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Abstract—We consider the problem of certifying the robustness
of deep neural networks against real-world distribution shifts. To
do so, we bridge the gap between hand-crafted specifications and
realistic deployment settings by considering a neural-symbolic
verification framework in which generative models are trained
to learn perturbations from data and specifications are defined
with respect to the output of these learned models. A pervasive
challenge arising from this setting is that although S-shaped acti-
vations (e.g., sigmoid, tanh) are common in the last layer of deep
generative models, existing verifiers cannot tightly approximate
S-shaped activations. To address this challenge, we propose a
general meta-algorithm for handling S-shaped activations which
leverages classical notions of counter-example-guided abstraction
refinement. The key idea is to “lazily” refine the abstraction of
S-shaped functions to exclude spurious counter-examples found
in the previous abstraction, thus guaranteeing progress in the
verification process while keeping the state-space small. For
networks with sigmoid activations, we show that our technique
outperforms state-of-the-art verifiers on certifying robustness
against both canonical adversarial perturbations and numerous
real-world distribution shifts. Furthermore, experiments on the
MNIST and CIFAR-10 datasets show that distribution-shift-
aware algorithms have significantly higher certified robustness
against distribution shifts.

Index Terms—certified robustness, distribution shift, genera-
tive models, S-shaped activations, CEGAR

I. INTRODUCTION

Despite remarkable performance in various domains, it is
well-known that deep neural networks (DNNs) are suscep-
tible to seemingly innocuous variation in their input data.
Indeed, recent studies have conclusively shown that DNNs
are vulnerable to a diverse array of changes ranging from
norm-bounded perturbations [1–7] to distribution shifts in
weather conditions in perception tasks [8–12]. To address these
concerns, there has been growing interest in using formal
methods to obtain rigorous verification guarantees for neural
networks with respect to particular specifications [13–51]. A
key component of verification is devising specifications that
accurately characterize the expected behavior of a DNN in
realistic deployment settings. Designing such specifications is
crucial for ensuring that the corresponding formal guarantees
are meaningful and practically relevant.

By and large, the DNN verification community has focused
on specifications described by simple analytical expressions.
This line of work has resulted in a set of tools which cover

specifications such as certifying the robustness of DNNs
against norm-bounded perturbations [14, 31, 44, 52]. However,
while such specifications are useful for certain applications,
such as protecting against malicious security threats [53],
there are many other applications where real-world distribution
shifts, such as change in weather conditions, are more relevant,
and these often cannot be described via a set of simple
equations. While progress has been made toward broadening
the range of specifications [54–57], it remains a crucial open
challenge to narrow the gap between formal specifications and
distribution shifts.

One promising approach for addressing this challenge in-
volves incorporating neural network components in the speci-
fications [57–59]. Such an approach has been used in the past
to verify safety properties of neural network controllers [57] as
well as robustness against continuous transformations between
images [58]. More recently, Xie et al. [59] generalize this
approach by proposing a specification language which can
be used to specify complex specifications that are otherwise
challenging to define. In this paper, we leverage and extend
these insights to obtain a neural-symbolic (an integration of
machine learning and formal reasoning) approach for verifying
robustness against real-world distribution shifts. The key idea
is to incorporate deep generative models that represent real-
world distribution shifts [8, 9, 60, 61] in the formal specifica-
tion.

To realize this idea, there remains one important technical
challenge: all the previous work [57–59] assumes that both
the neural networks being verified and the generative mod-
els are piecewise-linear. This assumption is made in order
to leverage off-the-shelf neural network verifiers [57, 59],
which focus on piecewise-linear activation functions such as
ReLU. However, in practice the majority of (image) generative
models [62–66] use S-shaped activation functions such as
sigmoid and tanh in the output layer. While there are a few
existing methods for verifying neural networks with sigmoidal
activations [31, 34, 50, 52, 67], they all rely on a one-shot
abstraction of the sigmoidal activations and suffer from lack
of further progress if the verification fails on the abstraction.
To bridge this gap and enable the use of a broad range of gen-
erative model architectures in the neural symbolic verification
approach, we propose a novel abstraction-refinement algorithm



for handling transcendental activation functions. We show that
this innovation significantly boosts verification precision when
compared to existing approaches.

Our neural-symbolic approach has the obvious limitation
that the quality of the formal guarantee depends on the quality
of the neural network used in the specification. However, the
approach also possesses several pragmatically useful features
that mitigate this limitation: if the verification fails, then
a counter-example is produced; by examining the counter-
example, we can determine whether it is a failure of the model
being tested or a failure of the generative model. In either case,
this gives us valuable information to improve the verification
framework. For example, the failure of the generative model
might point us to input regions where the generative model is
under-trained and data augmentation is needed. On the other
hand, if the verification succeeds, then the generative model
represents a large class of inputs for which we know the model
is robust.

Contributions. We summarize our contributions are as fol-
lows:

• We describe a framework for verifying DNNs against
real-world distribution shifts by incorporating deep gen-
erative models that capture distribution shifts—e.g.,
changes in weather conditions or lighting in perception
tasks—as verification specifications.

• We propose a novel counter-example-guided abstraction
refinement strategy for verifying networks with transcen-
dental activation functions.

• We show that our verification techniques are significantly
more precise than existing techniques on a range of
challenging real-world distribution shifts on MNIST and
CIFAR-10, as well as on canonical adversarial robustness
benchmarks.

II. PROBLEM FORMULATION

In this section, we formally define the problem of verifying
the robustness of DNN-based classifiers against real-world
distribution shifts. The key step in our problem formulation
is to propose a unification of logical specifications with deep
generative models which capture distribution shifts.

Neural network classification. We consider classification
tasks where the data consists of instances x ∈ X ⊆ Rd0 and
corresponding labels y ∈ [k] := {1, . . . , k}. The goal of this
task is to obtain a classifier Cf : Rd → [k] such that Cf can
correctly predict the label y of each instance x for each (x, y)
pair. In this work, we consider classifiers Cf (x) defined by

Cf (x) = argmaxj∈[k] fj(x), (1)

where we take f : Rn0 → Y ⊆ RdL (with dL = k) to
be an L-layer feed-forward neural network with weights and
biases W(i) ∈ Rdi×di−1 and b(i) ∈ Rdi for each i ∈ [L]

respectively. More specifically, we let f(x) = n(L)(x) and
recursively define

n(i)(x) = W(i)
(
n̂(i−1)(x)

)
+ b(i),

n̂(i)(x) = ρ
(
n(i)(x)

)
, and

n̂(0)(x) = x.

