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Abstract—Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial

attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure

similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs.

AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA

alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA

performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and

thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85

percent. Even with defenses or adversarial training, most models still maintain an error rate over 70 percent on DAmageNet.

DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing

and adversarial training.

Index Terms—Adversarial attack, attention, transferability, black-box attack, DAmageNet
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1 INTRODUCTION

DEEP neural networks (DNNs) have grown into the main-
stream tools in many fields, thus, their vulnerability has

attracted much attention in the recent years. An obvious
example is the existence of adversarial samples [1], which
are quite similar with the clean ones, but are able to cheat
the DNNs to produce incorrect predictions in high confi-
dence. Various attack methods to craft adversarial samples
have been proposed, such as FGSM [2], C&W [3], PGD [4],
Type I [5] and so on. Generally speaking, when the victim
network is exposed to the attacker, one can easily achieve
efficient attack with a very high success rate.

Although white-box attacks can easily cheat DNNs, the
current users actually do not worry about them, since it is
almost impossible to get the complete information including
the structure and the parameters of the victim DNNs. If the
information is kept well, one has to use black-box attack,
which can be roughly categorized into query-based approa-
ches [6], [7], [8] and transfer-based approaches [9], [10], [11].
The former one is to estimate the gradient by querying the
victim DNNs. However, until now, the existing query-based
attacks still need massive queries, which can be easily
detected by the defense systems. Transfer-based attacks rely
on the similarity between the victim DNN and the attacked
DNN, which serves as the surrogate model in a black-box

attack, in the attacker’s hands. It is expected that white-box
attacks on the surrogate model can also invade the victim
DNN. Although there are some promising studies recently
[12], [13], [14], the transfer performance is not satisfactory
and a high attack rate could be reached only when two
DNNs have similar structures [15], which however conflicts
the aim of black-box attacks.

Black-box adversarial samples that are applicable to vast
DNNs need to attack their common vulnerability. Since
DNNs are imitating human’s intelligence, although DNNs
have different structures and weights, they may share simi-
lar semantic features. In this paper, we are focusing on the
attention heat maps, on which different DNNs have similar
results. By attacking the heat maps of one white-box DNN,
we could make its attention lose focus and therefore fail in
judgement. In fact, some works have been aware of the
importance of attention and put the change of heat map as
an evidence of successful attacks, see, e.g., [11], [16]. But
none of them includes the attention in loss. In our study, we
develop an Attack on Attention (AoA). AoA has a good
white-box attack performance. More importantly, there is
high similarity in attention across different DNNs, making
AoA highly transferable: replacing the cross-entropy loss by
AoA loss increases the transferability by 10 to 15 percent.
Combined with some existing transferability-enhancement
methods, AoA achieves a state-of-the-art performance, e.g.,
over 85 percent transfer rate on all 12 black-box popular
DNNs in numerical experiments.

Here, we first illustrate one example in Fig. 1. The origi-
nal image is a “salamander” in ImageNet [17]. By attacking
the attention, we generate an adversarial sample, which
looks very similar to the original one but with a scattered
heat map (in the lower left corner), leading to misclassifica-
tion. The attack is carried out on VGG19 [18] but other well-
trained DNNs on ImageNet also make wrong predictions.
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Since AoA is for common vulnerabilities of DNNs, we
successfully generate 50000 adversarial samples that can
cheat many DNNs, of which the error rates increase to over
85 percent. We provide these samples in the dataset named
as DAmageNet. DAmageNet is the first dataset that provides
black-box adversarial samples. Those images DAmage many
neural networks without any knowledge or query. But the
aim is not to really damage them, but to point out the weak
parts of neural networks and thus those samples are valu-
able to improve the neural networks by adversarial training
[19], [20], robustness certification [21], and so on.

The rest of this paper is organized as follows. In Section 2,
we will briefly introduce adversarial attack, especially
black-box attack, attention heat map, and several variants of
ImageNet. The Attack on Attention is described in detail in
Section 3. Section 4 evaluates the proposed AoA along with
other attacks and defenses and presents the DAmageNet. In
Section 5, a conclusion is given to end this paper.

2 RELATED WORK

2.1 Adversarial Attack and its Defense

Adversarial attacks [22] reveal the weakness of DNNs by
cheating it with adversarial samples, which differ from orig-
inal ones with only a slight perturbation. In the humans’
eyes, the adversarial samples do not differ from the original
ones, but well-trained networks make false predictions on
them in high confidence. The adversarial attack can be
expressed as below,

find Dx

s.t. fðxÞ 6¼ fðxþ DxÞ
kDxk � ";

where a neural network f predicts differently on the clean
sample and the adversarial sample. Even their difference is

imperceivable, i.e., Dx is restricted by jj � jj, which could be
the ‘1-, ‘2- or ‘1-norm.

When training a DNN, one updates the weights of the
network by the gradients to minimize a training loss. While
in adversarial attacks, one alters the image to increase the
training loss. Based on this basic idea, there have been
many variants on attacking spaces and crafting methods.

For the space to be attacked, most of the existing methods
directly conduct attack in the image space [2], [23], [24]. It is
also reasonable to attack the feature vector in the latent
space [5], [25] or the encoder/decoder [26], [27]. Attack on
feature space may produce unique perturbation unlike ran-
dom noise.

Adversarial attacks could be roughly categorized as gra-
dient-based [2], [4] and optimization-based methods [3],
[22]. Gradient-based methods search in the gradient direc-
tion and the magnitude of perturbation is restricted to avoid
a big distortion. Optimization-based methods usually con-
sider the magnitude restriction in the objective function. For
both, the magnitude could be measured by the ‘1, ‘2,
‘1-norm or other metrics.

To secure the DNN, many defense methods have been
proposed to inhibit the adversarial attack. Defense can be
achieved by adding adversarial samples to the training set,
which is called adversarial training [28], [29], [30]. It is very
effective, but consumes several-fold time. Another tech-
nique is to design certain blocks in the network structure to
prevent attacks or detect adversarial samples [31], [32].
Attack can also be mitigated by preprocessing images
before input to the DNN [33], [34], [35], which does not
require modification on the pre-trained network.

2.2 Black-Box Attack

When the victim DNNs are totally known, the attacks men-
tioned above have high success rates. However, it is almost
impossible to have access to the victim model in real-world
scenarios and thus black-box attacks are required [36], [37],
[38]. Black-box attacks rely on either query [6], [7] or trans-
ferability [9], [36].

