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ABSTRACT

Compositional Zero-Shot Learning (CZSL) investigates compositional general-
ization capacity to recognize unknown state-object pairs based on learned primi-
tive concepts. Existing CZSL methods typically derive primitives features through
a simple composition-prototype mapping, which is suboptimal for a set of indi-
viduals that can be divided into distinct semantic subsets. Moreover, the one-
to-all cross-modal primitives matching neglects compositional divergence within
identical states or objects, limiting fine-grained image-composition alignment.
In this study, we propose EVA, a Mixture-of-Experts Framework for Semantic
Variant Alignment. Specifically, we introduce domain-expert adaption, lever-
aging multiple experts to achieve token-aware learning and model high-quality
primitive representations. To enable accurate compositional generalization, we
further present semantic variant alignment to select semantically relevant rep-
resentation for image-primitives matching. Our method significantly outperforms
other state-of-the-art CZSL methods on three popular benchmarks in both closed-
and open-world settings, demonstrating the efficacy of the proposed insight.

1 INTRODUCTION

Compositional generalization (Atzmon et al., Prior Old Man Ours A Oanen
2016 Lake et al., 2017) enables artificial intelli- o<z A

gence systems to derive new concepts from ex- A % ousimary oA ¥ oSt
isting knowledge, thereby accurately interpret-  «“x™ |~ . T

ing unseen visual instances. Inspired by this ca- e .

pacity for compositional generalization, Com- T T I 1
positional Zero-Shot Learning (CZSL) (Misra

et al.,2017;[Li et al.| 2020; [Naeem et al.,[2021) Image Expert 1| /Expert2| -+ /ExpertN
aims to recognize novel compositions of states Encoder [ | |

and objects by leveraging primitive knowledge
acquired from seen compositions. A central
challenge of CZSL lies in primitive polysemy:
the meaning and visual manifestation of the
same pri mitive can <'11ffer substantially depepd— Figure 1: Left: Prior primitive alignment neglects com-
ng on 1ts C.0mp0~81t1.0.nal. Conte).(t. Addre.ssmg positional divergence within primitive, thus disrupting
this semantic variability is crucial for building e topological structure of multimodal space. Right:
robust composition representations. Our method selects the most semantically relevant fea-

Recent CZSL approaches (Huang et al., 2024; ELrlI)es S_f;(l)(f:ia?z?ga;r;zﬁ)erts for improved fine-grained
Xu et al., 20245 |Lu et al.| 2023} Jing et al.| 2024) ’

have advanced performance by incorporating composition-level supervision, typically through con-
trastive objectives that align visual compositions with their textual embeddings. Primitive-level
alignment, when used, is often introduced as an auxiliary objective to marginally improve perfor-
mance. Hence, primitive learning has not been sufficiently appreciated and explored; These meth-
ods still rely on single-prototype representations for each primitive, which are shared across all
compositional contexts. This one-to-all constraint disrupts the topological structure of fine-grained
primitive-composition relations, leading to semantic entanglement. As a result, the quality of com-
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position embeddings is inherently limited by the underpowered modeling of their primitive con-
stituents. For instance, a single prototype for young cannot simultaneously capture the distinct
semantics of young dog and young city, even when composition-level losses are applied. This gap
motivates the need for how fo learn primitive features that can dynamically adapt to diverse seman-
tic variants.

Our work builds on the observation that primitives are not only shared across compositions but are
also semantically heterogeneous, exhibiting context-dependent variants that cannot be faithfully
represented by a single embedding. While prior works (Purushwalkam et al., 2019; [Nayak et al.,
2022; |Lu et al} 2023} Xu et al.| [2024) have addressed composition-level alignment, they implic-
itly assume that primitive embeddings are static and context-invariant, serving as a fixed anchor
across all compositions. In Fig.|1| primitive visual features are extracted by a simple expert-module
and aligned with single text primitive feature, which fails to extract specific and expressive prim-
itive semantic (e.g., old man and old street) and achieve fine-grained cross-modal matching (i.e.,
different semantic alignment from old). Thus, we argue that such simplification restricts the compo-
sitional generalization ability of CZSL models, especially in open-world scenarios where primitives
frequently combine in unseen ways.

To tackle this issue, we draw inspiration from the Mixture-of-Experts (MoE) paradigm (Zhou et al.,
2022; Jacobs et al. [1991} [Shazeer et al., 2017} [Liu et al., [2024a)), which is inherently suited to
model the heterogeneous nature of primitive concepts. The core design of MoE—which routes
different inputs to specialized experts—aligns perfectly with the fundamental challenge in CZSL: the
meaning of a primitive varies dramatically based on its compositional context. Unlike conventional
architectures that simply increases model capacity uniformly, MoE enables dynamic specialization,
allowing the model to capture diverse, context-aware primitive representations, where each expert
can specialize in a different semantic facet of a primitive. Importantly, our use of MoE is not merely
a transplant of a more powerful architecture; it is a principled, task-driven design that leverages
expert specialization to explicitly address the semantic variability problem intrinsic to compositional
learning. To the best of our knowledge, this work is the first to introduce and motivate the use of
MOoE for this specific purpose in CZSL.

