
Under review as a conference paper at ICLR 2024

ENHANCING LARGE LANGUAGE MODELS IN CODING
THROUGH MULTI-PERSPECTIVE SELF-CONSISTENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have exhibited remarkable ability in textual gen-
eration. However, in complex reasoning tasks such as code generation, generating
the correct answer in a single attempt remains a formidable challenge for LLMs.
Previous research has explored solutions by aggregating multiple outputs, lever-
aging the consistency among them. However, none of them have comprehensively
captured this consistency from different perspectives. In this paper, we propose the
Multi-Perspective Self-Consistency (MPSC) framework, a novel decoding strat-
egy for LLM that incorporates both inter-consistency across outputs from multi-
ple perspectives and intra-consistency within a single perspective. Specifically,
we ask LLMs to sample multiple diverse outputs from various perspectives for
a given query and then construct a multipartite graph based on them. With two
predefined measures of consistency, we embed both inter- and intra-consistency
information into the graph. The optimal choice is then determined based on con-
sistency analysis in the graph. We conduct comprehensive evaluation on the code
generation task by introducing solution, specification and test case as three per-
spectives. We leverage a code interpreter to quantitatively measure the inter-
consistency and propose several intra-consistency measure functions. Our MPSC
framework significantly boosts the performance on various popular benchmarks,
including HumanEval (+17.60%), HumanEval Plus (+17.61%), MBPP (+6.50%)
and CodeContests (+11.82%) in Pass@1, when compared to original outputs gen-
erated from ChatGPT, and even surpassing GPT-4.

1 INTRODUCTION

In recent years, pre-trained large language models (LLMs) have demonstrated unprecedented pro-
ficiency in understanding, generating, and interacting with human language (Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023; Touvron et al., 2023). These models attain remarkable few-
shot or even zero-shot performance on a diverse array of natural language processing tasks, ranging
from low-level text generation to high-level reasoning and planning, by utilizing vast amounts of
textual data during pre-training.

Despite their remarkable abilities, LLMs often struggle to generate the correct answer in a single
attempt, especially in complex reasoning tasks like solving mathematical problems or generating
code. To address this issue, prior research has sought to aggregate multiple outputs and find answers
through their consistency (Wang et al., 2022; Sun et al., 2022; Zhou et al., 2022; Jung et al., 2022).
However, these approaches only consider the intra-consistency within a single perspective when
generating the outputs, potentially leading to a situation akin to the tale of blind men describing an
elephant, where LLMs fail to grasp the complete picture and engage in a deliberate thought process.

To avoid this, we further leverage inter-consistency, which captures the agreement between gen-
erated outputs from diverse perspectives. In this paper, we propose the Multi-Perspective Self-
Consistency (MPSC) framework, a novel decoding strategy for LLM that incorporates both inter-
consistency across multiple perspectives and intra-consistency within a single perspective. Figure
1a provides a high-level comparison between previous works and our proposed framework. Specif-
ically, we prompt the LLM to generate diverse outputs from multiple perspectives simultaneously,
treating them as vertices in a graph. We then establish connections (i.e. edges) based on the pairwise
agreement of vertices from different perspectives. Our goal is to identify the most reliable output

1

Under review as a conference paper at ICLR 2024

Agree

Self-Consistency
Multi-Perspective
Self-Consistency

Vote

One Perspective Multiple Perspectives

Generate Generate

Input Input

Output Output

(a)

0 70 75 80 85 9080 75 70 65 60

60

65

70

75

80

25

20

15

10

5

(b)

Figure 1: (a) Difference between Self-Consistency and Multi-Perspective Self-Consistency. Self-
Consistencsy aggregates diverse outputs from one perspective. We embed both inter- and intra-
consistency among multiple perspectives into a graph and leverage them for better inference. (b)
The performance of MPSC. With ChatGPT as the foundation model, MPSC even surpasses GPT-4
and achieves SOTA performance on all four benchmarks.

using a score function, which evaluates all vertices by considering both intra- and inter-consistency
information encoded in the graph. Specifically, the intra-consistency information guides the func-
tion to favor the most internally consistent output within a single perspective, while inter-consistency
ensures that the scores for two statements from different perspectives are similar if they reach a con-
sensus. We formalize the learning process of the score function as an optimization problem adhering
to these two consistency criteria and leverage an iterative algorithm proposed by Zhou et al. (2003b)
to achieve this goal.

To empirically demonstrate the effectiveness of our approach, we apply MPSC in the code genera-
tion task. We propose to employ solution, specification and test case as three perspectives to describe
a given user intent in natural language. Specifically, solution implements the desired functionality,
specification demonstrates the intended properties, while test case outlines the expected behavior
for some specific inputs. The intriguing part about these definitions of perspectives is that we can
measure the inter-consistency among them deterministically with a code interpreter. We evaluate
MPSC on four widely used code generation benchmarks, including HumanEval (Chen et al., 2021),
HumanEval+ (Liu et al., 2023), MBPP (Austin et al., 2021) and CodeContests (Li et al., 2022).
We employ MPSC to select the most likely correct solutions generated by ChatGPT. Experimental
results show that our method boosts the performance by a large margin, 17.60% in HumanEval,
17.61% in HumanEval+, 6.50% in MBPP and 11.82% in CodeContests. Our results even surpass
GPT-4 (OpenAI, 2023) as shown in Figure 1b. It’s worth noting that our proposed framework is not
constrained to code generation. By defining perspectives and designing the corresponding inter- and
intra-consistency measures, MPSC can be used for any textual generation scenarios.

2 MPSC: MULTI-PERSPECTIVE SELF-CONSISTENCY

A single perspective can often lead to an incomplete understanding of a problem, akin to the parable
of “blind men describing an elephant.”. The reasoning process of LLMs follows a similar pattern.
LLMs generally cannot guarantee the correctness of generated output, especially in complex reason-
ing tasks requiring comprehensive thinking, even though they possesses the knowledge to produce
the correct answer. However, a key aspect of human intelligence is the ability to think from multiple
perspectives, resulting in a more comprehensive understanding of situations and more accurate so-
lutions to problems. Inspired by human cognition, we propose a novel decoding strategy for LLMs
that enhances their reasoning abilities by incorporating consistency among outputs from multiple
perspectives.

2

Under review as a conference paper at ICLR 2024

2.1 GRAPH CONSTRUCTION

We first require the LLM to generate diverse outputs from different perspectives. Perspectives can be
defined as different ways to describe a given query. For example, in the context of code generation,
we can consider code solutions and test cases as two perspectives, with the former describing the
desired functionality and the latter outlining the expected behavior of specific inputs.

We employ graph representations to capture the relationships between diverse outputs. Specifically,
we represent them as a set of vertices V = {v1, ..., vN}, where each vertex corresponds to an output.
Based on predefined perspectives, we construct an undirected multipartite graph G = (V,E), with
each edge encoding the agreement between a pair of outputs from two distinct perspectives. Our
goal is to leverage graphs to encode the multi-perspective consistency information, and then learn a
score function f : V → R (also a vector f , fi = f(vi)) from graphs to choose the most reliable
answer among all generated outputs.

2.2 INCORPORATING MULTI-PERSPECTIVE CONSISTENCY

We distinguish between two kinds of consistency based on the perspectives involved. Intra-
consistency is defined as the degree to which a given output aligns with others within the same
perspective, following the original definition in Wang et al. (2022). Conversely, inter-consistency is
defined as the degree of consensus between a pair of outputs from two different perspectives.