For the query-based approach, the attacker adds a slight
perturbation to the input image and observes the reaction of
the victim model. By a series of queries, the gradients could
be roughly estimated and then one can conduct the attack
in the way similar to white-box cases. To decide on the
attack direction, attackers adopt methods including Bayes
optimization [39], evolutional algorithms [40], meta learning
[41] etc. Since the practical DNNs are generally very compli-
cated, good estimation of the gradients needs a massive
number of queries, leading to an easy detection by the
model owner.

For the transfer-based approach, one conducts white-box
attack in a well-designed surrogate model and expects that
the adversarial samples remain aggressive to other models.
The underlying assumption is that the distance between
decision boundaries across different classes is significantly
shorter than that across different models [36]. Although a
good transfer rate has been recently reported in [12], [13], [14],
[42], it is mainly for models in the same family, e.g., Incep-
tionV3 and InceptionV4, or models with the same blocks, e.g.,
residual blocks [15]. Until now, cross-family transferability of

Fig. 1. AoA adversarial sample and its attention heat map (calculated by
DenseNet121). The original sample (in ImageNet: image n01629819_
15314.JPEG, class No.25) is shown on the left. All well-trained DNNs
(listed in the first row) correctly recognize this image as a salamander.
The right image is the generated adversarial sample by AoA. The differ-
ence between the two images is slight, however, the heat map shown in
lower left corner changes a lot, which fools all the listed DNNs to incor-
rect predictions, as shown in the bottom row.
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adversarial samples with small perturbations is limited and
there is no publicly available dataset of that.

2.3 Attention Heat Map

In making judgements, humans tend to concentrate on cer-
tain parts of an object and allocate attention efficiently. This
attention mechanism in human intelligence has been
exploited by researchers. In recent studies, methods in natu-
ral language process have benefited from the attention
mechanism a lot [43]. In computer vision, the same idea has
been applied and becomes an important component in
DNNs, especially in industrial applications [44].

To attack on attention, we need to calculate the pixel-
wise attention heat map, for which network visualization
methods [45], [46] are applicable. Forward visualization
adopts the intuitive idea to obtain the attention by observing
the changes in the output caused by changes in the input.
The input can be modified by noise [47], masking [48], or
perturbation [49]. However, these methods consume much
time and may introduce randomness.

In contrast, backward visualization [48], [50], [51] obtains
the heat map by calculating the relevance between adjacent
layers from the output to the input. The layer-wise attention
is obtained by the attention in the next layer and the net-
work weights in this layer. Significant works include Layer-
wise Relevance Propagation (LRP) [52], Contrastive LRP
(CLRP) [53] and Softmax Gradient LRP (SGLRP) [54]. These
methods extract the high-level semantic attention features
for the images from the perspective of the network and
make DNNs more interpretable and explainable.

2.4 ImageNet and its Variants

To demonstrate and evaluate our attack, we will modify
images from ImageNet as other transfer attacks [12], [13],
[14], [42]. ImageNet is a large-scale dataset [17], which con-
tains images of 1000 classes and each has 1300 well-chosen
samples. ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) has encouraged a lot of mile-stone works
[18], [55], [56]. Recently, many interesting variants of Image-
Net have been developed, including ImageNet-A [57],
ObjectNet [58], ImageNet-C, and ImageNet-P [59].

ImageNet-A contains real-world images in ImageNet
classes, and they are able to mislead many classifiers to out-
put false predictions. ObjectNet also includes natural
images that well-trained models in ImageNet cannot distin-
guish. Objects in ObjectNet have random backgrounds,
rotations and viewpoints. ImageNet-C is produced by add-
ing 15 diverse corruptions. Each type of corruptions has 5
levels from the lightest to the severest. ImageNet-P is
designed from ImageNet-C and differs from it in possessing
additional perturbation sequences, which are not generated
by attack but by image transformations.

The datasets mentioned above are valuable for testing
and improving the network generalization capability, but
DAmageNet is for the robustness. In other words, samples
in the above datasets differ from the samples in ImageNet
and the low accuracy is due to the poor generalization. In
DAmageNet, the samples are quite similar to the original
ones in ImageNet and the low accuracy is due to the over-
sensitivity of DNNs.

3 ATTACK ON ATTENTION (AOA)

To pursue high transferability for black-box attacks, we
need to find common vulnerabilities and attack semantic
features shared by different DNNs. Attention heat maps for
three images are illustrated in Fig. 2, where the pixel-wise
heat maps show how the input contributes to the prediction.
Even with different architectures, the models have similar
attention. Inspired by the similarity across different DNNs,
we propose to Attack on Attention (AoA). Different to the
existing methods that focus on attacking the output, AoA
aims to change the attention heat map.

Let hðx; yÞ stand for the attention heat map for the input
x and a specified class y. hðx; yoriÞ is a tensor with the dimen-
sion consistent to x. The basic idea of AoA is to shift the
attention away from the original class, e.g., decrease the
heat map for the correct class yori, as illustrated in Fig. 3. In
this paper, we utilize SGLRP [54] to calculate the attention
heat map hðx; yÞ, which is good at distinguishing the atten-
tion for the target class from the others. There exist of course
many other techniques for obtaining the heat map to attack,
as long as hðx; yÞ and its gradient on x could be effectively
calculated.

There are several potential ways to change the attention
heat maps.

1) Suppress the magnitude of attention heat maps for
the correct class hðx; yoriÞ: When the network atten-
tion degree on the correct class decreases, attention
for other classes would increase and finally exceed
the correct one, which leads the model to seek for
information on other classes rather than the correct
one and thus make an incorrect prediction. We call
this design as the following suppress loss,

LsuppðxÞ ¼ khðx; yoriÞk1;

where k � k1 stands for the componentwise ‘1-norm.
2) Distract the focus of hðx; yoriÞ: It could be expected

that when the attention is distracted from the origi-
nal regions of interest, the model may lose its

Fig. 2. Attention heat maps for VGG19 [18], InceptionV3 [60], Dense-
Net121 [56], which are similar even the architectures are different.
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capability for prediction. In this case, we do not
require the network to focus on information of any
incorrect class, but lead it to concentrate on irrele-
vant regions of the image. The loss could be
expressed as the following distract loss,

LdstcðxÞ ¼ � hðx; yoriÞ
maxðhðx; yoriÞÞ �

hðxori; yoriÞ
maxðhðxori; yoriÞÞ

����
����
1

:

Here, self-normalization is conducted to eliminate
the influence of attention magnitude.

