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ABSTRACT

Compositional Zero-Shot Learning (CZSL) investigates compositional general-
ization capacity to recognize unknown state-object pairs based on learned primi-
tive concepts. Existing CZSL methods typically derive primitives features through
a simple composition-prototype mapping, which is suboptimal for a set of indi-
viduals that can be divided into distinct semantic subsets. Moreover, the one-
to-all cross-modal primitives matching neglects compositional divergence within
identical states or objects, limiting fine-grained image-composition alignment.
In this study, we propose EVA, a Mixture-of-Experts Framework for Semantic
Variant Alignment. Specifically, we introduce domain-expert adaption, lever-
aging multiple experts to achieve token-aware learning and model high-quality
primitive representations. To enable accurate compositional generalization, we
further present semantic variant alignment to select semantically relevant rep-
resentation for image-primitives matching. Our method significantly outperforms
other state-of-the-art CZSL methods on three popular benchmarks in both closed-
and open-world settings, demonstrating the efficacy of the proposed insight.

1 INTRODUCTION
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Figure 1: Left: Prior primitive alignment neglects com-
positional divergence within primitive, thus disrupting
the topological structure of multimodal space. Right:
Our method selects the most semantically relevant fea-
ture from domain-experts for improved fine-grained
cross-modal alignment.

Compositional generalization (Atzmon et al.,
2016; Lake et al., 2017) enables artificial intelli-
gence systems to derive new concepts from ex-
isting knowledge, thereby accurately interpret-
ing unseen visual instances. Inspired by this ca-
pacity for compositional generalization, Com-
positional Zero-Shot Learning (CZSL) (Misra
et al., 2017; Li et al., 2020; Naeem et al., 2021)
aims to recognize novel compositions of states
and objects by leveraging primitive knowledge
acquired from seen compositions. A central
challenge of CZSL lies in primitive polysemy:
the meaning and visual manifestation of the
same primitive can differ substantially depend-
ing on its compositional context. Addressing
this semantic variability is crucial for building
robust composition representations.

Recent CZSL approaches (Huang et al., 2024;
Xu et al., 2024; Lu et al., 2023; Jing et al., 2024)
have advanced performance by incorporating composition-level supervision, typically through con-
trastive objectives that align visual compositions with their textual embeddings. Primitive-level
alignment, when used, is often introduced as an auxiliary objective to marginally improve perfor-
mance. Hence, primitive learning has not been sufficiently appreciated and explored; These meth-
ods still rely on single-prototype representations for each primitive, which are shared across all
compositional contexts. This one-to-all constraint disrupts the topological structure of fine-grained
primitive-composition relations, leading to semantic entanglement. As a result, the quality of com-
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position embeddings is inherently limited by the underpowered modeling of their primitive con-
stituents. For instance, a single prototype for young cannot simultaneously capture the distinct
semantics of young dog and young city, even when composition-level losses are applied. This gap
motivates the need for how to learn primitive features that can dynamically adapt to diverse seman-
tic variants.

Our work builds on the observation that primitives are not only shared across compositions but are
also semantically heterogeneous, exhibiting context-dependent variants that cannot be faithfully
represented by a single embedding. While prior works (Purushwalkam et al., 2019; Nayak et al.,
2022; Lu et al., 2023; Xu et al., 2024) have addressed composition-level alignment, they implic-
itly assume that primitive embeddings are static and context-invariant, serving as a fixed anchor
across all compositions. In Fig. 1, primitive visual features are extracted by a simple expert-module
and aligned with single text primitive feature, which fails to extract specific and expressive prim-
itive semantic (e.g., old man and old street) and achieve fine-grained cross-modal matching (i.e.,
different semantic alignment from old). Thus, we argue that such simplification restricts the compo-
sitional generalization ability of CZSL models, especially in open-world scenarios where primitives
frequently combine in unseen ways.

To tackle this issue, we draw inspiration from the Mixture-of-Experts (MoE) paradigm (Zhou et al.,
2022; Jacobs et al., 1991; Shazeer et al., 2017; Liu et al., 2024a), which is inherently suited to
model the heterogeneous nature of primitive concepts. The core design of MoE—which routes
different inputs to specialized experts—aligns perfectly with the fundamental challenge in CZSL: the
meaning of a primitive varies dramatically based on its compositional context. Unlike conventional
architectures that simply increases model capacity uniformly, MoE enables dynamic specialization,
allowing the model to capture diverse, context-aware primitive representations, where each expert
can specialize in a different semantic facet of a primitive. Importantly, our use of MoE is not merely
a transplant of a more powerful architecture; it is a principled, task-driven design that leverages
expert specialization to explicitly address the semantic variability problem intrinsic to compositional
learning. To the best of our knowledge, this work is the first to introduce and motivate the use of
MoE for this specific purpose in CZSL.

Based on this insight, we propose EVA, a Mixture-of-Experts Framework for Semantic Variant
Alignment. EVA introduces two effective strategies: domain-expert adaption for learning high-
quality primitives representations, and semantic variant alignment for establishing robust fine-
grained image-composition alignment:

1. Domain-expert adaption introduces the MoE adapter to process tokens in each layer of the im-
age and text encoders. Through dynamic token allocation, each expert handles semantically similar
tokens, facilitating the mastery of in-domain knowledge (common knowledge associated with spe-
cific domain, e.g., color) and improving performance in prototype semantic modeling. The MoE
adapter learns prototypical concepts at token level and integrates composition information through
the self-attention layer, ensuring the effective transmission of semantic information. Moreover, con-
sidering knowledge redundancy in multi-expert collaboration, we designate a shared expert to
capture general knowledge, and other activated experts to focus on specialized knowledge. As a
result, compared to suffix modules in (Bao et al., 2024; Huang et al., 2024; Xu et al., 2024), EVA is
an efficient and flexible end-to-end model.