Inter-Consistency We draw an analogy with the process of humans acquiring accurate under-
standing through multiple perspectives. During the investigation of a group crime, police usually
interrogate different suspects separately. By comparing testimonies from various perspectives, a
more accurate understanding of the case can be achieved. An underlying assumption is that a pair
of statements exhibiting consistency are either both correct or both incorrect.

To apply the assumption to the constructed graph, we formalize the consistency information by a
mathematical representation within the graph by introducing a measure function ω : V × V → R,
which also constructs the adjacency matrix W , Wi,j = ω(vi, vj). Therefore, the pairwise consis-
tency is represented as edge weights, while the correctness of statements corresponds to the scores of
vertices given by f . Consequently, the assumption above necessitates minimizing the local variation
of f over each edge, expressed as the difference between the scores of two vertices |f(vi)− f(vj)|.

Intra-Consistency Wang et al. (2022) discovered a strong correlation between the intra-
consistency of an output and its accuracy. This finding suggests that intra-consistency serves as
an estimate of the model’s confidence in its generated outputs and reflects correctness to a certain
degree. We employ another measure function φ : V → R (also a vector y, yi = φ(vi)) to quan-
tify the intra-consistency of each vertex in the constructed graph. Subsequently, we can utilize the
intra-consistency information as a supervision signal by ensuring the closeness between the score
function f and the intra-consistency measure φ.

2.3 OPTIMIZATION FORMULATION

Following the criteria of inter- and intra-consistency, we derive two objectives for each,

Linter =
∑

(vi,vj)∈E

Wi,j(f(vi)− f(vj))
2 = fTLf (1)

Lintra =
1

2

∑
vi∈V

|f(vi)− φ(vi)|2 =
1

2

∑
vi∈V

|fi − yi|2 =
1

2
||f − y||2 (2)

where L = D −W is the laplacian matrix of the graph G1. The objective of inter-consistency is
the weighted sum of local variation while the objective of intra-consistency is a Mean Squared Error
(MSE). We can then formulate the learning process of f as an optimization problem that combines
both Linter and Lintra:

min
f :V→R

{α · Linter + (1− α) · Lintra} (3)

1In our experiment, we use the symmetric normalized Laplacian Lsym = D− 1
2LD− 1

2 for more robust
performance.

3

Under review as a conference paper at ICLR 2024

To solve this optimization problem on the graph, we adopt the iterative algorithm proposed by Zhou
et al. (2003b). The details of the algorithm can be found in Appendix A.

MPSC is highly flexible and extensible. With the specific meaning of perspectives defined, one can
plug and play different measure functions of inter- and intra-consistency according to the particular
application scenario. In this paper, we take code generation as the target scenario.

3 MPSC ON CODE GENERATION

In this section, we illustrate the application of the MPSC framework to a specific scenario, with a
focus on the task of code generation. Code generation necessitates proficient natural language under-
standing, deliberate reasoning and stringent controllability to generate valid solutions. As a result, it
has been acknowledged as a fundamental benchmark for evaluating the capabilities of LLMs. Pre-
vious works (Li et al., 2022; Chen et al., 2022) utilize test cases as auxiliary verification to improve
the quality of generated solutions. Distinct from these approaches, we further propose to incorpo-
rate specifications as an additional perspective, inspired by Formal Verification. Consequently, we
derive a measure of inter-consistency among the three perspectives: Solution, Specification and Text
case, which can be deterministically assessed by the python interpreter. Furthermore, we introduce
several measures of intra-consistency in terms of varying degrees of agreement, ranging from literal
similarity to structural equivalence.

3.1 SOLUTION, SPECIFICATION AND TEST CASE

Given a user intent in natural language, we introduce solution, specification and test case as three
perspectives to describe the required functionality. A solution is the source code implementing the
functionality denoted as g : X → Y, which is also the target of code generation. A test case is a
pair of valid input and output satisfying the required functionality denoted as (x, y) ∈ X×Y. Spec-
ification draws inspiration from Formal Verification in software engineering, which mathematically
proves the correctness of one program by ensuring its satisfaction of some certain formal speci-
fications. In the context of software engineering, formal verification is usually written in formal
programming languages, e.g. Coq (Team, 2023) and Dafny (Leino, 2010), and conducted by ac-
companying verification tools. For the generalization of the proposed method, we adopt the idea of
formal verification and limit the specifications within pre-conditions and post-conditions, which can
be written as functions in the same programming language like solutions, without struggling writing
formal languages. Specifically, a pre-condition constrains the requirements that a valid input should
satisfy, while a post-condition constrains the relationships that a pair of valid inputs and outputs
should satisfy. We denote them as hpre : X→ {False, True} and hpost : X×Y→ {False, True}.
Detailed examples of outputs from the three perspectives are shown in Figure 2.

3.2 INTER-CONSISTENCY MEASURES FOR CODE GENERATION

The most appealing aspect of introducing the three perspectives is that we can use a code inter-
preter to quantitatively verify the agreement between the outputs from different perspectives, thus
obtaining a deterministic measure of inter-consistency.

Consider three vertices, vi represents an output gi ∈ {g1, g2, ..., gI} from Solution perspective, vj
represents an output (hpre

j , hpost
j) ∈ {(hpre

1 , hpost
1), ..., (hpre

J , hpost
J)} from Specification perspec-

tive, and vk represents an output (xk, yk) ∈ {(x1, y1), ..., (xK , yK)} from Test case perspective.
We propose to measure the inter-consistency among them as following,

• For Solution and Specification, ω(vi, vj) = Ex∈X[1hpre
j (x)→hpost

j (x,gi(x))
]. 2

• For Solution and Test case, ω(vi, vk) = 1gi(xk)=yk
.

• For Specification and Test case, ω(vj , vk) = 1hpre
j (xk)∧hpost

j (xk,yk)
.

We provide the Python code snippets implementing the inter-consistency measure in Appendix B.

2It is impossible to enumerate all x ∈ X, thus we use sampling for approximation.

4

Under review as a conference paper at ICLR 2024

def median(l: list):

 l = sorted(l)

 if len(l) % 2 == 1:

 return l[len(l)//2]

 else:

 return (l[len(l)//2 - 1] + l[len(l)//2]) / 2.0

Specification
def median(l: list):

 """Return median of

elements in the list l.

 >>> median([3, 1, 2,

4, 5])

 3

 >>> median([-7, 4, 6,

100, 10, 20])

 15.0

 """

def preconditions(l):

assert isinstance(l, list)

assert all([isinstance(i, (int, float)) for i in l])

def postconditions(l, output):

assert isinstance(output, (int, float))

num_greater = sum([1 for i in l if i >= output])

num_less = sum([1 for i in l if i <= output])

assert num_greater == num_less

assert median([-10, 4, 6, 1000, 10, 20]) == 8.0

Solution

Test case

User Instruction

Figure 2: A detailed example of the three perspectives of function median(l) from HumanEval.

3.3 GENERAL INTRA-CONSISTENCY MEASURES

We also explore several intra-consistency measure functions, as presented in Table 1. These pro-
posed measures are designed to be generalizable across all tasks, as they utilize no prior knowledge
and make no assumptions related to the specific perspective definitions.