3) Decrease the gap between hðx; yoriÞ and hðx; ysecðxÞÞ,
the heat map for the second largest probability: If the
attention magnitude for the second class exceeds
that for the correct class, the network would focus
more on information about the false prediction,
which is inspired by CW attack [3]. We call it bound-
ary loss and take the following formulation,

LbdryðxÞ ¼ khðx; yoriÞk1 � khðx; ysecðxÞÞk1:
The values of attention heat maps vary a lot for dif-
ferent models, so the self-normalization may
improve the transferability of adversarial samples.
Therefore, rather than Lbdry, we can also consider the
ratio between hðx; yoriÞ and hðx; ysecðxÞÞ, resulting the
following logarithmic boundary loss

Llog ðxÞ ¼ log ðkhðx; yoriÞk1Þ � log ðkhðx; ysecðxÞÞk1Þ:

Now let us illustrate the attack result on the attention
heat map by distract loss. In Fig. 4, a clean sample is drawn
together with its heat maps away from its original class.
Aiming at ResNet50 [55], we minimize Ldstc and success-
fully change the heat map such that the attention is dis-
tracted to irrelevant regions (the second right column at the

bottom). This common property shared by the attention in
different DNNs makes the attack transferable, which is the
motivation of attack on attention. The generated adversarial
sample is shown in the leftmost in the bottom, which is
incorrectly recognized by all the DNNs in Fig. 4. Addition-
ally, we could see that the heat map for VGG19 is much
clearer, which might explain the high transferability of its
adversarial samples as shown later and in [15].

The transferability across different DNNs could be
observed not only for the Ldstc but also for the other
attention-related losses. To compare the above losses’ attack
performance, we attack on ResNet50 [55] and feed the
adversarial samples to other DNNs (see the setting in
Section 4 for details). Two attacks on classification loss,
namely CW and PGD, are also compared as the baseline.
The white-box attack success rates. i.e., the error rates of
ResNet50, are all near 100 percent but attacks by different
losses have different transferability performance, which is
reported in Table 1. The suppress loss and the distract loss
have a better transferability than PGD and CW. The loga-
rithmic boundary loss is the best and is hence chosen as the
attack target. Moreover, attack on attention could be readily
combined with the existing attack on prediction (the cross
entropy loss attacked in PGD, denoted by Lce), resulting in
the following AoA loss,

LAoAðxÞ ¼ Llog ðxÞ � �Lceðx; yoriÞ; (1)

where � is a trade-off between the attack on attention and
cross entropy. In this paper, � ¼ 1000 is suggested such that
the two items have similar variance for different inputs. The
combination further increases the transferability, as shown
in Table 1.

Basically, the adversarial samples are generated in an
update process by minimizing the AoA loss LAoA. Specifi-
cally, set x0

adv ¼ xori and the update procedure could be gen-
erally described as the following

xkþ1
adv ¼ clip" xk

adv � a
gðxk

advÞ
jjgðxk

advÞjj1=N
� �

;

gðxÞ ¼ @LAoAðxÞ
@x

:

(2)

The gradient g is normalized by its average ‘1-norm, i.e.,
jjgðxkÞjj1=N , where N is the size of the image. Further, to

Fig. 3. The design of AoA. AoA calculates the attention heat map by
SGLRP after inference. The gradient from the heat map back-propa-
gates to the input and updates the sample iteratively. By suppressing the
attention heat map value, one can change the network decision by fool-
ing its focus. Constantly doing this, the produced adversarial sample
could beat several black-box models.

Fig. 4. Minimizing Ldstc distracts the attention from the correct ROI to
irrelevant regions and similar distraction could be observed for different
networks.
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keep the perturbations invisible, we restrict our attack by
the distance from the original clean sample such that the ‘1
distance does not exceed ". AoA is different from other
attacks merely on the loss. Therefore, transferability-
enhancement techniques developed for directly attacking
prediction are also applicable to AoA. In fact, with optimi-
zation modification [12] or input modification [11], [13],
[14], the transfer performance of AoA gets further
improved, as numerically verified in Section 4.2. The proce-
dure of AoA is summarized in Algorithm 1.

Algorithm 1. Attack on Attention

Input: AoA loss LAoAðxÞ, origin sample xori, ‘1-norm bound �,
RMSE threshold h, attack step length a.

Output: adversarial sample xadv
1: x0

adv  xori

2: N  height� width� channel of xori

3: k 0
4: while RMSEðxori; x

k
advÞ < h do

5: g ¼ @LAoAðxkadvÞ
@xk

adv

?

6: xkþ1
adv ¼ clip�ðxk

adv � a � g
jjgjj1=NÞ ?

?

7: k ¼ kþ 1
8: end while
9: returnxk

adv

10:
11: ? : could be modified for DI [13],SI [14] enhancement.
12: ?

?: could be modified for MI [12],TI [11] enhancement.

Because of its good transferability on attention heat
maps, AoA could be used for the black-box attack. The basic
scheme is to choose a white-box DNN, which serves as the
surrogate model for black-box attacks, to attack by updating
(2). The generated adversarial samples tend to be aggressive
to other black-box victim models.

4 EXPERIMENTS

In this section, we will evaluate the performance of our
Attack on Attention, especially its black-box attack capabil-
ity compared to other SOTA methods. Since AoA is a very
good black-box attack, it provides adversarial samples that
can defeat many DNNs in a zero-query manner. These sam-
ples are collected in the dataset DAmageNet. This section
will also introduce DAmageNet and report the performance
of different DNNs on it. We further test the AoA perfor-
mance under several defenses and find that AoA is the
most aggressive method in almost all the cases.

4.1 Setup

The experiments for AoA are conducted on ImageNet [17]
validation set. For attack and test, several well-trained mod-
els in Keras Applications [64] are used, including VGG19
[18], ResNet50 [55], DenseNet121 [56], InceptionV3 [60] and
so on. We also use other adversarial-trained models (not by
AoA, indicated by underline). For preprocessing, Keras pre-
processing function, central cropping, and resizing (to 224)
are used. The experiments are implemented in TensorFlow
[65], Keras [64] with 4 NVIDIA GeForce RTX 2080Ti GPUs.

For the attack performance, we care about two aspects:
the success/transfer rate of attack and how large the image
is changed. Denote the generated adversarial sample as
xadv. The change from its corresponding original image xori

could be measured by the Root Mean Squared Error

(RMSE) in each pixel: d xadv; xorið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxadv � xorik22=N

q
. In

the experiments, 200 images are randomly selected from
ImageNet validation set and the samples incorrectly pre-
dicted by the victim model are skipped as the same setting
in [15]. Experiments are repeated 5 times and the overall
performance on 1000 samples is reported. All the compared
attacks will be fairly stopped when RMSE exceeds h ¼ 7
and the perturbation is bounded by " ¼ 0:1 � 255. In this
way, the number of iterations is about 10 with step size a ¼
2 as the setting of [42] and other literatures. We alter a ¼ 0:5
for MI [12] based on numerical experiments.

