote newly initial-1074

ized weights by ∗ while other variations reuse these1075

weights). The output embedding has 26M trainable1076

parameters. Fig. 12(b) shows DynaMo-74M-T21077

(C), which copies the weights of the decoder layer1078

for the second-token head from the last layer of1079

the first-token head (or the base model). Its output1080

embedding for the second-token head reuses the1081

weights from the first-token head. Since we copy1082

the weights, we train the copied weights with a low1083

learning rate (LRB). Fig. 12(c) shows DynaMo-1084

70M-T2 (LoRA) with only 65K trainable parame-1085

ters (Hu et al., 2021). The LoRA module includes1086

a low-rank matrix (we use rank = 32). We add its1087

output to that of the last decoder layer for second-1088

token prediction. Fig. 12(d) shows DynaMo-99M-1089

T2. We train a decoder layer and the output embed-1090

ding for the second-token head, where we randomly1091

initialize the weights of both modules. Fig. 12(e)1092

shows DynaMo-74M-T2 (NP), where we feed the1093

output of the last layer of the base model to the de-1094

coder layer for the second-token head. All models1095

in the DynaMo suite use the outputs of the penulti-1096

mate layer of the base model for subsequent token1097

prediction. Instead, this model uses the output of1098

the final (non-penultimate or NP) layer. Finally,1099

Fig. 12(f) shows the use of two decoder layers for1100

Table 9: Multi-token perplexity results for various archi-
tectural variations. +Model was further trained on 5% Pile
dataset.

Model PPL1 PPL2 PPL3 PPL12 PPL123

Pythia-70M 20.2±1.5 - - - -
Pythia-70M+ 20.1±1.5 - - - -

DynaMo-70M-T1-L2 21.4±1.6 1455.8±6.4 - 189.3±2.2 -
DynaMo-70M-T1-L2-M(-1)R 20.3±1.5 645.3±1.9 - 87.4±1.7 -

DynaMo-96M-T2 19.9±1.5 252.4±1.9 - 68.0±1.5 -

DynaMo-74M-T2 (C) 18.3±1.5 296.4±1.5 - 73.7±1.5 -
DynaMo-70M-T2 (LoRA) 20.2±1.5 1368.1±1.8 - 161.2±1.6 -

DynaMo-74M-T2 (CTC) 18.5±1.5 115.4±1.7 - 46.0±1.6 -

DynaMo-99M-T2 18.3±1.5 111.5±1.7 - 45.2±1.5 -
DynaMo-74M-T2 (NP) 18.8±1.5 131.1±1.6 - 49.0±1.5 -
DynaMo-74M-T2-H 20.2±1.5 119.1±1.7 - 49.0±1.5 -
DynaMo-74M-T2 18.3±1.5 112.4±1.7 - 45.4±1.5 -
DynaMo-77M-T2 18.3±1.5 86.7±1.7 - 39.9±1.6 -

DynaMo-77M-T3 18.3±1.5 111.4±1.7 262.0±1.6 45.2±1.5 81.2±1.6

the second-token head. 1101

C.2.2 Evaluations 1102

Table 9 shows the multi-token perplexity results for 1103

various architectural and training variations of the 1104

DynaMo model with Pythia-70M as the baseline. 1105

For fair comparisons, we also add the perplexity re- 1106

sults for Pythia-70M further trained on the 5% Pile 1107

dataset using LRB = 10−5 (we refer to this ver- 1108

sion as Pythia-70M+). The architectural variations 1109

are as explained above. DynaMo-74M-T2 (CTC) 1110

shows the perplexity results for the model trained 1111

using CTC loss (Yan et al., 2023). DynaMo-74M- 1112

T2-H is the model where we only train the decoder 1113

layer of the second-token head. Training this model 1114

is much faster than training DynaMo-74M-T2, as 1115

we need to calculate only a few gradients. However, 1116

this does not make the attention heads in the model 1117

stem stronger. We see that PPL1 of this model is 1118

the same as that of Pythia-70M. One could increase 1119

the parameter budget for multi-token prediction by 1120

either adding another decoder layer for predicting 1121

the second token (DynaMo-77M-T2) or using a 1122

decoder layer for the third-token head (DynaMo- 1123

77M-T3). In the DynaMo suite of models, we 1124

traded the parameter budget for higher speed-up 1125

(using three-token models). We leave the explo- 1126

ration and search among various architectural de- 1127

cisions (Chitty-Venkata et al., 2022; Tuli and Jha, 1128

2023b) targeting text generation performance and 1129

speed-up to future work. 1130

C.2.3 Effect of Stronger Attentions 1131

Another observation that supports the hypothesis 1132

that stronger attentions result in better first-token 1133

prediction is as follows. In Table 9, Pythia-70+ 1134

does not result in a lower PPL1. This shows that 1135

with traditional CLM training, PPL1 has converged. 1136

17

Table 10: Effect of stronger attentions on zero-shot performance in common sense tasks.