Bayes Risk Minimum Bayes risk decoding (Kumar & Byrne, 2004) selects the output h ∈ H that
minimizes the expected errors R(h) = Ey∼P (y)[L(y, h)] over the distribution of label y. Because of
the unavailability of P (y), P (h) is usually used as a proxy distribution in practice. Then the Bayes
risk can be rewritten as R(h) =

∑
h′∈H L(h′, h) · P (h′), which is in fact measure the consistency of

h over the hypothesis space. Specifically, we use negative BLEU metrics (Papineni et al., 2002) as
loss function for and assume that the hypothesis space is uniform for generality.

Structural Equivalence Structural equivalence refers to a concept of vertex similarity in graph
theory. Two vertices are considered structurally equivalent if they share connections with the same
third-party vertices. By applying this equivalence relation, we can categorize vertices into several
equivalence classes. In the context of multipartite graphs, each equivalence class is a subset of an
independent set, representing a distinct perspective in our scenario. Consequently, outputs from
the same perspective are demarcated into structural equivalence classes, of which outputs exhibit
consistent behavior or possessing consistent meanings.

We define several intra-consistency measures based on the structural equivalence classes within each
perspective. We denote the structural equivalence classes of vi as S(vi). The neighbors of vi can be
partitioned into subsets {Nt(vi)|t = 1, ...} depending on the perspective they belong to.

• Cardinality utilizes the cardinality of the structural equivalence class as score.
• Weight is inspired by an intuition from the human discussion process that Truth always rests

with the majority. The more agreements an idea receives, the higher the likelihood that it is
correct. The neighbors of structural equivalence classes reach a consensus with them to some
degree. Therefore, Weight multiply the cardinality of different neighbor subsets {Nt(vi)|t =
1, ...} to measure the agreements that the structural equivalence class receives.

• Weighted Cardinality combines both Cardinality and Weight by multiplication.

5

Under review as a conference paper at ICLR 2024

Method Expression
Bayes Risk φ(vi) = C ·

∑
vj∈K(vi)

bleu(vi, vj)
Cardinality φ(vi) = C · |S(vi)|
Weight φ(vi) = C ·

∏
t |Nt(vi)|

Weighted Cardinality φ(vi) = C · |S(vi)| ·
∏

t |Nt(vi)|
Uniform φ(vi) = C
Probability φ(vi) = C · log p(vi; θLLM)
Label φ(vi) = 1vi is label

Table 1: Mathematical expressions of different intra-consistency measures. C is the normalizing
constant so that the measures of outputs within one perspective sum up to 1. K(vi) is the indepen-
dent set of vi corresponding to its perspective. S(vi) is the structural equivalence class of vi.

Considering the fact that the intra-consistency criteria Lintra simply utilizes y as a supervised signal
without additional requirements on it, we can likewise introduce other prior information as y in
addition to intra-consistency measures.

• Uniform is the baseline without any prior information and treats every vertex equally.
• Probability utilizes the probability of LLM generating the output sequence as score, which

reflects the belief of the model about the output.
• Label introduces partial golden labels for supervision.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Dataset and Metrics We conduct experiments on four widely used Python code generation bench-
marks, including HumanEval, HumanEval+, MBPP and CodeContests. HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) are two hand-written Python programming problems. Hu-
manEval+ (Liu et al., 2023) adds more unit tests based on HumanEval. CodeContests (Li et al.,
2022) is a much more challenging dataset consisting of competition problems from the Codeforces
platform. Following Chen et al. (2021), we use Pass@k for evaluation. It is an unbiased estimator
of the probability that at least one out of the k solutions generated by the model passes unit tests.
Details about the metric can be found in Appendix C.

Implementation and Baselines We compare several baselines from different LLMs for code like
ChatGPT3 (GPT-3.5-Turbo), GPT-4 (OpenAI, 2023), Code Llama (Touvron et al., 2023) and Wiz-
ardCoder (Luo et al., 2023), to other approaches enhancing LLMs on code generation during infer-
ence, including Self-consistency (Wang et al., 2022), MBR-EXEC (Shi et al., 2022), CodeT (Chen
et al., 2022) and Self-collaboration (Dong et al., 2023). For our framework, we employ GPT-3.5-
Turbo as the foundation model to generate 200 solutions, 100 specifications and 500 test cases for
each problem. For a fair comparison, we employ the same solutions and test cases if needed for other
methods. For MPSC-Label, we use a human-written script4 to extract test cases provided in doc-
strings as golden labels for the test case perspective. Further details regarding the implementation
of our method and baselines are provided in Appendix E.

4.2 MAIN RESULTS

The experimental results on the four benchmarks are presented in Table 2. We observe that MPSC
consistently enhances the code generation capabilities across all benchmarks with a remarkable mar-
gin of improvement. Particularly, when k is set to 1, which is the most prevalent scenario in real-
world applications, the performance improvement is notably significant (+17.6% on HumanEval,
+17.61% on HumanEval+, +6.5% on MBPP and +11.82% on CodeContests). With the foundation
model GPT-3.5-Turbo, our MPSC can even outperform GPT-4 in Pass@1 across all benchmarks

3https://chat.openai.com/
4Noted that MBPP doesn’t provide test cases in docstrings.

6

Under review as a conference paper at ICLR 2024

Benchmark HumanEval HumanEval+
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-3.5-Turbo 68.38 76.24 83.15 58.75 66.58 73.96
GPT-4 81.55 86.39 90.49 71.43 76.50 80.87
Code Llama-Instruct 62.20 - - - - -
WizardCoder 73.20 - - - - -

Self-consistency 73.86 73.93 74.10 63.50 64.70 65.67
MBR-EXEC 72.96 76.47 79.00 62.12 67.08 71.38
CodeT 78.05 78.05 78.30 67.87 68.75 69.65
Self-collaboration 74.40 - - - - -

MPSC-Uniform 82.32+13.94 83.86+7.62 84.79+1.64 71.29+12.54 74.32+7.74 76.17+2.21
MPSC-Bayes Risk 83.54+15.16 84.76+8.52 85.98+2.83 73.78+15.03 75.61+9.03 76.83+2.87
MPSC-Cardinality 84.15+15.77 84.27+8.03 85.06+1.91 74.63+15.88 75.16+8.58 76.73+2.77
MPSC-Weight 83.69+15.31 84.56+8.32 86.23+3.08 74.10+15.35 74.97+8.39 77.97+4.01
MPSC-Weighted Cardinality 85.98+17.60 85.48+9.24 86.25+3.10 76.36+17.61 76.77+10.19 77.59+3.63
MPSC-Label 85.37+16.99 86.60+10.36 86.35+3.20 74.95+16.20 76.60+10.02 76.96+3.00

Benchmark MBPP CodeContests
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-3.5-Turbo 66.80 72.34 76.60 2.57 4.22 7.16
GPT-4 71.26 74.27 76.99 6.07 8.23 11.67
Code Llama-Instruct 61.20 - - - - -
WizardCoder 61.20 - - 2.15 3.40 5.37

Self-consistency 71.70 71.73 71.82 8.10 8.42 8.48
MBR-EXEC 70.79 73.14 74.85 8.25 8.87 9.08
CodeT 71.90 71.95 72.02 9.92 10.18 10.30
Self-collaboration 68.20 - - - - -

MPSC-Uniform 68.44+1.64 70.21-2.13 71.61-4.99 5.45+2.88 6.05+1.83 6.76-0.40
MPSC-Bayes Risk 73.30+6.50 73.54+1.20 73.77-2.83 8.48+5.91 9.70+5.48 10.30+3.14
MPSC-Cardinality 72.13+5.33 72.14-0.20 72.15-4.45 8.84+6.27 9.69+5.47 9.70+2.54
MPSC-Weight 71.90+5.10 72.62+0.28 72.72-3.88 6.03+3.46 6.66+2.44 8.59+1.43
MPSC-Weighted Cardinality 73.17+6.37 73.24+0.90 73.31-3.29 11.26+8.69 11.51+7.29 12.12+4.96
MPSC-Label - - - 14.39+11.82 17.16+12.94 17.76+10.6

Table 2: The results on four code generation benchmarks. The foundation model for MPSC, Self-
consistency, MBR-EXEC, CodeT, Self-collaboration are all GPT-3.5-Turbo. The improvements are
calculated between our method and GPT-3.5-Turbo. The best and second best performance for each
dataset are shown in bold and underline.