4.2 Transferability of AoA

We first compare AoA with popular attacks CW [3] and
PGD [4], which aim at classification losses. Specifically, CW
uses the hinge loss and PGD uses the cross entropy loss. For
CW, a gradient-based update is applied to keep the pertur-
bation small. We carefully tune their parameters, resulting
in a better transferability than reported in [15].

We use AoA, CW, and PGD to attack different neural
networks, and then feed the generated adversarial samples
to different models. The average error rates are reported in
Table 2. AoA, CW, and PGD all have a high white-box
attack success rate but the transfer performance varies a lot,
which depends on both the surrogate model and the victim
model. But in all the tested situations, AoA achieves a better
black-box attack performance.

The essential difference of AoA from CW/PGD is the
attack target. The existing effort on improving attack trans-
ferability for CW/PGD is mainly on modifying the optimi-
zation process. For example, DI proposes to transform 4
times when calculating gradients with a probability [13]. TI

TABLE 1
Transfer Rate From ResNet50 to Other Neural Networks

Loss/Method DN121 [56] VGG19 [18] RN152 [55] IncV3 [60] IncRNV2 [61] Xception [62] NASNetL [63]

CW [3] 66.6�1.24% 54.2�4.27% 47.3�4.69% 39.6�2.92% 37.9�4.77% 37.4�2.67% 28.8�2.58%
PGD [4] 67.8�1.83% 54.2�2.56% 46.8�3.71% 38.7�2.25% 35.6�4.21% 37.4�4.08% 28.4�3.17%
LsuppðxÞ 66.8�3.37% 57.2�3.96% 54.8�2.50% 43.9�2.78% 41.6�1.66% 40.9�2.60% 33.0�2.53%
LdstcðxÞ 67.1�4.04% 56.5�2.28% 55.5�4.15% 45.4�3.77% 40.0�1.82% 41.6�4.07% 31.0�2.17%
LbdryðxÞ 50.2�5.26% 49.8�4.39% 44.0�4.05% 34.1�3.34% 32.9�3.22% 31.7�1.86% 21.7�1.29%
Llog ðxÞ 74.9�3.48% 64.2�4.13% 59.2�4.71% 50.1�2.69% 46.2�3.39% 48.0�4.87% 36.3�3.74%
LAoAðxÞ 78.7�2.54% 64.9�2.01% 63.9�1.98% 53.3�2.27% 48.9�2.65% 50.9�3.01% 41.0�2.00%
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translates the image for more transferable attack gradients
[11]. MI tunes momentum parameter for boosting attacks
[12]. SI divides the sample by the power 2 for 4 times to cal-
culate the gradient [14]. Those state-of-the-art transferabil-
ity-enhancement methods could improve the performance
for CW/PGD and are also applicable to AoA.

In Table 3, we report the black-box attack performance
when attacking ResNet50 with MI-DI, MI-TI, and SI (all
with the hyperparameters suggested by their inventors).
We find that SI is very helpful and can prominently increase
the error rate for PGD and CW. Applying SI in AoA,
denoted as SI-AoA, achieves the highest transfer rate, which
is significantly better than other state-of-the-art methods.

4.3 AoA Under Defenses

Our main contribution in this paper is for black-box attack
by increasing the transferability. It is not necessary that
AoA can break defenses, but indeed, it is interesting to eval-
uate the attack performance under several defenses. In this
experiment, we apply PGD, CW, and AoA, all enhanced by
SI to attack ResNet50. We consider defenses that have been
verified effective on ImageNet [66]. Those defense methods
can be roughly categorized as preprocessing-based and
adversarial-training-based, which could be used together.

Preprocessing-based defenses are to eliminate the adver-
sarial perturbation. We use JPEG Compression [33], Pixel
Deflection [34], Total Variance Minimization (TVM) [67]
with provided parameters. Another idea is to add the ran-
domness to observe the variance of the outputs. For exam-
ple, Random Smoothing [68] makes prediction by m
intermediate images, which is crafted by Gaussian noise
from the input image. We choose m ¼ 100 and the Gaussian
noise scale s ¼ 0:25 � 255 here.

Adversarial training is to re-train the neural networks by
adversarial samples. In [69], InceptionV3adv and Inception-
ResNetV2adv are designed and [32] proposes ResNetXt101-
denoise with denoising blocks in architectures to secure the
model.

Table 4 gives the comprehensive black-box attack perfor-
mance under defenses. Generally speaking, the preprocessing-
based defenses decrease the error rate for about 5 to 10 percent
and SI-AoA maintains the highest transfer rate. Adversarial-
trained models (indicated by underlines in tables) exhibit a
strong robustness to attacks, including SI-AoA (but still, it is
better than SI-PGD, SI-CW). That means although samples
generated by SI-AoA are different to others, the distribution
can still be captured by adversarial training. Developing
adversarial attacks that can defeat adversarial training is

TABLE 2
Error Rate (Top-1) of Different Attack Baselines

Surrogate Method DN121 [56] IncRNV2 [61] IncV3 [60] NASNetL [63] RN152 [55] RN50 [55] VGG19 [18] Xception [62]

CW 66.6�1.24% 37.9�4.77% 39.6�2.92% 28.8�2.58% 47.3�4.69% 100.0�0.00% 54.2�4.27% 37.4�2.67%
RN50 [55] PGD 67.8�1.83% 35.6�4.21% 38.7�2.25% 28.4�3.17% 46.8�3.71% 100.0�0.00% 54.2�2.56% 37.4�4.08%

AoA 78.4�2.44% 49.0�1.87% 52.2�2.66% 39.6�3.61% 63.4�2.63% 99.9�0.20% 65.6�2.82% 51.1�2.18%
CW 100.0�0.00% 33.5�2.55% 39.5�1.67% 31.9�2.87% 39.6�2.85% 64.6�3.76% 53.2�3.93% 39.4�1.16%

DN121 [56] PGD 100.0�0.00% 34.0�3.49% 41.7�2.38% 31.9�2.87% 41.5�3.21% 68.9�4.76% 55.5�2.28% 41.5�2.30%
AoA 100.0�0.00% 46.1�2.91% 53.5�3.46% 46.1�2.44% 55.0�2.77% 76.7�2.29% 64.6�2.18% 52.1�2.15%
CW 31.0�1.95% 22.7�3.01% 100.0�0.00% 21.3�0.60% 26.1�3.62% 42.3�2.01% 40.7�3.34% 33.4�1.56%