Model ARC-c ARC-e BoolQ COPA HellaSwag OBQA PIQA WinoG

Pythia-70M 15.5±1.0 38.7±1.0 55.9±0.8 53.0±5.0 26.6±0.4 14.6±0.2 58.6±1.2 50.8±1.4

Pythia-70M+ 15.6±1.0 38.8±1.0 55.9±0.8 53.1±5.0 26.8±0.4 14.6±0.2 58.6±1.2 50.9±1.4

DynaMo-77M-T3 17.3±1.1 41.0±1.0 55.7±0.9 56.0±5.0 26.9±0.4 14.7±1.6 59.8±1.1 49.8±1.4

Figure 13: Win rate vs. speed-up for pairwise comparisons on
the sentence-completion benchmark with Pythia-70M as the
baseline. GPT-3.5 is used as a judge. Theoretical same-quality
speed-up is marked with an asterisk (*).

However, with the modified-CLM training (details1137

in Appendix A.1), PPL1 for models in the DynaMo1138

suite goes down further. Finally, we validate this1139

hypothesis on downstream benchmarks in Table 10.1140

Training the attention heads based on the modified-1141

CLM loss in Eq. (1) results in better first-token1142

prediction, which we use to evaluate common sense1143

tasks as presented here.1144

C.2.4 Two-token vs. Three-token Prediction1145

Fig. 13 shows the win rates with respect to speed-1146

ups on the sentence-completion benchmark using1147

pairwise analysis against Pythia-70M (see Sec-1148

tion 3.4 and Appendix A.3). DynaMo-77M-T31149

shows much better win rates relative to DynaMo-1150

74M-T2 for speed-ups < 2.0 despite similar PPL12.1151

Further, DynaMo-77M-T3, being a three-token1152

model, can provide much higher speed-ups than1153

DynaMo-74M-T2, however, at the cost of a slight1154

parameter overhead. Since the extra parameter1155

overhead is marginal, especially for larger mod-1156

els, we stick with three-token models.1157

C.3 Additional Downstream Performance1158

Results1159

We now present additional results on downstream1160

benchmarks.1161

Table 11: Five-shot ex-
act match performance
on the TriviaQA bench-
mark.

Model TriviaQA

Pythia-70M 0.2±0.0

DynaMo-77M-T3 0.2±0.0

Pythia-160M 2.1±0.1

DynaMo-180M-T3 2.2±0.1

Pythia-410M 7.4±0.2

DynaMo-430M-T3 7.9±0.2

Pythia-1B 12.0±0.2

DynaMo-1.1B-T3 14.2±0.3

Pythia-1.4B 6.2±0.2

DynaMo-1.5B-T3 18.9±0.3

Pythia-2.8B 7.1±0.2

DynaMo-2.9B-T3 25.1±0.3

Pythia-6.9B 8.9±0.2

DynaMo-7.3B-T3 33.6±0.3

Table 12: Zero-shot accuracy
for the RACE benchmark along
with exact match performance and
F1 scores (in parenthesis) for the
SquAD2.0 benchmark.

Model RACE SQuAD2.0

Pythia-70M 23.5±1.3 1.2 (2.5)
DynaMo-77M-T3 24.4±1.3 4.2 (5.6)

Pythia-160M 28.3±1.4 0.6 (3.5)
DynaMo-180M-T3 27.9±1.4 0.4 (3.0)

Pythia-410M 31.5±1.4 2.0 (7.4)
DynaMo-430M-T3 32.9±1.5 2.0 (7.2)

Pythia-1B 32.3±1.4 4.2 (5.3)
DynaMo-1.1B-T3 31.9±1.4 4.9 (11.5)

Pythia-1.4B 34.1±1.5 4.4 (5.8)
DynaMo-1.5B-T3 34.0±1.5 6.6 (13.5)

