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Meet challenges of RTT Jitter, A Hybrid Internet Congestion
Control Algorithm

Anonymous Author(s)

ABSTRACT
Congestion control has been a fundamental research focus in web
transmission for over 30 years. However, with diverse network
scenarios like cellular networks and WiFi, traditional models might
no longer accurately describe current network conditions – we em-
pirically observe that the minimum round-trip time (RTT𝑚𝑖𝑛) still
varies under different network conditions, challenging the assump-
tion of its constancy in traditional models. In this paper, we model
it as a normal distribution based on our measurements and propose
a novel congestion control algorithm LingBo. LingBo consists of
two phases: an offline trained decision model to achieve goals under
different RTT𝑚𝑖𝑛 distributions, and an online perception scheme
to detect the current RTT𝑚𝑖𝑛 distribution. We evaluate LingBo in
various network environments and find it consistently performs
well in terms of power metric and throughput compared to recent
state-of-the-art baselines.
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• Networks→ Network control algorithms.
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1 INTRODUCTION
Over the past three decades, congestion control (CC) has remained
a research hotspot in the field of computer infrastructure. There
are two main reasons for the continued attention to congestion
control. Firstly, congestion control is a cornerstone algorithm of
the modern internet and holds significant importance for various
tasks conducted over networks. Secondly, network conditions have
undergone significant changes due to the development of related
technologies and increased application demands. Traditional wired
networks continue to evolve, with a growing need for long-distance
transmission, such as cross-border and intercontinental networks.
Meanwhile, wireless network technologies have matured, offering
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convenience to users through technologies like WiFi and cellular
networks while also presenting new challenges in network trans-
mission.

Queuing delay has served as a direct or indirect signal for many
CC algorithms to perceive network conditions such as BBR [6],
Copa [5], Aurora [14]. However, the methods used by these algo-
rithms to calculate queuing delay is 𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛 . Implicit in this
approach is the assumption that the RTT𝑚𝑖𝑛 is a relatively stable
value. Through measurements spanning nearly 50 hours, we find
that this assumption holds true in wired networks. However, in
wireless scenarios (such as WiFi or cellular network), there are sig-
nificant jitters in RTT𝑚𝑖𝑛 , which poses challenges to the previous
algorithms’ network modeling and leads to poor performance in
scenarios with high jitter.

Perceiving and handling RTT jitter is indeed a challenging task.
Unlike the exploration of maximum bandwidth, exploring RTT𝑚𝑖𝑛

can potentially lead to a loss in bandwidth utilization. Balancing
the accuracy of RTT𝑚𝑖𝑛 jitter perception and bandwidth utilization
is a challenging design aspect. Furthermore, optimizing objectives
in the presence of RTT jitter is also a significant challenge.

So, in our work, we collect nearly 50 hours RTT traces without
queuing. Shifting away from the previous perspective of treating
it as a fixed value, we consider the RTT𝑚𝑖𝑛 as a normal distribu-
tion. Then, we divide the algorithm into two modules: perception
and decision. The perception module is responsible for sensing the
network’s RTT𝑚𝑖𝑛 distribution, while the decision module outputs
the current congestion window (cwnd) based on the already es-
tablished network model. In the offline training phase, we assume
that the network’s RTT𝑚𝑖𝑛 distribution is known. Within each time
interval, we design target values using domain knowledge and train
the model via imitation learning. In the online perception phase,
we use expert knowledge to construct the perception frame and
consider the decision model to determine the details such as the
duration of the perception phase.

To demonstrate the algorithm’s performance, we conduct exper-
iments with 15 baselines covering both classical algorithms and
recently published algorithms in both emulation and real-world
environments. In the emulation environment, we validate the al-
gorithm’s robustness and compare its performance under different
RTT𝑚𝑖𝑛 traces including three network scenarios: wired, WiFi, and
cellular networks. Our algorithm achieves the highest power95 and
improves with other algorithms from 18%-40x. Specifically, LingBo
outperforms the BBR (the only one that achieves higher through-
put) by 92% in average power95. In the real-world environment, we
establish servers in four regions and conduct actual packet transmis-
sion experiments. LingBo achieves the highest throughput and the
third highest power95. LingBo shows a 155%-6x improvement in
throughput compared to Vivace [8] and Copa (top two algorithms
in power95)

In general, we summarize the contributions as follows:
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(a) RTT𝑚𝑖𝑛 of Beijing-Singapore Wired Network (b) RTT𝑚𝑖𝑛 of Beijing-Singapore WiFi Network (c) RTT𝑚𝑖𝑛 of Beijing-Singapore Cellular Network
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Figure 1: RTT𝑚𝑖𝑛 Jitter and Algorithm Performance