IncV3 [60] PGD 32.7�2.50% 24.2�2.89% 100.0�0.00% 21.3�1.91% 27.3�2.29% 45.3�1.17% 40.7�3.39% 33.7�3.22%
AoA 39.0�1.79% 30.2�2.77% 100.0�0.00% 32.7�1.81% 34.0�2.93% 52.8�1.69% 45.9�3.98% 45.1�2.08%
CW 85.5�0.84% 62.0�1.67% 69.8�1.60% 62.7�1.21% 60.0�1.61% 77.8�2.04% 100.0�0.00% 68.0�2.39%

VGG19 [18] PGD 87.1�1.20% 64.1�2.03% 71.8�1.63% 63.9�1.77% 63.1�4.14% 82.5�2.63% 100.0�0.00% 71.9�0.97%
AoA 91.4�2.65% 73.7�1.29% 79.8�1.08% 74.2�1.63% 73.5�1.05% 86.6�1.77% 100.0�0.00% 81.0�1.30%
CW 42.4�2.52% 36.2�2.32% 35.3�1.66% 25.6�2.24% 100.0�0.00% 57.7�0.81% 46.0�4.06% 31.9�1.77%

RN152 [55] PGD 42.7�3.19% 35.0�2.47% 34.9�2.96% 24.5�3.05% 98.1�0.97% 55.3�2.71% 43.6�3.61% 30.5�4.87%
AoA 55.9�2.35% 54.2�2.36% 49.6�4.21% 36.4�2.60% 100.0�0.00% 71.5�2.57% 57.2�3.79% 45.6�1.93%

TABLE 3
Error Rate (Top-1) of Transfer Attacks on ResNet50

Method DN121 [56] IncRNV2 [61] IncV3 [60] NASNetL [63] RN152 [55] RN50 [55] VGG19 [18] Xception [62]

CW 66.6�1.24% 37.9�4.77% 39.6�2.92% 28.8�2.58% 47.3�4.69% 100.0�0.00% 54.2�4.27% 37.4�2.67%
MI-DI-CW 66.9�1.91% 39.4�4.03% 42.9�1.59% 32.3�3.83% 50.2�4.74% 99.8�0.24% 57.9�3.40% 39.9�2.92%
MI-TI-CW 63.4�3.35% 42.0�3.33% 44.6�1.02% 33.7�1.96% 51.6�3.77% 99.7�0.24% 60.2�2.80% 40.6�2.40%
SI-CW 80.3�1.86% 46.4�2.22% 51.6�2.60% 38.3�3.53% 63.9�1.50% 99.9�0.20% 66.5�1.67% 48.8�3.70%
PGD 67.8�1.83% 35.6�4.21% 38.7�2.25% 28.4�3.17% 46.8�3.71% 100.0�0.00% 54.2�2.56% 37.4�4.08%
MI-DI-PGD 70.5�1.30% 43.3�3.33% 45.8�2.58% 35.7�3.53% 55.9�3.68% 99.5�0.00% 62.1�1.93% 43.3�2.42%
MI-TI-PGD 68.6�0.97% 44.6�2.18% 49.5�1.30% 38.0�1.00% 54.2�1.99% 99.3�0.51% 64.2�2.29% 45.3�1.72%
SI-PGD 81.2�1.63% 48.7�1.91% 53.0�0.95% 38.6�2.06% 66.1�2.46% 100.0�0.00% 69.5�2.10% 49.1�1.59%
AoA 78.4�2.44% 49.0�1.87% 52.2�2.66% 39.6�3.61% 63.4�2.63% 99.9�0.20% 65.6�2.82% 51.1�2.18%
MI-DI-AoA 74.1�1.02% 50.4�2.92% 52.0�3.32% 44.2�3.39% 58.7�3.59% 99.8�0.24% 66.4�4.20% 50.6�3.01%
MI-TI-AoA 79.2�1.21% 58.7�4.27% 62.5�3.52% 52.2�3.23% 67.5�2.76% 99.8�0.40% 75.3�2.89% 58.9�1.56%
SI-AoA 90.5�0.89% 64.6�2.71% 66.1�3.89% 57.9�2.20% 78.8�1.75% 100.0�0.00% 80.4�2.73% 64.6�3.07%
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interesting but out of our scope. Random smoothing generally
has a low error rate but its inference time is much longer than
othermethods, generallym times andhence it is not a fair com-
parison. In our experiment, random smoothing seems not to
work well on adversarial-trained models, sometimes even
oppositely,which is also interesting but in the field of defenses.

4.4 DAmageNet

The above experiments verify thatAoAhas a promising trans-
ferability, which then makes it possible to generate adversar-
ial samples that are able to beat manywell-trained DNNs. An
adversarial dataset will be very useful for evaluating robust-
ness anddefensemethods. To establish an adversarial dataset,
we use SI-AoA to attack VGG19 to generate samples from all
50000 samples from ImageNet validation set. Since the origi-
nal images come from ImageNet training set and the adver-
sarial samples are going to cheat neural networks, we hence
name this dataset as DAmageNet.

DAmageNet contains 50000 adversarial samples and
could be downloaded from http://www.pami.sjtu.edu.cn/
Show/56/122. The samples are named the same as the

original ones in ImageNet validation set. Accordingly, users
could easily find the corresponding samples as well as their
labels. The average RMSE between samples in DAmageNet
and those in ImageNet is 7.23. In Fig. 5, we show several
image pairs in ImageNet and DAmageNet.

To the best of our knowledge, DAmageNet is the first
adversarial dataset, which can be used to evaluate model
robustness and defenses. As an example, we use several well-
trained models to recognize the images in DAmageNet. Sev-
eral neural networks strengthened by adversarial training are
considered aswell. The error rate (top-1) is reported in Table 5.
Themodels are fromKerasApplication and the test errormay
differ from original references. One could observe that i) all
the listed 13 undefended models are not robust: DAmageNet
increases the error rate of all 13 undefended models to over
85 percent; ii) the 5 listed adversarial-trained models have
a slightly better performance and the error rate is over
70 percent; iii) DAmageNet resists 4 tested defenses with
almost no drop on the error rate compared to other methods;
iv) feature denoising model shows promising robustness but
simply combining it with preprocessing-based defence does
notworkwell.