Based on this insight, we propose EVA, a Mixture-of-Experts Framework for Semantic Variant
Alignment. EVA introduces two effective strategies: domain-expert adaption for learning high-
quality primitives representations, and semantic variant alignment for establishing robust fine-
grained image-composition alignment:

1. Domain-expert adaption introduces the MoE adapter to process tokens in each layer of the im-
age and text encoders. Through dynamic token allocation, each expert handles semantically similar
tokens, facilitating the mastery of in-domain knowledge (common knowledge associated with spe-
cific domain, e.g., color) and improving performance in prototype semantic modeling. The MoE
adapter learns prototypical concepts at token level and integrates composition information through
the self-attention layer, ensuring the effective transmission of semantic information. Moreover, con-
sidering knowledge redundancy in multi-expert collaboration, we designate a shared expert to
capture general knowledge, and other activated experts to focus on specialized knowledge. As a
result, compared to suffix modules in (Bao et al.||2024; |[Huang et al.| [2024; Xu et al|[2024), EVA is
an efficient and flexible end-to-end model.

2. Semantic variant alignment is the global-to-local cross-modal solution from image and text
views. In the text domain, since compositions belong to their respective state and object sets, prim-
itive features can be regarded as the centroids of composition features. Thus, without explicitly
maintaining a cluster of feature variants, EVA captures fine-grained primitive features. In the image
domain, CLS tokens from various experts are regarded as image feature variants, which are seman-
tic representations of visual content from different perspectives. With the similarity between these
variants and their corresponding primitive text features, we select the highest-scoring variants as
the primitive visual features. Since explicitly modeling semantic variants of primitives, our method
complements composition-level objectives in prior work and provides a new perspective on how
primitives can be structured for robust CZSL.

To evaluate the proposed method, we conduct comparative experiments on three well-known
datasets: MIT-States (Isola et al., 2015), UT-Zappos (Yu & Grauman, |2014), and C-GQA (Naeem
et al.,[2021)) in both closed- and open-world settings. Our method significantly outperforms other
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state-of-the-art CZSL approaches, achieving +0.7% and +2.6% AUC gains on UT-Zappos and C-
GQA in open-world setting. Furthermore, extensive ablation studies robustly demonstrate the effect
of the EVA components.

2 RELATED WORK

Compositional Zero-shot Learning (CZSL). CZSL (Misra et al., [2017; [Lu et al.| 2023; Nayak
et al.|[2022;|Atzmon et al.| [2020) learns the entanglement between states and objects from seen com-
positions in training to recognize unseen compositions during test. Recent methods (Nayak et al.|
2022; Xu et al.l 2022} [Huang et al., [2024; Jing et all 2024) leverage high-quality features from
pre-trained VLM (Radford et al.| 2021)), achieving impressive zero-shot performance. CSP (Nayak
et al.| [2022) designs a single learnable prompt for each primitive, without considering the primi-
tive polysemy and the impact of prompt learning on the features is limited. Troika (Huang et al.,
2024) proposes a cross-modal traction module to adaptively learn text representations relevant to
visual content. However, for various tokens with different semantic contents, single expert module
inadequately achieves deep primitives learning. GIPCOL (Xu et al.,2024) introduces a graph-based
prompt learning method, but only focuses on the relationships between the primitives at the compo-
sitional level. In contrast, we propose domain-expert adaption to introduce MoE adapters at each
layer of both image and text encoders, enabling deep and efficient intra-primitive feature learning.

Concept Representation Learning. Learning transferable and generalizable concept representa-
tions is a central challenge in deep learning. In NLP filed, several methods (Vaswani et al., 2017}
Devlin et al., [2019; [Radford et al.l |2019; Brown et al., 2020) attempt to pretrain models on large
datasets, learning general and accurate token representations. Recent works (Jiang et al.| 2024;
Liu et al) [2024a) further utilize the MoE layer to achieve dynamic token routing for in-domain
knowledge learning. However, identifying fundamental visual concepts for description remains
challenging, visual concept learning typically requires natural language supervision (Li et al.,[2021).
CLIP (Radford et al.| [2021) learns transferable visual representations through contrastive learning
on large-scale image-pair datasets. BLIP (Li et al} |[2022) is pre-trained with both understanding-
based and generation-based tasks to learn generalizable representations. LLaVA (Liu et al., 2024b)
introduces visual instruction tuning to align LLM with the multimodal space. These methods fo-
cus on learning general visual concept features with the supervision from text, while we propose a
multi-expert representation method with the supervision from semantic variants, enhancing primi-
tive features expressiveness for cross-modal alignment.

3 METHODOLOGY

3.1 PRELIMINARY

The goal of CZSL is to develop a model with compositional generalization capacity, enabling it
to accurately recognize unseen compositions based on learned primitive knowledge (i.e., state and
object). Given primitive concept set H: state label set S = {s1, s2,..., S, } and object label set
O = {o1,09,...,0,}, the state-object composition set C is defined as the Cartesian product of
these two primitive concepts sets (i.e., C = S x ). For zero-shot evaluation, we denote seen
and unseen composition label sets as C* and C* respectively, which are disjoint subsets of C. The
training dataset is defined as T = {(x;,¢;)|x; € X,¢; € C*}, where X denotes the image space,
and only the seen set C? is accessible during training. In closed-world setting (Naeem et al., 2021)),
the test composition set C* includes both seen and unseen sets, defined as C* = C* UC®. In the more
challenging open-world setting (Mancini et al.,[2021)), the state-object composition set C is utilized
as the test composition space.

