MARS: Meta-learning as score matching in the
function space

Krunoslav Lehman Pavasovic’, Jonas Rothfuss*, Andreas Krause
ETH Ziirich, Switzerland
{klehman, rojonas, krausea}@ethz.ch

Abstract

We approach meta-learning through the lens of functional Bayesian neural net-
work inference, which views the prior as a stochastic process and performs infer-
ence in the function space. Specifically, we view the meta-training tasks as sam-
ples from the data-generating process and formalize meta-learning as empirically
estimating the law of this stochastic process. Our approach can seamlessly acquire
and represent complex prior knowledge by meta-learning the score function of the
data-generating process marginals. In a comprehensive benchmark, we demon-
strate that our method achieves state-of-the-art performance in terms of predictive
accuracy and substantial improvements in the quality of uncertainty estimates.

1 Introduction

Meta-learning attempts to extract prior knowledge about the unknown data generation process
from related tasks and embed it into the learner (Thrun & Pratt, 1998).We take a new approach to
formulating the meta-learning problem and represent prior knowledge in a novel way by building on
recent advances in functional BNNs (Wang et al., 2018; Sun et al., 2019). When viewing the BNN
prior and posterior as stochastic processes, the perfect Bayesian prior is the (true) data-generating
stochastic process itself. Hence, we view the meta-training datasets as samples from the meta data-
generating process and interpret meta-learning as empirically estimating the law of this stochastic
process. More specifically, we meta-learn the score function of its marginal distributions, which
can then directly be used as a source of prior knowledge when performing approximate functional
BNN inference on a new target task. This allows us to use flexible neural network models for
learning the score and overcome the issues of meta-learning BNN priors in the parameter space.

In our experiments, we demonstrate that our proposed approach, Meta-learning via Attention-
based Regularised Score estimation (MARS), consistently outperforms previous meta-learners in
predictive accuracy and yields significant improvements in the quality of uncertainty estimates.
This promises fruitful future applications to domains like molecular biology or medicine, where
meta-training data is scarce, and reasoning about epistemic uncertainty is crucial.

2 Background

Bayesian Neural Networks. Consider a regression task with data D = (XD, yD) that consists of
m i.i.d. noisy function evaluations y; = f (x;) + ¢; of an unknown function f : & ~). Here,
XP = {x; };n:1 € X™ denotes training inputs and y© = {y; };”:1 € Y™ the corresponding noisy
function values. Let hg : X —) be a regression function parametrized by a NN with weights
6 € ©. Given a prior distribution p(#) over the model parameters 6 and a likelihood p(y|x,6),
Bayes’ theorem yields a posterior distribution p(0|X?,y?) « p(yP|XP, 0)p(9).

BNN inference in the function space. BNN inference is difficult due to the high-dimensional
parameter space © and the over-parameterized nature of the NN mapping hg(z). An alternative

*Equal contribution.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

approach views BNN inference in the function space, i.e., the space of functions h : X +—), yield-
ing the Bayes rule? p(h|XP,y?) p(yP|XP, h)p(h) (Wang et al., 2019; Sun et al., 2019). Given
finite measurement sets X := [xy,...,X] € X¥ k € N, we can characterize the stochastic process
by its marginal distributions of function values p(h®) := p(h(x1), ...h(xy)) (Oksendal, 2013).

3 Meta-Learning as Score Estimation in the Function Space

3.1 Problem Statement: Meta-Learning

The meta-learner is given n datasets D1, ..., D,, where each dataset D; = (XiD7 yiD) consists of
m; noisy function evaluations y; ; = f;(x;+) + € corresponding to a function f; : ¥ — Y C R
and additive o sub-Gaussian noise €. In short, we write XP = (x;1,...,X;.m,) | for the matrix
of function inputs and y;P = (Y15 yimi)—r for the vector of corresponding observations. We
assume that the functions f; ~ 7 are sampled i.i.d. from a task distribution 7", which can be
thought of as a stochastic process p(f) that governs the random function f : X —). Our goal
is to extract knowledge from the observed datasets, which can then be used as a form of prior for
learning a new, unknown target function f* ~ T from a corresponding dataset D*. By performing
Bayesian inference with a meta-learned prior that is attuned to the task distribution 7, we hope to
obtain posterior predictions that generalize better.

3.2 Meta-Learning as Score Estimation on the Data-Generating Process

We view acquiring prior knowledge in a data-driven manner from a new perspective. Our novel
approach to meta-learning hinges upon three key ideas:

First, we view BNN inference in the function space (see Sec. 2), i.e., as posterior inference
p(h|XP,yP) o p(yP|XP, h)p(h) over neural network mappings hg : X +) instead of pa-
rameters 6. From this viewpoint, the prior, which is the target of our meta-learning problem, is p(h)
a stochastic process. Second, from a Bayesian perspective, the best possible prior is the stochastic
process of the task generating distribution 7 itself, i.e., p(h) = p(f). Hence, we aim to meta-learn
a prior that matches p(f) as closely as possible. We treat the meta-training datasets Dy, ..., D,
as noisy observations from p(f) and use them to estimate the stochastic process marginals p(f%X).
Third, we estimate the score of the marginals rather than the marginal distribution itself. Since the
score does not have to integrate to 1, it allows for much more flexible neural network representations.

In summary, our high-level approach is to meta-learn / estimate the prior score Vyx In p(h®) that
matches the data-generating stochastic process of the meta-training data D1, ..., D,,. At meta-test
time, the meta-learned prior marginals are used in the approximate functional BNN inference on a
target dataset D*, to infuse the acquired prior knowledge into the posterior predictions.

4 The MARS meta-learning algorithm

In the following, we discuss how to solve various challenges towards implementing our approach
from Sec.3 and develop a practical algorithm for estimating the stochastic prior scores.

Parametric Score Matching for Stochastic Process Marginals. Performing functional approx-
imate posterior inference with fSVGD updates as in (4) requires estimation of the prior marginal
scores Vpx Inp(h*) for arbitrary measurement sets X. As the parametric model of the prior
marginal scores, we use a transformer encoder architecture (Vaswani et al., 2017), takes as input
a concatenation of measurement set X € RIM(X)xE of k points and corresponding query function
values hX € RIM) >k The network performs attention over the second dimension, i.e., the k
columns corresponding to measurement points. Our score network model is denoted as s, (h*, X)
with trainable parameters ¢. The model is permutation equivariant w.r.t. the columns that correspond
to measurement points and, thus, reflects a key property of stochastic process marginal scores.

We train the score network with a modified version of the score matching loss (Hyvérinen & Dayan,
2005) which is based on samples fX, ..., fX from the data-generating process marginals. In contrast
to the normal score matching loss, our modified loss takes the dependence of marginals on their

’Here, p(h) is a stochastic process prior.

-=-= true fun
—— pred mean /) /)
6 O train data
pred std

(a) Vanilla BNN (b) fBNN with GP prior (c) MARS (ours)
Figure 1: BNN posterior predictions with the corresponding prior distributions/processes.

measurements sets into account and uses an expectation over random measurement sets:

n

1 1
23 (1T (5, 30) + 2|s¢<f3‘,X>|§)] 0

i=1

Interpolating the Datasets across X'. In our meta-learning setup (see Section 3.1), we only receive
noisy function evaluations y? in m; locations XP for each meta-training task. However, to mini-
mize the score matching loss in (1), we need the corresponding function values in arbitrary measure-
ment locations of the domain X. To solve this issue, we fit a Gaussian Process (GP) on each dataset
D; which gives us a GP posterior p(fX|X, XP | y!) over function values £X for arbitrary measure-
ment sets X. To account for the epistemic uncertalnty of the GP interpolation, for each task, we
sample function values f; £X ~ p(fX|X, XP | yP) from the corresponding GP posterior and use them
as an input to the score matchlng loss in (1). Correspondingly, the score matching loss modifies to

- - 1 -
() = Bx ZE,)(fxxxl,y)[<vf3(sq><f3<,x>>+2||s¢<f3<,x>|§H. @)

Preventing Meta-Overfitting of the Prior Score Network. =~ We only have meta-training data
{D;}"_,, corresponding to n functions f; drawn from the data-generating stochastic process, i.e.,
we only have n samples for estimation of marginal scores Vi,x Inp(h*). This makes us prone
to overfitting of the prior score network. To counteract the tendency to overfit, we regularize the
score network via spectral normalization (Miyato et al., 2018) of the linear layers in the transformer
encoder blocks. This biases the score estimates towards higher entropy.