(+4.43% on HumanEval, +4.93% on HumanEval+, +2.04% on MBPP and +8.32% on CodeCon-
tests). Compared to other approaches which also enhance LLMs, our MPSC still shows consistent
advantages in all benchmarks, excluding the Pass@5 score in MBPP benchmark. The strong per-
formance of MPSC-Uniform demonstrates that relying solely on inter-consistency can also boost
coding ability of LLM. On the other hand, incorporating various types of intra-consistency informa-
tion leads to even greater improvements. Specifically, MPSC-Label and MPSC-Weighted Cardinal-
ity exhibit particularly strong results. Surprisingly, MPSC-Weighted Cardinality can match or even
surpass MPSC-Label, which leverages the external supervision signals from golden test cases in
docstrings. This observation further highlights the significance of consistency information in LLMs.

4.3 FURTHER ANALYSIS

Ablation Study We conduct an ablation study to examine the impact of different perspectives
on MPSC. We adopt Uniform as the intra-consistency measure in this experiment. The results are
presented in Table 4. Evidently, both the specification and test case perspectives play crucial roles in
our framework. Additionally, the results indicate that test cases contribute more to the improvements
than specifications. We attribute the observation to the superior quality of test cases, as generating an
accurate test case is considerably simpler than abstracting a comprehensive and sound specification.

Generalization over different LLMs MPSC is a model-agnostic framework that assumes black-
box access to the underlying foundation model. To examine the generalization of MPSC, we em-
ploy open-source LLMs, in addition to ChatGPT, as foundation models. In specific, we consider

7

Under review as a conference paper at ICLR 2024

Benchmark HumanEval HumanEval+
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

WizzardCoder-34B† 67.84 72.12 75.98 58.70 62.88 66.88
+MPSC 79.27+11.43 78.10+5.98 78.28+2.30 68.67+9.97 68.43+5.55 68.52+1.64

Code Llama-34B 51.78 59.24 67.07 41.49 48.30 55.93
+MPSC 73.78+22.00 75.14+15.90 77.17+10.10 59.76+18.27 61.11+12.81 61.92+5.99

WizzardCoder-13B 60.35 66.10 72.01 50.25 56.00 61.98
+MPSC 75.00+14.65 76.83+10.73 76.44+4.43 62.80+12.55 64.02+8.02 64.85+2.87

Code Llama-13B 44.63 50.99 57.86 35.93 41.71 48.19
+MPSC 67.07+22.44 68.29+17.30 69.36+11.50 53.66+17.73 54.27+12.56 54.73+6.54

WizzardCoder-7B 53.81 59.62 66.06 45.06 50.83 57.69
+MPSC 70.52+16.71 69.90+10.28 70.85+4.79 59.62+14.56 60.95+10.12 63.01+5.32

Code Llama-7B 39.38 45.18 52.79 34.33 39.18 45.25
+MPSC 62.20+22.82 62.33+17.15 63.14+10.35 52.44+18.11 53.66+14.48 54.24+8.99

Table 3: The performance of MPSC with different foundation models. †: We use nucleus sampling
with temperature as 0.2 instead of greedy generation in this experiment.

[0k, 15k)

[15k, 30k)

[30k, 45k)

[45k, 60k)

[60k, 75k)

[75k, 90k)

[90k, 105k)

[105k, 120k)

[120k, 135k)

[135k, 150k)

[150k, 165k)

Sum of Edge Weights

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f P

as
s@

1=
10

0

CodeContests
HumanEval
MBPP

Figure 3: The correlation between the
performance of MPSC and the edge
density.

Method Pass@1 Pass@2 Pass@5

Ours 82.32 83.86 84.79
w/o Specification 79.27 81.42 83.57
w/o Test case 75.36 78.23 79.57
w/o All 68.38 76.24 83.15

Table 4: The ablation study results on HumanEval. The
measure of inter-consistency is Uniform.

two highly proficient LLMs for code, Code Llama and WizardCoder in Python with three scales of
parameters, 7B, 13B and 34B. The experiment results presented in Table 3 demonstrate that MPSC
consistently yields significant improvements across all models, which proves the extraordinary gen-
eralization of our proposed framework.

Impact of Edge Sparsity Our framework significantly depends on the inter-consistency informa-
tion between model outputs, which is represented as edges within the constructed graph. A critical
question that arises concerns the impact of edge sparsity on the framework’s efficacy. To address
this, we categorize all queries in the dataset into distinct bins based on the total edge weights in their
corresponding graphs and compute the perfect performance ratio (i.e., Pass@1=100) for each bin.
In this experiment, we employ the MPSC-Uniform configuration5. Figure 3 illustrates the correla-
tion between edge density and performance. The results clearly demonstrate a positive correlation
between the number of edges and the overall performance of our framework.

#Test cases #Specification

10 20 50 100

50 84.37 83.85 83.85 82.20
100 84.69 85.30 85.30 82.86
200 84.10 84.71 85.93 84.71
500 84.76 85.37 85.37 85.98

Table 5: Pass@1 of MPSC with differ-
ent sampling numbers on HumanEval.

#Test cases #Specification

10 20 50 100

50 71.23 72.34 72.33 72.96
100 71.69 72.16 72.40 72.70
200 71.69 72.39 72.40 72.46
500 70.58 70.66 71.83 72.94

Table 6: Pass@1 of MPSC with differ-
ent sampling numbers on MBPP.

5The Uniform configuration is utilized to eliminate the influence of intra-consistency information.

8

Under review as a conference paper at ICLR 2024

Impact of Sampling Number The sampling number of different perspectives may also affect the
performance of MPSC. To examine the effect, we conduct an analysis experiment by reducing the
number of specifications and test cases. We use the MPSC-Weighted Cardinality configuration6 in
this experiment. As shown in Table 5 and 6, MPSC generally suffers a slight degradation in per-
formance when fewer specifications or test cases are used, which is consistent with our intuition.
However, the performance decline is relatively small (1.6% for HumanEval and 1.7% for MBPP)
with only 10% of specifications and test cases are retained. The observation highlights the remark-
able performance and efficiency of MPSC, suggesting the potential for real-world application with
reduced computational costs.