2. Semantic variant alignment is the global-to-local cross-modal solution from image and text
views. In the text domain, since compositions belong to their respective state and object sets, prim-
itive features can be regarded as the centroids of composition features. Thus, without explicitly
maintaining a cluster of feature variants, EVA captures fine-grained primitive features. In the image
domain, CLS tokens from various experts are regarded as image feature variants, which are seman-
tic representations of visual content from different perspectives. With the similarity between these
variants and their corresponding primitive text features, we select the highest-scoring variants as
the primitive visual features. Since explicitly modeling semantic variants of primitives, our method
complements composition-level objectives in prior work and provides a new perspective on how
primitives can be structured for robust CZSL.

To evaluate the proposed method, we conduct comparative experiments on three well-known
datasets: MIT-States (Isola et al., 2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem
et al., 2021) in both closed- and open-world settings. Our method significantly outperforms other
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state-of-the-art CZSL approaches, achieving +0.7% and +2.6% AUC gains on UT-Zappos and C-
GQA in open-world setting. Furthermore, extensive ablation studies robustly demonstrate the effect
of the EVA components.

2 RELATED WORK

Compositional Zero-shot Learning (CZSL). CZSL (Misra et al., 2017; Lu et al., 2023; Nayak
et al., 2022; Atzmon et al., 2020) learns the entanglement between states and objects from seen com-
positions in training to recognize unseen compositions during test. Recent methods (Nayak et al.,
2022; Xu et al., 2022; Huang et al., 2024; Jing et al., 2024) leverage high-quality features from
pre-trained VLM (Radford et al., 2021), achieving impressive zero-shot performance. CSP (Nayak
et al., 2022) designs a single learnable prompt for each primitive, without considering the primi-
tive polysemy and the impact of prompt learning on the features is limited. Troika (Huang et al.,
2024) proposes a cross-modal traction module to adaptively learn text representations relevant to
visual content. However, for various tokens with different semantic contents, single expert module
inadequately achieves deep primitives learning. GIPCOL (Xu et al., 2024) introduces a graph-based
prompt learning method, but only focuses on the relationships between the primitives at the compo-
sitional level. In contrast, we propose domain-expert adaption to introduce MoE adapters at each
layer of both image and text encoders, enabling deep and efficient intra-primitive feature learning.

Concept Representation Learning. Learning transferable and generalizable concept representa-
tions is a central challenge in deep learning. In NLP filed, several methods (Vaswani et al., 2017;
Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020) attempt to pretrain models on large
datasets, learning general and accurate token representations. Recent works (Jiang et al., 2024;
Liu et al., 2024a) further utilize the MoE layer to achieve dynamic token routing for in-domain
knowledge learning. However, identifying fundamental visual concepts for description remains
challenging, visual concept learning typically requires natural language supervision (Li et al., 2021).
CLIP (Radford et al., 2021) learns transferable visual representations through contrastive learning
on large-scale image-pair datasets. BLIP (Li et al., 2022) is pre-trained with both understanding-
based and generation-based tasks to learn generalizable representations. LLaVA (Liu et al., 2024b)
introduces visual instruction tuning to align LLM with the multimodal space. These methods fo-
cus on learning general visual concept features with the supervision from text, while we propose a
multi-expert representation method with the supervision from semantic variants, enhancing primi-
tive features expressiveness for cross-modal alignment.

3 METHODOLOGY

3.1 PRELIMINARY

The goal of CZSL is to develop a model with compositional generalization capacity, enabling it
to accurately recognize unseen compositions based on learned primitive knowledge (i.e., state and
object). Given primitive concept set H: state label set S = {s1, s2, . . . , sm} and object label set
O = {o1, o2, . . . , on}, the state-object composition set C is defined as the Cartesian product of
these two primitive concepts sets (i.e., C = S × O). For zero-shot evaluation, we denote seen
and unseen composition label sets as Cs and Cu respectively, which are disjoint subsets of C. The
training dataset is defined as T = {(xi, ci)|xi ∈ X , ci ∈ Cs}, where X denotes the image space,
and only the seen set Cs is accessible during training. In closed-world setting (Naeem et al., 2021),
the test composition set Ct includes both seen and unseen sets, defined as Ct = Cs ∪Cu. In the more
challenging open-world setting (Mancini et al., 2021), the state-object composition set C is utilized
as the test composition space.