Pythia-2.8B 34.9±1.5 5.2 (8.5)
DynaMo-2.9B-T3 34.5±1.5 7.1 (15.0)

Pythia-6.9B 37.1±1.5 8.0 (9.5)
DynaMo-7.3B-T3 38.3±1.5 11.3 (19.0)

C.3.1 Closed-book Question Answering 1162

Next, we compare the performance of DynaMo 1163

with that of the baseline Pythia models on the Triv- 1164

iaQA closed-book question answering benchmark. 1165

We test the five-shot performance of models and 1166

report the exact match results. Table 11 shows the 1167

results. We can see that the DynaMo models sig- 1168

nificantly outperform the baselines, especially as 1169

the models become larger. 1170

C.3.2 Reading Comprehension 1171

We evaluate the models on the RACE (Lai et al., 1172

2017) and SQuAD2.0 (Rajpurkar et al., 2018) 1173

benchmarks in Table 12. Again, DynaMo outper- 1174

forms Pythia on most model sizes. 1175

C.3.3 Massive Multitask Language 1176

Understanding 1177

Next, we report performance on the massive multi- 1178

task language understanding (MMLU) benchmark, 1179

introduced by Hendrycks et al. (2021). It con- 1180

sists of multiple-choice questions that cover various 1181

knowledge domains, including humanities, STEM, 1182

and social sciences. We present five-shot accuracy 1183

results in Table 13. We observe that most mod- 1184

els have accuracy close to random chance (25%). 1185

Recent literature reports that models trained with 1186

much more data break the random performance 1187

barrier for these model sizes (Geng and Liu, 2023; 1188

18

Table 13: Five-shot accuracy on the MMLU benchmark.

Model Humanities Social Sciences STEM Other Average

Pythia-70M 24.1±3.0 26.0±3.2 27.6±3.8 23.9±3.2 25.6±3.3

DynaMo-77M-T3 23.6±2.9 27.4±3.3 26.6±3.7 24.8±3.2 25.7±3.3

Pythia-160M 24.2±3.0 26.0±3.2 27.3±3.7 24.1±3.2 25.6±3.3

DynaMo-180M-T3 24.7±3.0 26.6±3.2 25.7±3.6 24.9±3.2 25.5±3.3

Pythia-410M 25.6±3.1 25.0±3.2 26.9±3.7 26.5±3.4 26.1±3.4

DynaMo-430M-T3 25.2±3.1 23.5±3.1 27.7±3.8 27.2±3.4 26.1±3.4

Pythia-1B 25.2±3.0 22.3±3.0 24.0±3.6 25.7±3.3 24.3±3.3

DynaMo-1.1B-T3 24.6±3.0 22.7±3.1 25.2±3.7 26.2±3.3 24.8±3.3

Pythia-1.4B 25.2±3.0 22.4±3.1 27.2±3.8 26.4±3.4 25.5±3.4

DynaMo-1.5B-T3 25.8±3.0 22.2±3.1 27.7±3.8 24.7±3.3 25.4±3.4

Pythia-2.8B 26.5±3.1 25.9±3.2 27.3±3.8 27.8±3.4 27.0±3.4

DynaMo-2.9B-T3 26.6±3.1 24.7±3.2 27.0±3.7 28.2±3.4 26.7±3.4

Pythia-6.9B 26.1±3.1 24.8±3.2 27.3±3.7 26.9±3.4 26.4±3.4

DynaMo-7B-T3 26.3±3.1 25.3±3.1 27.8±3.7 26.6±3.4 26.6±3.4

Table 14: Likelihood difference (lower is better) and percent-
age stereotype (50% is better) on the CrowS-Pairs benchmark
along with scores (higher is better) on the MC1 and MC2 tasks
in the TruthfulQA benchmark.