(2)

Here, ρ is a given activation function (e.g., ReLU, sigmoid,
etc.) and n(i) and n̂(i) represent the pre- and post-activation
values of the ith layer of f respectively.

Perturbation sets and logical specifications. The goal of
DNN verification is to determine whether or not a given logical
specification regarding the behavior of a DNN holds in the
classification setting described above. Throughout this work,
we use the symbol Φ to denote such logical specifications,
which define relations between the input and output of a
DNN. That is, given input and output properties Φin and
Φout respectively, we express logical specifications Φ in the
following way:

Φ := (Φin(x)⇒ Φout(y)). (3)

For example, given a fixed instance-label pair (x, y), the
specification

Φ := (||x− x||p ≤ ϵ =⇒ Cf (x) = y) (4)

captures the property of robustness against norm-bounded
perturbations by checking whether all points in an ℓp-norm
ball centered at x are classified by Cf as having the label y.

Although the study of specifications such as (4) has resulted
in numerous verification tools, there are many problems which
cannot be described by this simple analytical model, including
settings where data varies due to distribution shifts. For
this reason, it is of fundamental interest to generalize such
specifications to capture more general forms of variation in
data. To do so, we consider abstract perturbation sets S(x),
which following [9] are defined as “a set of instances that
are considered to be equivalent to [a fixed instance] x.”
An example of an abstract perturbation set is illustrated in
Figure 1b, wherein each instance in S(x) shows the same
street sign with varying levels of snow. Ultimately, as in the
case of norm-bounded robustness, the literature surrounding
abstract perturbation sets has sought to train classifiers to
predict the same output for each instance in S(x) [8, 9, 60].

Learning perturbation sets from data. Designing abstract
perturbation sets S(x) which accurately capture realistic de-
ployment settings is critical for providing meaningful guaran-
tees. Recent advances in the generative modeling community
have shown that distribution shifts can be provably captured by
deep generative models. The key idea in this line of work is to
parameterize perturbation sets S(x) in the latent space Z of a
generative model G(x, z), where G takes as input an instance
x and a latent variable z ∈ Z . Prominent among such works
is [9], wherein the authors study the ability of conditional
variational autoencoders (CVAEs) to capture shifts such as
variation in lighting and weather conditions in images. In this



(a) Norm-bounded perturbation sets. The majority of the verification
literature has focused on a limited set of specifications, such as ℓp-norm
bounded perturbations, wherein perturbations can be defined by simple
analytical expressions.

(b) Real-world perturbation sets. Most real-world perturbations cannot be
described by simple analytical expressions. For example, obtaining a simple
expression for a perturbation set S(x) that describes variation in snow would
be challenging.

Fig. 1: Perturbation sets. We illustrate two examples of perturbation sets S(x).

(a) MNIST samples. From top to bottom, the distribution shifts are scale,
brightness, contrast, and Gaussian blur.

(b) CIFAR-10 samples. The distribution shifts for these sets are brightness
(top) and fog (bottom).

Fig. 2: Samples from learned perturbation sets. We show samples from two learned perturbation sets S(x) on the MNIST and CIFAR-10 datasets. Samples
were generated by gridding the latent space of S(x).

work, given a CVAE parameterized by G(x, µ(x) + zσ(x)),
where µ(x) and σ(x) are neural networks, the authors consider
abstract perturbation sets of the form

S(x) := {G(x, µ(x) + zσ(x)) : ||z|| ≤ δ}. (5)

In particular, µ(x) denotes a neural network that maps each
instance x to the mean of a normal distribution over the latent
space Z conditioned on x. Similarly, σ(x) maps x to the
standard deviation of this distribution in the latent space.1

It’s noteworthy that in this framework, the perturbation upper
bound δ is scaled by σ(x), meaning that different instances x
and indeed different models G will engender different relative
certifiable radii.

Under favorable optimization conditions, the authors of [9]
prove that CVAEs satisfy two statistical properties which
guarantee that the data belonging to learned perturbation sets
in the form of (5) produce realistic approximations of the true

1This notation is consistent with [9], wherein the authors use the same
parameterization for conditional VAEs.

distribution shift (c.f. Assumption 1 and Thms. 1 and 2 in [9]).
In particular, the authors of [9] argue that if a learned pertur-
bation set S(x) in the form of (5) has been trained such that
the population-level loss is bounded by two absolute constants,
then S(x) well-approximates the true distribution shift in the
following sense: with high probability over the latent space,
for any clean and perturbed pair (x, x̃) corresponding to a
real distribution shift, there exists a latent code z such that
||z||2 ≤ α and ||G(x, µ(x)z − σ(x))− x̃|| ≤ β for two small
constants α and β depending on the CVAE loss. To further
verify this theoretical evidence, we show that this framework
successfully captures real-world shifts on MNIST and CIFAR-
10 in Figure 2.

Verifying robustness against learned distribution shifts.
To bridge the gap between formal verification methods and
perturbation sets which accurately capture real-world distri-
bution shifts, our approach in this paper is to incorporate
perturbation sets parameterized by deep generative models
into verification routines. We summarize this setting in the



Fig. 3: An abstraction of the sigmoid activation function.

following problem statement.

Problem II.1. Given a DNN-based classifier Cf (x), a
fixed instance-label pair (x, y), and an abstract pertur-
bation set S(x) in the form of (5) that captures a real-
world distribution shift, our goal is to determine whether
the following neural-symbolic specification holds:

Φ := (x ∈ S(x) =⇒ Cf (x) = y) (6)

In other words, our goal is to devise methods which verify
whether a given classifier Cf outputs the correct label y for
each instance in a perturbation set S(x) parameterized by a
generative model G.