3.2 FRAMEWORK OVERVIEW

The human brain consists of different functional areas that work together to complete various tasks.
Inspired by distributed functional system, we propose EVA, a Mixture-of-Expert Semantic Variant
Alignment framework for CZSL, which employs several domain-experts for adaptive concept learn-
ing and fine-grained semantic alignment, as depicted in Fig. 2 (a). In this study, we adopt the frozen
CLIP (Radford et al., 2021) image encoder Ev and text encoder Et to derive image and text rep-
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Figure 2: (a). The framework of EVA consists of domain-expert adaption for token-aware representation
learning and semantic variant alignment for fine-grained image-primitives matching. (b). Domain expert
adaption utilizes MoE adapter to dynamically process semantically relevant tokens with in-domain knowledge.
(c). Semantic variant alignment introduces text-to-image and image-to-text alignment to select most relevant
features for cross-modal matching from the text and image views, respectively.

resentations, respectively. Specifically, we introduce domain-expert adaption, illustrated in Fig. 2
(b), to dynamically process tokens in each layer of encoders. The proposed domain-experts create
a sophisticated mapping to deeply learn primitives at the token level. To address existing all-to-one
image-primitives issues, we design semantic variant alignment, shown in Fig. 2 (c), to select the
most semantically relevant feature variants for fine-grained primitive concept learning.

3.3 DOMAIN-EXPERT ADAPTION

As depicted in Fig. 2 (b), the MoE adapter, parallel to the Feed-Forward Network (FFN), consists
of a router R for dynamic token allocation and multiple experts {Ei}NE

i=0. It is worth noting that
we designate a shared expert E0 to learn common knowledge, while others serve as routed experts
{Ei}NE

i=1 to focus on domain-specific knowledge. We utilize standard LoRA (Hu et al., 2021) to
develop the MoE adapters, where each expert Ei has two trainable parameters A ∈ Rr×d, B ∈ Rd×r

and r ≪ d. This design makes experts lightweight and prevents overfitting due to the limited size of
CZSL datasets. Given the hidden token embedding hj ∈ Rd in layer j, the router first computes the
token-to-expert affinity G ∈ Rk to measure each expert’s contribution. Then each token is assigned
to shared expert and K routed experts for domain-knowledge learning:

G = Softmax(TopK(R(hj))), (1)
Ei = BiAi, (2)

hj+1 =

Ne∑
i=1

GiEi(hj) + E0(hj), (3)

where Topk(·) function selects the K most relevant experts, while setting the scores of the other
experts to −∞. With the implementation of the MoE adapter in both the image and text encoders,
our method leverages domain-expert knowledge and inter-expert collaboration to model high-quality
image representation fc ∈ R1×d and text representation tc ∈ R1×d, respectively:

fc = Ev(x), tc = Et(Pc), (4)
where x ∈ Rh×w×3 denotes the input image, and Pc = [ θ1, ..., θa, θs, θo ] is the learnable com-
position prompt, initialized with ”a photo of state object”. Finally, we compute the composition
probability corresponding to the image x as follows:

pc(c|x) =
exp(fc · t⊤c /τ)∑

y∈CS exp(fc · t⊤y /τ)
, (5)

4
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where τ ∈ R is the temperature coefficient from pre-trained CLIP. The training objective for com-
position classification is defined as:

Lc = − 1

|T |
∑

(x,c)∈T

log pc(c|x). (6)

3.4 SEMANTIC VARIANT ALIGNMENT

Primitive concept learning is essential for establishing robust and accurate image-composition align-
ment. Existing methods (Mancini et al., 2021; Lu et al., 2023; Huang et al., 2024) typically align
the primitives visual features with state and object text representations, respectively. However, this
all-to-one alignment neglects composition divergence within identical primitives, hindering fine-
grained composition matching. To address this limitation, as shown in Fig. 2 (c), we propose se-
mantic variant alignment which constructs multiple feature variants for adaptive image-primitives
relations. This approach performs a global-to-local cross-modal alignment from both image and text
perspectives, respectively.

Text-to-image alignment. Our variant-based method leverages the local composition distribution
to select the most semantically relevant individual, rather than original primitives feature. Specifi-
cally, we select the highest matching score among all compositions within state ŝ as the image-state
matching score Ps, formulated as:

ps(ŝ|x) = max
cŝ,o

pc(cŝ,o|x) · τs, (7)

where cŝ,o ∈ Ctarget denotes the state ŝ-relevant composition and Ctarget is composition label
space. τs > 0 is a trainable coefficient used to adjust the distribution of state probabilities. Similarly,
the image-object matching probability po can be obtained. To recognize primitive concept h, the
cross-entropy loss is employed:

Lh = − 1

|T |
∑

(x,c)∈T

log ph(h|x). (8)

where Lh denotes Ls and Lo.

Image-to-text alignment. The composition-based approach exacerbates the gap between the seen
and unseen sets. Therefore, we propose bridging this gap by utilizing constant state and object
information to refine the well-structured image representation space during training.

Specifically, given a training image x with state label s and object label o, we first model the image
feature variants {vi}Ne

i=0 ∈ RNe×d from the MoE adapter in the final layer of the image encoder Ev .
The state feature ts ∈ Rd and object feature to ∈ Rd are derived from the text encoder Et based on
learnable prompt Ps and Po:

ts = Et(Ps), to = Et(Po), (9)
where Ps = [ θ1, ..., θa, θs ] is initialized with ”a photo of state”, and Po = [ θ1, ..., θa, θo ] is ini-
tialized with ”a photo of object”. Since multiple experts exploit semantic information from various
representation subspaces, the output representations denote the feature variants that describe differ-
ent semantic contents of the input image. Similar to text-to-image alignment, we propose inter- and
intra-model affinity to select the most semantically relevant variant as the primitive feature.