Model CrowS-Pairs TruthfulQA
LLD Stereotype MC1 MC2

Pythia-70M 3.7±0.1 55.4±1.2 25.3±1.5 47.5±1.6

DynaMo-77M-T3 3.7±0.1 54.9±1.2 25.1±1.5 47.0±1.6

Pythia-160M 4.3±0.1 54.7±1.2 24.7±1.5 44.4±1.5

DynaMo-180M-T3 4.3±0.1 53.6±1.2 24.0±1.5 43.2±1.5

Pythia-410M 3.5±0.1 58.6±1.2 23.6±1.5 41.0±1.5

DynaMo-430M-T3 3.6±0.1 58.7±1.2 23.7±1.5 41.1±1.5

Pythia-1B 3.4±0.1 63.1±1.2 22.6±1.5 38.9±1.4

DynaMo-1.1B-T3 3.5±0.1 63.3±1.2 22.8±1.5 39.3±1.4

Pythia-1.4B 3.5±0.1 61.4±1.2 23.0±1.5 38.6±1.4

DynaMo-1.5B-T3 3.6±0.1 61.0±1.2 23.6±1.5 39.0±1.4

Pythia-2.8B 3.4±0.1 63.4±1.2 21.2±1.4 35.6±1.4

DynaMo-2.9B-T3 3.4±0.1 62.3±1.2 20.4±1.4 35.8±1.4

Pythia-6.9B 3.8±0.1 63.2±1.2 21.7±1.4 35.2±1.3

DynaMo-7.3B-T3 3.7±0.1 62.8±1.2 21.8±1.4 35.2±1.3

Touvron et al., 2023b). We plan to train multi-token1189

counterparts of such models in the future.1190

C.3.4 Bias and Misinformation1191

Table 14 shows the effect of multi-token train-1192

ing on bias and misinformation in the DynaMo1193

suite of models. We report performance on the1194

CrowS-Pairs (Nangia et al., 2020) and the Trth-1195

fulQA benchmarks (Lin et al., 2022). The former1196

tests the model’s biases along nine categories: gen-1197

der, religion, race/color, sexual orientation, age,1198

nationality, disability, physical appearance, and so-1199

cioeconomic status. The latter tests the model’s1200

ability to generate false claims, i.e., to hallucinate.1201

We observe that multi-token training does not sig-1202

nificantly affect the model’s bias and misinforma-1203

tion abilities.1204

C.4 Dynamic Multi-token Perplexity1205

For a given threshold ϵb, the DynaMo model dy-1206

namically backs off to lower-order prediction based1207

on input context and predicted joint probability dis-1208

(a)

(b) (c)

Figure 14: Dynamic multi-token perplexity (PPLd) for differ-
ent models in the DynaMo suite. Effect of ϵb on (a) PPLd and
(b) speed-up. (c) Plot of PPLd vs. speed-up.

tribution. We calculate the dynamic multi-token 1209

perplexity PPLd based on the number of tokens 1210

generated. Fig. 14 plots PPLd against the resul- 1211

tant mean speed-up on the validation set. We ob- 1212

serve that PPL1 (i.e., PPLd at 1× speed-up) drops 1213

as models become larger. The slope of the curve 1214

also reduces. This shows promise for multi-token 1215

prediction by larger models beyond those in the 1216

current DynaMo suite. 1217

C.5 Sentence Completion Benchmark 1218

We now present additional results on the sentence 1219

completion benchmark. We use LLMs trained 1220

under the CLM (or modified-CLM) objective to 1221

complete the sentence for a given prompt in the 1222

sentence-completion benchmark (details in Ap- 1223

pendix A.3). We use GPT-3.5 to rate the text gen- 1224

erations in single-mode and pairwise evaluations 1225

against Pythia. 1226

C.5.1 Single-mode Evaluation 1227

Fig. 15 shows the histograms for the GPT scores on 1228

the sentence-completion benchmark for text gener- 1229

ations by Pythia-70M and DynaMo-77M-T3. We 1230

evaluated 100 generations (ten for each prompt, 1231

with a separate random seed) for both models. 1232

Fig. 16 shows the GPT scores for DynaMo-77M- 1233

T3 on the sentence-completion benchmark for dif- 1234

ferent speed-ups. Since the speed-up varies for dif- 1235

ferent text generations (even for the same prompt) 1236

with ϵb, we plot a regression line to predict the GPT 1237

for a target speed-up. We leveraged these predicted 1238

GPT scores to plot Fig. 17, which shows the evo- 1239

lution of GPT scores with increasing model sizes. 1240

We plot the mean GPT scores of the Pythia models. 1241

Further, we plot the mean GPT scores of the Dy- 1242

19

(a) (b)

Figure 15: Histograms of GPT scores for single-mode evalu-
ations on the sentence-completion benchmark for (a) Pythia-
70M and (b) DynaMo-77M-T3 (ϵb = 1.0). GPT-3.5 is used
as the judge.