• We collect RTT traces without queuing for nearly 50 hours
and conduct emulation experiments to illustrate the im-
pact of RTT𝑚𝑖𝑛 jitter on algorithm performance. We model
RTT𝑚𝑖𝑛 as a normal distribution rather than a fixed value. (§3)

• We propose a novel algorithm, LingBo, a hybrid congestion
control algorithm divided into decision and online percep-
tion, to address the challenges posed by RTT𝑚𝑖𝑛 jitter. (§4)

• We conduct extensive evaluations in both emulation and
real-world environments covering wired, WiFi, and cel-
lular network scenarios with 15 baselines. LingBo consis-
tently achieves competitive performance in throughput and
power95. (§5)

2 RELATEDWORK
Congestion control perceives the network state through signals
such as packet loss and delay, and adjusts the size of the cwnd
to control the data transmission rate. Some past research efforts
focus on assessing network conditions by relying on individual
network signals, such as packet loss [13] [11] and one-way de-
lay [5]. Other research aims to create a comprehensive network
model by considering multiple network signals in decision, such as
BBR [6] and other learning-based methods such ass Orca [2] and
Aurora [14]. These algorithms typically model the network via the
current RTT substrates the minimum historical RTT as queuing
delay, using this value to determine network congestion. However,
this modeling approach overlooks the issue of RTT jitter [4]. Even
in situations where there is no packet queuing, the RTT (commonly
named RTT𝑚𝑖𝑛) can inherently exhibit fluctuations, which is partic-
ularly common in wireless networks (due to channel fluctuations,
scheduling in uplink/downlink directions at BS, etc) [4] [1]

Previous research has also recognized these issues and proposed
various solutions. Some research endeavors periodically probe the
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Figure 2: The CDF of jitter

RTT𝑚𝑖𝑛 such as BBR and Copa while others opt to introduce ad-
ditional information, such as the router [10] [20] or physical layer
information [21]. However, periodic probing may not effectively
address the within-cycle jitter, and router or physical layer infor-
mation is not accessible to end-to-end internet congestion control
algorithms, as it requires modifications to the entire network link.
Some algorithms utilize as conservative strategies as possible to
counteract jitter, but inevitably result in a decrease in bandwidth
utilization, such as C2TCP [1] and DeepCC [3].

3 RTT𝑚𝑖𝑛 JITTER IN NETWORK

3.1 RTT𝑚𝑖𝑛 Trace
RTT𝑚𝑖𝑛 jitter is widely present in various network environments,
but there has been a lack of large-scale measurement results. To
better illustrate the RTT𝑚𝑖𝑛 jitter, we fix the sender’s sending cwnd
as 2 1 and sent packets from Beijing to clients located in Beijing,
Hong Kong, Singapore, and Frankfurt. We collect RTT𝑚𝑖𝑛 traces
for nearly 50 hours, encompassing three network types: wired,

1This is a commonly used method for estimating RTT𝑚𝑖𝑛 such as [6] [5].
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Figure 3: The Difference between RTT𝑚𝑖𝑛 Jitter and Band-
width Variation

WiFi, and cellular network, and including two states: stationary
and mobile.

In Figure 1(a) 1(b) 1(c), we plot representative RTT𝑚𝑖𝑛 traces un-
der three different network conditions and plot the cumulative dis-
tribution function of RTT𝑚𝑖𝑛 jitters in WiFi and cellular networks
as Figure 2. We can see that jitter is widely present, particularly
in wireless network scenarios. The RTT𝑚𝑖𝑛 in the wired network
remains relatively stable, with jitter at a few milliseconds. In the
WiFi network, the jitter is around several tens of milliseconds, while
in the mobile network, the jitter is even greater.

3.2 Impact of RTT𝑚𝑖𝑛 Jitter on CC
To visually demonstrate the impact of RTT𝑚𝑖𝑛 jitter on conges-
tion control algorithms, we conduct emulation experiments using
Mahimahi [16]. We fix the bandwidth as 12mbps and use different
RTT𝑚𝑖𝑛 trace to test different algorithms including BBR, Cubic,
Copa, Indigo [22], Allegro [7], Vivace [8], Proteus [15], Aurora [14],
Dugu [12] as Figure 1(d) 1(e) 1(f). We can see most algorithms
perform well in the wired trace, but in the WiFi trace, most algo-
rithms fail to achieve the balance between high throughput and
low latency. In the cellular trace, all algorithms either have low
bandwidth utilization or excessively high latency.