In terms of inter-model affinity, we measure the state affinity score As ∈ RNe+1 and object affinity
score Ao ∈ RNe+1 for feature variants V = {vi}Ne

i=0 and the corresponding text primitive features,
respectively (i.e., As = V t⊤s and Ao = V t⊤o ). In terms of intra-model affinity, we compute the
affinity scores Av ∈ RNe+1 for image features and semantic variants, which introduce supervision
for the global semantic content (i.e., Av = V f⊤

c ). The affinity score Av is beneficial for excluding
semantic variants that differ significantly from the main semantic content. Furthermore, the overall
affinity score AS and AO are derived by considering both affinity scores comprehensively:

AS = As + αAv, AO = Ao + αAv, (10)
where α > 0 is a balancing coefficient. Finally, we select state image feature fs from semantic
variants {vi}Ne

i=0 based on the overall affinity scores:
fs = argmax

vi

asi , {asi ∈ AS |0 <= i <= Ne}. (11)
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Method MIT-States UT-Zappos C-GQA
Unseen ↑ Seen ↑ AUC ↑ HM ↑ Unseen ↑ Seen ↑ AUC ↑ HM ↑ Unseen ↑ Seen ↑ AUC ↑ HM ↑

Closed-World Evaluation

CLIP (Radford et al., 2021) ICML’21 46.0 30.2 11.0 26.1 49.1 15.8 5.0 15.6 25.0 7.5 1.4 8.6
CSP (Nayak et al., 2022) ICLR’23 49.9 46.6 19.4 36.3 66.2 64.2 33.0 46.6 26.8 28.8 6.2 20.5
DFSP (Lu et al., 2023) CVPR’23 52.0 46.9 20.6 37.3 71.7 66.7 36.0 47.2 32.0 38.2 10.5 27.1
GIPCOL (Xu et al., 2024) WACV’24 49.6 48.5 19.9 36.6 68.5 65.0 36.2 48.8 28.4 31.9 7.1 22.5
CDS-CZSL (Li et al., 2024) CVPR’24 52.9 50.3 22.4 39.2 74.8 63.9 39.5 52.7 34.2 38.3 11.1 28.1
Troika (Huang et al., 2024) CVPR’24 53.0 49.0 22.1 39.3 73.8 66.8 41.7 54.6 35.7 41.0 12.4 29.4
PLID (Bao et al., 2024) ECCV’24 52.4 49.7 22.1 39.0 68.8 67.3 38.7 52.4 33.0 38.8 11.0 27.9
RAPR (Jing et al., 2024) AAAI’24 53.3 50.0 22.5 39.2 72.8 69.4 44.5 56.5 36.0 45.6 14.4 32.0
CLUSPRO (Qu et al., 2025) ICLR’25 54.0 52.1 23.8 40.7 76.0 70.7 46.6 58.5 37.8 44.3 14.9 32.8
LOGICZSL (Wu et al., 2025) CVPR’25 53.9 50.8 23.4 40.5 74.9 69.6 45.8 57.8 39.4 44.4 15.3 33.3
Ours 55.0 51.2 24.0 41.0 79.6 71.2 50.2 60.2 44.6 47.1 18.8 36.9

Open-World Evaluation

CLIP (Radford et al., 2021) ICML’21 14.3 30.1 3.0 12.8 20.6 15.7 2.2 11.2 4.6 7.5 0.3 4.0
CSP (Nayak et al., 2022) ICLR’23 15.7 46.3 5.7 17.4 44.1 64.1 22.7 38.9 5.2 28.7 1.2 6.9
DFSP (Lu et al., 2023) CVPR’23 18.5 47.5 6.8 19.3 60.0 66.8 30.3 44.0 7.2 38.3 2.4 10.4
GIPCOL (Xu et al., 2024) WACV’24 16.0 48.5 6.3 17.9 45.0 65.0 23.5 40.1 5.5 31.6 1.3 7.3
CDS-CZSL (Li et al., 2024) CVPR’24 21.8 49.4 8.5 22.1 61.3 64.7 32.3 48.2 8.2 37.6 2.7 11.6
Troika (Huang et al., 2024) CVPR’24 18.7 48.8 7.2 20.1 61.2 66.4 33.0 47.8 7.9 40.8 2.7 10.9
PLID (Bao et al., 2024) ECCV’24 18.7 49.1 7.3 20.0 55.5 67.6 30.8 46.6 7.5 39.1 2.5 10.6
RAPR (Jing et al., 2024) AAAI’24 20.1 49.9 8.2 21.8 59.4 69.4 33.3 47.9 11.2 45.5 4.4 14.6
CLUSPRO (Qu et al., 2025) ICLR’25 22.1 51.2 9.3 23.0 66.2 71.0 39.5 54.1 8.3 41.6 3.0 11.6
LOGICZSL (Wu et al., 2025) CVPR’25 21.4 50.7 8.7 22.4 63.7 69.9 36.2 50.8 9.3 43.7 3.4 12.6
Ours 23.2 50.8 9.4 22.8 66.5 71.6 40.2 54.2 13.3 46.9 5.6 17.9

Table 1: Quantitative results on MIT-States, UT-Zappos, and C-GQA in Closed- and Open-World setting.