5 RELATED WORK

Prompting Techniques on Consistency Based on Chain-of-thought mechanism Wei et al. (2022),
many previous works have adopted various prompting techniques and decoding strategies to reveal
the consistency of LLM outputs and further enhance the capabilities of LLMs. One line of ap-
proaches decodes multiple times from the same perspective and aggregate the results (Wang et al.,
2022; Zhou et al., 2022; Jung et al., 2022; Sun et al., 2022). For example, Wang et al. (2022) targets
tasks with fixed answer sets and scores each answer based on the output frequency. Building on
this, Sun et al. (2022) introduces recitation as context for augmentation. Jung et al. (2022) is also a
post-hoc method to enhance the reasoning abilities of LLM. They focus on the two-value entailment
relations (True or False) between statements and explanations. They treat the inference process as a
weighted MAX-SAT problem and utilize a logistic solver to solve it. Another line draws inspiration
from the “Dual Process” in cognitive science, which posits that human reasoning is dominated by
System 1 and System 2 (Daniel, 2017; Sloman, 1996). As a result, these approaches require LLMs
to play different roles like generator (i.e., System 1) and verifier (i.e., System 2), and optimize the
result iteratively by a conversational way (Madaan et al., 2023; Shinn et al., 2023; Zhu et al., 2023).
Xiong et al. (2023) also proposes the concept of ”inter-consistency”. Instead of referring to the
consistency within the same LLM, they focus to tackle the inter-inconsistency problem between
different models with a formal debate framework.

LLM for Code LLMs pretrained on large-scale code data have demonstrated strong capabilities in
the field of code generation (Chen et al., 2021; Li et al., 2022; Nijkamp et al., 2023; Fried et al., 2022;
Li et al., 2023; Rozière et al., 2023; Luo et al., 2023). However, they remain unreliable, particularly
in scenarios involving complex input-output mappings. Several methods have been proposed to
mitigate the phenomenon (Shi et al., 2022; Chen et al., 2022; Zhang et al., 2022; Key et al., 2022;
Ni et al., 2023; Dong et al., 2023; Olausson et al., 2023; Chen et al., 2023; Zhang et al., 2023). For
example, Shi et al. (2022) matches the execution results of generated solutions for minimum Bayes
risk selection. CodeT (Chen et al., 2022) additionally generates test cases to verify the generated
solutions. LEVER Ni et al. (2023) learns a verifier to predict the correctness of the program based
on the NL, program and execution results.

Ranking on Graph In our framework, the final problem is abstracted and transformed into a
ranking problem in graph. There exists some renowned graph ranking algorithms like PageRank
(Page et al., 1998) and HITS (Kleinberg, 1999). While our approach is inspired by manifold ranking
(Zhou et al., 2003b), which is built upon a regularization framework on discrete spaces (i.e. graphs
in this scenario) (Zhou et al., 2003a; Zhou & Schölkopf, 2004; 2005).

6 FUTURE WORK AND CONCLUSION

In this paper, we present a novel Large Language Model (LLM) decoding strategy, Multi-Perspective
Self-Consistency (MPSC), aimed at enhancing the performance of LLMs in complex reasoning
tasks where a single attempt may not guarantee the accuracy of the output. The proposed MPSC
strategy capitalizes on both intra- and inter-consistency among the generated outputs from multiple
perspectives to identify the most reliable answer. We conduct comprehensive experiments in code
generation. Evaluation results demonstrate that MPSC achieves the state-of-the-art performance in

6We use Weighted Cardinality since sampling numbers affect both inter- and intra-consistency information.

9

Under review as a conference paper at ICLR 2024

four benchmarks. Since MPSC framework is model-agnostic and task-agnostic, one can also apply
MPSC to other textual generation tasks like math problem solving and question answering. How-
ever, unlike code generation, where code interpreter can measure the agreement between outputs in
a deterministic way, assessing the agreement between natural language outputs may not be easy. So
we leave it as future work to apply MPSC in other scenarios.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis with
Large Language Models, August 2021. URL http://arxiv.org/abs/2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. CodeT: Code Generation with Generated Tests, November 2022. URL http://arxiv.
org/abs/2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating Large Language Models Trained on Code, July 2021. URL http:
//arxiv.org/abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching Large Language Models
to Self-Debug, April 2023. URL http://arxiv.org/abs/2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with Pathways,
October 2022. URL http://arxiv.org/abs/2204.02311.

Kahneman Daniel. Thinking, fast and slow. 2017.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration Code Generation via ChatGPT,
April 2023. URL http://arxiv.org/abs/2304.07590.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explanations.
arXiv preprint arXiv:2205.11822, 2022.

10

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2304.07590

Under review as a conference paper at ICLR 2024

Darren Key, Wen-Ding Li, and Kevin Ellis. I Speak, You Verify: Toward Trustworthy Neural
Program Synthesis, September 2022. URL http://arxiv.org/abs/2210.00848.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, sep
1999. ISSN 0004-5411. doi: 10.1145/324133.324140. URL https://doi.org/10.1145/
324133.324140.

Shankar Kumar and William Byrne. Minimum Bayes-Risk Decoding for Statistical Machine Trans-
lation. In Proceedings of the Human Language Technology Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pp. 169–
176, Boston, Massachusetts, USA, May 2004. Association for Computational Linguistics. URL
https://aclanthology.org/N04-1022.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Ed-
mund M. Clarke and Andrei Voronkov (eds.), Logic for Programming, Artificial Intelligence, and
Reasoning, pp. 348–370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
17511-4.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-Level Code
Generation with AlphaCode. Science, 378(6624):1092–1097, December 2022. ISSN 0036-8075,
1095-9203. doi: 10.1126/science.abq1158. URL http://arxiv.org/abs/2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
Refine: Iterative Refinement with Self-Feedback, May 2023. URL http://arxiv.org/
abs/2303.17651.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn Program
Synthesis, February 2023. URL http://arxiv.org/abs/2203.13474.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Demystifying GPT Self-Repair for Code Generation, June 2023. URL http:
//arxiv.org/abs/2306.09896.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report, Stanford Digital Library Technologies Project,
1998. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
31.1768.

11

http://arxiv.org/abs/2210.00848
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
https://aclanthology.org/N04-1022
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2306.09896
http://arxiv.org/abs/2306.09896
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768

Under review as a conference paper at ICLR 2024

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natu-
ral Language to Code Translation with Execution. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 3533–3546, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. URL https:
//aclanthology.org/2022.emnlp-main.231.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: An autonomous agent with dynamic
memory and self-reflection, March 2023. URL http://arxiv.org/abs/2303.11366.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):
3, 1996.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-Augmented Lan-
guage Models. In The Eleventh International Conference on Learning Representations, Septem-
ber 2022. URL https://openreview.net/forum?id=-cqvvvb-NkI.

The Coq Development Team. The coq proof assistant, June 2023. URL https://doi.org/
10.5281/zenodo.8161141.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models, October 2022. URL http://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining the Inter-Consistency of
Large Language Models: An In-depth Analysis via Debate, May 2023. URL http://arxiv.
org/abs/2305.11595.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. ALGO: Synthesizing
Algorithmic Programs with Generated Oracle Verifiers, May 2023. URL http://arxiv.
org/abs/2305.14591.

Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and
Sida I. Wang. Coder Reviewer Reranking for Code Generation, November 2022. URL http:
//arxiv.org/abs/2211.16490.

D. Zhou and B. Schölkopf. A Regularization Framework for Learning from Graph Data. In ICML
2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields (SRL
2004), pp. 132–137, July 2004. URL https://www.cs.umd.edu/projects/srl2004/
srl2004_complete.pdf.

Dengyong Zhou and Bernhard Schölkopf. Regularization on Discrete Spaces. In Walter G.
Kropatsch, Robert Sablatnig, and Allan Hanbury (eds.), Pattern Recognition, Lecture Notes in
Computer Science, pp. 361–368, Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-31942-9.
doi: 10.1007/11550518 45.