The full MARS algorithm. Overall, the MARS meta-learning algorithm consists of two stages:

Stage 1: Meta-Learning the Prior Score Network. —We fit a GP to each of the n meta-training
datasets D;. Then, we train the score network by stochastic gradient descent on the modified score
matching loss ﬁ(¢) in (2). In each iteration, we first sample a measurement set X i.i.d. from the
measurement distribution v = U (X), with X C X. For the measurement set, we sample a vector of
functions values fX from the corresponding GP posterior margmals p(FX X, XP,yP)i=1,..,n

Based on these samples, we form an empirical estimate £(¢) of the score matching loss and
perform a gradient update step on ¢. This is repeated till convergence and summarized in Alg. 1.

Stage 2: Functional BNN Inference with the Prior Score Network. When concerned with a target
learning task with training dataset D* = (X2, yP), we infuse the meta-learned inductive bias
into the functional BNN inference by using the score network s(z,(hx7 X) predictions as a swap-in
replacement for the marginal scores Vi, x In p(hX). In our experiments, we use fSVGD (see Section
2) as a functional approximate inference method (see Alg. 2 in Appx. A).

5 Experiments

We provide a detailed benchmark comparison, demonstrating that MARS: (i) achieves state-of-the-
art performance in terms of predictive accuracy, (ii) yields well-calibrated uncertainty estimates.

5.1 Experiment Setup

Baselines. We consider five realistic meta-learning regression environments with detailed descrip-
tions provided in Appendix B.2. As non-meta-learning baselines, we use a Vanilla GP with RBF

SwissFEL

Physionet-GCS

Physionet-HCT

Berkeley-Sensor

Argus-Control

Vanilla GP 0.876 £0.000 2240 £0.000 2.768 %+ 0.000 0.258 £0.000 0.026 & 0.000
Vanilla BNN | 0.529 £0.022 2.664 £0.274 3.938 + 0.869 0.151 £0.018 0.016 &+ 0.002
MAML 0.730 £0.057 1.895+£0.141 2.413 +0.113 0.121 £ 0.027 0.017 £ 0.001
BMAML 0.577 £0.044 1.894 £0.062 2.500 + 0.002 0.222 +£0.032 0.037 £ 0.003
NP 0471 £0.053 2.056 +£0.209 2.594 £ 0.107 0.173 £0.018 0.020 £ 0.001
MLAP 0.486 +0.026 2.009 +0.248 2.470 £ 0.039 0.348 +0.034 0.030 £ 0.003
PACOH-NN 0.437+£0.021 1.623 +0.057 2.405 £ 0.017 0.160 £ 0.070 0.018 £ 0.002
MARS (ours) | 0.391 +0.011 1.471 +0.083 2.309 + 0.041 0.116 £ 0.024 0.013 + 0.001

Table 1: Meta-Learning benchmark results in terms of the test RMSE.

| SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor ~ Argus-Control
Vanilla GP 0.1354+0.000 0.268 =0.000 0.277 £0.000 0.119 £0.000 0.090 £ 0.000
Vanilla BNN | 0.085 £0.008 0277 £0.013 0.307 £0.009 0.206 +0.025 0.104 & 0.005
BMAML 0.1154+0.036 0.279 £0.010 0423 +£0.106 0.154 4+ 0.021 0.068 £ 0.005
NP 0.131 £0.056 0.299 £0.012 0.319 £ 0.004 0.1404+0.035 0.094 £+ 0.015
MLAP 0.090 +£0.021 0.343 £0.017 0.344 £0.016 0.183 £0.017 0.168 £ 0.009
PACOH-NN | 0.037 £0.005 0.267 +0.005 0.302+0.003 0223 +£0.012 0.119 + 0.005
MARS (ours) | 0.035+0.002 0.263 + 0.001 0.136 + 0.007 0.080 0.005 0.055 + 0.002

Table 2: Meta-learning benchmark results in terms of the calibration error.

kernel and a Vanilla BNN with a zero-centered, spherical Gaussian prior and SVGD posterior infer-
ence (Liu & Wang, 2016). For meta-learning baselines, we compare to model agnostic meta-learning
(MAML) (Finn et al., 2017), Bayesian MAML (BMAML) (Yoon et al., 2018), neural processes
(NPs) (Garnelo et al., 2018), MLAP (Amit & Meir, 2018) and PACOH-NN (Rothfuss et al., 2021a).

5.2 Empirical Benchmark Study

Qualitative illustration. Fig. 1 illustrates the superiority of MARS in (c) to posterior predictions
of a) a BNN with standard Gaussian Prior in the parameter space b) a functional BNN with GP
prior (Wang et al., 2019). For the meta-training, we use n = 20 tasks with each m = 8 data points,
generated from a student-t process sinusoidal mean function 2z + 5sin(2x).

MARS provides accurate predictions. We perform a comprehensive benchmark study with the
baselines introduced in Sec. 5.1. Table 1 shows that MARS yields substantial RMSE improve-
ments on the unseen meta-data when compared to the non-meta-learning baselines and significantly
outperforms all other meta-learning baselines in the majority of the environments.

MARS yields well-calibrated uncertainty estimates. In order to compare the quality of uncer-
tainty estimates of MARS to other meta-learning methods, we compute the calibration error, which
measures how much the predicted confidence regions deviate from the actual frequencies of test data
in the respective regions. The results are listed in Table 2, and the metric is detailed Appendix B.4.
We can see that MARS consistently yields the best-calibrated uncertainty estimates.

6 Conclusion

We have introduced a novel meta-learning approach in the function space that estimates the score of
the data-generating process marginals from a set of related datasets. When we face a new learning
task, the meta-learned score network is used as a source of prior for functional approximate BNN
inference. By representing inductive bias as the score of the stochastic process, our approach is
versatile and can seamlessly acquire/represent complex prior knowledge. Empirically, this trans-
lates into strong performance when compared to previous meta-learning methods. The substantial
improvements of MARS in terms of the quality of uncertainty estimates open up many potential
extensions towards interactive machine learning where exploration based on epistemic uncertainty
is key.

7 Acknowledgements

This research was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program grant agreement no. 815943 and the Swiss National

Science Foundation under NCCR Automation, grant agreement SINF40 180545. Jonas Rothfuss
was supported by an Apple Scholars in AI/ML fellowship. We thank Alex Hégele, Parnian Kassraie,
Lars Lorch and Danica J. Sutherland for their valuable feedback.

References

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In
International Conference on Machine Learning, pp. 205-214. PMLR, 2018.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
2000.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Stéphane Canu and Alex Smola. Kernel methods and the exponential family. Neurocomputing, 69
(7-9):714-720, 2006.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. In
International Conference on Machine Learning, 2016.

Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi. The born supremacy: quantum
advantage and training of an ising born machine. npj Quantum Information, 6(1):1-11, 2020.

Charles-Alban Deledalle, Samuel Vaiter, Jalal M. Fadili, and Gabriel Peyré. Stein unbiased gradient
estimator of the risk (sugar) for multiple parameter selection, 2014. URL https://arxiv.org/
abs/1405.1164.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. Tensorflow distributions, 2017.
URL https://arxiv.org/abs/1711.10604.

Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,
volume 375. Springer Science & Business Media, 1996.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

Vincent Fortuin and Gunnar Rétsch. Deep mean functions for meta-learning in gaussian processes.
arXiv preprint arXiv:1901.08098, 2019.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034, 2015.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1405.1164
https://arxiv.org/abs/1405.1164
https://arxiv.org/abs/1711.10604
http://github.com/deepmind/dm-haiku

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adap-
tive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces. In
International Conference on Machine Learning, 2019a.

Johannes Kirschner, Manuel Nonnenmacher, Mojmir Mutny, Andreas Krause, Nicole Hiller, Ras-
mus Ischebeck, and Andreas Adelmann. Bayesian optimisation for fast and safe parameter tuning
of swissfel. In FEL2019, Proceedings of the 39th International Free-Electron Laser Conference,
pp. 707-710. JACoW Publishing, 2019b.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796-2804.
PMLR, 2018.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744-3753. PMLR, 2019.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Infer-
ence Algorithm. In Advances in Neural Information Processing Systems, 2016.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests.
In International Conference on Machine Learning. PMLR, 2016.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Scholkopf. Amortized
inference for causal structure learning. arXiv preprint arXiv:2205.12934, 2022.