Similarly, object feature fo can be obtained. The image-to-text primitives probability is defined as:

pvh(h|x) =
exp(fh · t⊤h /τ)∑

h∈H exp(fh · t⊤h /τ)
, (12)

where pvh denotes image-to-text state probability pvs and object probability pvo . The training objective
of semantic variant alignment is defined as:

Lv
s = − 1

|T |
∑

(x,c)∈T

log pvs(s|x), (13)

Lv
o = − 1

|T |
∑

(x,c)∈T

log pvo(o|x). (14)

3.5 TRAINING AND INFERENCE

Training objectives. The final training objective of EVA is achieved by optimizing all classification
loss functions, formulated as:

L = Lc + λ1(Ls + Lo) + λ2(Lv
s + Lv

o), (15)

where λ1 and λ2 are two coefficients. Due to the reliance on label information, image-to-text align-
ment is only applicable during training.

Inference. The final composition prediction ĉs,o combines state ps, object po, and composition
scores pc:

ĉs,o = argmax
cs,o∈Ctest

pc(cs,o|x) + β(ps(s|x) + po(o|x)), (16)

where the coefficient β is set as 0.5.

4 EXPERIMENT

4.1 SETTING

Datasets. We evaluate the proposed EVA on three widely-used CZSL datasets: MIT-States (Isola
et al., 2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., 2021). MIT-States
comprises 53,753 natural images annotated with 115 states, 245 objects, and 1,962 state-object com-
positions. UT-Zappos contains 50,025 shoes images with 116 fine-grained compositions, including
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MIT-States C-GQA
Unseen ↑ Seen ↑ AUC ↑ HM ↑ Unseen ↑ Seen ↑ AUC ↑ HM ↑

BASELINE 51.8 47.1 20.2 36.9 32.5 38.3 10.4 26.9
Domain-expert Adaption 54.8 50.1 23.0 40.1 42.8 45.6 17.2 35.5
Semantic Variant Alignment 52.3 49.8 22.2 39.7 34.7 41.2 12.1 29.8
Adaption + Alignment 55.0 51.2 24.0 41.0 44.6 47.1 18.8 36.9

Table 2: Ablation Studies of core components on MIT-States and C-GQA datasets.

Expert split Unseen ↑ Seen ↑ AUC ↑ HM ↑
0 + 8 43.5 46.5 18.0 36.2
1 + 8 44.6 47.1 18.8 36.9
2 + 8 44.2 46.8 18.4 36.2
4 + 4 43.9 46.2 17.8 35.9

(a) Expert Split

Variant Alignment Unseen ↑ Seen ↑ AUC ↑ HM ↑
BASELINE 42.8 45.6 17.2 35.5

+ t2i alignment 43.8 46.4 18.0 36.2
+ inter-model affinity 44.2 46.8 18.5 36.5
+ intra-modal affinity 44.6 47.1 18.8 36.9

(b) Ablation on Semantic Variant Alignment

Expert Num Unseen ↑ Seen ↑ AUC ↑ HM ↑
1 + 6 44.0 46.5 18.2 36.2
1 + 8 44.6 47.1 18.8 36.9
1 + 10 44.0 46.0 18.0 36.0

(c) Expert Number

Method Unseen ↑ Seen ↑ AUC ↑ HM ↑
EVA 44.6 47.1 18.8 36.9

+ semantic isolation 44.2 46.7 18.5 36.4
+ load balance 43.9 46.3 18.0 36.0

(d) Analysis on Domain-expert Adaption

Table 3: Comparison experiments on C-GQA dataset.

16 states and 12 objects. C-GQA is the largest CZSL dataset, featuring 39,298 images labeled with
7,767 compositions, encompassing 453 states and 870 objects. In closed-world setting, we follow
previous works (Naeem et al., 2021; Lu et al., 2023) to partition datasets into seen and unseen sets.

Evaluation Metrics. Following the evaluation protocol established in prior works (Misra et al.,
2017; Lu et al., 2023; Huang et al., 2024), we adjust a calibration bias applied to unseen scores from
−∞ to +∞ , balancing the prediction scores between seen and unseen pairs. We report the Area
Under the Curve (AUC) and the best Harmonic Mean (HM) to quantify the overall performance
across seen and unseen compositions. Moreover, we record the best-seen accuracy Seen and best-
unseen accuracy Unseen to assess performance on these two disjoint subsets.

Implementation Details. EVA is built upon the pre-trained frozen CLIP (Radford et al., 2021) ViT-
L/14 model, which serves as both the image and text encoder. In the domain-expert adaption stage,
the MoE adapter with a LoRA-based (Hu et al., 2021) intra-layer structure comprises a router R, a
shared expert E0 and routed experts {E}Ne

i=1. The router R is a single-layer fully connected network,
while the shared and routed experts are two-layer MLPs with identical structures, where the hidden
dim r is set to 64. The number of activated experts K is set to 2. Moreover, the coefficient α is set
to 0.5 in intra-model affinity. In the final loss function, the weighting parameters λ1 and λ2 are set
to 0.5 and 0.1, respectively.

Training and Test. We train EVA, implemented in PyTorch (Paszke et al., 2019), using Adam
optimizer (Kingma & Ba, 2014) for 20 epochs with a learning rate of 1e − 4. The weight decay is
set to 1e − 4, 5e − 4 and 1e − 4 for MIT-States, UT-Zappos, and C-GQA, respectively. Following
prior works (Naeem et al., 2021; Lu et al., 2023), we apply post-training calibration to filter out
infeasible compositions in the open-world setting during testing.