To further uncover the reasons behind the performance degrada-
tion caused by RTT𝑚𝑖𝑛 jitter, we conduct a simple analysis and plot
Figure 3, comparing the effects of bandwidth decrease and RTT𝑚𝑖𝑛

increase. Figure 3(a) demonstrates the changes in RTT and the CC
algorithm caused by a decrease in bandwidth. When the bandwidth
decreases at time 𝑡1, the RTT increases due to the increased queuing
delay. Upon perceiving this RTT signal at time 𝑡2, the CC algorithm
reduces the sending window to clear the queue and then restores
the sending window to match the current bandwidth at time 𝑡3.
However, if the change in RTT is not caused by the queuing delay
but by RTT𝑚𝑖𝑛 , the situation would be different. As shown in Fig-
ure 3(b), when RTT𝑚𝑖𝑛 increases, the CC algorithm may misjudge
the current network condition and decrease the sending rate in the
hope of restoring the RTT to its previous value. This can result in a
continuous decline in the CC sending rate.

3.3 Model for RTT𝑚𝑖𝑛 Jitter
In the past, RTT𝑚𝑖𝑛 was typically considered as a single value,
perceived by periodically updating it. However, based on the re-
sults of our measurements, we find due to the presence of jitter, a
single value is insufficient to model RTT𝑚𝑖𝑛 accurately. We plot
probability density histograms as Figure 4 to illustrate the jitter in

(a) Beijing-Singapore WiFi (b) Beijing-Singapore Cellular Network

Figure 4: RTT𝑚𝑖𝑛 Histogram
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Figure 5: LingBo System Overview

RTT𝑚𝑖𝑛 for both WiFi and cellular networks (shown in Figure 1(b)
and Figure 1(c)). The probability density of RTT𝑚𝑖𝑛 exhibits a clear
peak, with the probability density function gradually decaying on
both sides. As the distance from the mean increases, the probability
density gradually decreases. Based on this observation, we modify
the previous approach of considering RTT𝑚𝑖𝑛 as a single value and
instead treat it as a normally distributed variable.

4 LINGBO

4.1 LingBo Overview
As depicted in Figure 5, we employ imitation learning during the
offline phase to train a decision model with given network param-
eters as the decision module. Then, during the online phase, the
perception module obtains the network parameters and provides
the RTT𝑚𝑖𝑛 distribution to the decision model, which outputs the
final cwnd.

Decision Module Due to the challenges posed by RTT𝑚𝑖𝑛 jitter,
it is difficult to address them effectively using manually designed
rules. Therefore, we aim to employ a learning-based approach to au-
tomatically derive strategies that can adapt to various network con-
ditions. To avoid the challenges associated with designing reward
functions in reinforcement learning, we adopt imitation learning as
the training algorithm, learning from the designed objectives. We
introduce our simulation environment design (Sec 4.2), objective de-
sign and calculation (Sec 4.3), neural network architecture (Sec 4.4),
as well as the training methodology (Sec 4.5).

perception module (Sec 4.6) Perception is a challenging task
as we aim to perceive the distribution of RTT𝑚𝑖𝑛 as accurately as
possible without compromising the algorithm’s performance. We
combine domain knowledge with the pre-trained decision model
to jointly determine the perception phase.
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Figure 7: Bandwidth Utilisation and Queue Delay with Dif-
ferent Objectives

4.2 Simulated Environment
Inspired by previous work [16], we design a faithful simulation
environment as depicted in Figure 6. When the sender receives an
ACK packet sent back from the receiver, it utilizes the information
obtained from this feedback to update its state. Every 100ms, the
neural network makes a decision and updates the new congestion
window size. Data packets are transmitted from the sender and
enter the network part based on the cwnd. Building upon the pre-
vious simulator, we model the network with three components:
packet loss part, delay part, and link bandwidth part. In the packet
loss part, we simulate random packet loss in the network using
a probability ranging from 0 to 1. In the delay part, we simulate
the entry of packets into the network link and the time taken for
acknowledgments to be sent back from the receiver using randomly
generated values based on a given distribution for the RTT𝑚𝑖𝑛 . In
the link bandwidth part, we utilize real-world bandwidth traces to
simulate the availability of the network for sending packets.