Samuel Madden. Intel lab data. http://db.csail.mit.edu/labdata/labdata.html, 2004.
Accessed: Sep 8, 2020.

Christopher J Milne, Thomas Schietinger, Masamitsu Aiba, Arturo Alarcon, Jiirgen Alex, Alexander
Anghel, Vladimir Arsov, Carl Beard, Paul Beaud, Simona Bettoni, et al. Swissfel: the swiss x-ray
free electron laser. Applied Sciences, 7(7):720, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A Simple Neural Attentive Meta-
Learner. In International Conference on Learning Representations, 7 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Tianyu Pang, Kun Xu, Chongxuan Li, Yang Song, Stefano Ermon, and Jun Zhu. Efficient learn-
ing of generative models via finite-difference score matching. Advances in Neural Information
Processing Systems, 33:19175-19188, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Anastasia Pentina and Christoph Lampert. A PAC-Bayesian bound for lifelong learning. In Inter-
national Conference on Machine Learning, 2014.

Thomas Pinder and Daniel Dodd. Gpjax: A gaussian process framework in jax. Journal of Open
Source misc, 7(75):4455, 2022. doi: 10.21105/joss.04455. URL https://doi.org/10.21105/
joss.04455.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63-71. Springer, 2003.

http://db.csail.mit.edu/labdata/labdata.html
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2018.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. ProMP: Proximal
Meta-Policy Search. In International Conference on Learning Representations, 2019.

Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. Pacoh: Bayes-optimal
meta-learning with pac-guarantees. In International Conference on Machine Learning, pp. 9116—

9126. PMLR, 2021a.

Jonas Rothfuss, Dominique Heyn, Jinfan Chen, and Andreas Krause. Meta-learning reliable priors
in the function space. Advances in Neural Information Processing Systems, 34, 2021b.

Jonas Rothfuss, Christopher Koenig, Alisa Rupenyan, and Andreas Krause. Meta-learning priors
for safe bayesian optimization. In Conference on Robot Learning, 2022.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, pp. 1842-1850, 2016.

Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to gaus-
sian processes. In Artificial intelligence and statistics, pp. 877-885. PMLR, 2014.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit
distributions. In International Conference on Machine Learning, pp. 4644-4653. PMLR, 2018.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In Computing
in Cardiology, 2012.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, 2017.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574-584. PMLR,
2020.

Ingo Steinwart. A sober look at neural network initializations. arXiv preprint arXiv:1903.11482,
2019.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger B. Grosse. Functional variational bayesian
neural networks. In International Conference on Learning Representations, 2019.

Danica J Sutherland, Heiko Strathmann, Michael Arbel, and Arthur Gretton. Efficient and princi-
pled score estimation with nystrém kernel exponential families. In International Conference on
Artificial Intelligence and Statistics, pp. 652—660. PMLR, 2018.

Sebastian Thrun and Lorien Pratt (eds.). Learning to Learn. Kluwer Academic Publishers, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, 2016.

Dilin Wang, Zhe Zeng, and Qiang Liu. Stein variational message passing for continuous graphical
models. In International Conference on Machine Learning, pp. 5219-5227. PMLR, 2018.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization for
bayesian neural networks. In International Conference on Learning Representations, 2019.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in neural information processing systems,
31, 2018.

Yuhao Zhou, Jiaxin Shi, and Jun Zhu. Nonparametric score estimators. In International Conference
on Machine Learning, pp. 11513-11522. PMLR, 2020.

A Related Work

Meta-Learning. Common approaches in meta-learning amortize the entire inference process (San-
toro et al., 2016; Mishra et al., 2018; Ravi & Beatson, 2018; Garnelo et al., 2018), learn a good
neural network initialization (Finn et al., 2017; Rothfuss et al., 2019; Nichol et al., 2018; Kim et al.,
2018) or a shared embedding space (Baxter, 2000; Vinyals et al., 2016; Snell et al., 2017). Although
these approaches can meta-learn complex inference patterns, they require a large amount of meta-
training data and often perform poorly in settings where data is scarce. Another line of work uses
a hierarchical Bayesian approach to meta-learn priors over the NN parameters (Pentina & Lampert,
2014; Amit & Meir, 2018; Rothfuss et al., 2021a). Such methods perform much better on small
data. However, they suffer from the lack of expressive families of priors for the high-dimensional
and complex parameter space of NNs, making too restrictive assumptions to represent complex in-
ductive biases. Our approach overcomes these issues by viewing the problem in the function space
and directly learning the score, which can easily be represented by a NN instead of a prior distribu-
tion. Also related to our stochastic process approach are methods that meta-learn Gaussian Process
(GP) priors (Fortuin & Rétsch, 2019; Rothfuss et al., 2021b, 2022). However, the GP assumption is
quite limiting, while MARS can, in principle, match the marginals of any data-generating process.

Score estimation. We use score estimation as the central element of our meta-learning method.
In particular, we use a parametric approach to score matching and employ an extended version of
the score matching objective of Hyvirinen & Dayan (2005). For high-dimensional problems, Song
et al. (2020); Pang et al. (2020) propose randomly sliced variations of the score matching loss.
Alternatively, there is a body of work on nonparametric score estimation (Canu & Smola, 2006; Liu
et al., 2016; Shi et al., 2018; Engl et al., 1996; Zhou et al., 2020). Among those, the Spectral Stein
Gradient Estimator (Shi et al., 2018) has been used for estimating the stochastic process marginals
for functional BNN inference in a setting where the stochastic prior is user-defined and allows for
generating arbitrarily many samples (Sun et al., 2019). However, compared to our score network,
it is harder to prevent meta-overfitting via regularization and to add an explicit dependence on the
measurement sets in such nonparametric estimators, making them less suited to our problem.

This section focuses on a detailed explanation of the proposed framework. We first elaborate on the
fSVGD inference process and then provide information regarding the network architecture and the
hyperparameter configuration.

A.1 fSVGD inference

To perform approximate BNN inference with the meta-learned score network, we use functional

Stein Variational Gradient Descent (fSVGD) (Wang et al., 2018). In the following, we explain our

fSVGD implementation and how it interplays with the score network in our MARS framework.

XP,yP) o
D

In our context, the goal of fSVGD is to approximate the posterior p(hg
p(yP|XP, hg)p(he) over neural network mappings hg. Recall from Section 2, that X
{x; };"Zl € X™ are the training inputs, y© = {y; };"Zl € Y™ the corresponding noisy function
values for a new, unseen learning tasks. The fSVGD algorithm approximates the posterior using a
set of L NN parameter particles {61, ..., 01} where each 6; corresponds to the weights and biases
of a neural network. The particles (i.e., weights and biases) are initialized based on the scheme of
Steinwart (2019) (see Appendix A.2 for details).

To make the BNN inference in the function space tractable, in each iteration, fSVGD samples a
measurement set X from a measurement distribution v and performs its particle updates based on
the posterior marginals p(h*|X, X2, yP) o« p(yP[hX”)p(h*) corresponding to X. We use a
uniform distribution over the bounded domain X as measurement distribution v and sample the L
measurement points i.i.d. from it.