4.2 COMPARISONS WITH SOTAS

We evaluate the quantitative performance of EVA in comparison to previous CLIP-based CZSL
methods (Radford et al., 2021; Nayak et al., 2022; Lu et al., 2023; Xu et al., 2024; Huang et al.,
2024; Li et al., 2024; Bao et al., 2024; Jing et al., 2024; Qu et al., 2025; Wu et al., 2025), in both
closed- and open-world settings, as presented in Table 1.

Evaluation in Closed-World Setting. EVA achieves remarkable improvements over other methods,
with AUC gains over LOGICZSL (Wu et al., 2025), improvements of +0.6%, +4.4%, and +3.5%
on MIT-States, UT-Zappos and C-GQA, respectively. Specifically, our EVA improves Unseen by
at least +1.0% compared to previous CZSL methods on MIT-States. Notably, our method achieves
the highest HM score of 36.9% in C-GQA, demonstrating enhanced compositional generalization
compared to other methods (Huang et al., 2024; Li et al., 2024; Jing et al., 2024). These results
underscore the advantage of domain-expert adaption in token-aware concept representation learn-
ing. In general, our approach EVA exhibits robust performance across all datasets and evaluation
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Figure 3: Qualitative Results. We present top-3 predictions from EVA (E) and top-1 prediction from
BASELINE (B) in terms of success (Left) and failure cases (Right).

metrics, consistently outperforming previous state-of-the-art methods, particularly in unseen sets,
underscoring its potential for practical applications in closed-world settings.

Evaluation in Open-World Setting. Open-world results demonstrate that our method significantly
outperforms state-of-the-art approaches, achieving AUC gains over CLUSPRO (Qu et al., 2025),
improvements of +0.1%, +0.7% and +2.6% on MIT-States, UT-Zappos and C-GQA, respectively.
Specifically, our method attains a notable Unseen score of 23.2% on MIT-States dataset, surpassing
the previous highest score of 22.1%. Additionally, our Seen score of 71.6% exceeds that of sev-
eral CZSL methods, highlighting a strong balance in handling both seen and unseen compositions.
On the most challenging C-GQA dataset, our method surpasses all other CZSL methods across all
evaluation metrics, particularly in HM. The improvement of open-world performance demonstrates
the effect of semantic variant alignment in establishing accurate image-primitives matching rela-
tions. Overall, EVA distinguishes itself through its ability to handle unseen data, making it highly
effective for open-world tasks where new and unknown compositions are frequently encountered.

4.3 ABLATION STUDY

Effect of Core Components. We conduct several ablation experiments to access the effect of key
components in our EVA, as presented in Table 2. The BASELINE employs the frozen CLIP (Rad-
ford et al., 2021) encoder without the proposed methods, learning compositional zero-shot capacity
with learnable prompts Ps, Po and Pc. Domain-expert adaption boosts the model’s zero-shot perfor-
mance across all datasets, e.g., improving AUC from 20.2% to 23.0% on MIT-States, indicating that
in-domain knowledge learning effectively strengthens primitive semantic modeling. Additionally,
we observe that Semantic variant alignment leads to a significant improvement, such as an AUC
increase from 10.4% to and 12.1% on C-GQA. The integration of both components achieves a new
state-of-the-art performance, further demonstrating the effectiveness of our approach.

Expert Split. We evaluate the impact of expert split, as depicted in Table 3a. By comparing
configurations 0 + 8 and 1 + 8, we observe that shared expert enhances compositional recognition
performance. However, increasing the number of shared experts leads to a decline in model per-
formance, suggesting that retaining a certain proportion of routed experts is crucial. Furthermore,
when the number of shared and routed experts is set to be equal, performance is lower than that of
0 + 8. This indicates that dynamic routing plays a more significant role than constant collaboration
in complex semantic learning.

Semantic Variant Alignment. Table 3b provides ablation results for semantic variant alignment
on C-GQA dataset. Compared to BASELINE without semantic variant alignment, text-to-image
(t2i) alignment effectively improves compositional zero-shot performance, e.g., +0.8% improve-
ment in AUC. We observe that progressively incorporating the remaining modules (i.e., inter- and
intra-modal affinity) further increases overall performance. The best results are achieved when all
components are utilized, demonstrating the effectiveness of the proposed method.

Expert Number. Table 3c demonstrates that the model with 8 experts achieves the highest per-
formance across all metrics, highlighting that a moderate level of expert diversity is most effective
for capturing semantic heterogeneity and enabling compositional reasoning. Models with too few
experts tend to underfit the complex variations in semantics, failing to disentangle meaningful com-
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ponents, whereas models with an excessive number of experts suffer from routing sparsity, which
reduces the effectiveness of each expert and weakens overall specialization. This indicates that
balancing the number of experts is crucial for achieving both expressive power and efficient special-
ization in semantic decomposition.

Domain-expert Adaption. To further investigate the impact of semantic isolation on multi-expert
learning, we conducted a comparative experiment. Specifically, we employed two identical MoE-
based adapters for states and objects, respectively. Each adapter consists of one shared expert and
eight routed experts, mirroring the architecture of EVA. We evaluated the models on the most com-
plex dataset, C-GQA, with results summarized in Table 3d.