3.2 FRAMEWORK OVERVIEW

The human brain consists of different functional areas that work together to complete various tasks.
Inspired by distributed functional system, we propose EVA, a Mixture-of-Expert Semantic Variant
Alignment framework for CZSL, which employs several domain-experts for adaptive concept learn-
ing and fine-grained semantic alignment, as depicted in Fig. 2] (a). In this study, we adopt the frozen
CLIP (Radford et al., 2021) image encoder E, and text encoder E; to derive image and text rep-
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Figure 2: (a). The framework of EVA consists of domain-expert adaption for token-aware representation
learning and semantic variant alignment for fine-grained image-primitives matching. (b). Domain expert
adaption utilizes MoE adapter to dynamically process semantically relevant tokens with in-domain knowledge.
(c). Semantic variant alignment introduces text-to-image and image-to-text alignment to select most relevant
features for cross-modal matching from the text and image views, respectively.

resentations, respectively. Specifically, we introduce domain-expert adaption, illustrated in Fig. [2]
(b), to dynamically process tokens in each layer of encoders. The proposed domain-experts create
a sophisticated mapping to deeply learn primitives at the token level. To address existing all-to-one
image-primitives issues, we design semantic variant alignment, shown in Fig. 2] (c), to select the
most semantically relevant feature variants for fine-grained primitive concept learning.

3.3 DOMAIN-EXPERT ADAPTION

As depicted in Fig. [2] (b), the MoE adapter, parallel to the Feed-Forward Network (FFN), consists
of a router R for dynamic token allocation and multiple experts {&;}* . It is worth noting that
we designate a shared expert & to learn common knowledge, while others serve as routed experts
{Ez}f\fl to focus on domain-specific knowledge. We utilize standard LoRA (Hu et al., [2021) to
develop the MoE adapters, where each expert &; has two trainable parameters A € R4, B € RIx"
and r < d. This design makes experts lightweight and prevents overfitting due to the limited size of
CZSL datasets. Given the hidden token embedding »; € R in layer j, the router first computes the
token-to-expert affinity G € R” to measure each expert’s contribution. Then each token is assigned
to shared expert and K routed experts for domain-knowledge learning:

G = Softmax(TopK(R(h;))), (1

& = B A, )
Ne

hip1 =Y Gi&i(h;) + Eo(hy), 3)
i=1

where Topk(-) function selects the K most relevant experts, while setting the scores of the other
experts to —oo. With the implementation of the MoE adapter in both the image and text encoders,
our method leverages domain-expert knowledge and inter-expert collaboration to model high-quality
image representation f, € R'*¢ and text representation t, € R'*¢, respectively:

fc:Ev(x)a tc:Et(Pc)7 (4)
where z € R"*%*3 denotes the input image, and P. = [ 01, ...,0,,0,,0, ] is the learnable com-

position prompt, initialized with “a photo of state object”. Finally, we compute the composition
probability corresponding to the image z as follows:

exp(fe - td /7)
yees eXp(fe -ty /T)’

pe(clz) = 5 (5)

4
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where 7 € R is the temperature coefficient from pre-trained CLIP. The training objective for com-
position classification is defined as:

1
L.=—— Z log pe(c|z). (6)
‘T| (z,0)ET

3.4 SEMANTIC VARIANT ALIGNMENT

Primitive concept learning is essential for establishing robust and accurate image-composition align-
ment. Existing methods (Mancini et al.| 2021} [Lu et al., [2023; |Huang et al.| |2024) typically align
the primitives visual features with state and object text representations, respectively. However, this
all-to-one alignment neglects composition divergence within identical primitives, hindering fine-
grained composition matching. To address this limitation, as shown in Fig. 2] (c), we propose se-
mantic variant alignment which constructs multiple feature variants for adaptive image-primitives
relations. This approach performs a global-to-local cross-modal alignment from both image and text
perspectives, respectively.

Text-to-image alignment. Our variant-based method leverages the local composition distribution
to select the most semantically relevant individual, rather than original primitives feature. Specifi-
cally, we select the highest matching score among all compositions within state § as the image-state
matching score Ps, formulated as:

ps(§|x) = Igaxpc(c(é,o|x) *Tsy @)

where ¢z, € C'9¢ denotes the state §-relevant composition and C'**"9¢* is composition label
space. 75 > 0 is a trainable coefficient used to adjust the distribution of state probabilities. Similarly,
the image-object matching probability p, can be obtained. To recognize primitive concept h, the
cross-entropy loss is employed:

1
Ly=—— > logpu(hl). ®)
‘T| (xz,0)eT

where £;, denotes £ and L,,.

Image-to-text alignment. The composition-based approach exacerbates the gap between the seen
and unseen sets. Therefore, we propose bridging this gap by utilizing constant state and object
information to refine the well-structured image representation space during training.

Specifically, given a training image = with state label s and object label o, we first model the image
feature variants {vi}f\fo € RM<*4 from the MoE adapter in the final layer of the image encoder E,,.
The state feature t, € R? and object feature £, € R? are derived from the text encoder E; based on
learnable prompt P; and P,:

ts :Et(Ps)7 to :Et(Po)7 (9)
where Py = [ 01, ...,0,, 05 ] is initialized with ”a photo of state”, and P, = [ 01, ...,0,,0, ] is ini-
tialized with a photo of object”. Since multiple experts exploit semantic information from various
representation subspaces, the output representations denote the feature variants that describe differ-
ent semantic contents of the input image. Similar to text-to-image alignment, we propose inter- and
intra-model affinity to select the most semantically relevant variant as the primitive feature.