III. TECHNICAL APPROACH AND CHALLENGES

The high-level idea of our approach is to consider the
following equivalent specification to (6), wherein we absorb
the generative model G into the classifier C:

Φ = (||z|| ≤ δ =⇒ CQz
(x) = y) (7)

In this expression, we define

Qz(x) = (f ◦G)(x, µ(x) + zσ(x)) (8)

to be the concatenation of the deep generative model G
with the DNN f . While this approach has clear parallels
with verification schemes within the norm-bounded robustness
literature, there is a fundamental technical challenge: state-
of-the-art generative models typically use S-shaped activation
functions (e.g., sigmoid, tanh) in the last layer to produce
realistic data; however, the vast majority of the literature con-
cerning DNN verification considers DNNs that are piece-wise
linear functions. Therefore, existing methods for verification of
generative models largely do not apply in this setting [57, 58].

Verification with S-shaped activations. In what follows,
we describe the challenges inherent to verifying neural net-
works with S-shaped activations. For completeness, in the fol-
lowing definitions we provide a formal and general description

of S-shaped activations, which will be crucial to our technical
approach in this paper.

Definition III.1 (Inflection point). A function f : R → R
has an inflection point at η iff it is twice differentiable at η,
f ′′(η) = 0, and f ′ changes sign as its argument increases
through η.

Definition III.2 (S-shaped function). An S-shaped function ρ :
R→ R is a bounded, twice differentiable function which has
a non-negative derivative at each point and has exactly one
inflection point.

In the wider verification literature, there are a handful
of verification techniques that can handle S-shaped func-
tions [18, 31, 34, 52, 67, 68]. Each of these methods is
based on abstraction, which conservatively approximates the
behavior of the neural network. We define abstraction formally
in Sec. IV, but illustrate the key ideas here in Fig. 3, which
shows the popular sigmoid activation function

ρ(x) =
1

1 + e−x
. (9)

Suppose the input x is bounded between l and u, the pre-
and post- sigmoid values can be precisely described as D =
{(x, y) | y = ρ(x) ∧ l ≤ x ≤ u}. However, instead of using
this precise representation, we could over-approximate D as
D′ = {(x, y) | y ≤ ax + b ∧ y ≥ cx + d ∧ l ≤ x ≤ u}
(the yellow convex region in Fig. 3), where ax+ b and cx+d
are the two lines crossing the sigmoid function at (l, ρ(l))
and (u, ρ(u)). D′ over-approximates D because the latter is
a subset of the former. Abstraction-based methods typically
over-approximate all non-linear connections in the neural
network and check whether the specification holds on the over-
approximation. The benefit is that reasoning about the (in this
case linear) over-approximation is typically computationally
easier than reasoning about the concrete representation, and
moreover, if the specification holds on the abstraction, then it
actually holds on the original network.

Previous work has studied different ways to over-
approximate S-shaped activations, and there are trade-offs be-
tween how precise the over-approximation is and how efficient
it is to reason about the over-approximation. For example, a
piecewise-linear over-approximation can be more precise than
the linear over-approximation (in Fig. 3), but reasoning about
the former is more computationally challenging. However,
whichever over-approximation one uses, all abstraction-based
methods suffer from imprecision: if a counter-example to
the specification is found on the over-approximation (which
means the over-approximation violates the specification), we
cannot conclude that the original network also violates the
specification. This is because the counter-example may be
spurious—inconsistent with the constraints imposed by the
precise, unabstracted neural network (as shown in red in
Fig. 3).

This spurious behavior demonstrates that there is a need
for refinement of abstraction-based methods to improve the
precision. For piecewise-linear activations, there is a natural



Algorithm 1 VNN-CEGAR(M := ⟨V,X ,Y, ϕaff , ϕρ⟩,Φ)
1: function VNN-CEGAR(M := ⟨V,X ,Y, ϕaff , ϕρ⟩,Φ)
2: M ′ ← Abstract(M)
3: while true do
4: ⟨α, proven⟩ ← Prove(M ′,Φ) ▷ Try to prove.
5: if proven then return true ▷ Property proved.
6: ⟨M ′, refined⟩ ← Refine(M ′,Φ, α) ▷ Try to

refine.
7: if ¬refined then return false ▷ Counter-example

is real.

refinement step: performing case analysis on the activation
phases. However, when dealing with S-shaped activations, it
is less clear how to perform this refinement, because if the
refinement is performed too aggressively, the state space may
explode and exceed the capacity of current verifiers. To address
this technical challenge, we propose a counter-example guided
refinement strategy for S-shaped activation functions which is
based on the CEGAR approach [69]. Our main idea is to limit
the scope of the refinement to the region around a specific
counter-example. In the next section, we formally describe
our proposed framework and we show that it can be extended
to other transcendental activation functions (e.g., softmax).

IV. A CEGAR FRAMEWORK FOR S-SHAPED ACTIVATIONS

In this section, we formalize our meta-algorithm for pre-
cisely reasoning about DNNs with S-shaped activations, which
is based on the CEGAR framework [70]. We first present the
general framework and then discuss concrete instantiations of
the sub-procedures.

Verification preliminaries. Our procedure operates on tu-
ples of the form M := ⟨V,X ,Y, ϕaff , ϕρ⟩. Here, V is a set
of real variables with X ,Y ⊆ V and ϕaff and ϕρ are sets of
formulas over V (when the context is clear, we also use ϕaff
and ϕρ to mean the conjunctions of the formulas in those
sets). A variable assignment α : V 7→ R maps variables
in V to real values. We consider properties of the form
Φ := (Φin(X )⇒ Φout(Y)), where Φin(X ) and Φout(Y) are
linear arithmetic formulas over X and Y , and we say that Φ
holds on M if and only if the formula

ψ := ϕaff ∧ϕρ ∧Φin(X ) ∧ ¬Φout(Y)

is unsatisfiable. We use M |= Φ to denote that Φ holds (ψ is
unsatisfiable), M [α] |= ¬Φ to denote that Φ does not hold and
is falsified by α (ψ can be satisfied with assignment α), and
M [α] |= Φ to denote that Φ is not falsified by α (α does not
satisfy ψ). Given this notation, we define a sound abstraction
as follows:

Definition IV.1 (Sound abstraction). Given a tuple M :=
⟨V,X ,Y, ϕaff , ϕρ⟩ and a property Φ = (Φin(X) ⇒
Φout(Y )), we say the tuple M ′ := ⟨V ′ ⊇ V,X ,Y, ϕ′aff , ϕ′ρ⟩ is
a sound abstraction of M if M ′ |= Φ implies that M |= Φ.