For each NN particle, we compute the NN function values in the measurement points, i.e. hg% =
(hh(x1), ..., Ky (xx)), I = 1,..., L and the corresponding posterior marginal scores:

Vix Inp(hf X, y7) = Vipx np(yP[h3f") + Vix Inp(hif) 3)

likelihood score = S¢(h;(l ,X)

Algorithm 1 MARS: Meta-Learning the Data-Generating Process Score

Input: datasets Dy, ..., D,,, measurement point distribution v, step size 7
Initialize score network parameters ¢
forn=1,...,ndo

fit GP on D;, obtain GP posterior p(f;|XP,yP)

while not converged do
iid

X ~ v /I sample measurement set
fori=1,..,ndo

£X ~ p(fX X, XP yP) // sample function values from posterior marginal
L(}) N (tr(fos(ﬁ(f'iX, X)) + %||s¢(f3(, X)||§> // score matching loss
¢ +— ¢+ nv¢ﬁ(¢) // score network gradient update

Output: trained score network s

Here, we use a Gaussian likelihood p(y?|h*”) = H§:1 N (yP;hl(z;),0?) where o2 is the like-
lihood variance. Unlike in Wang et al. (2018) where the stochastic process prior is exogenously
given, and its marginals p(h*) are approximated as multivariate Gaussians, we use our meta-learned
marginal prior scores. In particular, we use the score networks s¢(h§§, X) output as a swap-in for

the prior score thl In ﬁ(hgﬁ). Finally, based on the score in (3) and the function values hg%, we can

compute the SVGD updates in the function space, and project them back into the parameter space
via the NN Jacobian Vg h:

L
T/(1
0' 6" — v (Voh) |) KiVix Inp(h)|X, X, yP) + Vix Ki; | . (4)
——— L 7 gt ol
NN Jacobian —

SVGD update in the function space

Here, v is the SVGD step size and K = [k(h)%, h2)];; is the kernel matrix between the function

values in the measurement points based on a kernel function & (-, -) : Vk x Yk s R. We use the RBF
kernel k(h,h') = exp ((—|/h — h'|[?)/(2(})) where ¢}, is the bandwidth hyper-parameter. The
particle update in (4) completes one iteration of fSVGD. We list the full procedure in Algorithm 2.

Algorithm 2 Approximate BNN Inference with fSVGD (Wang et al., 2019)

Input: SVGD kernel function k(-, - ; £x), bandwidth ¢y, step size v

Input: dataset D* = (X2 yP) for target task, trained score network sy (-, -)

Initialize set of BNN particles {01, ..., 01}

while not converged do
X 4y // sample measurement set
fori=1,...,Ldo

h% < (hy(x1), ..., hl(xi)) where X = (x1,...,x)) // compute NN function values in X
Vix np(hf X, y7) Vix Inp(yPhX") 4 s4(h%,X) /I posterior marginal score
6 6

'+ 0" — v (Vg hgi)T Ly K;;Vix In p(h¥|X,yP) + Vix Kh-> // fSVGD update
Output: Set of BNN particles {6, ..., 01} that approximate the BNN posterior process

fSVGD hyperparameter selection. For the fBNN training using fSVGD, among other parame-
ters, we need to choose the step size -y, kernel bandwidth ¢, and likelihood standard deviation o, as
we found these three to have the most substantial impact on training dynamics. We fix the number
of particles to L = 10 and perform 10000 fSVGD update steps. We always standardize both the
input and output data based on the meta-training data’s empirical mean and standard deviation.
For the NNs, we use three hidden layers, each of size 32 and with leaky ReLU activations. To
initialize the NN weights, we use He initialization with a uniform distribution (He et al., 2015)
and the bias initializer of Steinwart (2019) (see Section A.2 for details). Generally, we choose the
kernel bandwidth ¢ via a random hyper-parameter search over the values range of [0.1, 10]. When

=== true fun G 15
—— pred mean
10 O train data
pred std

f(x)
o

f(x)
o

-75 =50 -25 00 25 50 75 -75 =50 -25 00 25 50 75 -75 -50 -25 00 25 5.0 7.5
X X X

(a) Data generation process (b) Constant bias initializer (c) Steinwart bias initializer

Figure 2: a) The underlying data generating process and corresponding fBNN prediction after train-
ing using the fSVGD algorithm for 2000 iterations with b) constant bias initializer, and ¢) Steinwart
bias initializer. With the Steinwart bias initializer, we get the desirable non-linear behavior of the
fSVGD BNN much faster.

comparing to the original fSVGD implementation with SSGE, we fix the SSGE lengthscale to 0.2
for comparability. Note that we also experimented with using the median heuristic (as proposed by
Shi et al. (2018)); however, we observed this to yield inferior performance.

A.2 Bias initialization

When initializing the biases to zeros or small positive constants, we find that the learned neural
network maps behave like linear functions further away from zero and that it takes many SVGD
iterations for them to assume non-linear behavior at the boundaries of the domain.

To address this issue, we use the bias initialization scheme of Steinwart (2019), which initializes the
biases in such a way that the kinks of the leaky ReL.U functions are more evenly distributed across
the domain and less concentrated around zero. More specifically, we initialize each bias b; as

bi == <w1‘,$;>,

where w; is uniformly sampled from a sphere by taking w; = HZ—H, a; ~ U(0,1). z}’s are sampled

uniformly: x} ~ U(ming, maz,), where min, and max,, are the minimum and maximum points
in the input domain respectively.

By using Steinwart initialization, the neural networks show much more non-linear behavior after
initialization. Compared to constant bias initialization, learning non-linear functional relationships
happens much more quickly. We showcase this in Figure 2: Figure 2a displays a simple data
generation process of sinusoids of varying amplitude, frequency, phase shift, and slope. Figure 2b
displays corresponding BNN predictions after 2000 iterations with a constant bias initializer (where
the constant equals 0.01), and Figure 2¢ shows the result of the same training dynamics, using Stein-
wart’s bias initializer instead of the constant initializer. The BNNs with the Steinwart initialization
assume desirable non-linear behavior much earlier during training, thus, significantly speeding up
training. However, if trained for a large enough number of iterations, the performance of the two
networks with different bias initializations becomes much less distinct. For further details on the
implications of the Steinwart initializer on the training dynamics, we refer to Steinwart (2019).

A.3 Score estimation network

We now give an overview of the score estimation network. We start by providing motivation for the
required architecture, detailing the permutation equivariance properties of the network. We construct
the proposed architecture step-by-step, giving the architectural details and mentioning additional
architectural designs we experimented with. Finally, we comment on the optimization method and
acknowledge the libraries we used in our implementations.

Incorporating task invariances. The proposed network is permutation equivariant across the k
dimension: reordering the measurement inputs would result in reordering the network’s prediction
in the same manner: Formally, for any permutation 7 of the measurement set indices we have

10

k measurement sets

g
2
o
&
%
3
g
g
a
=
S
el
H

NN PIEMIO-P334 3SIAN-UODISOd

Uonuan PRPoI¢-10a PafeIs

Figure 3: Architecture of MARS score estimation network. From left to right: k£ measurement sets
consisting of input-output concatenations with z; € R3, f(x;) € R?,i = 1,..., k; inputs/outputs
embeddings using spectrally normalized linear layers; two identical blocks of scaled dot product at-
tention, residual layers and feed-forward position-wise NN with spectrally normalized linear layers;
the final linear layer, not spectrally normalized.

that s, (h¥~a:a), Xor(i:d))ij +r thl:dp(hxlid),r(i)m(j). To impose permutation equivariance, we
use the self-attention mechanism (Vaswani et al., 2017). Permutation equivariance is obtained by
concatenating inputs (measurement points) and the corresponding functional evaluations (i.e., the
concatenation constructs an object corresponding to Transformer fokens), which are then embedded
and inputted to the attention mechanism. The architecture is displayed in Figure 3.

Constructing the network architecture. The core of our model is composed of two identical
blocks, each consisting of two residual layers, the first one applying multi-head self-attention and
the second one position-wise feed-forward neural network, similar to the vanilla Transformer en-
coder (Vaswani et al., 2017). Since the multi-head attention is permutation equivariant over the
measurement point (i.e., token) dimension, the representation is permutation equivariant at all
times (Lee et al., 2019). Finally, to minimize training time, we select attention embedding di-
mensions proportional to the data dimension of the environments; higher-dimensional environments
(e.g., SwissFEL, detailed in Appendix B) correspond to the higher number of attention parame-
ters/embedding dimensions and lower environments (e.g., the Sinusoid and Berkeley environment)
to lower embeddings. Furthermore, we tune the step size and report the chosen configurations under
https://tinyurl.com/376wp8xe. We describe the corresponding implementation details in the
following subsection.

Constructing the score network. We train the score network on the input/output pair concate-
nations, which are then embedded onto a higher-dimensional space. After this, we perform self-
attention. Specifically, we fix the initialization scale of self-attention weights to 2.0. As mentioned,
the size of the model and embeddings varies across meta-learning environments. Next follows a
position-wise feed-forward neural network, for which we use Exponential Linear-Unit (ELU) as the
activation, as implemented in Haiku’s vanilla Transformer encoder (Hennigan et al., 2020). After-
ward, we apply the self-attention mechanism again, following a position-wise feed-forward neural
network, after which we apply the final linear layer.