In terms of inter-model affinity, we measure the state affinity score A, € RV=*! and object affinity
score A, € RNe*1 for feature variants V = {v;} ZN;O and the corresponding text primitive features,
respectively (i.e., A, = Vt] and A, = Vt]). In terms of intra-model affinity, we compute the
affinity scores A, € R¥e*! for image features and semantic variants, which introduce supervision
for the global semantic content (i.e., A, = V f.). The affinity score A, is beneficial for excluding
semantic variants that differ significantly from the main semantic content. Furthermore, the overall
affinity score Ag and Ao are derived by considering both affinity scores comprehensively:

As = Ag +ad,, Ao = A, + oAy, (10)
where o« > 0 is a balancing coefficient. Finally, we select state image feature f, from semantic
variants {v;} ﬁV;O based on the overall affinity scores:

fs = argmaxa;, {a] € As|0 <=1i <= N.}. (11)
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Method MIT-States UT-Zappos C-GQA

Unseen T Seen T AUC T HM 1| Unseen 1 Seen T AUC T HM 1 |Unseen 1 Seen 1 AUC 1 HM 1

Closed-World Evaluation
CLIP (Radford et al.|[2021) icmr 21 46.0 302 11.0 26.1 49.1 158 50 156 25.0 7.5 1.4 8.6
CSP (Nayak et al.|[2022) icLr23 49.9 46.6 194 363 | 66.2 642 33.0 46.6| 268 288 62 205
DFSP (Lu et al.{[2023) cvrr 23 52.0 469 206 373 | 717 66.7 36.0 472 | 320 382 105 27.1
GIPCOL (Xu et al.[[2024) wacv24 49.6 485 199 36.6 | 685 65.0 362 488 | 284 319 7.1 225
CDS-CZSL (L1 et al.[|2024) cvrr 24 529 503 224 392 | 748 639 395 527 | 342 383 11.1  28.1
Troika (Huang et al.[[2024) cver 24 53.0 49.0 221 393| 7338 66.8 41.7 546 | 357 41.0 124 294
PLID (Bao et al.[[2024) Eccvo4 524 49.7 221 39.0| 68.8 67.3 387 524 330 38.8 11.0 279
RAPR (Jing et al.|[2024) anar24 53.3 500 225 392 | 728 694 445 56.5 36.0 456 144 320
CLUSPRO (Qu et al.[|2025) ic1.r25 54.0 521 238 40.7| 760 70.7 466 585 | 37.8 443 149 328
LOGICZSL (Wu et al.[[2025) cver25|  53.9 508 234 405 | 749 69.6 458 578 | 394 444 153 333
Ours ) 55.0 512 240 41.0] 79.6 712 502 60.2 | 44.6 47.1 188 369
Open-World Evaluation

CLIP (Radford et al.|[2021) icmr 21 14.3 30.1 3.0 128 | 20.6 157 22 112 4.6 7.5 03 4.0
CSP (Nayak et al.|[2022) ic1r23 15.7 463 57 174| 441 64.1 227 389 5.2 28.7 12 69
DFSP (Lu et al.|[2023) cvrr 23 18.5 47.5 6.8 19.3 60.0 66.8 303 44.0 7.2 38.3 2.4 10.4
GIPCOL (Xu et al.[[2024) wacv24 16.0 485 63 179 450 65.0 235 40.1 55 316 1.3 73
CDS-CZSL (Li et al.|[2024) cvpr24 21.8 494 85 221 61.3 64.7 323 482 8.2 37.6 27 116
Troika (Huang et al.[|2024) cver 24 18.7 488 72 20.1 61.2 664 33.0 47.8 7.9 40.8 2.7 109
PLID (Bao et al.[[2024) tccvo4 18.7 49.1 73  20.0 55.5 67.6 30.8 46.6 7.5 39.1 2.5 10.6
RAPR (Jing et al.{[2024) anar24 20.1 499 82 21.8| 594 694 333 479 | 11.2 455 44 146
CLUSPRO (Qu et al.||2025) 1cLr 25 22.1 512 93 23.0| 662 71.0 395 54.1 8.3 41.6 30 11.6
LOGICZSL (Wu et al.[|2025) cveros|  21.4 50.7 87 224 | 637 69.9 362 50.8 9.3 437 34 126
Ours ) 232 508 94 228 | 66.5 71.6 402 542 | 133 469 56 179

Table 1: Quantitative results on MIT-States, UT-Zappos, and C-GQA in Closed- and Open-World setting.

Similarly, object feature f, can be obtained. The image-to-text primitives probability is defined as:
_exp(fu-t/7)
> hen exp(fn - ty /7))

where p; denotes image-to-text state probability p; and object probability py. The training objective
of semantic variant alignment is defined as:

ph(hlz)

12)

1
L=~ > logpi(slr), (13)
(z,0)eT
. 1 .
Ly=—— Y logps(olz). (14)
‘T| (z,0)ET

3.5 TRAINING AND INFERENCE

Training objectives. The final training objective of EVA is achieved by optimizing all classification
loss functions, formulated as:

L=2Lc4M(Ls+ L) + Xa(LY + LY), (15)

where \; and )\ are two coefficients. Due to the reliance on label information, image-to-text align-
ment is only applicable during training.