4.3 Objective Design and Calculate

Due to the presence of RTT𝑚𝑖𝑛 jitter, designing the objectives
for imitation learning becomes a new challenge. Traditional metrics
such as the Bandwidth-Delay Product (BDP) may not be suitable
for scenarios with jitter. To illustrate this issue more intuitively, we
design a simple experiment using our simulator lasting 200s. We
model RTT𝑚𝑖𝑛 as a normal distribution with a mean of 100ms and
a variance of 10ms, and the bandwidth is set to 1 packet per mil-
lisecond. We compare the bandwidth utilization and queuing delay
under different cwnd as Figure 7. We can observe that when setting
the cwnd to the BDP (i.e., 100), we only achieve 82% bandwidth uti-
lization and still experience approximately 20ms of queuing delay.
This is because, when entering the delay part, if the RTT𝑚𝑖𝑛 of the
previous packet increases, the subsequent packets have to wait in
the queue until the previous packet is sent. This results in lower
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Figure 8: NN Architecture

bandwidth utilization and larger transmission delays, even though
the cwnd is the same as the BDP. As shown in Figure 7, it can be
observed that to achieve higher bandwidth utilization, properly
occupying the buffer queue is a way to mitigate jitter. Therefore,
setting cwnd to 120 or 130 in this experiment, which corresponds
to setting the target queuing delay as 2std or 3std (As we model
RTT𝑚𝑖𝑛 as a normal distribution, 2 std can absorb 95% of the jitter,
while 3std can absorb 99.7% of the jitter), is a more suitable choice
to achieve the balance between low latency and high throughput.

When calculating the objective value at time 𝑡 , we first make a
copy of the current network state as a virtual network and compute
the target value within this virtual network. We then simulate emp-
tying all the data packets in the network up to 𝑡 ′, which represents
the time at which the first packet sent by the sender after time
𝑡 arrives at the receiver. Then we compute how many packets 𝑝
should be sent from 𝑡 ′ to 𝑡 ′ + 𝑑𝑢𝑟 and occupy the buffer queue
𝑡𝑝𝑢𝑡 · 𝛼 · 𝑠𝑡𝑑 . So the cwnd 𝑐𝑡 at time 𝑡 can be calculated as

𝑐𝑡 =

∫ 𝑡 ′+𝑑𝑢𝑟
𝑡 ′ 𝑝𝑥𝑑𝑥 +

∫ 𝑡 ′+𝑑𝑢𝑟
𝑡 ′ 𝑝𝑥𝑑𝑥

𝑑𝑢𝑟
𝛼 · 𝑠𝑡𝑑

𝑑𝑢𝑟
𝑅𝑇𝑇𝑚𝑖𝑛

= (1 + 𝛼 · 𝑠𝑡𝑑
𝑑𝑢𝑟

)𝑅𝑇𝑇𝑚𝑖𝑛

𝑑𝑢𝑟

∫ 𝑡 ′+𝑑𝑢𝑟

𝑡 ′
𝑝𝑥𝑑𝑥

𝛼 ∈ [0, 3]

(1)

4.4 Neural Network Architecture
input At each decision time 𝑡 , to better represent the current state
of the network, we choose several network signals as state 𝑠𝑡 .

𝑠𝑡 = (𝑑𝑡 , 𝑟𝑠𝑡 , 𝑟𝑟𝑡 , 𝑙𝑡 , 𝑐, 𝑑𝑢𝑟𝑡 , 𝑅𝑇𝑇𝑚𝑖𝑛, 𝑅𝑇𝑇𝑚𝑖𝑛 𝑠𝑡𝑑, 𝛼) (2)

Here, 𝑑𝑡 is the estimated queuing delay, which is calculated by
𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛 . 𝑟𝑠𝑡 and 𝑟𝑟𝑡 are the sending rate and receiving rate
respectively, which are calculated by the ACK. We use the EWMA
method to smooth these three signals. 𝑙𝑡 is the loss ratio, 𝑐𝑡 is
cwnd and 𝑑𝑢𝑟𝑡 is the duration since the last action. Additionally,
we employ the mean RTT𝑚𝑖𝑛 and standard deviation 𝑅𝑇𝑇𝑚𝑖𝑛 𝑠𝑡𝑑

to model the RTT𝑚𝑖𝑛 distribution. And we use 𝛼 in Equation 1 to
represent the selection of objective values. We design a history
length of 8 for the first six state variables to balance the trade-off
between information and computational cost and the last three
states, which do not change over time, have an input length of 1.
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Table 1: Range of env. during the training.
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output After observing state 𝑠𝑡 , the agent outputs 𝑎𝑡 ∈ (−1, 1),
which is then used to modify the cwnd 𝑐𝑡 to determine the value
of 𝑐𝑡+1 for the subsequent time slot 𝑡 + 1, following the equation
𝑐𝑡+1 = 𝑐𝑡 · (1 + 𝑎𝑡 ).