Variants of the attention mechanism. We experimented with multiple variations of the attention
mechanism, all being permutation equivariant in the £ dimension, similar to the work of Lorch et al.
(2022). We mention two other architectural designs: in the first design, rather than using the em-
beddings of the concatenation of input-output points as keys, queries, and values (as performed in
the vanilla Transformer encoder), we experimented with using the embeddings of the inputs as the
keys and queries and the embeddings of functional outputs. However, this design yields varying
performance: on several low-dimensional tasks, the performance was slightly better, whereas per-
formance on tasks with higher-dimensional inputs was substantially worse. In another attempt, we
experimented with learning different embeddings for inputs and functional outputs, which we then
concatenated and used as keys, queries, and values. The difference in performance in this method
was marginal, and we decided against it for simplicity.

Optimizer setup and employed libraries. Finally, across all experiments, we use gradient clip-
ping of the prior score together with the ADAM optimizer (Kingma & Ba, 2014), with the default
values set in Jax (Bradbury et al., 2018) and Haiku (Hennigan et al., 2020). For the gradient clip-
ping, we use values of 1., 10., or 100., depending on the task and the underlying properties of the

11

https://tinyurl.com/376wp8xe

| Sinusoid SwissFEL Physionet Berkeley Berkeley* Argus-Control
n 20 5 100 10 36 20
m; 8 200 4-24 30 288 500
Table 3: Number of tasks n and samples per task m; for the different meta-learning environments.

data generating process. For example, for the first experiment in Appendix D, larger clipping values
(50 or 100) performed better for the heavier-tailed Student’t-f process, whereas clipping at 10. re-
sulted in a good performance of the GP task. We train the score network for 20000 iterations. For
the GP and Student-f process implementations, we use GP-Jax (Pinder & Dodd, 2022), scikit-learn
(Pedregosa et al., 2011) and TensorFlow Distributions packages (Dillon et al., 2017).

A.4 Interpolating the datasets across X’ using GPs

In GP regression, each data point corresponds to a feature-target tuple z; ; = (x; ;,¥i ;) € R x R.
For the i-th dataset, we write D; = (X;,y;), where X; = (z;1,... ,xi,mi)T and y; =
(Yits--- ,yi7mi)T. GPs are a Bayesian method in which the prior P(h) = GP (h | m(x), k (x,2"))
is specified by a positive definite kernel k£ : X x & — R and a mean function m : X — R. In this
section, we assume a zero mean GP and omit writing the dependence on m(-). As the GP kernel,
we use the Matérn covariance function
1=v x —x' X—X

= — ; 4)

I'(v) 14 14 9

(var
with degree v, lengthscale ¢, and I'(-) representing the gamma function, and K, the modified Bessel
function of the second kind. We use fix the degree of the Matérn kernel to v = 5/2 and choose the
lengthscale ¢ via 4-fold cross-validation (CV) from 10 log-uniformly spaced points in [0.001, 10].
We select the lengthscale that maximizes the 4-fold CV log marginal likelihood, averaged across
the n tasks. In Alg. 3, we give the full procedure of selecting the lengthscale and fitting GPs to the
meta-training tasks.

/

k(x,x';0,v) =

ye(e

Algorithm 3 Fitting the GPs to the meta tasks

Input: n datasets {D;}7_;, where D; = {(xij, yij) } =,
Input: set of p Matérn lengthscale value candidates £ = {£;}"_,
Input: zero-mean GP prior P(f) = GP (f | ke (x,%x’)), specified by the Matérn kernel k; :
XxX¥ =R
fori=1,...,ndo

{GP(f | ke,)i ;’:1, {scorei,j}?:1 = CVito1a(Ds, P) // cross-validation on D;
J*=argmax;_; % S score; ; // selecting the optimal kernel parameters
Output: n GP posteriors {GP(f | k),) Hieq

B Meta-Learning Environments

In the following, we provide details on the meta-learning environments used in our experiments in
Section 5. We list the number of tasks and samples in each environment in Table 3.

B.1 Sinusoids (Synthetic Environment)

The sinusoid environment corresponds to a simple 1-dimensional regression problem with a sinu-
soidal structure. It is used for visualization purposes in Figure 1 and Figure 2a. Each task of the
sinusoid environment corresponds to a parametric function

fa,b,c,ﬁ(x) :5*m+a*sin(1.5*(1~—b))+c7 ©6)

yielding a sum of affine and a sinusoid function. Tasks differ in the function parameters (a, b, ¢,)
that are sampled from the task environment 7 as follows:

a~U(0.7,1.3), b~N(0,0.1%), ¢~ N(5.0,0.1%), B~ N(0.50.2%). (7)

12

Figure 2a displays functions f, 1 . 3 with parameters sampled according to (7). To draw training
samples from each task, we uniformly sample = from ¢/ (—5, 5) and add Gaussian noise with stan-
dard deviation 0.1 to the function values f(x):

r ~U(-5,5), Y~ N(fapes(x),01?). (8)

B.2 Real-World Data
B.2.1 SwissFEL

Free-electron lasers (FELs) accelerate electrons to a very high speed to generate shortly pulsed laser
beams with wavelengths in the X-ray spectrum. The X-ray pulses from the accelerator can map
nanometer-scale structures, thus facilitating molecular biology and material science experiments.
The accelerator and the electron beam line of an FEL consist of multiple magnets and other ad-
justable components, which have several parameters that experts adjust in order to maximize the
pulse energy (Kirschner et al.,, 2019a). Due to different operational modes, parameter drift, and
changing (latent) conditions, the laser’s pulse energy function, in response to its parameters, changes
across time. As a result, optimizing the laser’s parameters is a recurrent task.

Meta-learning setup. The meta-learning environment represents different parameter optimization
runs (i.e., tasks) on SwissFEL, an 800-meter-long free electron laser located in Switzerland (Milne
et al., 2017). The input space is 12-dimensional and corresponds to the laser parameters, whereas
the regression target corresponds to the one-dimensional pulse energy. We refer to Kirschner et al.
(2019b) for details on the individual parameters. Each optimization run consists of roughly 2000
data points generated with online optimization methods, yielding non-i.i.d. data, which becomes
successively less diverse throughout the optimization. To avoid issues with highly dependent data
points, we take the first 400 data points per run and split them into training and test subsets of size
200. As we have a total of 9 runs (tasks) available, we use 5 of them for meta-training and the
remaining 4 for meta-testing.

B.2.2 PhysioNet

In the context of the Physionet competition 2012, Silva et al. (2012) have published an open-access
dataset of patient stays in the intensive care unit (ICU). The dataset consists of measurements taken
during the patient stays, where up to 37 clinical variables are measured over the span of 48 hours,
yielding a time series of measurements. The intended task for the competition was the binary clas-
sification of patient mortality. However, the dataset is also often used for time series prediction
methods due to a large number of missing values (around 80 % across all features).

Meta-learning setup. To set up the meta-learning environment, we treat each patient as a separate
task and the different clinical variables as different environments. Out of the 37 variables, we picked
the Glasgow coma scale (GCS) and hematocrit value (HCT) as environments for our study since
they are among the most frequently measured variables in this dataset. From the dataset, we remove
all patients where less than four measurements of CGS (and HCT, respectively) are available. From
the remaining patients, we used 100 patients for meta-training and 500 patients for meta-validation
and meta-testing. Since the number of available measurements differs across patients, the number
of training points m,; ranges between 4 and 24.

B.2.3 Berkeley-Sensor

The Berkeley dataset contains data from 46 temperature sensors deployed in different locations at
the Intel Research lab in Berkeley (Madden, 2004). The temperature measurements are taken over
four days and sampled at 10-minute intervals. Each task corresponds to one of the 46 sensors and
requires auto-regressive prediction, particularly predicting the subsequent temperature measurement
given the last ten measurements.