TABLE 4
Error Rate (Top-1) Under Defenses (ResNet50 as the Surrogate Model)

Victim Method None JPEG [33] Pixel [34] Random [70] TVM [67] Smooth [68]

SI-CW 80.3�1.86% 64.9�2.40% 67.2�2.20% 64.5�3.99% 70.2�1.63% 60.0�2.26%
DN121 [56] SI-PGD 81.2�1.63% 65.1�1.24% 66.4�0.58% 64.0�3.44% 69.7�1.29% 60.0�2.26%

SI-AoA 90.5�0.89% 81.0�3.32% 82.1�2.85% 78.0�3.70% 83.7�3.14% 63.4�2.35%
SI-CW 46.4�2.22% 38.0�2.17% 38.3�0.93% 40.3�3.04% 41.0�1.64% 31.7�2.19%

IncRNV2 [61] SI-PGD 48.7�1.91% 39.8�0.93% 39.3�0.75% 40.0�3.11% 42.1�0.86% 31.8�1.70%
SI-AoA 64.6�2.71% 56.7�1.72% 58.2�3.91% 57.8�4.37% 59.5�2.63% 34.6�3.24%
SI-CW 51.6�2.60% 43.2�3.39% 42.7�2.98% 46.2�2.34% 46.1�3.47% 33.5�4.73%

IncV3 [60] SI-PGD 53.0�0.95% 44.8�3.33% 45.0�2.98% 47.9�3.09% 48.3�3.23% 32.6�5.66%
SI-AoA 66.1�3.89% 62.3�3.87% 62.4�4.12% 62.9�2.67% 64.1�3.79% 37.5�6.18%
SI-CW 38.3�3.53% 31.3�3.09% 32.4�4.12% 35.2�2.93% 34.0�4.57% 23.7�3.68%

NASNetL [63] SI-PGD 38.6�2.06% 30.8�3.59% 31.5�2.92% 34.3�4.07% 34.6�2.96% 23.5�3.35%
SI-AoA 57.9�2.20% 49.2�3.71% 53.0�4.01% 52.7�3.93% 53.0�3.32% 29.3�2.80%
SI-CW 63.9�1.50% 51.4�1.91% 51.6�1.85% 48.9�3.85% 56.6�1.56% 41.2�5.28%

RN152 [55] SI-PGD 66.1�2.46% 52.8�2.56% 54.1�1.53% 51.5�3.39% 58.4�1.83% 40.2�4.81%
SI-AoA 78.8�1.75% 70.3�3.56% 72.8�4.49% 67.1�2.82% 75.6�3.93% 44.2�5.07%
SI-CW 99.9�0.20% 98.5�0.84% 98.7�0.81% 89.5�2.59% 99.6�0.49% 93.4�0.94%

RN50 [55] SI-PGD 100.0�0.00% 99.1�0.49% 99.4�0.58% 90.8�1.33% 99.6�0.37% 92.4�1.71%
SI-AoA 100.0�0.00% 99.9�0.20% 99.8�0.40% 95.6�2.13% 99.9�0.20% 94.1�1.20%
SI-CW 66.5�1.67% 60.7�4.27% 60.6�3.20% 62.9�4.07% 63.3�5.09% 89.8�1.89%

VGG19 [18] SI-PGD 69.5�2.10% 62.8�3.54% 61.4�4.92% 65.7�3.80% 65.2�4.25% 89.6�1.73%
SI-AoA 80.4�2.73% 77.7�4.43% 78.5�3.77% 77.1�4.52% 79.8�4.04% 89.9�2.18%
SI-CW 48.8�3.70% 40.6�3.81% 40.9�3.71% 44.0�2.92% 44.7�3.23% 36.5�4.38%

Xception [62] SI-PGD 49.1�1.59% 40.8�3.59% 43.0�4.02% 43.5�3.89% 44.7�3.37% 37.1�3.35%
SI-AoA 64.6�3.07% 57.6�3.26% 58.4�1.80% 61.1�3.89% 59.0�2.65% 40.9�4.52%
SI-CW 31.2�1.29% 33.8�2.50% 35.0�3.35% 38.1�3.73% 37.0�4.27% 96.5�1.44%

IncV3adv [69] SI-PGD 31.5�3.08% 34.3�3.44% 35.8�2.99% 39.2�3.14% 38.4�2.85% 96.2�1.13%
SI-AoA 53.7�2.25% 52.7�2.20% 54.9�3.15% 55.1�2.78% 56.2�2.71% 96.2�1.16%
SI-CW 26.4�1.59% 27.4�2.03% 27.6�2.63% 30.1�4.78% 28.2�3.66% 81.7�3.74%

IncRNV2adv [69] SI-PGD 26.1�1.98% 27.9�0.86% 28.5�2.51% 29.7�3.64% 29.8�0.93% 81.5�3.47%
SI-AoA 44.0�1.52% 44.2�3.23% 46.2�3.71% 48.0�4.55% 47.0�2.30% 82.3�3.16%
SI-CW 18.0�3.13% 18.2�3.11% 18.2�3.33% 44.4�3.69% 18.1�3.22% 70.4�2.26%

RNXt101den [32] SI-PGD 18.2�2.87% 18.5�2.88% 18.9�3.17% 44.6�3.46% 18.4�3.31% 70.5�2.09%
SI-AoA 18.7�3.01% 19.2�2.71% 19.1�2.97% 44.6�3.48% 19.0�2.88% 70.5�2.26%
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5 CONCLUSION

To improve the transferability of adversarial attack, we are the
first to attack on attention and achieve a great performance on
the black-box attack. The high transferability of AoA relies on
the semantic features shared by different DNNs. AoA enjoys
a significant increase in transferability when the traditional
cross entropy loss is replaced with the attention loss. Since
AoA alters the loss only, it could be easily combined with
other transferability-enhancement methods, e.g., SI [14], and
achieve a state-of-the-art performance.

By SI-AoA, we generate DAmageNet, the first dataset
containing samples with a small perturbation and a high
transfer rate (an error rate over 85 percent for undefended
models and over 70 percent for adversarial-trained models).
DAmageNet provides a benchmark to evaluate the robust-
ness of DNNs by elaborately-crafted adversarial samples.

AoA has found the common vulnerability of DNNs in
attention. Also, attention is just one semantic feature and
attacking on other semantic features shared by DNNs is
also promising to have good transferability.

Fig. 5. Samples in ImageNet and DAmageNet. The images on the left are original samples from ImageNet. The images on the right are adversarial
samples from DAmageNet. One could observe that these images look similar and human beings have no problem to recognize them as the same
class.