Inference. The final composition prediction ¢, , combines state py, object p,, and composition
SCores pe:
s, 0 = argmax pe(cs o|) + B(ps(s|z) + polo|z)), (16)

Cs,0 cCtest

where the coefficient 3 is set as 0.5.

4 EXPERIMENT

4.1 SETTING

Datasets. We evaluate the proposed EVA on three widely-used CZSL datasets: MIT-States (Isola
et al., [2015), UT-Zappos (Yu & Grauman, 2014), and C-GQA (Naeem et al., [2021). MIT-States
comprises 53,753 natural images annotated with 115 states, 245 objects, and 1,962 state-object com-
positions. UT-Zappos contains 50,025 shoes images with 116 fine-grained compositions, including
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MIT-States C-GQA
Unseent Seent AUC?T HMT | UnseentT Seent AUCT HMT

51.8 47.1 20.2 36.9 325 38.3 10.4 26.9
54.8 50.1 23.0 40.1 42.8 45.6 17.2 35.5
52.3 49.8 222 39.7 34.7 41.2 12.1 29.8
55.0 51.2 24.0 41.0 44.6 47.1 18.8 36.9

BASELINE

Domain-expert Adaption
Semantic Variant Alignment
Adaption + Alignment

Table 2: Ablation Studies of core components on MIT-States and C-GQA datasets.

Expert split | Unseen T Seen 1 AUC 1T HM Variant Alignment | Unseen T Seen? AUC {1 HM 1
0+38 43.5 46.5 180 362 BASELINE 42.8 456 172 355
1+8 44.6 47.1 18.8  36.9 + 12i alignment 43.8 464 180 36.2
2+8 442 46.8 184 362 + inter-model affinity | 44.2 46.8 185 365
4+4 43.9 46.2 17.8 359 + intra-modal affinity |  44.6 471 188 369

(a) Expert Split (b) Ablation on Semantic Variant Alignment

Expert Num | Unseen 1 Seen T AUC 1 HM 1 Method |Unseen T Seent AUCT HM 1
1+6 44.0 46.5 182 362 EVA 44.6 47.1 18.8  36.9
1+8 44.6 47.1 18.8 36.9 + semantic isolation| 44.2 46.7 185 364
1410 44.0 46.0 180 36.0 + load balance 439 463 18.0 36.0

(c) Expert Number (d) Analysis on Domain-expert Adaption

Table 3: Comparison experiments on C-GQA dataset.

16 states and 12 objects. C-GQA is the largest CZSL dataset, featuring 39,298 images labeled with
7,767 compositions, encompassing 453 states and 870 objects. In closed-world setting, we follow
previous works (Naeem et al.,[2021} |Lu et al., [2023]) to partition datasets into seen and unseen sets.

Evaluation Metrics. Following the evaluation protocol established in prior works (Misra et al.,
2017;|Lu et al., 2023 [Huang et al.|[2024), we adjust a calibration bias applied to unseen scores from
—o0 to +00 , balancing the prediction scores between seen and unseen pairs. We report the Area
Under the Curve (AUC) and the best Harmonic Mean (HM) to quantify the overall performance
across seen and unseen compositions. Moreover, we record the best-seen accuracy Seen and best-
unseen accuracy Unseen to assess performance on these two disjoint subsets.

Implementation Details. EVA is built upon the pre-trained frozen CLIP (Radford et al.|[2021) ViT-
L/14 model, which serves as both the image and text encoder. In the domain-expert adaption stage,
the MoE adapter with a LoRA-based (Hu et al.} [2021)) intra-layer structure comprises a router R, a
shared expert &, and routed experts {£} fvzf‘l The router R is a single-layer fully connected network,
while the shared and routed experts are two-layer MLPs with identical structures, where the hidden
dim r is set to 64. The number of activated experts K is set to 2. Moreover, the coefficient « is set
to 0.5 in intra-model affinity. In the final loss function, the weighting parameters A; and \q are set
to 0.5 and 0.1, respectively.

Training and Test. We train EVA, implemented in PyTorch (Paszke et al., [2019), using Adam
optimizer (Kingma & Bal [2014) for 20 epochs with a learning rate of 1e — 4. The weight decay is
setto le — 4, be — 4 and le — 4 for MIT-States, UT-Zappos, and C-GQA, respectively. Following
prior works (Naeem et al., 2021} [Lu et al., |2023)), we apply post-training calibration to filter out
infeasible compositions in the open-world setting during testing.