Meta-learning setup. The Berkeley environment, as used in Rothfuss et al. (2021a), uses 36 sen-
sors (tasks) with data for the first two days for meta-training and the last 10 for meta-testing. The
meta-training and meta-testing are separated temporally and spatially since the data is non-i.i.d.
Data are abundant, and the measurements are taken at very close intervals. Thus, the features and

13

RMSE Calib. error

Full dataset Partial dataset Full dataset Partial dataset
Vanilla GP 0.276 = 0.000 0.258 £+ 0.000 0.109 £ 0.000 0.119 + 0.000
Vanilla BNN 0.109 = 0.004 0.151 £0.018 0.179 £ 0.002 0.206 + 0.025
MAML 0.045 £+ 0.003 0.121 £+ 0.027 / /
BMAML 0.073 £0.014 0.222 +£0.032 0.161 =0.013 0.154 £+ 0.021
NP 0.079 £0.014 0.173 £0.018 0.210 =0.000 0.140 £ 0.035
MLAP 0.050 = 0.034 0.348 =0.034 0.108 = 0.024 0.183 =0.017
PACOH-NN 0.130 +=0.009 0.160 +0.070 0.167 & 0.005 0.223 4+ 0.012
MARS 0.093 +£0.002 0.116 = 0.024 0.140 +=0.002 0.080 & 0.005

Table 4: Prediction accuracy and uncertainty calibration on full and partial Berkeley-Sensor dataset.
On the full dataset, MARS performance is less competitive due to the strong auto-correlation of the
data which is not taken into account in the BNN likelihood. On the partial dataset, which has less
dependency among the data points, MARS outperforms all other meta-learning methods.

the train/context data points are strongly correlated, violating the i.i.d. assumption that underlies
our factorized Gaussian likelihood and Bayes rule in Section 2, causing the BNN to over-weight the
empirical evidence and making over-confident predictions. To alleviate this problem, we subsample
the data. In particular, we randomly select 10 out of the 36 training tasks, and instead of using all
measurements, we randomly sample 30 of them. This has two effects: First, it makes the data less
dependent/correlated and thus more compatible with our Bayesian formulation. Second, we increase
the epistemic uncertainty by using less data, making the calibration metrics more meaningful. The
results reported in Section 5 correspond to the sub-sampled data.

For completeness, we also report the results for the full dataset as in Rothfuss et al. (2021a) in Table
4. Other meta-learning baselines, such as MAML or MLAP, perform better than MARS on the full
dataset since they do not explicitly use the Bayes rule with i.i.d. assumption or weight the empirical
evidence less. Note that MARS performs worse due to the Bayesian inference at meta-test time
rather than our meta-learning approach. Accounting for the strong auto-correlation of the data in
the likelihood would most likely resolve the issue. On the sub-sampled environment, MARS again
performs best.

B.2.4 Argus-Control

The final environment we use in our experiments is a robot case study. In particular, it aims at tuning
the controller of the Argus linear motion system by Schneeberger Linear Technology. The goal is
to choose the controller parameters so that the position error is minimal. In our setup, each task is a
regression problem where the goal is to predict the total variation (TV) of the robot’s position error
signal when controlled by a PID controller in simulation. The regression features are the three PID
controller gain parameter parameters.

Meta-learning setup. Overall, the environment consists of 24 tasks, of which 20 are used for
meta-training and the remaining 4 for meta-testing. Each task corresponds to a different step size for
the robot to move, ranging from 10um to 10mm. At different scales, the robot behaves differently
in response to the controller parameters, resulting in different target functions. This presents a good
environment for transferring similarities across different scales while leaving enough flexibility in
the prior to adjust to the target function at a step size.

In the following, we describe our experimental methodology used in Section 5.
B.3 Overview of the meta-training and meta-testing phases

Evaluating the performance of a meta-learner consists of two phases, meta-training and meta-testing.
The latter phase, meta-testing, can be further split into farget training and target testing. In particu-
lar, for MARS the phases consist of the following:

* Meta-training: The meta-training datasets D;-, are used to train the score estimator net-
work (see Algorithm 1).

14

* Target training: Equipped with knowledge about the underlying data-generation process,
i.e., the score network, we perform BNN inference on a new target task with a correspond-
ing context dataset D*. In particular, we run fSVGD with the score network as a swap-in
for the marginal scores of the stochastic process prior (see Algorithm 2). As a result, we
obtain a set of NN particles that approximates the BNN posterior in the function space.

* Target testing: Finally, we evaluate the approximate posterior predictions on a test set DF
corresponding to the same target task. In particular, we compute the residual mean squared
error (RMSE) and the calibration error as performance metrics. We describe the evaluation
metrics in more detail in Section B.4.

The target training and testing are performed independently with the meta-learned score network for
each test task. The metrics are reported as averages over the test tasks.

The entire meta-training and meta-testing procedure are repeated for five random seeds that influ-
ence the score network initialization, the sampling-based estimates in Algorithm 1 as well as the
initialization of the BNN particles for target training. The reported averages and standard deviations
are based on the results obtained for different seeds.

B.4 Evaluation metrics

During target-testing, we evaluate the posterior predictions on a held-out test dataset DT . Among
the methods employed in Section 5, MARS, PACOH-NN, NPs, MLAP, Vanilla BNN and Vanilla
GP yield probabilistic predictions p(y'|zt, D*) for the test points T € D*. For instance, in the
case of MARS, PACOH-NN, and Vanilla BNN where the posterior is approximated by a set of
NN particles {61, ..., 0} and we use a Gaussian likelihood, the predictive distribution is an equally
weighted mixture of Gaussians:

plytlat, D*) = Z/\/ flhe, (z1),02) . 9)

The respective mean prediction corresponds to the expectation of p, that is y = E(y* |x*, D*). In
the case of MAML, only the mean prediction is available.

Evaluating prediction accuracy (RMSE) Based on the mean predictions, we compute the root-
mean-squared error (RMSE)

1 R
RMSE = | 757 > (W —E(ylat, D)) (10)
(zf,yt)eDt

which quantifies how accurate the mean predictions are.

Evaluating uncertainty calibration (Calibration error) In addition to the prediction accuracy,
we also assess the quality of the uncertainty estimates. For this purpose, we use the concept of
calibration, i.e., a probabilistic predictor is calibrated if the predicted probabilities are consistent
with the observed frequencies on unseen test data. We use a regression calibration error similar to
Kuleshov et al. (2018) in order to quantify how much the predicted probabilities deviate from the
empirical frequencies.

Let us denote the predictor’s cumulative density function (CDF) as F(y|x,D*) =
ffoo p(g|x, D*)dy, where p(g|x, D*)dy is the predictive posterior distribution. For confidence lev-
els0 < gp < ... < qu <1, we compute the corresponding empirical frequency

HyT | F (yt | x,D*) < qn, (xF,y) € DTH
| D1 ’

based on some test dataset DT, If the predictions are calibrated, we expect that G, — g5, as m — oo.
Following Kuleshov et al. (2018), we define the calibration error metric as a function of the residuals

Gn — qn:

Gn =

1
calib-err = T z_: |dn — qn| -

15

Estimator | SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor ~ Argus-Control

MARS 0.391 +£0.011 1.471 +0.083 2.309 + 0.041 0.116 +0.024 0.013 £ 0.001
SSGE score estimates | 0.449 £0.027 3.292 £0.562 2.784 £ 0.257 1.105 +0.562 0.030 + 0.003
No spectral reg. 0.420 £ 0.060 2.208 £ 0.338 2.560 + 0.341 1.734 £0.169 0.014 & 0.001
No GP sampling 0.471 £0.059 2994 £0.363 5.995 &+ 1.108 1253 £0.112 0.073 £ 0.003

Table 5: Ablation study results for MARS components in terms of the RMSE.

Estimator | SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor Argus-Control
MARS 0.035 +0.002 0.263 +0.001 0.136 = 0.007 0.080 + 0.005 0.055 + 0.002
SSGE score estimates | 0.151 £0.001 0.249 £0.002 0.246 £ 0.007 0.2324+0.010 0.210 £ 0.011
No spectral reg. 0.233 +£0.041 0.265+0.012 0.244 £0.009 0.244 £0.009 0.187 £ 0.028
No GP sampling 0.204 £0.013 0.225+0.021 0.237 £ 0.018 0.141 £0.029 0.216 £ 0.066

Table 6: Ablation study results for MARS components in terms of the calibration error.

Note that we report the average of absolute residuals |Gy, — ¢y|, rather than reporting the average of

squared residuals |G, — qh|2, as done by Kuleshov et al. (2018). This is done to preserve the units
and keep the calibration error easier to interpret. In our experiments, we compute the empirical
frequency using M = 20 equally spaced confidence levels between 0 and 1.