TABLE 5
Error Rate (Top-1) on ImageNet and DAmageNet

No defense Defenses on DAmageNet

Victim ImageNet [17] DAmageNet JPEG [33] Pixel [34] Random [70] TVM [67]

VGG16 [18] 38.51 99.85 99.67 99.70 99.19 99.76
VGG19 [18] 38.60 99.99 99.99 99.99 99.96 99.99
RN50 [55] 36.65 93.94 91.88 92.48 92.52 93.08
RN101 [55] 29.38 88.13 85.44 86.23 86.12 87.06
RN152 [55] 28.65 86.78 83.93 84.83 84.71 85.68
NASNetM [63] 27.03 92.81 90.42 91.43 90.31 91.86
NASNetL [63] 17.77 86.32 83.31 84.87 84.91 85.53
IncV3 [60] 22.52 89.84 87.82 89.01 88.49 89.59
IncRNV2 [61] 24.60 88.09 85.01 85.95 89.04 86.79
Xception [62] 21.38 90.57 88.53 89.77 86.03 90.32
DN121 [56] 26.85 96.14 93.96 94.85 93.82 95.30
DN169 [56] 25.16 94.09 91.72 92.78 91.78 93.36
DN201 [56] 24.36 93.44 90.52 91.71 90.86 92.45
IncV3adv [69] 22.86 82.23 82.03 83.35 82.88 83.95
IncV3advens3 [71] 24.12 80.72 80.35 81.68 81.57 82.36
IncV3advens4 [71] 24.45 79.26 78.86 79.96 79.76 80.8
IncRNV2adv [69] 20.03 76.42 75.71 76.85 76.86 77.73
IncRNV2advens [71] 20.35 70.70 71.09 72.32 73.32 73.04
RNXt101den [32] 32.20 35.40 36.27 36.65 55.53 36.21

CHEN ETAL.: UNIVERSAL ADVERSARIAL ATTACKON ATTENTION AND THE RESULTING DATASET DAMAGENET 2195

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 29,2022 at 23:00:06 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENTS

This work was partially supported by National Key
Research Development Project (No. 2018AAA0100702,
2019YFB1311503) and National Natural Science Foundation
of China (No. 61977046, 61876107, U1803261). The authors
are grateful to the anonymous reviewers for their insightful
comments.

REFERENCES

[1] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, vol. 6,
pp. 14410–14430, 2018.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proc. Int. Conf. Learn. Representa-
tions, 2015, Art. no. 20.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in Proc. 6th Int. Conf. Learn. Representations, 2018.

[5] S. Tang, X. Huang, M. Chen, C. Sun, and J. Yang, “Adversarial
attack type I: Cheat classifiers by significant changes,” IEEE Trans.
Pattern Anal. Mach. Intell., early access, 2019, doi: 10.1109/
TPAMI.2019.2936378.

[6] S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box
adversarial attacks with a transfer-based prior,” in Proc. 32nd Adv.
Neural Inf. Process. Syst., 2019.

[7] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-
box adversarial attacks with bandits and priors,” in Proc. 7th Int.
Conf. Learn. Representations, 2019.

[8] Y. Guo, Z. Yan, and C. Zhang, “Subspace attack: Exploiting prom-
ising subspaces for query-efficient black-box attacks,” in Proc.
Advances Neural Inf. Process. Syst., 2019, pp. 3820–3829.

[9] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine
learning,” in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017,
pp. 506–519.

[10] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,
“Universal adversarial perturbations,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1765–1773.

[11] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transfer-
able adversarial examples by translation-invariant attacks,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2019, pp. 4312–4321.

[12] Y. Dong et al., “Boosting adversarial attacks with momentum,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2018, pp. 9185–9193.

[13] C. Xie et al., “Improving transferability of adversarial examples
with input diversity,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2019, pp. 2730–2739.

[14] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov
accelerated gradient and scale invariance for adversarial attacks,”
in Proc. 8th Int. Conf. Learn. Representations, 2020.

[15] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is robust-
ness the cost of accuracy?–a comprehensive study on the robust-
ness of 18 deep image classification models,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 644–661.

[16] T. Zhang and Z. Zhu, “Interpreting adversarially trained convolu-
tional neural networks,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 7502–7511.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. 3rd Int. Conf.
Learn. Representations, 2015.

[19] Y. Ganin et al., “Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, pp. 2096–2030, 2016.

[20] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images
through adversarial training,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 2107–2116.

[21] A. Sinha, H. Namkoong, and J. Duchi, “Certifiable distributional
robustness with principled adversarial training,” in Proc. Int. Conf.
Learn. Representations, 2018, Art. no. 29.

[22] C. Szegedy et al., “Intriguing properties of neural networks,” in
Proc. 2nd Int. Conf. Learn. Representations, 2014.

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A
simple and accurate method to fool deep neural networks,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.

[24] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828–841, Oct. 2019.

[25] Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing unre-
stricted adversarial examples with generative models,” in Proc.
Advances Neural Inf. Process. Syst., 2018, pp. 8322–8333.

[26] S. Baluja and I. Fischer, “Adversarial transformation networks:
Learning to generate adversarial examples,” 2017, arXiv: 1703.09387.

[27] J. Han et al., “Once a man: Towards multi-target attack via learn-
ing multi-target adversarial network once,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 5158–5167.

[28] T. Miyato, A. M. Dai, and I. J. Goodfellow, “Adversarial training
methods for semi-supervised text classification,” in Proc. 5th Int.
Conf. Learn. Representations, 2017.

[29] S. Sankaranarayanan, A. Jain, R. Chellappa, and S. N. Lim,
“Regularizing deep networks using efficient layerwise adversarial
training,” in Proc. 32ndAAAI Conf. Artif. Intell., 2018, pp. 4008–4015.

[30] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propa-
gate once: Painless adversarial training using maximal principle,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2019, pp. 227–238.

[31] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense
against adversarial attacks using high-level representation guided
denoiser,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 1778–1787.

[32] C. Xie, Y. Wu, L. V. D. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 501–509.

[33] Z. Liu et al., “Feature distillation: DNN-oriented JPEG compres-
sion against adversarial examples,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 860–868.

[34] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer,
“Deflecting adversarial attacks with pixel deflection,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8571–8580.

[35] A. Mustafa, S. H. Khan, M. Hayat, J. Shen, and L. Shao, “Image
super-resolution as a defense against adversarial attacks,” IEEE
Trans. Image Process., vol. 29, pp. 1711–1724, 2020.

[36] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in
machine learning: From phenomena to black-box attacks using
adversarial samples,” early access, 2016.

[37] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-boxmachine learningmodels,”
inProc. 6th Int. Conf. Learn. Representations, 2018.

[38] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversar-
ial attacks with limited queries and information,” in Proc. 35th Int.
Conf. Mach. Learn., vol. 80, 2018, pp. 2137–2146.