Verifying DNNs. Given a DNN f , we construct a tuple Mf

as follows: for each layer i in f , we let v(i) be a vector of

di variables representing the pre-activation values in layer i,
and let v̂(i) be a similar vector representing the post-activation
values in layer i. Let v̂(0) be a vector of n0 variables from V
representing the inputs. Then, let V be the union of all these
variables, and let X and Y be the input and output variables,
respectively; that is, X consists of the variables in v̂(0), and
Y contains the variables in v(L). ϕaff and ϕρ capture the
affine and non-linear (i.e., activation) transformations in the
neural network, respectively. In particular, for each layer i,
ϕaff contains the formulas v(i) = W(i)v̂(i−1) + b(i), and ϕρ
contains the formulas v̂(i) = ρ(v(i)).

Algorithm 1 presents a high-level CEGAR loop for checking
whether M |= Φ. It is parameterized by three functions. The
Abstract function produces an initial sound abstraction of M .
The Prove function checks whether M ′ |= Φ. If so (i.e.,
the property Φ holds for M ′), it returns with proven set to
true. Otherwise, it returns an assignment α which constitutes
a counter-example. The final function is Refine, which takes
M and M ′, the property P , and the counterexample α for
M ′ as inputs. Its job is to refine the abstraction until α is no
longer a counter-example. If it succeeds, it returns a new sound
abstraction M ′. It fails if α is an actual counter-example for the
original M . In this case, it sets the return value refined to false.
Throughout its execution, the algorithm maintains a sound
abstraction of M and checks whether the property Φ holds
on the abstraction. If a counter-example α is found such that
M ′[α] |= ¬Φ, the algorithm uses it to refine the abstraction so
that α is no longer a counter-example. The following theorem
follows directly from Def. IV.1:

Theorem IV.2 (CEGAR is sound). Algorithm 1 returns true
only if M |= Φ.

A. Choice of the underlying verifier and initial abstraction

The Prove function can be instantiated with an existing
DNN verifier. The verifier is required to (1) handle piecewise-
linear constraints; and (2) produce counter-examples. There
are many existing verifiers that meet these requirements [14,
31, 44, 52]. To ensure that these two requirements are suffi-
cient, we also require that ϕ′aff and ϕ′ρ only contain linear and
piecewise-linear formulas.

The Abstract function creates an initial abstraction. For
simplicity, we assume that all piecewise-linear formulas are
unchanged by the abstraction function. For S-shaped activa-
tions, we use piecewise-linear over-approximations. In princi-
ple, any sound piecewise-linear over-approximation of the S-
shaped function could be used. One approach is to use a fine-
grained over-approximation with piecewise-linear bounds [71].
While this approach can arbitrarily reduce over-approximation
error, it might easily lead to an explosion of the state space
when reasoning about generative models due to the large
number of transcendental activations (equal to the dimension
of the generated image) present in the system. One key insight
of CEGAR is that it is often the case that most of the
complexity of the original system is unnecessary for proving
the property and eagerly adding it upfront only increases the
computational cost. We thus propose starting with a coarse



(e.g., convex) over-approximation and only refining with ad-
ditional piecewise-linear constraints when necessary. Suitable
candidates for the initial abstraction of a S-shaped function
include the abstraction proposed in [18, 31, 34, 52, 67], which
considers the convex relaxation of the S-shaped activation.

B. Abstraction Refinement for the S-shaped activation function

We now focus on the problem of abstraction refinement for
models with S-shaped activation functions. Suppose that an
assignment α is found by Prove such that M ′[α] |= ¬Φ, but
for some neuron with S-shaped activation ρ, represented by
variables (v, v̂), α(v̂) ̸= ρ(α(v)). The goal is to refine the
abstraction M ′, so that α is no longer a counter-example for
the refined model. Here we present a refinement strategy that is
applicable to any sound abstraction of the S-shaped functions.
We propose using two linear segments to exclude spurious
counter-examples. The key insight is that this is always suffi-
cient for ruling out any counter-example. We assume that ϕ′aff
includes upper and lower bounds for each variable v that is
an input to an S-shaped function. In practice, bounds can be
computed with bound-propagation techniques [31, 34, 35].

Lemma IV.3. Given an interval (l, u), an S-shaped function
ρ, and a point (p, q) ∈ R2, where p ∈ (l, u) and q ̸= ρ(p),
there exists a piecewise-linear function h : R 7→ R that 1)
has two linear segments; 2) evaluates to ρ(p) at p; and 3)
separates {(p, q)} and {(x, y)|x ∈ (l, u) ∧ y = ρ(x)}.

Leveraging this observation, given a point (p, q) =
(α(v), α(v̂)), we can construct a piecewise-linear function h
of the following form:

h(x) = ρ(p) +

{
β(x− p) if x ≤ p
γ(x− p) if x > p

that separates the counter-example and the S-shaped function.
If q > ρ(p), we add the formula v̂ ≤ h(v) to the abstraction.
And if q < ρ(p), we add v̂ ≥ h(v).

The values for the slopes β and γ should ideally be chosen
to minimize the over-approximation error while maintaining
soundness. Additionally, they should be easily computable.
Table. I presents a general recipe for choosing β and γ when
the spurious counter-example point is below the S-shaped
function. Choosing β and γ when the counter-example is
above the S-shaped function is symmetric (details are shown
in App. A). η denotes the inflection point of the S-shaped
function.

Note that in case 5, β is the same as γ, meaning that a
linear bound (the tangent line to ρ at p) suffices to exclude
the counter-example. In terms of optimality, all but the γ value
in case 1 and the β value in case 3 maximally reduce the
over-approximation error among all valid slopes at (p, ρ(p)).
In those two cases, linear or binary search techniques [34, 52]
could be applied to compute better slopes, but the formulas
shown give the best approximations we could find without
using search.