B.5 Hyper-Parameter Selection

For each of the meta-environments and algorithms, we ran a separate hyper-parameter search to
select the hyper-parameters. In particular, we use 30 randomly sampled hyperparameter configu-
rations across five randomly selected seeds and select the best-performing one in terms of either
RMSE or calibration error. For the reported results, we provide the chosen hyperparameters and
detailed evaluation results in https://tinyurl.com/376wp8xe.

C Ablation Study

In this section, we empirically investigate the algorithm components that were introduced in Sec. 4
and provide supporting empirical evidence for our design decisions.

First, we perform a quantitative ablation study where we vary/remove components of our MARS al-
gorithm. We consider MARS 1) with nonparametric score estimator SSGE (Shi et al., 2018) instead
of the parametric score network + score matching from Sec. 4, 2) without spectral regularization,
and 3) without GP posterior sampling, i.e., using the GP posterior mean instead of samples for the
score matching. Table 5 and 6 report the quantitative results of this ablation experiment in terms of
the RMSE and the calibration error. In the following, we discuss the three aspects separately:

Parametric score matching outperforms nonparametric score estimation. In Sec. 4 we
have introduced a parametric score network which we train with the score matching loss in 1.
Alternatively, for each measurement set X, we could apply the nonparametric score estimator SSGE

(Shi et al., 2018) to the function values flx, - f,)f, sampled from the GP posteriors, and directly
use the resulting score estimates as prior scores during the fSVGD posterior inference in (4). This
alternative approach produces score estimates "ad-hoc’ and does not require us to train an explicit
score network. In contrast, our score network is global function which explicitly takes into account
the measurement set and thus can exploit similarity structure across X which SSGE cannot. Addi-
tionally, we face the issue that we cannot simply add inductive bias towards higher entropy as we do
through the spectral normalization. Overall, the experiment results in Table 5 and 6 suggest that in-
stantiating our general approach with SSGE performs worse than MARS. We can also observe this
visually in Fig. 4a where we plot the score estimate of MARS and SSGE on a GP marginal where
the true score is known. While the MARS score network slightly over-estimates the variance of true
generative-process marginal, SSGE implicitely under-estimates the prior variance which would lead
to over-confident predictions. Finally, Table 7 in Appx. D quantitatively shows that, when compared
to a variety of nonparametric estimators, our score networks estimates are the most accurate.

Spectral normalization prevents meta-overfitting. In Sec. 4, we added spectral normalization
to our score network. Here, we investigate empirically what happens when we remove the spectral
normalization from MARS. Figure 4b and 4c illustrate how our score network over-fits and
under-estimates the true data-generating variance when we do not use spectral regularization. Quan-
titatively, we observe substantial increases in the calibration-errors and a consistent worsening of

16

https://tinyurl.com/376wp8xe

2.0

2.0
15 AN \/ —— No reg. 0.14
: S 0.12

0.10

1.5
1.0
0.5

B X < 0.08
;' 0.0 ; 0.0 3 006
= -0.5 = -0.5
0.04
-1.0 -1.0
-15 -15 0.02
-2.0 -2.0 0.00
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X
(a) SSGE vs. score network (b) spectral regularization (c) Corresponding density

Figure 4: (a) Underconfident MARS and overconfident SSGE score predictions on 10 samples from
a Gaussian distribution. (b) Score estimates of MARS with and without regularization on 10 func-
tion samples from a zero mean GP with SE kernel. (c) Numerically integrated score predictions
corresponding to the scores in (b). Overall, SSGE and MARS w/o regularization overfit and under-
estimate the variance, whereas spectral normalization biases MARS towards higher entropy.

the predictive accuracy. Overall, this highlights the empirical importance of spectral normalization
for preventing meta-overfitting and biasing the score estimates towards higher entropy.

Accounting for epistemic uncertainty of the GP interpolators is crucial. In MARS we inter-
polate each dataset with a GP and, when performing score estimation, use samples from the GP
posterior marginals to account for the epistemic uncertainty of the interpolation. Here, we empiri-
cally study what happens if we ignore the epistemic uncertainty and just take the each GP’s mean
predictions. When doing so we observe detrimental effects on the RMSE and calibration error in
the majority of the environments in Table 5 and 6. This affirms that propagating the epistemic
uncertainty of the interpolation into the score estimates is a critical component of MARS.

D Further experiments

We provide further empirical evidence for the proposed method. In particular, we showcase that:

1. Our parametric score matching approach performs favorably to many nonparametric score
estimators.

2. Regularization via spectral normalization does not hinder the flexibility of the network.

3. Sampling from the GP posteriors when training the score network successfully incorporates
epistemic uncertainty in areas of the domain where meta-training data is scarce.

D.1 Parametric vs Nonparametric Score Estimation Methods

We start by comparing the performance of MARS to that of several nonparametric score estimators,
described in Zhou et al. (2020).

Nonparametric score estimators. There are several theoretically motivated nonparametric score
estimation methods with well-understood properties and straightforward implementations. Their
simplicity and flexibility make them a popular choice (Coyle et al., 2020; Wang et al., 2019;
Deledalle et al., 2014). KEF (Canu & Smola, 2006) performs regularized score matching inside
a kernel exponential family; this can further be efficiently approximated by the Nystrdm method
(Sutherland et al., 2018). Liu et al. (2016); Chwialkowski et al. (2016) propose a Stein estimator,
and Shi et al. (2018) propose Spectral Stein Gradient Estimator (SSGE) by expanding the score
function in terms of the spectral eigenbasis. Together with iterative methods (the v-method and
Landweber iteration (Engl et al., 1996)), these approaches can be naturally unified through a regu-
larized, nonparametric regression framework (Zhou et al., 2020).

MARS vs nonparametric estimators. To compare the performance of MARS to nonparametric
methods, we consider score estimation of marginal distributions of Gaussian Processes (GP) (Ras-
mussen, 2003) and Student’s-¢ processes (TP) (Shah et al., 2014). In both cases, as the stochastic
process mean function, we use the sinusoidal mean function 2z + 5sin(2x), and for the covariance
kernel, we choose the radial basis function kernel, with the lengthscale parameter set to { = 1. We

17

RMSE

GP-2D GP-3D TP-2D TP-3D
KEF 8.836 £0.000 6.625 +£0.000 8.852 £0.000 13.694 £ 0.000
NKEF 4.322 £0.000 4.402+£0.000 5.936+0.000 8.402 £ 0.000
nu-method 9.602 £ 0.000 14.833 £0.000 8.195£0.000 16.978 £ 0.000
SSGE 1.166 £ 0.000 1.989 £0.000 1.753 £0.000 4.822 + 0.000
Stein estimator ~ 0.912 £ 0.000 4.058 £ 0.000 3.519 £0.000 7.251 &£ 0.000
MARS network 0.664 +0.179 1.375 +0.215 1.093 = 0.241 3.199 + 0.418

Table 7: RMSE between the true and predicted scores of two/three-dimensional marginal distribu-
tions of GP and TP with an RBF kernel and a sinusoidal mean function with a linear trend. MARS
score network significantly outperforms all nonparametric score estimators.

Cosine similarity

GP-2D GP-3D TP-2D TP-3D
KEF 0.475 £0.000 0.410 £0.000 0.532 £0.000 0.485 % 0.000
NKEF 0.556 £0.000 0.434 £0.000 0.384 £0.000 0.318 £ 0.000
nu-method 0.435£0.000 0.206 +0.000 0.444 £ 0.000 0.494 £+ 0.000
SSGE 0.943 +0.000 0.601 £0.000 0.661 = 0.000 0.521 £ 0.000
Stein estimator 0.778 £0.000 0.851 £ 0.000 0.626 £ 0.000 0.590 % 0.000
MARS network 0.956 + 0.110 0.889 - 0.048 0.737 = 0.097 0.706 + 0.061

Table 8: Cosine Similarity between the true and predicted scores of two/three-dimensional marginal
distributions of GP and TP with an RBF kernel and a sinusoidal mean function with a linear trend.
MARS score network performs competitively to nonparametric score estimators.

use Tensorflow Probability’s (Dillon et al., 2017) implementation of both GP and TP and set all
other parameters to their default values.