Introducing semantic isolation leads to a slight performance degradation, suggesting that strictly
isolating experts does not improve compositional generalization. This implies that a mixture of
attributes and objects may help experts capture semantic relationships, whereas arbitrary divisions
offer little benefit. Considering the potential effect of imbalanced expert usage, we further applied a
balancing loss to mitigate it. However, even with balanced token loads, performance remains inferior
to EVA. This is likely because load balancing enforces uniform expert usage, which contradicts the
natural semantic distribution of primitives. Forcing equal routing effectively homogenizes experts,
thereby reducing their specialization.

4.4 QUALITATIVE ANALYSIS

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8

Figure 4: Patch visualization handled by different visual experts.

As illustrated in Fig. 3, we present the success (left) and failure (right) cases of EVA and BASE-
LINE, which adopts LoRA-based adapters rather than MoE adapters in both image and text en-
coders. Compared to BASELINE, EVA demonstrates strong compositional recognition capabili-
ties, accurately identifying complex semantic relationships between visual instances, such as Huge
Tower and Eroded Clay. Furthermore, the top-3 predictions are semantically closely related to the
Ground Truth, indicating that EVA establishes a robust and reliable cross-modal alignment for rec-
ognizing compositional relationships between states and objects. In failure cases, while EVA and
BASELINE both make wrong predictions, EVA produces semantically related predictions when in-
terpreting holistic concepts (Huge Kitchen) and ambiguous subjects (Modern House). This indicates
that although EVA can handle semantic ambiguity well, its ability to perceive targets in complex vi-
sual scenes still requires improvement in future, which may be due to the lack of explicit supervision
regarding visual objects.

Vision Expert Analysis. In Fig. 4, We observe that different experts attend to distinct semantic
regions: some focus on object-level cues (e.g., “bus”, “tower”), while others highlight state-related
attributes (e.g., “wet surface,” “eroded road”). This specialization validates the intended design
of MoE, where experts capture complementary semantic factors. Moreover, experts demonstrate
partial redundancy—multiple experts sometimes capture overlapping local regions—which reflects
collaborative encoding rather than isolated specialization.

Text Expert Analysis. Fig. 5 further analyzes the cosine similarity between primitive text features
from different experts and composition text features. For example, when evaluating the state ancient,
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(a). State “ancient” similarity analysis (b). Object “city” similarity analysis 

Figure 5: Analysis of the similarity between primitive features from different experts and composition features.

certain experts consistently align with ancient city, while others align with ancient library, showing
context-sensitive partitioning of primitive semantics. Similarly, for the object city, experts diverge
towards modern city versus ancient city, indicating that experts encode fine-grained semantic vari-
ants. This decomposition confirms that EVA structurally separates semantic subspaces, mitigating
the entanglement present in single-prototype baselines.

Figure 6: Visualization of semantic variants from text
encoder in term of state(left) and object(right).

Fig. 6 displays the visualization results of at-
tribute and object semantic variants. In terms
of state, Semantic variants belonging to differ-
ent categories are distinguishable. Variant clus-
ters with similar semantic meanings are closer
in distance, e.g., large-huge,and the overall dis-
tribution of variant clusters corresponds to the
correlations of their respective states. The same
phenomenon is also observed in the distribution
of object variants. Specifically, dog, tiger, and
cat all belong to the category of animals, shar-
ing closer proximity to each other, with a dis-
tinct boundary separating them from other categories. This indicates that EVA achieves clear se-
mantic separation, with the distribution of semantic variants from different primitives exhibiting
semantic plausibility.

5 CONCLUSION

In this work, we propose a Mixture-of-Expert Semantic Variant Alignment framework (EVA) to
address the challenges of concept learning and composition divergence within primitives. Inspired
by distributed processing system of the human brain, we leverage MoE adapters to enable an end-
to-end model. Through dynamic token allocation, experts specialize as effective in-domain learners,
enhancing the modeling of primitive features. Moreover, we introduce semantic variant alignment
to enable fine-grained and accurate image-primitive mappings. The resulting well-structured primi-
tive representation space facilitates the establishment of discriminative image-composition relations,
improving compositional generalization. In future work, we aim to explore strategies to enhance the
understanding of abstract concepts and the ability to distinguish object subjects effectively.
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A APPENDIX

The detailed statistics of the dataset splits are provided in Table 4.

Dataset Train Validation Test
|S| |O| |C| |Cs| |Cs| |Cu| |Cs| |Cu|

MIT-States (Isola et al., 2015) 115 245 28175 1262 300 300 400 400
UT-Zappos (Yu & Grauman, 2014) 16 12 192 83 15 15 18 18
C-GQA (Naeem et al., 2021) 413 674 278362 5592 1252 1040 888 923

Table 4: The detailed data split statistics.

Expert dim r. In Table 5a, we investigate the influence of expert dim r on compositional general-
ization performance. The optimal dimension is found to be 64, as it achieves the best performance
while maintaining training efficiency. When the dimension is gradually reduced below 64, a decline
in performance is observed, attributable to information loss caused by dimensional compression.
Conversely, increasing the expert dimension to 128 does not yield performance improvements, sug-
gesting that larger dimensions introduce information redundancy.