Algorithm 2 Refine(M ′ := ⟨V ′,X ,Y, ϕ′aff , ϕ′ρ⟩,Φ, α : V 7→
R.

1: refined← 0
2: for (v, v̂) ∈ AllSigmoidal(V ′) do
3: if α(v̂) = ρ(α(v)) then continue ▷ Skip satisfied

activations.
4: refined← refined + 1
5: β, γ ← getSlopes(l(v), u(v), α(v), α(v̂)) ▷ Compute

slopes.
6: ϕ′ρ ← ϕ′ρ ∪ addPLBound(β, γ, v, v̂, α) ▷ Refine the

abstraction.
7: if stopCondition(refined) then break ▷ Check

termination condition.
8: return ⟨V ′,X ,Y, ϕ′aff , ϕ′ρ⟩, refined > 0

Lemma IV.4 (Soundness of slopes). Choosing β and γ using
the recipe shown in Table I results in a piecewise-linear
function h that satisfies the conditions of Lemma IV.3.

An instantiation of the Refine function for neural networks
with S-shaped activation is shown in Alg. 2. It iterates through
each S-shaped activation function. For the ones that are
violated by the current assignment, the algorithm computes
the slopes following the strategy outlined above with the get-
Slopes function and adds the corresponding piecewise-linear
bounds (e.g., v̂ ≥ h(v)) with the addPLBound function.
Finally, we also allow the flexibility to terminate the refine-
ment early with a customized stopCondition function. This is
likely desirable in practice, as introducing a piecewise-linear
bound for each violated activation might be too aggressive.
Furthermore, adding a single piecewise-linear bound already
suffices to exclude α. We use an adaptive stopping strategy
where we allow at most m piecewise-linear bounds to be
added in the first invocation of Alg. 2. And then, in each
subsequent round, this number is increased by a factor k. For
our evaluation, below, we used m = 30 and k = 2, which
were the values that performed best in an empirical analysis.

Theorem IV.5 (Soundness of refinement). Given a sound
abstraction M ′ of tuple M , a property Φ, and a spurious
counter-example α s.t. M ′[α] |= ¬Φ and M [α] |= Φ, Alg. 2
produces a sound abstraction of M , M ′′, s.t. M ′′[α] |= Φ.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
verification framework. We begin by investigating the effec-
tiveness of our CEGAR-based approach on boosting the verifi-
cation accuracy of existing approaches based on one-shot over-
approximation. We evaluate on both robustness queries on
real-world distribution shifts (§V-A) and existing benchmarks
on robustness against norm-bounded perturbations [67, 72]
(§V-C). Next, we benchmark the performance of our verifier
on a range of challenging distribution shifts (§ V-D). Finally,
we use our method to show that robust training tends to result
in higher levels of certified robustness against distribution
shifts (§ V-E).
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TABLE I: Slopes for the piece-wise linear abstraction refinement. The figures illustrate the refinement on the sigmoid function.

Datasets for distribution shifts. We consider a diverse
array of distribution shifts on the MNIST [73] and CIFAR-
10 [74] datasets. The code used to generate the perturbations
is adapted from [10].

Training algorithms. For each distribution shift we con-
sider, we train a CVAE using the framework outlined in [9].
All generators use sigmoid activations in the output layer
and ReLU activations in the hidden layers. This is a typi-
cal architecture for generative models. For each dataset, the
number of sigmoid activations used in the CVAE is the same
as the (flattened) output dimension; that is, 784 (28 × 28)
sigmoids for MNIST and 3072 (3 × 32 × 32) sigmoids for
CIFAR-10. Throughout this section, we use various training
algorithms, including empirical risk minimization (ERM) [75],
invariant risk minimization (IRM) [76], projected gradient
descent (PGD) [2], and model-based dataset augmentation
(MDA) [8].

Implementation details. We use the Deep-
Poly/CROWN [31, 34] method, which over-approximates the
sigmoid output with two linear inequalities (an upper and a
lower bound), to obtain an initial abstraction (the Abstract
function in Alg. 1) for each sigmoid and instantiate the
Prove function with the Marabou neural network verification
tool [14].2 All experiments are run on a cluster equipped with
Intel Xeon E5-2637 v4 CPUs running Ubuntu 16.04 with 8
threads and 32GB memory.

A. Evaluation of CEGAR-based verification procedure

We first compare the performance of our proposed CEGAR
procedure to other baseline verifiers that do not perform
abstraction refinement. To do so, we compare the largest
perturbation δ in the latent space of generative models G
that each verifier can certify. In our comparison, we con-
sider three distinct configurations: (1) DP, which runs the
DeepPoly/CROWN abstract interpretation procedure without
any search; (2) DP+BaB, which runs a branch-and-bound

2We note that our framework is general and can be used with other
abstractions and solvers. To motivate more efficient ways to encode and check
the refined abstraction, we describe in App. C how to encode the added
piecewise-linear bounds as LeakyReLUs. This leaves open the possibility of
further leveraging neural network verifiers that support LeakyReLUs.

procedure (Marabou) on an encoding where each sigmoid
is abstracted with the DeepPoly/CROWN linear bounds and
the other parts are precisely encoded; and (3) DP+CEGAR,
which is the CEGAR method proposed in this work.3 For each
verifier, we perform a linear search for the largest perturbation
bound each configuration can certify. Specifically, starting
from δ = 0, we repeatedly increase δ by 0.02 and check
whether the configuration can prove robustness with respect
to S(x) within a given time budget (20 minutes). The process
terminates when a verifier fails to prove or disprove a given
specification.

For this experiment, we consider the shear distribution
shift on MNIST and the fog distribution shift on the CIFAR-
10 dataset (see Figure 2). All classifiers are trained using
ERM. To provide a thorough evaluation, we consider several
generator and classifier architectures; details can be found
in App. D. Our results are enumerated in Table II, which
shows the mean and standard deviation of the largest δ each
configuration is able to prove for the first 100 correctly
classified test images. We also report the average runtime on
the largest δ proven robust by DP+BaB and DP+CEGAR, as
well as the average number of abstraction refinement rounds by
DP+CEGAR on those δ values. Across all configurations, our
proposed technique effectively improves the verifiable pertur-
bation bound with moderate runtime overhead. This suggests
that the counter-example guided abstraction refinement scheme
can successfully boost the precision when reasoning about
sigmoid activations by leveraging existing verifiers.