We perform four experiments, the first two on estimating the marginal scores of a GP and the
last two on the TP. In all experiments, we sample one measurement set X containing either two
(X = {z1,x2}) or three points (X = {z1,x2,z3}) of dimension one, i.e., x; € R,Vi. For all ex-
periments, the z; follow a uniform distribution: for the GP experiment, x; ~ U([—5,5]) , whereas
for the TP experiment, x; ~ U([—1,1]),Vi. In the experiments with measurement sets consist-
ing of two points, the score network and the nonparametric estimators are trained on 50 samples
from the corresponding rwo-dimensional marginal distributions. For the measurement sets of size
3, we train the score network and nonparametric estimators on 200 samples from the corresponding
three-dimensional marginal distribution. When evaluating the performance of MARS, we take the
average performance over five different seeds after training the network for 2000 iterations in the
two-dimensional marginal case and 5000 iterations in the three-dimensional case. We measure the
quality of the score estimates via the RMSE and cosine similarity between the estimates and true
scores. The corresponding evaluation results are reported in Tables 7-8.

The RMSE measures deviations of the estimated scores in both direction and magnitude of the
gradients. For the SVGD particle estimation, it is more important that the gradients in the vector
field point in the correct direction than having the correct magnitude. Thus, we also report the
cosine similarity, which only quantifies how well the directions in the estimated vector field match
the directions in the true vector field while neglecting errors in the score magnitude. As we can see
in Table 7 and 8, MARS consistently outperforms the nonparametric score estimators.

D.2 Flexibility of the regularized network

Recall from section 4 that, in order to prevent overfitting, we perform spectral normalization of the
weights of the linear layers by re-parameterizing the weights by W := W /||W||. To investigate
whether this hinders the flexibility of the network’s outputs, we visually examine the network’s
predictions on the following two tasks, in which we estimate the scores of one-dimensional Laplace
and Student’s-¢ distribution.

18

1.5

1.0

0.5

0.0

ViIn p(x)
o
o
ViIn p(x)

-0.5

-1.0

-15
-10 -5 0 5 10 -20 -10 0 10 20
X X

Figure 5: Predictions of the MARS score network, trained on 45 samples from Laplace (left) and
Student’s-¢ distribution (right). The network approximates the score functions sufficiently well,
showcasing that spectral normalization of linear layers does not hinder its flexibility.

In order to estimate a score V,, log p(x) for some unknown distribution p(x) (rather than marginal
distribution scores Vgx In p(fX) for some unknown stochastic process p(f)), we use 45 samples
X = {z1,...,x45} from: (i) one-dimensional Student’s-t distribution with v = 5 degrees of
freedom, location parameter p = 0, and scale parameter 0 = 1, and (ii) one-dimensional standard
Laplace distribution, i.e., with location parameter 1 = 0 and scale parameter o = 1.

To perform distributional score estimation, we need to make a slight modification to the original
score network architecture; rather than concatenating input-output pairs (i.e., concatenating x; and
f(z;), as shown in Fig. 3), we use only the distributional samples as inputs. To be more precise,
at every iteration, we randomly select (without replacement) & = 8 inputs {z}, ..., z},} C X, which
we input to the score network. We train the network using the regularized score matching loss, i.e.,
perform spectral normalization of the layers. The network is trained for 2000 iterations, using a
learning rate of 0.001. For this experiment, we set the attention embedding dimension to 32, key size
to 16, and use 8 attention heads. The remaining hyperparameters are set according to Sec. A.3. The
respective predictions are displayed in Figure 5. We observe that the score network approximates
the score functions well and that the regularization does not hinder flexibility too much.

D.3 Incorporating uncertainty through GP interpolation

In addition to the ablation study performed in Section C, we visually investigate the implications of
sampling functions from the GP posteriors during score matching. In particular, we do so using the
sinusoid environment, detailed in Appendix B.1.

Experiment setup. In this experiment, we sample 10 functions from the environment and evaluate
each function at five randomly selected inputs in the [—5, —2] U [2, 5] range. We investigate whether
the proposed GP interpolation method promotes uncertainty in the [—2, 2] part of the domain.

In order to do so, let us recall Algorithm 1, in which we learn the trained score network s4. The
algorithm first fits a GP to each of the n datasets Dy, ..., D,,. Then, at every step, the algorithm

iid . .
samples a measurement set X ¢ v, and then, for every dataset D; (i.e., for every collection of
input/output pairs X7, yP), the algorithm samples function values from the GP posterior marginal:

flx ~ p(fX|X, XP yP). We compare this approach to training the score network s on the mean
predictions of the posterior marginal p(fX X, XP,yP), i.e., where £ = 11, 4x|x xP). In order
to distinguish between the two approaches, we denote the score network trained on the posterior

marginal mean predictions with sg, and use £X; := Hp(ex|x,xP 47y as a shorthand notation for the

X
wt
mean predictions of the posterior marginals. Observe that, for measurement sets X close to X7,
the samples £X and £X; will be very similar, whereas when X is far from XP, the variability of
the samples £X will be much larger. In the following, we showcase that this variability successfully
incorporates uncertainty about the areas of the domain X* with little or no data.

In order to compare the two approaches, we visually compare the overall framework when the

fSVGD network is trained with sg (the score network trained on fffi, the GP mean predictions),

and when it is trained with sy (the score network trained on ff(, the samples from the GP posterior
marginal), as performed in the original MARS algorithm.

19

30
=== true fun
10 25 —— pred mean
(xi, yih
B ;
+ = =
B e y - O =
4 o\ 5 \,_c,-\,f
/I - ==

7 NF --- true fun s
— pred mean
\ 0 ()1 -10

Figure 6: MARS prediction on samples from the sinusoid environment, with no data in the [—2, 2]
range. Left: posterior predictions of two randomly selected GPs fitted to the meta-tasks. Middle:
fBNN predictions, fitted using sg, the score estimation network trained on GP mean predictions.
Right: fBNN predictions, fitted using sy, the score estimation network trained on samples from
the GPs. Training fBNN with s (by sampling from the GPs) successfully incorporates uncertainty
about the [—2, 2] part of the input domain.

Empirical findings. We plot the corresponding fSVGD-BNN (fBNN) predictions, trained using
the two score networks sg and s4. Both fBNNs are fitted to four points, where inputs z1, ..., x4 are

sampled uniformly from [—5, 5] (i.e., the whole input domain), and their functional evaluations are
obtained according to the sinusoid environment.

The results are visualized in Figure 6. The first two plots on the left in Figure 6 correspond to
posterior predictions of two randomly selected GPs fitted to the meta-tasks, where no task contains
information in the [—2, 2] input range. The middle plot corresponds to the fBNN network predic-
tions, where the network was trained using the fSVGD algorithm and the score network sg. The
last plot corresponds to the fBNN network predictions, where fBNN is trained using the fSVGD
algorithm and the score network s,;. We observe a clear difference between the two approaches:
MARS (trained using s4) successfully incorporates the epistemic uncertainty in the [—2, 2] part of
the input domain into the fBNN posterior, yielding less confident predictions in the area where no
data was available during meta-training. In contrast, when we use GP posterior means instead of
samples when fitting the score network, the resulting BNN predictions entirely ignore the epistemic
uncertainty that arises due to the fact that we don’t know the function values in [—2, 2]. This may
lead to overconfident posterior predictions.

20

	Introduction
	Background
	Meta-Learning as Score Estimation in the Function Space
	Problem Statement: Meta-Learning
	 Meta-Learning as Score Estimation on the Data-Generating Process

	The MARS meta-learning algorithm
	Experiments
	Experiment Setup
	Empirical Benchmark Study

	Conclusion
	Acknowledgements
	Related Work
	fSVGD inference
	Bias initialization
	Score estimation network
	Interpolating the datasets across X using GPs

	Meta-Learning Environments
	Sinusoids (Synthetic Environment)
	Real-World Data
	SwissFEL
	PhysioNet
	Berkeley-Sensor
	Argus-Control

	Overview of the meta-training and meta-testing phases
	Evaluation metrics
	Hyper-Parameter Selection

	Ablation Study
	Further experiments
	Parametric vs Nonparametric Score Estimation Methods
	Flexibility of the regularized network
	Incorporating uncertainty through GP interpolation