4.2 COMPARISONS WITH SOTAS

We evaluate the quantitative performance of EVA in comparison to previous CLIP-based CZSL
methods (Radford et al.| [2021; [Nayak et al., 2022} [Lu et al., 2023} Xu et al., |2024; [Huang et al.,
20245 L1 et al.|, 2024} Bao et al., [2024} Jing et al., 2024; |Qu et al., 2025 |Wu et al.l [2025)), in both
closed- and open-world settings, as presented in Table I}

Evaluation in Closed-World Setting. EVA achieves remarkable improvements over other methods,
with AUC gains over LOGICZSL (Wu et al.,[2025), improvements of +0.6%, +4.4%, and +3.5%
on MIT-States, UT-Zappos and C-GQA, respectively. Specifically, our EVA improves Unseen by
at least +1.0% compared to previous CZSL methods on MIT-States. Notably, our method achieves
the highest HM score of 36.9% in C-GQA, demonstrating enhanced compositional generalization
compared to other methods (Huang et al.| 2024} [Li et all 2024} Jing et al.| [2024). These results
underscore the advantage of domain-expert adaption in token-aware concept representation learn-
ing. In general, our approach EVA exhibits robust performance across all datasets and evaluation
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Success Cases Failure Cases
Young Elephant New Boat Ripe Apple Huge Kitchen
K ¢ -

New Toy

E: Young Elephant E: New Boat | E: Ripe Apple E: Large Desk E: Small Dog

Small Elephant Heavy Boat Unripe Apple Large Room Tiny Dog

Tiny Elephant Inflated Boat (S8 Ripe Pear Clean Kitchen New Toy

B: Tiny Elephant B: Lightweight B: Unripe Pear B: Clean Room B: Tiny Dog

Boat
Huge Tower Canvas Boots.Ankle Morden House Empty Desk

E: Eroded Clay E: Huge Tower E: Canvas Boots.Ankle E: Small Pool E: Large Desk
Dry Clay Morden Tower Corduroy Boots.Ankle Morden House Empty Desk
Eroded Valley E New City Faux.Fur Boots.Ankle . . Verdant Tree Open Door
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Figure 3: Qualitative Results. We present top-3 predictions from EVA (E) and top-1 prediction from
BASELINE (B) in terms of success (Left) and failure cases (Right).

metrics, consistently outperforming previous state-of-the-art methods, particularly in unseen sets,
underscoring its potential for practical applications in closed-world settings.

Evaluation in Open-World Setting. Open-world results demonstrate that our method significantly
outperforms state-of-the-art approaches, achieving AUC gains over CLUSPRO (Qu et al.| [2025)),
improvements of +0.1%, 40.7% and +2.6% on MIT-States, UT-Zappos and C-GQA, respectively.
Specifically, our method attains a notable Unseen score of 23.2% on MIT-States dataset, surpassing
the previous highest score of 22.1%. Additionally, our Seen score of 71.6% exceeds that of sev-
eral CZSL methods, highlighting a strong balance in handling both seen and unseen compositions.
On the most challenging C-GQA dataset, our method surpasses all other CZSL methods across all
evaluation metrics, particularly in HM. The improvement of open-world performance demonstrates
the effect of semantic variant alignment in establishing accurate image-primitives matching rela-
tions. Overall, EVA distinguishes itself through its ability to handle unseen data, making it highly
effective for open-world tasks where new and unknown compositions are frequently encountered.

4.3 ABLATION STUDY

Effect of Core Components. We conduct several ablation experiments to access the effect of key
components in our EVA, as presented in Table [2] The BASELINE employs the frozen CLIP (Rad-
ford et al.,|2021) encoder without the proposed methods, learning compositional zero-shot capacity
with learnable prompts Ps, P, and P.. Domain-expert adaption boosts the model’s zero-shot perfor-
mance across all datasets, e.g., improving AUC from 20.2% to 23.0% on MIT-States, indicating that
in-domain knowledge learning effectively strengthens primitive semantic modeling. Additionally,
we observe that Semantic variant alignment leads to a significant improvement, such as an AUC
increase from 10.4% to and 12.1% on C-GQA. The integration of both components achieves a new
state-of-the-art performance, further demonstrating the effectiveness of our approach.

Expert Split. We evaluate the impact of expert split, as depicted in Table [3a] By comparing
configurations 0 4+ 8 and 1 + 8, we observe that shared expert enhances compositional recognition
performance. However, increasing the number of shared experts leads to a decline in model per-
formance, suggesting that retaining a certain proportion of routed experts is crucial. Furthermore,
when the number of shared and routed experts is set to be equal, performance is lower than that of
0 + 8. This indicates that dynamic routing plays a more significant role than constant collaboration
in complex semantic learning.

Semantic Variant Alignment. Table [3b] provides ablation results for semantic variant alignment
on C-GQA dataset. Compared to BASELINE without semantic variant alignment, text-to-image
(t2i) alignment effectively improves compositional zero-shot performance, e.g., +0.8% improve-
ment in AUC. We observe that progressively incorporating the remaining modules (:.e., inter- and
intra-modal affinity) further increases overall performance. The best results are achieved when all
components are utilized, demonstrating the effectiveness of the proposed method.

Expert Number. Table |3c| demonstrates that the model with 8 experts achieves the highest per-
formance across all metrics, highlighting that a moderate level of expert diversity is most effective
for capturing semantic heterogeneity and enabling compositional reasoning. Models with too few
experts tend to underfit the complex variations in semantics, failing to disentangle meaningful com-
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ponents, whereas models with an excessive number of experts suffer from routing sparsity, which
reduces the effectiveness of each expert and weakens overall specialization. This indicates that
balancing the number of experts is crucial for achieving both expressive power and efficient special-
ization in semantic decomposition.