B. Effect of hyper-parameters m and k

The refinement procedure (Alg. 2) has two numerical hyper-
parameters, m and k, which together control the number of
new bounds introduced in a given refinement round (at round
i, at most m×ki new bounds are introduced). If too few new
bounds are introduced, then there is not enough refinement,
and the number of refinement rounds needed to prove the
property increases. On the other hand, if too many bounds are

3We also tried eagerly abstracting the sigmoid with fine-grained piecewise-
linear bounds, but the resulting configuration performs much worse than a
lazy approach in terms of runtime. Details are shown in App. F



Dataset Gen. Class.
DP DP+BaB DP+CEGAR

δ δ time(s) δ time(s) # ref.

MNIST MLP GEN1 MLP CLS1 0.104 ± 0.041 0.139 ± 0.058 7.8 0.157 ± 0.057 84.1 1.5 ± 1.1
MLP GEN2 MLP CLS1 0.08 ± 0.035 0.106 ± 0.049 20.4 0.118 ± 0.049 114.8 1.0 ± 1.1
MLP GEN1 MLP CLS2 0.102 ± 0.044 0.136 ± 0.061 16.4 0.15 ± 0.059 120.6 1.2 ± 1.2
MLP GEN2 MLP CLS2 0.081 ± 0.037 0.112 ± 0.049 60.8 0.121 ± 0.049 191.6 0.8 ± 1.1
MLP GEN1 MLP CLS3 0.099 ± 0.041 0.135 ± 0.062 41.3 0.146 ± 0.059 186.9 1.0 ± 1.1
MLP GEN2 MLP CLS3 0.082 ± 0.036 0.116 ± 0.044 75.7 0.122 ± 0.041 163.3 0.6 ± 1.0

CIFAR CONV GEN1 CONV CLS1 0.219 ± 0.112 0.273 ± 0.153 33.5 0.287 ± 0.148 140.8 4.5 ± 9.2
CONV GEN2 CONV CLS1 0.131 ± 0.094 0.18 ± 0.117 13.7 0.194 ± 0.115 112.5 3.1 ± 6.0
CONV GEN1 CONV CLS2 0.176 ± 0.108 0.242 ± 0.14 16.0 0.253 ± 0.136 57.7 1.6 ± 2.4
CONV GEN2 CONV CLS2 0.12 ± 0.077 0.154 ± 0.087 7.9 0.172 ± 0.085 140.2 3.3 ± 4.2

TABLE II: Evaluation results of three solver configurations.

introduced, then the time required by the solver to check the
abstraction might unnecessarily increase, resulting in timeouts.

To study the effect of m and k more closely, we eval-
uate the runtime performance of DP+CEGAR instantiated
with different combinations of m and k. In particular,
we run all combinations of m ∈ {10, 30, 50} and k ∈
{1.5, 2} on the first 10 verification instances for the first two
generator-classifier pairs in Table II–(MLP GEN1,MLP CLS1)
and (CONV GEN1, CONV CLS1). The perturbation bound is
the largest δ proven robust for each instance.

Dataset m k # solved time(s) # ref.

MNIST 10 1.5 10 139.5 2.1
30 1.5 8 52.4 0.9
50 1.5 7 39.8 0.9
10 2 10 113.6 1.8
30 2 10 121.0 1.1
50 2 9 64.6 0.9

CIFAR 10 1.5 9 77.0 2.3
30 1.5 9 60.4 1.5
50 1.5 9 38.2 1.4
10 2 9 55.3 2.4
30 2 10 100.7 2.2
50 2 10 82.2 1.6

TABLE III: Effect of m and k on the runtime performance of CEGAR.

Table III shows the number of solved instances, the average
runtime on solved instances, and the average number of
refinement rounds on solved instances. For the same value
of k, the number of refinement rounds on solved instances
consistently decreases as m increases. This is expected, be-
cause refinements are performed more eagerly as m increases.
However, the decrease in the number of refinement rounds
does not necessarily imply improvements in performance. For
example, (50, 2) solves one fewer MNIST benchmark than
(30, 2). On the other hand, if the strategy is too “lazy” (e.g.,
m is too small), the increased number of refinement rounds can
also result in runtime overhead. For example, on the CIFAR10
benchmarks, when k = 1.5, the average runtime decreases as
m increases, even though all three configurations solve the
same number of instances.

Overall, this study suggests that the optimal values of m and
k vary across different benchmarks, and exploring adaptive
heuristics for choosing these hyper-parameters is a promising
direction for boosting the runtime performance of the proposed

algorithm.

C. Further evaluation of CEGAR on adversarial robustness
benchmarks.

To better understand the effectiveness of our abstraction-
refinement technique on boosting the verification accuracy
over one-shot approximation, we consider a different initial
abstraction, PRIMA [67], a more recently proposed abstrac-
tion that considers convex relaxations over groups of acti-
vation functions and is empirically more precise than Deep-
Poly/CROWN. In particular, we focus on the same sigmoid
benchmarks used in [67]. We use the PRIMA implementation
in the artifact associated with the paper4 and run a configura-
tion PRIMA+CEGAR which is the same as DP+CEGAR, except
that we run PRIMA instead of DeepPoly/CROWN for the
initial abstraction. Each job is given 16 threads and a 30 minute
wall-clock time limit. Table IV shows the number of verified
instances and the average runtime on verified instances for the
two configurations. Our configuration is able to consistently
solve more instances with only a moderate increase in average
solving time. This suggests that the meta-algorithm that we
propose can leverage the tighter bounds derived by existing
abstraction-based methods and boost the state of the art in
verification accuracy on sigmoid-based networks.