Architecture As shown in Figure 8, we use six 1D-CNN layers
with channels=64 to extract the feature from (𝑑𝑡 , 𝑟𝑠𝑡 , 𝑟𝑟𝑡 , 𝑙𝑡 , 𝑐, 𝑑𝑢𝑟𝑡 ).
We utilize there 64-dim fully connected layers to extract the char-
acteristics separately for (𝑅𝑇𝑇𝑚𝑖𝑛, 𝑅𝑇𝑇𝑚𝑖𝑛𝑠𝑡𝑑, 𝛼). Then we merge
these vectors and feed them to a 64-dim full connected layer and a
1-dim full connected layer. Finally, The NN outputs a single scalar
using 𝑡𝑎𝑛ℎ activation function.

4.5 Training Methodology
Environment settingWe use over 2000 real-world network traces
from various scenarios such as wired, WiFi, and cellular networks
in a total of 60 hours from Orca [2], DeepCC [3] FCC [17] and HS-
DPA [18]. Although we have collected a large amount of RTT traces,
in order to construct a more comprehensive training environment,
we use a method based on manual construction to generate the
RTT settings for the training environment. In addition, we have set
different network parameters such as packet loss rate and queue
buffer size. The specific range of settings is shown in the Table 1.

loss functionWe use imitation learning [19] to minimize the
distance between the current policy 𝜋 (𝜃 ) and the expert policy 𝜋∗.
For the current state 𝑠 , we can update the model by minimizing
the gap between the output 𝑎 of the current policy 𝜋 (𝑠, 𝜃 ) and the
expert action 𝜋∗ (𝑠). So the squared-loss function of LingBo can be
described as Eq. 3.

𝐿LingBo =
1
4
(𝑎 − 𝜋∗ (𝑠))2 (3)

4.6 Online Perception
Perceiving RTT𝑚𝑖𝑛 accurately is a challenging task, and we aim to
leverage domain knowledge and the pre-trained decision model to
estimate the RTT𝑚𝑖𝑛 distribution as accurately as possible without
impacting bandwidth utilization.

Domain Knowledge Taking inspiration from the design prin-
ciples of previous heuristic algorithms [6] [5], we divide the per-
ception process into two parts: initial perception and periodic per-
ception.

During the initial perception phase, we set cwnd as 2 at the
beginning and we assume that there is no queuing of received
packets in this state. Additionally, if there is no exploration of
RTT𝑚𝑖𝑛 within a 10-second interval, the CC algorithmwill decrease
the cwnd and initiate a new round of RTT𝑚𝑖𝑛 probing.

Pre-trained Decision Model Although the previous heuristic
algorithm provides a framework for our perception module, some
issues still need to be addressed, such as determining when the
perception phase ends and how much to decrease the cwnd during
re-probing.

To address these two issues, we leverage decision models that
have been trained offline. Before the first decision, we continuously
update the perceived RTT𝑚𝑖𝑛 distribution in real-time and provide
this information to the pre-trained model for decision. As the goal
of the decision model is to get cwnd as ((1 + 𝛼 ·𝑠𝑡𝑑

𝑑𝑢𝑟
) · 𝐵𝐷𝑃), so long

as the 𝑎𝑡 ≥ 𝛼 ·𝑠𝑡𝑑
𝑑𝑢𝑟

, we consider that no queuing has occurred in the
past. We store the currently obtained RTT measurements after the
first decision in a temporary queue. If the action meets the above
condition, we add these measurements to the RTT𝑚𝑖𝑛 queue and
update the RTT𝑚𝑖𝑛 distribution, otherwise, the perception phase
ends. When reentering the perception phase, we also leverage the
knowledge of the decision model. We aim to set the cwnd to 𝐵𝐷𝑃

2
at this point, while the optimization objective of our model is Eq 1.
Therefore, we set the cwnd as:

𝑐𝑡+1 = 𝑐𝑡 · (𝑑𝑢𝑟/(2 · 𝑑𝑢𝑟 + 2 · 𝛼 · 𝑠𝑡𝑑)) (4)

and restart the perception phase. In summary, the code for LingBo
during online perception is as follows:

Algorithm 1 LingBo online perception
1: Initialization: Decision Model 𝑁𝑁 , state 𝑠 , queue of RTT𝑚𝑖𝑛

𝑞𝑚𝑖𝑛 , temporary queue 𝑞𝑡𝑚𝑝 , time 𝑡 , cwnd 𝑐 , update duration
𝑑𝑢𝑟 , target queue delay 𝛼 · 𝑠𝑡𝑑