Domain-expert Adaption. To further investigate the impact of semantic isolation on multi-expert
learning, we conducted a comparative experiment. Specifically, we employed two identical MoE-
based adapters for states and objects, respectively. Each adapter consists of one shared expert and
eight routed experts, mirroring the architecture of EVA. We evaluated the models on the most com-
plex dataset, C-GQA, with results summarized in Table@

Introducing semantic isolation leads to a slight performance degradation, suggesting that strictly
isolating experts does not improve compositional generalization. This implies that a mixture of
attributes and objects may help experts capture semantic relationships, whereas arbitrary divisions
offer little benefit. Considering the potential effect of imbalanced expert usage, we further applied a
balancing loss to mitigate it. However, even with balanced token loads, performance remains inferior
to EVA. This is likely because load balancing enforces uniform expert usage, which contradicts the
natural semantic distribution of primitives. Forcing equal routing effectively homogenizes experts,
thereby reducing their specialization.

4.4 QUALITATIVE ANALYSIS

. Expert 1 . Expert 2 . Expert 3 . Exper\4 . Expert 5 . Expert 6 . Expert 7 . Expert 8

Figure 4: Patch visualization handled by different visual experts.

As illustrated in Fig. El, we present the success (left) and failure (right) cases of EVA and BASE-
LINE, which adopts LoRA-based adapters rather than MoE adapters in both image and text en-
coders. Compared to BASELINE, EVA demonstrates strong compositional recognition capabili-
ties, accurately identifying complex semantic relationships between visual instances, such as Huge
Tower and Eroded Clay. Furthermore, the top-3 predictions are semantically closely related to the
Ground Truth, indicating that EVA establishes a robust and reliable cross-modal alignment for rec-
ognizing compositional relationships between states and objects. In failure cases, while EVA and
BASELINE both make wrong predictions, EVA produces semantically related predictions when in-
terpreting holistic concepts (Huge Kitchen) and ambiguous subjects (Modern House). This indicates
that although EVA can handle semantic ambiguity well, its ability to perceive targets in complex vi-
sual scenes still requires improvement in future, which may be due to the lack of explicit supervision
regarding visual objects.

Vision Expert Analysis. In Fig.[df We observe that different experts attend to distinct semantic
regions: some focus on object-level cues (e.g., “bus”, “tower”), while others highlight state-related
attributes (e.g., “wet surface,” “eroded road”). This specialization validates the intended design
of MoE, where experts capture complementary semantic factors. Moreover, experts demonstrate
partial redundancy—multiple experts sometimes capture overlapping local regions—which reflects

collaborative encoding rather than isolated specialization.

Text Expert Analysis. Fig. [5| further analyzes the cosine similarity between primitive text features
from different experts and composition text features. For example, when evaluating the state ancient,
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Figure 5: Analysis of the similarity between primitive features from different experts and composition features.

certain experts consistently align with ancient city, while others align with ancient library, showing
context-sensitive partitioning of primitive semantics. Similarly, for the object city, experts diverge
towards modern city versus ancient city, indicating that experts encode fine-grained semantic vari-
ants. This decomposition confirms that EVA structurally separates semantic subspaces, mitigating
the entanglement present in single-prototype baselines.
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Fig. [f] displays the visualization results of at-
tribute and object semantic variants. In terms
of state, Semantic variants belonging to differ-
ent categories are distinguishable. Variant clus- .
ters with similar semantic meanings are closer oo =
in distance, e.g., large-huge,and the overall dis- . °
tribution of variant clusters corresponds to the .
correlations of their respective states. The same .

phenomenon is also observed in the distribution . o
of object variants. Specifically, dog, tiger, and  Figure 6: Visualization of semantic variants from text
cat all belong to the category of animals, shar- encoder in term of state(left) and object(right).

ing closer proximity to each other, with a dis-

tinct boundary separating them from other categories. This indicates that EVA achieves clear se-
mantic separation, with the distribution of semantic variants from different primitives exhibiting
semantic plausibility.
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5 CONCLUSION

In this work, we propose a Mixture-of-Expert Semantic Variant Alignment framework (EVA) to
address the challenges of concept learning and composition divergence within primitives. Inspired
by distributed processing system of the human brain, we leverage MoE adapters to enable an end-
to-end model. Through dynamic token allocation, experts specialize as effective in-domain learners,
enhancing the modeling of primitive features. Moreover, we introduce semantic variant alignment
to enable fine-grained and accurate image-primitive mappings. The resulting well-structured primi-
tive representation space facilitates the establishment of discriminative image-composition relations,
improving compositional generalization. In future work, we aim to explore strategies to enhance the
understanding of abstract concepts and the ability to distinguish object subjects effectively.
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A APPENDIX

The detailed statistics of the dataset splits are provided in Table

Dataset Train Validation Test

IS| ol el et e et et et
MIT-States (Isola et al.||[2015) 115 245 28175 | 1262 | 300 300 | 400 400
UT-Zappos (Yu & Grauman![2014) 16 12 192 83 15 15 18 18
C-GQA (Naeem et al.|[2021) 413 674 278362 | 5592 | 1252 1040 | 888 923

Table 4: The detailed data split statistics.

Expert dim r. In Table [5a] we investigate the influence of expert dim r on compositional general-
ization performance. The optimal dimension is found to be 64, as it achieves the best performance
while maintaining training efficiency. When the dimension is gradually reduced below 64, a decline
in performance is observed, attributable to information loss caused by dimensional compression.
Conversely, increasing the expert dimension to 128 does not yield performance improvements, sug-
gesting that larger dimensions introduce information redundancy.