12

https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231
http://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=-cqvvvb-NkI
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2305.11595
http://arxiv.org/abs/2305.11595
http://arxiv.org/abs/2305.14591
http://arxiv.org/abs/2305.14591
http://arxiv.org/abs/2211.16490
http://arxiv.org/abs/2211.16490
https://www.cs.umd.edu/projects/srl2004/srl2004_complete.pdf
https://www.cs.umd.edu/projects/srl2004/srl2004_complete.pdf

Under review as a conference paper at ICLR 2024

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with Local and Global Consistency. In Advances in Neural Information Processing Systems, vol-
ume 16. MIT Press, 2003a. URL https://papers.nips.cc/paper_files/paper/
2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html.

Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf. Rank-
ing on Data Manifolds. In Advances in Neural Information Processing Systems, volume 16. MIT
Press, 2003b. URL https://papers.nips.cc/paper_files/paper/2003/hash/
2c3ddf4bf13852db711dd1901fb517fa-Abstract.html.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Yongfeng Huang, Ruyi Gan, Jiaxing Zhang,
and Yujiu Yang. Solving Math Word Problems via Cooperative Reasoning induced Language
Models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 4471–4485, 2023. doi: 10.18653/v1/2023.acl-long.245.
URL http://arxiv.org/abs/2210.16257.

A DETAILS OF THE ITERATIVE ALGORITHM

Description of Algorithm The iterative algorithm is shown in Algorithm 1.

Algorithm 1: Iterative Optimization
Input: degree matrix D = diag(d1, ..., dN), initialization score vector y, weighted adjacency

matrix W , threshold ϵ
Output: optimal confidence score vector f∗

begin
f (0) ←− y

T ←−D− 1
2WD− 1

2

i←− 0
Do

f (i+1) ←− αTf (i) + (1− α)y
i←− i+ 1

While ||f (i) − f (i−1)|| ≤ ϵ

f∗ ←− f (i)

return f∗

Proof of Convergence We first expand the expression of f (n) according to the recursive formula

f (n) = αTf (n−1) + (1− α)y

= (αT)n−1f (0) + (1− α)

n−1∑
i=0

(αT)iy

Notice that T is similar to a stochastic matrix WD−1 = D
1
2 (D− 1

2WD− 1
2)D− 1

2 = D
1
2TD− 1

2 .
Therefore the eigenvalues of αT are in [−α, α]. With α ∈ (0, 1), we have

lim
n→∞

(αT)n = 0

lim
n→∞

n−1∑
i=0

(αT)i = (I − αT)−1

Therefore
f∗ = lim

n→∞
f (n) = (1− α)(1− αT)−1y

13

https://papers.nips.cc/paper_files/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html
https://papers.nips.cc/paper_files/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html
https://papers.nips.cc/paper_files/paper/2003/hash/2c3ddf4bf13852db711dd1901fb517fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2003/hash/2c3ddf4bf13852db711dd1901fb517fa-Abstract.html
http://arxiv.org/abs/2210.16257

Under review as a conference paper at ICLR 2024

Benchmark HumanEval HumanEval+
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

MPSC-Uniform 82.32/82.32 83.86/84.18 84.79/84.83 71.29/71.29 74.32/74.83 76.17/76.17
MPSC-Bayes 83.54/83.54 84.76/84.76 85.98/85.98 73.78/73.78 75.61/75.61 76.83/76.83
MPSC-Cardinality 84.15/84.15 84.27/84.28 85.06/85.09 74.63/74.62 75.16/75.89 76.73/77.46
MPSC-Weight 83.69/83.69 84.56/85.06 86.23/86.31 74.10/74.22 74.97/76.04 77.97/79.24
MPSC-Weighted Cardinality 85.98/85.98 85.48/85.77 86.25/86.59 76.36/76.25 76.77/77.13 77.59/77.75

Benchmark MBPP CodeContests
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

MPSC-Uniform 68.44/68.50 70.21/70.35 71.61/72.04 5.45/5.43 6.05/6.02 6.76/6.79
MPSC-Bayes 73.30/73.30 73.54/73.54 73.77/73.77 8.48/8.48 9.70/9.70 10.30/10.30
MPSC-Cardinality 72.13/72.15 72.14/72.17 72.15/72.22 8.84/8.89 9.69/9.66 9.70/9.70
MPSC-Weight 71.90/71.76 72.62/72.84 72.72/73.02 6.03/6.03 6.66/6.67 8.59/8.86
MPSC-Weighted Cardinality 73.17/73.21 73.24/73.31 73.31/73.49 11.26/10.30 11.51/11.52 12.12/12.12

Table 7: Performance of MPSC optimized by the iterative algorithm or calculating closed-form
solution directly. The results are presented in form of (iterative algorithm / closed-form
solution).

Proof of Equivalence Denote the optimization function as

F = αfT (I −D− 1
2WD

1
2)f +

(1− α)

2
(f − y)2

= αfT (I − T)f +
(1− α)

2
(f − y)2

Differentiate F with respect to f , we have

∂F
∂f

= α(I − T)f + (1− α)(f − y)

Let the derivatives to 0, the solution f ′ = (1 − α)(I − αT)−1y = f∗. Therefore, the iterative
algorithm is actually optimizing the objective function.

Results of Closed-form Solution Despite the existence of a closed-form solution for the optimiza-
tion problem, the required matrix inversion operation is computationally expensive. Conversely,
the iterative algorithm exhibits rapid convergence and demonstrates strong empirical performance.
Consequently, we employ the iterative algorithm in our experiments. Additionally, we provide the
performance of the closed-form solution in Table 7. Our results indicate that the iterative algorithm
achieves a performance on par with that of the direct computation of the closed-form solution.

B IMPLEMENTATION OF INTER-CONSISTENCY

We present the code snippets measuring the inter-consistency between each pair of perspectives in
Listing 1, 2, 3. After execution with Python interpreter, the final_result is acquired as ω(vi, vj).

1 """Generated specifications"""
2 # Pre-conditions
3 def preconditions(input):
4 ...
5

6 # Post-conditions
7 def postconditions(input, output):
8 ...
9

10 """Generated test cases"""
11 test_case = {’input’: ...,
12 ’output’: ...}
13

14

Under review as a conference paper at ICLR 2024

14 """Check inter-consistency"""
15 def check():
16 pass_result = None
17 try:
18 preconditions(test_case[’input’])
19 postconditions(test_case[’input’], test_case[’output’])
20 pass_result = True
21 except Exception as e:
22 pass_result = False
23 return pass_result
24 global final_result
25 final_result = check()

Listing 1: Inter-consistency between specifications and test cases.

1 """Generated solutions"""
2 def entry_point(input):
3 ...
4

5 """Generated specifications"""
6 # Pre-conditions
7 def preconditions(input):
8 ...
9

10 # Post-conditions
11 def postconditions(input, output):
12 ...
13

14 """Generated casual inputs"""
15 casual_inputs = [...]
16

17 """Check inter-consistency"""
18 def check():
19 pass_result = []
20 for ci in casual_inputs:
21 try:
22 output = entry_point(ci)
23 postconditions(ci, output)
24 pass_result.append(True)
25 except Exception as e:
26 pass_result.append(False)
27 return sum(pass_result) / len(pass_result)
28 global final_result
29 final_result = check()

Listing 2: Inter-consistency between solutions and specifications.