2: while perception phase not ends do
3: while receiving ACK do
4: 𝑅𝑇𝑇 = 𝑔𝑒𝑡_𝑅𝑇𝑇 (𝐴𝐶𝐾)
5: if Before first decision then
6: 𝑞𝑚𝑖𝑛 ← 𝑞𝑚𝑖𝑛 ∪ 𝑅𝑇𝑇
7: else
8: 𝑞𝑡𝑚𝑝 ← 𝑞𝑡𝑚𝑝 ∪ 𝑅𝑇𝑇
9: end if
10: end while
11: if meet time to decision then
12: 𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 (𝑞𝑚𝑖𝑛)
13: 𝑎𝑡 = 𝑁𝑁 (𝑠)
14: if 𝑎𝑡 ≥ 𝛼 ·𝑠𝑡𝑑

𝑑𝑢𝑟
then

15: 𝑞𝑚𝑖𝑛 ← 𝑞𝑚𝑖𝑛 ∪ 𝑞𝑡𝑚𝑝

16: 𝑞𝑡𝑚𝑝 ← []
17: 𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑡𝑎𝑡𝑒 (𝑞𝑚𝑖𝑛)
18: 𝑎𝑡 = 𝑁𝑁 (𝑠)
19: else
20: perception phase ends
21: end if
22: 𝑐𝑡+1 = 𝑐𝑡 · (1 + 𝑎𝑡 )
23: end if
24: end while

5 EVALUATION
To demonstrate the performance of LingBo 2, we compare it with

15 other algorithms, including classical and recently published ap-
proaches. We first test the robustness of LingBo under different
network parameters, such as varying packet loss ratios and buffer
sizes (Sec 5.1). Using the collected RTT traces, we conduct trace-
driven emulation experiments on both fixed and variable bandwidth
2During the evaluation, we set the 𝛼 in Eq 1 to 3 as discussed in Sec 4.3.
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Figure 9: The Robustness of LingBo under Different Packet Loss Ratios and Buffer Sizes

100200300400500600
95% One-way Delay(ms)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(a) Wired, 12mbps

0200400600800
95% One-way Delay(ms)

0.0

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(b) WiFi, 12mbps

0200400600
95% One-way Delay(ms)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(c) Cellular, 12mbps

050010001500200025003000
95% One-way Delay(ms)

0

1

2

3

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(d) Wired, FCC

05001000150020002500
95% One-way Delay(ms)

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(e) WiFi, FCC

0100020003000
95% One-way Delay(ms)

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Eagle
Copa
Indigo
Allegro
Cubic
Sprout
Vivace
DeepCC-C

DeepCC-B
Aurora
Proteus
C2TCP
DuGu
BBR
Orca
LingBo

(f) Cellular, FCC

Figure 10: The Results in Trace-driven Emulation
scenarios (Sec 5.2). Then, we validate the performance of LingBo
on real-world encompassing domestic, international, and intercon-
tinental networks (Sec 5.3). In the end, we discuss LingBo’s fairness
and TCP friendliness as Sec 5.4.

Baselines We take 15 state-of-the-art CC algorithms published
in recent years as the baselines.1) Cubic [11]: a loss-based approach;
2) BBRv2(BBR) [6], a model-based approach which detects maxi-
mum bandwidth and minimum RTT periodically, 3) Copa [5]: a
delay-based approach 4) Sprout [23]: an approach addresses the
uncertainty of cellular link variations and determines the network
condition based on the observed packet arrival times at the receiver.
5) C2TCP [1]: a delay-based approach specifically designed for
cellular networks selects the minimum RTT within a certain period
as RTT𝑚𝑖𝑛 6) Auraro [14]: a reinforcement-learning-based ap-
proach.7) Indigo [22]: an imitation-learning-based approach 8) Ea-
gle [9]: a reinforcement-learning algorithm that designs its reward
function by imitating BBR. 9)-10) DeepCC [3]: a hybrid algorithm
specifically designed for cellular networks that utilize reinforce-
ment learning to constrain the cwnd of heuristic algorithms and we

consider two variants using BBR (DeepCC-B) and Cubic (DeepCC-
C) 11) Orca [2]: A hybrid algorithm that combines reinforcement
learning with the Cubic. 12) DuGu [12]: an imitation-learning-
based approach with omniscient-like network emulator 13) PCC
Allegro (Allegro) [7], 14) PCC Vivace(Vivace) [8], and 15) PCC
Proteus (Proteus) [15]: online-learning-based approaches with
different optimization targets.