[39] B. Ru, A. Cobb, A. Blaas, and Y. Gal, “Bayesopt adversarial
attack,” in Proc. Int. Conf. Learn. Representations, 2020.

[40] L. Meunier, J. Atif, and O. Teytaud, “Yet another but more effi-
cient black-box adversarial attack: Tiling and evolution strat-
egies,” 2019, arXiv: 1910.02244.

[41] J. Du, H. Zhang, J. T. Zhou, Y. Yang, and J. Feng, “Query-efficient
meta attack to deep neural networks,” in Proc. 8th Int. Conf. Learn.
Representations, 2019.

[42] D. Wu, Y. Wang, S. Xia, J. Bailey, and X. Ma, “Skip connections
matter: On the transferability of adversarial examples generated
with resnets,” in Proc. Int. Conf. Learn. Representations, 2019.

[43] A. Vaswani et al., “Attention is all you need,” in Proc. Advances
Neural Inf. Process. Syst., 2017, pp. 6000–6010.

[44] W. Samek, Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, vol. 11700, Berlin, Germany: Springer, 2019.

[45] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2921–2929.

[46] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. 2nd
Int. Conf. Learn. Representations, 2014.

[47] B. Zhou, A. Khosla, �A. Lapedriza, A. Oliva, and A. Torralba,
“Object detectors emerge in deep scene CNNs,” in Proc. 3rd Int.
Conf. Learn. Representations, 2015.

[48] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” inProc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[49] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding
variants with deep learning–based sequence model,” Nat. Meth-
ods, vol. 12, no. 10, 2015, Art. no. 931.

2196 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 4, APRIL 2022

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 29,2022 at 23:00:06 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2019.2936378
http://dx.doi.org/10.1109/TPAMI.2019.2936378


[50] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convo-
lutional networks: Visualising image classification models and
saliency maps,” in Proc. 2nd Int. Conf. Learn. Representations, 2014.

[51] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
“Striving for simplicity: The all convolutional net,” in Proc. 3rd Int.
Conf. Learn. Representations, 2015.

[52] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. M€uller, and
W. Samek, “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation,” PLoS One, vol. 10,
2015, Art. no. e0130140.

[53] J. Gu, Y. Yang, and V. Tresp, “Understanding individual decisions
of cnns via contrastive backpropagation,” in Proc. Asian Conf.
Comput. Vis., 2018, pp. 119–134.

[54] B. K. Iwana, R. Kuroki, and S. Uchida, “Explaining convolutional
neural networks using softmax gradient layer-wise relevance
propagation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop,
2019, pp. 4176–4185.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[56] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2261–2269.

[57] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song,
“Natural adversarial examples,” 2019, arXiv: 1907.07174.

[58] A. Barbu et al., “Objectnet: A large-scale bias-controlled dataset for
pushing the limits of object recognition models,” in Proc. Advances
Neural Inf. Process. Syst., 2019, pp. 9453–9463.

[59] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations,” in Proc.
Int. Conf. Learn. Representations, 2019.

[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[61] C. Szegedy, S. Ioffe, V. Vanhoucke, andA. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on
learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[62] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1251–1258.

[63] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8697–8710.

[64] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io
[65] M. Abadi et al. “TensorFlow: Large-scale mchine learning on hetero-

geneous systems,” 2015, arXiv:1603.04467, software available from
tensorflow.org.

[66] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proc. 10th ACM
Workshop Artif. Intell. Secur., 2017, pp. 3–14.

[67] C. Guo, M. Rana, M. Ciss�e, and L. van der Maaten, “Countering
adversarial images using input transformations,” in Proc. 6th Int.
Conf. Learn. Representations, 2018.

[68] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” in Proc. 36th Int. Conf.
Mach. Learn., 2019, pp. 1310–1320.

[69] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial exam-
ples in the physical world,” in Proc. 5th Int. Conf. Learn. Representa-
tions, 2017.

[70] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating
adversarial effects through randomization,” in Proc. 6th Int. Conf.
Learn. Representations, 2018.

[71] F. Tram�er, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh,
and P. D. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” in Proc. 6th Int. Conf. Learn. Representations, 2018.

Sizhe Chen received the BS degree from Shang-
hai Jiao Tong University, Shanghai, China, in 2020.
He is now working toward the master’s degree at
the Institute of Image Processing and Pattern Rec-
ognition, Shanghai Jiao Tong University, Shanghai,
China. His research interests include model secu-
rity, robust learning, and interpretability of DNN.

Zhengbao He is a senior student with the
Department of Automation, Shanghai Jiao Tong
University, Shanghai, China. He is now doing
research with the Institute of Image Processing
and Pattern Recognition, Shanghai Jiao Tong
University. His research interests include adver-
sarial attack and deep learning.

Chengjin Sun received the BS degree from
Nanjing University, Nanjing, China, in 2018. She
is now working toward the master’s degree at the
Institute of Image Processing and Pattern Recog-
nition, Shanghai Jiao Tong University, Shanghai,
China. Her research interests include adversarial
robustness for deep learning.

Jie Yang received the PhD degree from the
Department of Computer Science, Hamburg Uni-
versity, Hamburg, Germany, in 1994. Currently,
he is a professor with the Institute of Image Proc-
essing and Pattern recognition, Shanghai Jiao
Tong University, Shanghai, China. He has led
many research projects (e.g., National Science
Foundation, 863 National High Technique Plan),
had one book published in Germany, and auth-
ored more than 300 journal papers. His major
research interests include object detection and
recognition, data fusion and data mining, and
medical image processing.

Xiaolin Huang (Senior Member, IEEE) received
the BS degree in control science and engineering,
and the BS degree in applied mathematics from
Xi’an Jiaotong University, Xi’an, China, in 2006,
and the PhD degree in control science and engi-
neering from Tsinghua University, Beijing, China.
From 2012 to 2015, he worked as a postdoctoral
researcher with ESAT-STADIUS, KU Leuven,
Leuven, Belgium. After that he was selected as an
Alexander von Humboldt fellow and working in
Pattern Recognition Lab, the Friedrich-Alexander-

Universit€at Erlangen-N€urnberg, Erlangen, Germany. From 2016, he has
been an associate professor with the Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
In 2017, hewas awarded by ”1000-Talent Plan” (YoungProgram). His cur-
rent research interests include machine learning and optimization, espe-
cially for robustness and sparsity of both kernel learning and deep neural
networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ETAL.: UNIVERSAL ADVERSARIAL ATTACKON ATTENTION AND THE RESULTING DATASET DAMAGENET 2197

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 29,2022 at 23:00:06 UTC from IEEE Xplore.  Restrictions apply. 

https://keras.io


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