1 """Generated solutions"""
2 def entry_point(input):
3 ...
4

5 """Generated test cases"""
6 test_case = {’input’: ...,
7 ’output’: ...}
8

9 """Check inter-consistency"""
10 def check():
11 try:
12 output = entry_point(test_case[’input’])
13 pass_result = (output == test_case[’output’])
14 except Exception as e:
15 pass_result = False
16 return pass_result
17 global final_result

15

Under review as a conference paper at ICLR 2024

18 final_result = check()

Listing 3: Inter-consistency between solutions and test cases.

C DISCUSSION ABOUT PASS@k

In this section, we discuss the flaws of Pass@k and propose a variant for evaluating methods involved
selection and filtering.

Chen et al. (2021) propose an unbiased estimator called Pass@k, which estimates the probability
of a model passing unit tests within k attempts. In specific, Chen et al. (2021) first samples a total
of n solutions with c of them are correct, randomly samples k solutions for testing, and use the
probability of passing tests for estimation,

Pass@k = 1−
(
n−c
k

)(
n
k

)
Although their implementation serves as an effective measure of the code generation ability of dif-
ferent foundation models (referred to as the first category of methods in the following), it is not
suitable to evaluate methods involving filtering or selection during the inference stage (Li et al.,
2022; Chen et al., 2022) (referred to as the second category of methods in the following), as the n
generated solutions are identical.

To address the limitation, we implement a variant of Pass@k. We assume each method provides a
score function over the n generated solutions, which provides a unified view for the two method
categories and hence enables a fair comparison. Based on the original definition of Pass@k, we
evaluate the method by testing the top-k solutions with the highest scores. As the score function
may assign the same score to multiple solutions, the test result of the top-k is not deterministic but
an expected value.

Mathematically, let’s assume that a method sequentially arranges outputs into an ordered list
{s1, ..., sn}, such that ∀i > j, si ⪯ sj according to their scores. We define a set of solutions
Sk = {si|sk ⪯ si}, which represents the solution set selected by the method. Suppose the cardi-
nalily of Sk is n̂, the number of correct solutions within Sk is ĉ. Noted that n̂ ≥ k, and thus we
uniformly sample k solutions {s′1, ..., s′k} from Sk for estimation,

Pass@k (Ours) = Es′1,...,s
′
k
[1∪k

i=1s
′
i is correct]

= Pr(∪ki=1s
′
i is correct)

= 1− Pr(∩ki=1s
′
i is incorrect)

= 1−
(
n̂−ĉ
k

)(
n̂
k

)
For a the first category of methods, n̂ equals n since it treats each solution equally. As a result, our
implementation of Pass@k is the same as the original implementation in Chen et al. (2021).

Chen et al. (2022) also implements another variant of Pass@k with a rolling solution selection. We
present the performance of MPSC evaluated by their implementation as a supplement in Table 8.

D OTHER ANALYSIS

Incorporating Golden Test Cases In practical applications of code generation, users often pro-
vide a limited number of test cases to outline the desired functionality, thereby assisting the model
in generating code that aligns with the requirements. In this study, we investigate the potential per-
formance improvements of the MPSC model in such scenarios by incorporating various quantities
of golden test cases. These golden test cases are generated and then validated using canonical so-
lutions provided in the benchmarks. We assess the performance of the MPSC-Label model on the
HumanEval dataset and present the results in Table 9. The substantial performance enhancements
achieved with the inclusion of merely five golden test cases underscore the feasibility of implement-
ing MPSC in user-interactive application scenarios.

16

Under review as a conference paper at ICLR 2024

Benchmark HumanEval HumanEval+

Method Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-3.5-Turbo 68.38 76.24 83.15 58.75 66.58 73.96
CodeT 78.05 85.98 92.06 67.87 79.12 83.87
MPSC-Uniform 81.71 87.20 89.63 71.29 79.51 82.98
MPSC-Bayes Risk 83.54 84.76 85.98 73.78 75.61 76.83
MPSC-Cardinality 84.15 87.80 90.85 74.63 81.15 84.11
MPSC-Weight 83.69 86.13 91.62 74.10 78.29 84.71
MPSC-Weighted Cardinality 85.98 87.20 92.07 76.36 80.50 85.33
MPSC-Label 85.37 89.02 90.85 74.95 80.83 83.89

Benchmark MBPP CodeContests

Method Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

GPT-3.5-Turbo 66.80 72.34 76.60 2.57 4.22 7.16
CodeT 71.90 76.82 80.35 9.92 11.43 14.46
MPSC-Uniform 68.44 73.30 79.63 5.43 5.45 8.43
MPSC-Bayes Risk 73.30 73.54 73.77 8.48 9.70 10.30
MPSC-Cardinality 72.13 77.05 80.37 8.84 11.32 13.19
MPSC-Weight 71.90 74.17 79.38 6.03 7.19 9.04
MPSC-Weighted Cardinality 73.17 76.28 79.85 11.26 11.36 15.59
MPSC-Label - - - 12.60 17.37 18.73

Table 8: Performance of MPSC evaluated by the Pass@k metric implemented by Chen et al. (2022).

Method Pass@1 Pass@2 Pass@5

MPSC 82.32 83.86 84.79
+ 1 test case 85.37 86.59 85.13
+ 2 test cases 85.98 86.18 85.36
+ 5 test cases 88.41 89.23 88.69
+ 10 test cases 89.02 90.24 88.81

Table 9: Performance of MPSC with different numbers of golden test cases provided by users on
HumanEval.

Analysis of Other Perspectives MPSC not only selects the optimal output from the target per-
spective but also chooses outputs from auxiliary perspectives, thereby generating corresponding
by-products. In the context of code generation, which is the primary focus of this paper, MPSC can
additionally identify more reliable test cases and specifications. We evaluate the quality of these
by-products and present the results in Table 10. The experimental results demonstrate that MPSC is
proficient in selecting high-quality outputs across all relevant perspectives.

Benchmark HumanEval MBPP

Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

Specification

GPT-3.5-Turbo 45.66 58.56 72.07 50.83 60.35 69.15
MPSC 76.10 77.16 78.43 69.98 72.30 74.51

Test case

GPT-3.5-Turbo 63.83 80.71 93.23 24.54 30.97 36.43
MPSC 98.17 98.17 98.17 37.06 37.53 38.39

Table 10: The quality of specifications and test cases selected by MPSC.

Effect of Alpha We explore the impact of the weight parameter α on the performance of the
proposed MPSC framework. α serves as a balancing factor between the inter-consistency and intra-
consistency information. We conduct experiments to investigate the relationship between the value
of α and the performance of MPSC. The experimental results are presented in Figure 4. The results
reveal that there is no evident correlation between the performance of MPSC and the choice of α.

17

Under review as a conference paper at ICLR 2024

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Alpha

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Pa
ss

@
1

dataset = human_eval

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Alpha

dataset = mbpp

MPSC-Bayes Risk
MPSC-Cardinality
MPSC-Weight
MPSC-Weighted Cardinality

Figure 4: Performance of MPSC with different values of alpha.

This observation suggests that neither inter-consistency nor intra-consistency information exhibits a
distinct advantage or disadvantage over the other, and the optimal selection of α is contingent upon
the specific application scenario.

Stability of MPSC We explore the stability of MPSC with respect to the sampling process. We
conduct the sampling process of WizardCoder with three random seeds and then assess the perfor-
mance of MPSC on the generated solutions. The average results are shown in Table 11. It is evident
that the improvement brought by MPSC is very stable.