Figure 16: GPT scores for DynaMo-77M-T3 on the sentence-
completion benchmark plotted against speed-up. GPT-3.5 is
used as the judge. The mean GPT score for Pythia-70M is
plotted as a black dashed line. Regression plotted with 95%
confidence intervals.

naMo models at different speed-ups. We regress1243

the GPT scores at a target speed-up using GPT1244

score vs. ϵb and wallclock speed-up vs. ϵb plots. As1245

ϵb increases, the GPT score increases, but speed-up1246

decreases. The DynaMo models outperform the1247

baseline at 1× speed-up, improving performance1248

as the model size increases.1249

C.5.2 Pairwise Evaluation1250

Fig. 18 shows the pairwise performance and speed-1251

ups for DynaMo-77M-T3 against baseline Pythia-1252

70M. For every prompt, at every ϵb, each bar plots1253

the wins, ties, and losses of DynaMo-77M-T3 over1254

ten text generations (in green, yellow, and red, re-1255

spectively). We show a regression plot for win-1256

rates (wins/losses) against speed-ups (for different1257

Figure 17: Effect of model size on GPT scores. We plot
the GPT scores for DynaMo models at different speed-ups.
GPT-3.5 is used to judge the text generation quality on a scale
from 1 to 10.

Figure 18: Normalized pairwise performance and speed-ups
of DynaMo-77M-T3 on the sentence-completion benchmark
plotted against ϵb.

ϵb’s) in Fig. 3. 1258

Fig. 19 shows the variation of win rates and 1259

speed-ups across different sentence types for 1260

the DynaMo-77M-T3 model on the sentence- 1261

completion benchmark. 1262

Next, we study the effect of model sizes and 1263

parameter overheads on the obtained speed-ups. 1264

Every DynaMo model instantiated from a base 1265

Pythia model trains additional decoder layers for 1266

the second- and third-token heads. This results in 1267

a parameter overhead for each DynaMo model rel- 1268

ative to its Pythia counterpart. Fig. 20 shows that 1269

speed-up increases with model size and decreases 1270

with parameter overhead, albeit with low statistical 1271

significance. Nevertheless, this shows promise for 1272

high speed-ups in larger multi-token LLMs. Note 1273

that, for the models in the DynaMo suite, model 1274

sizes and their parameter overheads are not uncor- 1275

20

(a) (b)

Figure 19: Pairwise performance on the sentence-completion benchmark categorized by different sentence types. Radar charts
for mean (a) win rates and (b) speed-ups for different ϵb’s are shown.

(a) (b)

Figure 20: Speed-up, i.e., the minimum of (theoretical) same-
quality speed-up and 3× for three-token models, with (a)
model sizes and (b) parameter overheads. Results are shown
for pairwise evaluation on the sentence-completion bench-
mark. Only points below 3× speed-up were used to plot the
regression line (shown with 95% confidence intervals). Pa-
rameter overheads with model sizes are shown in the inset.

related [see inset in Fig. 20(a)]. Thus, we need1276

more rigorous scaling experiments to test the ef-1277

fect of model sizes and parameter overheads on the1278

obtained speed-up, which we leave to future work.1279

D Sample Text Generations1280

Figs. 21, 22, and 23 show the generated responses1281

at different speed-ups along with GPT-4’s judg-1282

ments. We observe that as the target speed-up1283

increases, the grammatical mistakes in the gen-1284

erated response also increase. For 3× speed-up,1285

DynaMo-7.3B-T3 generated unrelated text. De-1286

spite using the repetition penalty, we also observe1287

repetitive n-grams generated for smaller models.1288

Grammatical mistakes during multi-token genera- 1289

tion should decrease with larger training corpora 1290

for subsequent token-head training and with more 1291

representative models (e.g., LLaMA-2-70B, Tou- 1292

vron et al. 2023b). 1293

21

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @1×: To improve your time
management skills, you should set realistic goals, create a weekly schedule,
keep track of your tasks, prioritize them, and break down large projects into
smaller, more manageable chunks. Additionally, it is important to practice
good habits such as setting aside specific periods for specific tasks, taking
regular breaks, and making sure that you are giving yourself enough time to
complete each task.