Number K | Unseen t Seen{ AUC T HM 1

Expert dim r | Unseen T Seen  AUC T HM 1 K=0 2.4 453 16.7 34.7
r=38 420 459 168 347 K=1 43.8 471 18.0 36.1
r=16 42.8 46.2 17.1  35.1 _

-+ 440 468 182 365 K = 2 44.6 47.1 18.8 36.9

r =064 44.6 47.1 18.8  36.9 K =4 43.2 46.9 17.8 35.9

r =128 438 465 180 36.1 K=38 429 464 175 357
(a) Hidden Dim of Expert Adapter (b) Activated Expert Number

Table 5: Ablation experiments on C-GQA dataset.

Activated Expert Number. Table[Sb|reports the impact of activated expert number K. The optimal
K is 2, which achieves a win-win situation in terms of performance and computational cost. When
we reduce K to 0, i.e., only utilizing the sharing expert, the MoE adapter becomes a MLP-based
adapter, resulting in a performance decline. We next set one activated expert and observe the im-
provement of CZSL performance, which suggests that the dynamic token routing is beneficial to
primitives representation modeling. Larger number K causes the lower performance, indicating the
low efficiency in collaboration among multiple experts.

a Unseent Seent AUCT HMT

0 43.8 46.2 18.0 35.8
0.3 44.2 46.9 18.6 36.6
0.5 44.6 47.1 18.8 36.9
0.7 44.0 46.8 18.5 36.3
1.0 43.8 46.8 18.2 36.0

Table 6: The balancing coefficient o

Analysis of hyperparameter a. The coefficient « is introduced to balance inter- and intra-model
affinity. Analogous to weighting terms in loss functions, it enables a comprehensive consideration
of both types of affinity when selecting appropriate feature variants. The sensitivity analysis results
are presented in Table [6] Across the range from o = 0 to o = 1, all metrics vary only slightly,
indicating that EVA is largely insensitive to the exact choice of «.. Performance remains stable over
a broad interval, suggesting that the model is robust to this hyperparameter.

Effect of Semantic Variant Alignment. SVA is proposed to address semantic divergence and
achieve fine-grained image-primitive alignment. Table [7| shows that Semantic Variants Alignment
(SVA) achieves higher primitive prediction accuracy and AUC than BASELINE. It demonstrates
that our variants-based primitive alignment is more effective than previous single-prototype method.
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MIT-States C-GQA

Method  — = auC att  obj AUC
BASELINE 410 500 23.0 485 600 17.2
+SVA 427 521 240 500 631 188

Table 7: Ablation on Semantic Variants Alignment

Efficiency Comparison. Additionally, Table [§] shows the efficiency comparison on UT-Zappos
dataset. Since we utilize an efficient strategy to design MoE adapters and primitives alignment
method, our model achieves superior performance and inference speed without massive trainable
parameters.

Method #Params(M) |  Training Time |  Inference Time | AUC 1
RAPR (Jing et al.|[2024) 37.9M 3min32s 28.4ms 44.5
Ours 36.7M 3min30s 12.0ms 50.2

Table 8: Efficiency comparison with SoTA method.

Design Comparison. Table [9] further demonstrates the effect of our design, where suffix module
has same structure with MoE adapter. Compared to independent suffix modules, the LoRA-based
intra-layer adapter enables a flexible end-to-end model with higher AUC and HM.

UT-Zappos C-GQA
Method AUC  HM AUC  HM
Suffix Module 452 527 158 328
LoRA (Ours) 502  60.2 188  36.9

Table 9: Design comparison.

Analysis of hyperparameter sensitivity. We further study the sensitivity of hyperparameter A; and
Ao for loss functions, and S for composition inference. In Fig.[/] as the parameters values change,
the fluctuation range of the AUC remains within 1%, which validates the robustness of the proposed
method.

Token load. To evaluate the impact of MoE adapter on in-domain knowledge learning, we analyze
the computational load of each expert in learning state (Fig. E](a)) and object (Fig.@](b)). We observe
an imbalanced distribution of token processing across experts in both state and object domains. In
the state domain, experts £, and & process the majority of tokens, while the remaining experts han-
dle a similar token load. In the object domain, experts £ and &7 exhibit the highest computational
load. Since a single text encoder is utilized, this imbalance suggests knowledge separation, with
certain experts specializing in specific domains, i.e., expert &4 excels in state-related tasks, while
expert &1 performs well in object-related tasks.

Visualization of variant alignment. Fig. [0]demonstrates primitive visual variants from different
experts model different semantics. For instance, V1 and V3 (local) relevant to state and object labels
are more suitable than image feature (global) for primitive alignment (local).

Feature Analysis. Fig. 10| visualizes the image features learned by BASELINE and EVA. Lever-
aging domain-expert adaption and semantic variant alignment, EVA constructs a well-structured
representation space, where features corresponding to identical states or objects are more tightly
clustered, and class boundaries are more distinct. This structured representation enhances composi-
tional generalization to unseen instances.
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Figure 8: The token load of various experts in state and object domains.

Figure 9: Visualization of the affinity between images feature “ancient library” and variations (v1,...,

v5) with states and objects.
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Figure 10: Visualization of image features learned by BASELINE and our method.
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