Expert dim r Unseen ↑ Seen ↑ AUC ↑ HM ↑
r = 8 42.0 45.9 16.8 34.7
r = 16 42.8 46.2 17.1 35.1
r = 32 44.2 46.8 18.2 36.5
r = 64 44.6 47.1 18.8 36.9
r = 128 43.8 46.5 18.0 36.1

(a) Hidden Dim of Expert Adapter

Number K Unseen ↑ Seen ↑ AUC ↑ HM ↑
K = 0 42.4 45.3 16.7 34.7
K = 1 43.8 47.1 18.0 36.1
K = 2 44.6 47.1 18.8 36.9
K = 4 43.2 46.9 17.8 35.9
K = 8 42.9 46.4 17.5 35.7

(b) Activated Expert Number

Table 5: Ablation experiments on C-GQA dataset.

Activated Expert Number. Table 5b reports the impact of activated expert number K. The optimal
K is 2, which achieves a win-win situation in terms of performance and computational cost. When
we reduce K to 0, i.e., only utilizing the sharing expert, the MoE adapter becomes a MLP-based
adapter, resulting in a performance decline. We next set one activated expert and observe the im-
provement of CZSL performance, which suggests that the dynamic token routing is beneficial to
primitives representation modeling. Larger number K causes the lower performance, indicating the
low efficiency in collaboration among multiple experts.

α Unseen ↑ Seen ↑ AUC ↑ HM ↑
0 43.8 46.2 18.0 35.8

0.3 44.2 46.9 18.6 36.6
0.5 44.6 47.1 18.8 36.9
0.7 44.0 46.8 18.5 36.3
1.0 43.8 46.8 18.2 36.0

Table 6: The balancing coefficient α

Analysis of hyperparameter α. The coefficient α is introduced to balance inter- and intra-model
affinity. Analogous to weighting terms in loss functions, it enables a comprehensive consideration
of both types of affinity when selecting appropriate feature variants. The sensitivity analysis results
are presented in Table 6. Across the range from α = 0 to α = 1, all metrics vary only slightly,
indicating that EVA is largely insensitive to the exact choice of α. Performance remains stable over
a broad interval, suggesting that the model is robust to this hyperparameter.

Effect of Semantic Variant Alignment. SVA is proposed to address semantic divergence and
achieve fine-grained image-primitive alignment. Table 7 shows that Semantic Variants Alignment
(SVA) achieves higher primitive prediction accuracy and AUC than BASELINE. It demonstrates
that our variants-based primitive alignment is more effective than previous single-prototype method.
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Method MIT-States C-GQA
att obj AUC att obj AUC

BASELINE 41.0 50.0 23.0 48.5 60.0 17.2
+SVA 42.7 52.1 24.0 50.0 63.1 18.8

Table 7: Ablation on Semantic Variants Alignment

Efficiency Comparison. Additionally, Table 8 shows the efficiency comparison on UT-Zappos
dataset. Since we utilize an efficient strategy to design MoE adapters and primitives alignment
method, our model achieves superior performance and inference speed without massive trainable
parameters.

Method #Params(M) ↓ Training Time ↓ Inference Time ↓ AUC ↑
RAPR (Jing et al., 2024) 37.9M 3min32s 28.4ms 44.5

Ours 36.7M 3min30s 12.0ms 50.2

Table 8: Efficiency comparison with SoTA method.

Design Comparison. Table 9 further demonstrates the effect of our design, where suffix module
has same structure with MoE adapter. Compared to independent suffix modules, the LoRA-based
intra-layer adapter enables a flexible end-to-end model with higher AUC and HM.

Method UT-Zappos C-GQA
AUC HM AUC HM

Suffix Module 45.2 52.7 15.8 32.8
LoRA (Ours) 50.2 60.2 18.8 36.9

Table 9: Design comparison.

Analysis of hyperparameter sensitivity. We further study the sensitivity of hyperparameter λ1 and
λ2 for loss functions, and β for composition inference. In Fig. 7, as the parameters values change,
the fluctuation range of the AUC remains within 1%, which validates the robustness of the proposed
method.

Token load. To evaluate the impact of MoE adapter on in-domain knowledge learning, we analyze
the computational load of each expert in learning state (Fig. 8 (a)) and object (Fig. 8 (b)). We observe
an imbalanced distribution of token processing across experts in both state and object domains. In
the state domain, experts E4 and E6 process the majority of tokens, while the remaining experts han-
dle a similar token load. In the object domain, experts E1 and E7 exhibit the highest computational
load. Since a single text encoder is utilized, this imbalance suggests knowledge separation, with
certain experts specializing in specific domains, i.e., expert E4 excels in state-related tasks, while
expert E1 performs well in object-related tasks.

Visualization of variant alignment. Fig. 9 demonstrates primitive visual variants from different
experts model different semantics. For instance, V1 and V3 (local) relevant to state and object labels
are more suitable than image feature (global) for primitive alignment (local).

Feature Analysis. Fig. 10 visualizes the image features learned by BASELINE and EVA. Lever-
aging domain-expert adaption and semantic variant alignment, EVA constructs a well-structured
representation space, where features corresponding to identical states or objects are more tightly
clustered, and class boundaries are more distinct. This structured representation enhances composi-
tional generalization to unseen instances.
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Figure 7: Hyperparameter sensitivity analysis on MIT-States dataset in terms of AUC.

(a) State Domain (b) Object Domain

Figure 8: The token load of various experts in state and object domains.

Figure 9: Visualization of the affinity between images feature “ancient library” and variations (v1,...,
v5) with states and objects.

(a) BASELINE (b) Ours

Figure 10: Visualization of image features learned by BASELINE and our method.
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