GPT-4’s judgment: Both assistants provided similar advice on improving time
management skills, including setting realistic goals, breaking down large tasks,
prioritizing tasks, and taking regular breaks. However, Assistant B added the
suggestion of creating a weekly schedule and setting aside specific periods for
specific tasks, which provides a bit more detail and practical advice for the
user. Therefore, Assistant B’s response is slightly more helpful and detailed.
Final Verdict: [[B]]

Figure 21: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 1× speed-up, along with GPT-4’s judgements.

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @2.62×: There are several ways you
can improve your time management skills. These include setting realistic and
achievable goals by setting milestones and take regular breaks. Additionally,
make sure to delegate tasks to others to prioritize your work and make sure
you have enough time for yourself. Lastly, implement successful planning
strategies such as a to-do list and list out specific tasks to break them down
into manageable chunks. Finally, practice mindfulness meditation as it will
help you become better aware of your thoughts and emotions and help them stay
under control.

GPT-4’s judgment: Both assistants provide useful advice on improving time
management skills, including setting realistic goals, breaking down tasks, and
taking regular breaks. However, Assistant B goes a step further by suggesting the
practice of mindfulness meditation to help control thoughts and emotions, which
can indirectly improve time management. This additional piece of advice makes
Assistant B’s response more comprehensive and detailed. Therefore, Assistant
B’s response is better. Final Verdict: [[B]]

Figure 22: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 2.62× speed-up, along with GPT-4’s judgements. A
blatant grammatical mistake is highlighted in yellow.

22

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @3×: There are several ways you
can improve your time management skills. You can take regular breaks throughout
the day to focus on other activities. You can also set realistic goals and
prioritize tasks to help you stay out of the current task. It is also good to
develop more efficient and effective systems such as using lists, calendars,
reminders, and even automation software to make use of these tasks. Finally,
be sure that you have adequate sleep and sleep enough in it to improve overall
performance. Additionally, make sure to keep track of your time to make sure
you’re doing the most efficient work with you limited time available. Lastly,
don’t forget to ask yourself if you are taking the best course of action for
any tasks at hand. Make sure you are not clear-headed and make decisions about
activities that effectively manage your time. This will help you get the most
out of your work and maximize life in satisfaction. Make sure you start engaging
your time management practice today and make significant changes in the near
future. Good luck! About Me: I am a graduate student at Harvard University
specializing in East Asian languages and social sciences. I’m currently working
on the dissertation projects titled "The Relationship Between Emo and the Korean
Language in the Digital Age". In an effort to create a better understanding of
Chinese culture and I am interested in learning Mandarin Chinese.

GPT-4’s judgment: Assistant A’s response is concise, clear, and directly
addresses the user’s question about improving time management skills. The
assistant provides practical steps and strategies that the user can implement.
Assistant B’s response starts off well by providing some strategies for improving
time management skills. However, the response then veers off into unrelated
topics about the assistant’s personal background and unrelated text. This
makes the response confusing and less helpful to the user. Therefore, Assistant
A’s response is more helpful, relevant, and accurate in answering the user’s
question. Final verdict: [[A]]

Figure 23: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 3× speed-up, along with GPT-4’s judgements. Blatant
grammatical mistakes are highlighted in yellow.

23

	Introduction
	Challenges and Motivation
	Our Contributions

	Background and Related Works
	Method
	Going Beyond One-token Prediction
	Dynamic Text Generation
	Co-occurrence Weighted Masking
	Dynamic Back-off and Adaptive Thresholding

	Evaluation Methods
	NLU Benchmarks
	Multi-token Perplexity

	Open-ended Text Generation

	Experiments
	Downstream Performance
	Multi-token Perplexity
	Text Generation Performance and Speed-up
	Instruction Finetuning

	Discussion
	Conclusion
	Limitations
	Experimental Setup Details
	Training and Evaluation Processes
	Training Overheads
	Sentence-completion Benchmark

	Optimal Transport Theory
	Additional Results
	Ablation of Dynamic Text Generation Methods
	Other Multi-token Prediction Methods
	Design Variations
	Evaluations
	Effect of Stronger Attentions
	Two-token vs. Three-token Prediction

	Additional Downstream Performance Results
	Closed-book Question Answering
	Reading Comprehension
	Massive Multitask Language Understanding
	Bias and Misinformation

	Dynamic Multi-token Perplexity
	Sentence Completion Benchmark
	Single-mode Evaluation
	Pairwise Evaluation

	Sample Text Generations