TABLE IV: Comparison with PRIMA [67] on the same benchmarks used in
[67]

Model Acc. ϵ
PRIMA PRIMA+CEGAR

robust time(s) robust time(s)

6x100 99 0.015 52 106.5 65 119.5
9x100 99 0.015 57 136.0 96 323.7
6x200 99 0.012 65 197.9 75 260.7

ConvSmall 99 0.014 56 100.5 63 157.8

We have also evaluated our techniques on the sigmoid
benchmarks used in VNN-COMP 2021 (there are no sigomid
benchmarks in VNN-COMP 2022), and we are also able to
boost the verification precision over other SoTA solvers such
as α−β-CROWN and VeriNet [52] with our approach. Details
can be found in App. E.



Dataset Perturbation
δ = 0.1 δ = 0.2 δ = 0.5

robust time(s) robust time(s) robust time(s)

MNIST

brightness 99 3.4 96 5.0 89 13.7
rotation 51 38.6 11 80.1 1 177.9
gaussian-blur 86 4.7 79 10.8 65 36.5
shear 76 21.4 4 102.6 0 135.6
contrast 90 5.9 85 11.1 74 51.0
scale 95 8.0 84 30.8 3 122.7

CIFAR10

brightness 97 3.2 96 5.2 86 18.5
contrast 97 3.0 95 4.6 77 40.0
fog 84 34.3 64 69.1 11 256.0
gaussian-blur 100 2.9 99 3 94 10.7

Fig. 4: Robustness of ERM against different perturbations.

Dataset Train. Alg.
Test set Accuracy % Certified Robust %

Standard Generative δ = 0.05 δ = 0.1

MNIST

ERM 97.9 71.6 73.2 62.4
IRM 97.8 78.7 91.4 37.0
PGD 97.0 79.5 91.0 73.8
MDA 97.2 96.5 97.2 86.6

Fig. 5: Test set accuracy and verification accuracy

D. Benchmarking our approach on an array of real-world
distribution shifts

We next use our proposed verification procedure to evaluate
the robustness of classifiers trained using ERM against a wide
range of distribution shifts. We select the first 100 correctly
classified test images from the respective dataset for each
perturbation and verify the robustness of the classifier against
the perturbation set. Three values of the perturbation variable
δ are considered: 0.1, 0.2, and 0.5. The architectures we con-
sider for MNIST are MLP GEN2 and MLP CLS3. For CIFAR-
10 we use CONV GEN2 and CONV CLS2. The verification
results are shown in Figure 4. The “robust” columns show
the number of instances that our verification procedure is
able to certify within a 20 minute timeout. As one would
expect, the robustness of each classifier deteriorates as the
perturbation budget δ increases. For instance, for the shear
transformation, the classifier is robust on 76 out of the 100
instances when δ = 0.1, but is only certified robust on 4
instances when δ increases to 0.2. Information like this could
help system developers to identify perturbation classes for
which the network is especially vulnerable and potentially
retrain the network accordingly.

E. Verification for various robust training algorithms

Finally, we compare the robustness and accuracy of clas-
sifiers trained using ERM, IRM, PGD, and MDA against the
shear distribution shifts on the MNIST dataset. To this end, we
measure the accuracy on the entire test set under the learned
perturbation generative models. For each classifier, we then
select the first 500 correctly classified images in its dataset
and verify the targeted robustness of the classifier against the
perturbation. The architectures we use are MLP GEN2 and
MLP CLS3.

Accuracy and robustness results are presented in Figure 5.
Interestingly, MDA, which is perturbation-aware, outperforms

4https://dl.acm.org/do/10.1145/3462308/full/

the other three perturbation-agnostic training methods, on both
test accuracy and robustness, suggesting that knowing what
type of perturbation to anticipate is highly useful. Notice that
accuracy on the perturbation set is not necessarily a good
proxy for robustness: while the IRM-trained classifier has
similar accuracy as the PGD-trained classifier, the former is
significantly less robust on the perturbation set with δ = 0.1.
This further supports the need for including formal verification
in the systematic evaluation of neural networks and training
algorithms.

VI. RELATED WORK

Beyond norm-bounded perturbations. While the literature
concerning DNN verification has predominantly focused on
robustness against norm-bounded perturbations, some work
has considered other forms of robustness, e.g., against geomet-
ric transformations of data [54–56]. However, the perturbations
considered are hand-crafted and can be analytically defined by
simple models. In contrast, our goal is to verify against real-
world distribution shifts that are defined via the output set of a
generative model. Our approach also complements recent work
which has sought to incorporate neural symbolic components
into formal specifications [59]. Our work differs from [59] in
two ways. Firstly, Xie et al. use classifiers and regressors in
their neural specifications, while we use generative models to
express perturbation sets in our specifications. Secondly, while
Xie et al. make black-box use of existing verifiers, we propose
a new verification scheme for analyzing networks with sigmoid
activations. In general, we believe the idea of leveraging neural
components for specification is very promising and should be
explored further.

Existing verification approaches. Existing DNN verifica-
tion algorithms broadly fall into one of two categories: search-
based methods [13–30] and abstraction-based methods [31–
51]. While several existing solvers can handle sigmoid ac-
tivation functions [18, 31, 34, 52, 67], they rely on one-
shot abstraction and lack a refinement scheme for continuous
progress. On the other hand, a separate line of work has shown
that verifying DNNs containing a single layer of logistic acti-
vations is decidable [77], but the decision procedure proposed
in this work is computationally prohibitive. To overcome these
limitations, we propose a meta-algorithm inspired by counter-
example-guided abstraction refinement [69] that leverages
existing verifiers to solve increasingly refined abstractions.
We notice a concurrent work [78] on formal reasoning of
sigmoidal activations which is made available a week before
the deadline. The technique is orthogonal to our approach as
it again performs one-shot over-approximation of sigmoidal
activations.

CEGAR [69, 79] is a well-known technique. Our contri-
bution in this area lies in investigating the choices of its
parameters (i.e., Abstract, Prove, and Refine) when it comes
to verifying neural networks with S-shaped activations.

Verification against distribution shifts. The authors of [9]
also considered the task of evaluating DNN robustness to
real-world distribution shifts; in particular, the approach used

https://dl.acm.org/do/10.1145/3462308/full/


in [9] relies on randomized smoothing [80]. This scheme
provides probabilistic guarantees on robustness, whereas our
approach (as well as the aforementioned approaches) provides
deterministic guarantees. In a separate line of work, several
authors have sought to perform verification of deep generative
models [57, 58]. However, each of these works assumes
that generative models are piece-wise linear functions, which
precludes the use of state-of-the-art models.