5.1 Robustness Analysis
As Figure 9, we conduct robustness analysis to test the performance
in throughput and latency under different packet loss scenarios and
various queue buffer sizes. We fix the bandwidth as 12mbps and
consider the WiFi trace as shown in Figure 1(b) as RTT𝑚𝑖𝑛 trace.
During the loss ratio test, we fix the queue buffer sizes as 500 packets
and change the loss ratio from 0% to 30%. As shown in Figure 9(a)
and Figure 9(b), LingBo is the only algorithm that performs well
even with a 30% loss ratio. For different queue buffer sizes with
0% loss ratio, LingBo consistently maintains high throughput and
low latency from 50-1800 packets buffer sizes as Figure 9(c) and
Figure 9(d).
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Figure 11: The CDF in Power95
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Figure 12: Comparison of Whether to Model Jitter

5.2 Trace-driven Emulation
To evaluate LingBo’s performance in different network bandwidths
and RTT settings, we conduct extensive emulation experiments
based on real traces. We use Mahimahi [16] as the emulation tool
and use fixed 12mbps trace and real-world bandwidth trace from
FCC to emulate bandwidth. To show the performance in different
RTT𝑚𝑖𝑛 scenarios, we use beyond 30 minutes RTT𝑚𝑖𝑛 trace includ-
ing wired, WiFi, and cellular networks. We plot the 95% one-way
delay and throughput as Figure 10.

Wired Network No matter whether in fixed bandwidth or vary-
ing bandwidth scenarios, most algorithms perform well. DuGu,
BBR, Allegro, LingBo, and Indigo demonstrate excellent perfor-
mance in terms of throughput and latency at 12mbps. Similarly,
LingBo, DuGu, Copa, Auraro, and Orca exhibit outstanding perfor-
mance in both throughput and latency under the FCC conditions.

WiFi Network The RTT𝑚𝑖𝑛 jitter in WiFi networks is much
more complex compared to wired networks. LingBo consistently
achieves a Pareto-optimal position in different scenarios, surpassing
other algorithms. LingBo achieves nearly the highest throughput
and, compared to BBR with similar throughput, reduces the average
95th percentile latency by 22%. Additionally, compared to Copa
with a lower average 95th percentile latency, LingBo improves
throughput by 21%.

Cellular Network The RTT𝑚𝑖𝑛 jitter in cellular networks can
be the most complex, as the RTT𝑚𝑖𝑛 trace encompasses 4G and
5G networks and includes both mobile and stationary scenarios.
In 12mbps, only LingBo, BBR, and Auraro achieve over 70% band-
width utilization rate. Among them, LingBo reduced latency by
14%-31%. In FCC bandwidth trace, LingBo simultaneously achieves
the highest throughput and lower latency, positioning itself in the
top right corner of Figure 10(f).

Power95 To visually demonstrate the superiority of LingBo
compared to others, we choose a version of Kleinrock’s power
metric [22] named powed95 as the evaluation metric, which is
calculated by:

𝑝𝑜𝑤𝑒𝑟95 =
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

95%𝑑𝑒𝑙𝑎𝑦
(5)

We select the top 5 algorithms based on power95 ranking in fixed
bandwidth and varying bandwidth scenarios respectively, and plot
their CDF as Figure 11. LingBo, DuGu, and Copa perform well in
both scenarios, and LingBo achieves the highest power95 in total.
In Figure 11(a), LingBo, Copa, and DeepCC-B exhibit similar perfor-
mance inmost scenarios, while LingBo stands out with significantly
higher power compared to other algorithms in most scenarios of
FCC trace as Figure 11(b).

Case Study: Whether to Model Jitter To demonstrate the
effectiveness of LingBo’s modeling of RTT𝑚𝑖𝑛 jitter, we conduct
a case study comparing it with another algorithm, DuGu, which
is also based on imitation learning but handles jitter in a simpler
manner. As Figure 12, we fix the bandwidth as 12mbps and use a cel-
lular RTT𝑚𝑖𝑛 trace as the shaded area. It can be observed that while
DuGu is able to handle small degrees of RTT𝑚𝑖𝑛 jitter, it becomes
confused when there are rapid fluctuations in RTT𝑚𝑖𝑛 (such as 15s-
18s, 41s-48s). DuGu struggles to differentiate whether the current
increase in RTT is due to bandwidth reduction or RTT𝑚𝑖𝑛 jitter,
leading to a decision to decrease throughput. In contrast, LingBo
exhibits more stable throughput performance in the presence of
such RTT𝑚𝑖𝑛 jitter.