Benchmark HumanEval HumanEval+
Metric Pass@1 Pass@2 Pass@5 Pass@1 Pass@2 Pass@5

WizzardCoder-34B 66.04±1.27 70.95±0.84 75.51±0.43 56.12±1.83 60.54±1.66 64.67±1.56
+MPSC 79.8±1.31 80.32±1.88 80.56±2.58 66.04±2.55 66.63±1.39 67.37±1.58

WizzardCoder-13B 58.62±1.23 65.05±0.75 71.81±0.14 49.42±0.59 54.91±0.77 60.81±0.83
+MPSC 75.5±0.36 76.52±0.9 76.42±0.71 63.75±0.72 65.16±1.58 65.31±1.31

WizzardCoder-7B 52.22.17 58.16±1.94 64.73±1.68 43.74±2.34 49.48±2.37 56.26±2.3
+MPSC 70.98±0.95 70.17±1.2 70.27±1.83 59.69±1.68 60.71±1.98 61.59±2.77

Table 11: The average performance of MPSC with three sample sets under different random seeds.

E EXPERIMENT SETTINGS AND BASELINES

Baselines We incorporate various baselines in code generation. First of all, we include many
strong large language models like ChatGPT(gpt-3.5-turbo 0315 version), GPT-4(gpt4-0515 version),
Code Llama-Instruct-34B and WizardCoder-Python-34B. The specific hyper-parameters for infer-
ence of ChatGPT and GPT4 are shown in Table 12. We use the public released performance of
WizardCoder and Code Llama directly.

Temperature 0.8
Top P 0.95

Frequency Penalty 0
Presence Penalty 0

Table 12: The Inference hyper-parameters of LLMs.

We also include several baselines like Self-Consistency MBR-EXEC, CodeT and Self-collaboration,
which enhance the inference capability of LLMs.

18

Under review as a conference paper at ICLR 2024

• Self-Consistency: We implement this baseline following Chen et al. (2022). If two solution pass
the same set of generated test cases and specifications, we regard them “consistent”. Then we
take a majority voting to rank solutions following Wang et al. (2022).

• MBR-EXEC: This baseline ranks solutions by minimum Bayes risk decoding based on the
execution results in the generated test cases.

• CodeT: This baseline first uses generated test cases to verify each solution by code execution.
Then it utilizes RANSAC algorithm to create consensus sets based on execution results. The
size of consensus set is then used to rank solutions.

For a fair comparison with our proposed MPSC, we employ the same solutions generated by Chat-
GPT for them to rerank. Since CodeT leverages generated test cases either, we use the same test
cases generated by ChatGPT for both CodeT and MPSC.

For all baselines and MPSC, we sample 200 solutions following the conventional setting. We sample
500 test cases for MPSC and CodeT, which is the original setting in CodeT. In adition, we sample
100 specifications for MPSC. We employ our implementation of Pass@k for all experiments.

Prompt for MPSC We present the prompt to generate solutions, specifications and test cases in
Table 13, 14, 15.

I want you to act like a Python programmer. I will give you the declaration of a function and
comments about its property. You need to implement the body of the function in the code block.
Do not modify any code I provide. Do not provide any explanations.

Here is the question.
‘‘‘Python
{Docstrings}
‘‘‘

Table 13: Prompt for generating solutions in the zero-shot manner.

‘‘‘Python
Given a docstring, continue to write the following code with 10 valid assertion statements to
check the correctness of the function. Provide diverse test cases.
{Docstrings}

pass

check the correctness of with 10 different valid assertion statements in the form of “assert
{entry point}(...) == ...”
assert

Table 14: Prompt for generating test cases in the zero-shot manner.

F AN EXAMPLE OF CONSTRUCTED GRAPH

Here we provide an example of constructed graph for one code generation query in MBPP dataset
in Figure 5.

19

Under review as a conference paper at ICLR 2024

I want you to act as a python programmer. Given a docstring about a python method, you need
to write its pre-conditions in one test function “def preconditions(input)” and post-conditions in
another test function “def postconditions(input, output):”. You should ensure invalid input or
output of the method will raise error in the two test functions.
‘‘‘Python
{Demonstration Docstrings 1}

pass
#Pre-conditions
{Demonstration Preconditions 1}
#Post-conditions
{Demonstration Postconditions 1}
‘‘‘

‘‘‘Python
{Demonstration Docstrings 2}

pass
#Pre-conditions
{Demonstration Preconditions 2}
#Post-conditions
{Demonstration Postconditions 2}
‘‘‘

‘‘‘Python
{Docstrings}

pass

Table 15: Prompt for generating specifications with two demonstrations.

20

Under review as a conference paper at ICLR 2024

Test case 1

assert long_words(4,'I love to eat pizza with iced tea')== ['pizza']

assert long_words(3, ['apple', 'banana', 'kiwi', 'pear']) == ['apple', 'banana
', 'kiwi', 'pear']

Test case 3

assert long_words(2, ['ap', 'b']) == []

Test case 2

Specification 2
Pre-conditions
def preconditions(n, s):

assert isinstance(n, int) and n >= 0, "n must be a non-negative integer"
assert isinstance(s, str), "s must be a string"
words = s.split()
assert all(isinstance(word, str) for word in words), "s must be a string of words"

Post-conditions
def postconditions(n, s, output):

assert isinstance(output, list), "output must be a list"
assert all(isinstance(word, str) for word in output), "output must be a list of strings"
assert all(len(word) > n for word in output), "output must contain words longer than n characters"
assert all(word in s for word in output), "output must contain words from the given list of words"

Specification 1
Pre-conditions
def preconditions(n, string_list):

assert isinstance(n, int) and n >= 0, "n must be a non-negative integer"
assert isinstance(string_list, list) and all(isinstance(s, str) for s in string_list), "string_lis

t must be a list of strings"
Post-conditions
def postconditions(n, string_list, output):

assert isinstance(output, list) and all(isinstance(s, str) for s in output), "output must be a lis
t of strings"

assert all(len(s) > n for s in output), f"all strings in output must have length greater than {n}"
assert all(s in string_list for s in output), "all strings in output must be from the input string

_list"

assert long_words(3,'edward','is','the','man') == []

Test case 4

def long_words(n, str):
words_list = str.split()
words = []
for word in words_list:

if len(word) > n:
words.append(word)

return words

Solution 1

def long_words(n, str):
words = []
for word in str:

if len(word) > n:
words.append(word)

return words

Solution 2

def long_words(n, str):
'''
Write a function to find words that are longer than
n characters from a given list of words.
'''

User Instruction

Figure 5: An example of a constructed graph is presented in this figure. For the sake of clarity,
we only show a sub-graph featuring two solution vertices, two specification vertices, and four test
case vertices. These vertices are categorically divided into two groups, each representing distinct
interpretations of the user instruction. Solution 1, Specification 2, and Test case 1 interpret the input
parameter str as a string, while the others consider it as a list of strings. Consequently, edges only
exist within each group. Notably, Test case 4 stands out as an erroneous test case, and hence has no
connections with other vertices.

21

	Introduction
	MPSC: Multi-Perspective Self-Consistency
	Graph Construction
	Incorporating Multi-Perspective Consistency
	Optimization Formulation

	MPSC on Code Generation
	Solution, Specification and Test Case
	Inter-Consistency Measures for Code Generation
	General Intra-consistency Measures

	Experiment
	Experiment Settings
	Main Results
	Further Analysis

	Related Work
	Future work and Conclusion
	Details of the Iterative Algorithm
	Implementation of Inter-Consistency
	Discussion about Pass@k
	Other Analysis
	Experiment Settings and Baselines
	An Example of Constructed Graph