5.3 Real-world Evaluation
To test the performance of LingBo in real-world scenarios, we
deploy four servers globally, including a local network within a
city (Beijing-Beijing), a domestic network (Beijing-Hongkong), a
continental network (Beijing-Singapore), and an intercontinental
network (Beijing-Frankfurt). We place the sender server in Beijing
and modify the network type of the sender server to three types:
wired, WiFi, and cellular networks. We run each algorithm 180s and
repeat 5 times using random order on the Pantheon platform [22].

Wired Network As shown from Figure 13(a) to Figure 13(d),
LingBo consistently achieves competitive performance with high
throughput and low latency, outperforming existing algorithms
notably in the Beijing-Frankfurt scenario. This demonstrates that
in real-world wired scenarios with relatively low jitter, LingBo
remains one of the most competitive algorithms.

WiFi Network Most algorithms do not perform as expected in
WiFi scenarios, unlike in wired networks where most algorithms
concentrate around the Pareto frontier. Some algorithms prioritize
high bandwidth but result in significant queuing delay, while others
focus on low latency but have low bandwidth utilization. LingBo
achieves a good balance between throughput and delay, obtaining
the second-highest throughput and the third-highest power95 rank-
ing. Compared to Auraro with similar throughput, LingBo reduces
average latency by 28%. In comparison to Copa and Vivace, which
have higher power rankings, LingBo improves bandwidth by 23x
and 142%, respectively.

Cellular Network In cellular networks, which present the most
complex conditions, LingBo consistently achieves the best results
in most tests, as clearly seen in Figure 13(i), 13(j), and 13(l). LingBo
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(d) Wired, Beijing-Frankfurt
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(e) WiFi, Beijing-Beijing
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(f) WiFi, Beijing-Hongkong
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(g) WiFi, Beijing-Singapore
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(h) WiFi, Beijing-Frankfurt
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(i) Cellular, Beijing-Beijing
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(j) Cellular, Beijing-Hongkong
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(k) Cellular, Beijing-Singapore
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(l) Cellular, Beijing-Frankfurt

Figure 13: The Results in Real-world Evaluation
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Figure 14: The Fairness and Friendliness

achieves the highest throughput, improving by 6% to 9x compared
to other algorithms. Compared to Proteus and BBR, which have
smaller throughput gaps, LingBo reduces queuing delays by 30%
and 17% respectively. LingBo achieves the second-highest power95,
surpassing Copa’s (the highest power95) throughput by 50%.

5.4 Fairness and TCP Friendliness
The previous experiments have shown LingBo’s great performance.
However, fairness and TCP Friendliness are also very important as
a CC algorithm.

Fairness LingBo’s probing follows the frameworks of BBR and
Copa, regularly updating the perceived RTT𝑚𝑖𝑛 parameter, ensur-
ing fairness in the perception aspect. Furthermore, each LingBo
flow shares the same optimization goal, guaranteeing fairness in
the decision process. We conduct tests in real-world, where we
send out 3 flows every 5 seconds. LingBo effectively distributes
bandwidth evenly among the flows as Figure 14(a), demonstrating
its capability to achieve fair bandwidth allocation.

Friendliness To test whether LingBo is too aggressive, we fol-
low a similar approach to previous work [2] by selecting Cubic as
the base TCP, which is the default TCP in most of today’s Operating
Systems. Cubic uses packet loss as a congestion signal, while our
optimization target is before packet loss occurs, making us more
conservative than Cubic (as observed in previous experiments such
as Figure 13(i) 13(l)). We first send out a LingBo flow and then
subsequently add a Cubic flow. We find that these two algorithms
can coexist harmoniously as Figure 14(b).
Remark LingBo demonstrates excellent robustness, fairness, and
TCP-friendliness, and achieves impressive performance. In emula-
tion environments, it achieves the highest power95 and the second-
highest throughput. In real-world scenarios, it stands as one of the
most competitive algorithms for wired networks and attains the
highest throughput and the third-highest power95 in wireless sce-
narios, showcasing a significant advantage over other algorithms.

6 CONCLUSION
To better address the jitter problem in congestion control, we con-
duct measurements for nearly 50 hours and model the RTT𝑚𝑖𝑛 as
a normal distribution. We propose a new CC algorithm, LingBo,
which combines a decision module via imitation learning and an
online perception module. Through extensive experiments with 15
baselines in emulation and real-world scenarios, LingBo demon-
strates competitive performances in both throughput and power95.
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