VII. CONCLUSION

In this paper, we presented a framework for certifying
robustness against real-world distribution shifts. We proposed
using provably trained deep generative models to define formal
specifications and a new abstraction-refinement algorithm for
verifying them. Experiments show that our method can certify
against larger perturbation sets than previous techniques.

Limitations. We now discuss some limitations of our frame-
work. First, like many verification tools, the classifier archi-
tectures that our approach can verify are smaller than popular
architectures such as ResNet [81] and DenseNet [82]. This
stems from the limited capacity of existing DNN verification
tools for piecewise-linear functions, which we invoke in the
CEGAR loop. Given the rapid growth of the DNN verification
community, we are optimistic that the scalability of verifiers
will continue to grow rapidly, enabling their use on larger and
larger networks. Another limitation is that the quality of our
neural symbolic specification is determined by how well the
generative model captures real-world distribution shifts. The
mismatch between formal specification and reality is in fact
common (and often unavoidable) in formal verification. And
while [9] shows that under favorable conditions, CVAEs can
capture distribution shifts, these assumptions may not hold
in practice. For this reason, we envision that in addition to
these theoretical results, a necessary future direction will be to
involve humans in the verification loop to validate the shifts
captured by generative models and the produced counterex-
amples. This resembles how verification teams work closely
with product teams to continually re-evaluate and adjust the
specifications in existing industrial settings. In general, we
believe that closing this verification loop (verify, debug, verify
again, etc.) is a very interesting future research direction. Fi-
nally, when applying our techniques in real industrial settings,
another challenge is that collecting training data corresponding
to new distribution shifts may be costly (e.g., collecting the
same street view under different times of day). However, this
cost may be justified in safety-critical domains.
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APPENDIX A
CHOICES OF SLOPES (CONT.)

We present in Table V the general recipe for choosing β and
γ in the case when the violation point is above the S-shaped
function.

APPENDIX B
PROOFS

Proof. Theorem IV.2. Alg. 1 returns true only if the property
holds on a sound abstraction of M , which following Def. IV.1
means the property holds on M .

Proof. Lemma IV.3. This can be proved by construction using
the β and γ values in Table I and Table V. We next prove that
those choices are sound in Lemma IV.4.

Before proving Lemma IV.4, we first state the following
definitions and facts. 5

Definition B.1 (Tagent line). The tangent line at a to
the function f , denoted by TanLinef,a(x), is defined as:
TanLinef,a(x) = f(a) + f ′(a) ∗ (x− a).

Definition B.2 (Secant line). Definition 2.2. Given a, b ∈
R, the secant line at [a, b] to a function f , denoted
by SecLinef,a,b(x), is defined as: SecLinef,a,b(x) =
f(a)−f(b)

a−b ∗ (x− a) + f(a).

Proposition B.3. Let f be a twice differentiable univariate
function. If f ′′(x) ≥ 0 for all x ∈ [l, u], then for all a, x ∈
[l, u], TanLinef,a(x) ≤ f(x), and for all a, b, x ∈ [l, u],
where a < b and a ≤ x ≤ b, SecLinef,a,b(x) ≥ f(x).

Proposition B.4. Let f be a twice differentiable univariate
function. If f ′′(x) ≤ 0 for all x ∈ [l, u], then for all a, x ∈
[l, u], TanLinef,a(x) ≥ f(x), and for all a, b, x ∈ [l, u],
where a < b and a ≤ x ≤ b, SecLinef,a,b(x) ≤ f(x).

Proposition B.5. Let f be a univariate function, differentiable
with non-negative derivative on [l, u]. If γ ≤ f ′(x) for all
x ∈ [l, u], then f(l) + γ(x− l) ≤ f(x) for all x ∈ [l, u].

Proof. Lemma IV.4. Cond. 1 and Cond. 2 hold trivially. Since
q < h(p), for Cond. 3, it suffices to show that whenever x ∈
(l, u), ρ(x) ≥ h(x). More concretely, we show that (a) ρ(x) ≥
ρ(p)+β(x−p) for x ∈ [l, p], and (b) ρ(x) ≥ ρ(p)+γ(x−p)
for x ∈ (p, u]. We prove this is true for each case in Table. I.

• Case 1: The segment coresponding to β is TanLineρ,p,
and Cond. (a) holds by Prop. B.3. On the other hand, the
choice γ is such that γ ≤ ρ′(x) for all x ∈ [p, u]. Thus,
Cond. (b) holds by Prop. B.5.

• Case 2: The segment coresponding to β is TanLineρ,p,
so Cond. (a) holds by Prop. B.3. The segment corre-
sponding to γ is SecLineρ,p,u, so Cond. (b) holds by
Prop. B.4.

• Case 3: For Cond. (a), we further break it into 2 cases:
x ≤ η and x > η. In the former case, the line ρ(p)+β(x−
p) is below the line ρ(l)+min(ρ′(l), ρ′(u))(x− l), which

5These are partially adapted from [79].
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https://sites.google.com/view/vnn20/vnncomp


l < η, u > η
ρ′′(p) > 0

l < η, u > η
ρ′′(p) = 0

l < η, u > η
ρ′′(p) < 0

l > η ∨ u < η
ρ′′(p) ≤ 0

l > η ∨ u < η
ρ′′(p) > 0

β
ρ(p)−ρ(l)

p−l
ρ(p)−ρ(l)

p−l
min(ρ′(l), ρ′(u)) ρ′(p) ρ(p)−ρ(l)

p−l

γ ρ(u)−ρ′(u)(u−η)−ρ(p)
η−p

ρ′(p) ρ′(p) ρ′(p) ρ(p)−ρ(u)
p−u

TABLE V: Slopes for the piece-wise linear abstraction refinement.

by Prop. B.5 is below ρ. When x > η, ρ(p)+β(x−p) is
below the secant line SecLineρ,η,p, which by Prop. B.4
is below ρ. On the other hand, the segment corresponding
to γ is SecLineρ,p,u, so Cond. (b) holds by Prop. B.4.

• Case 4: The segments are both secant lines,
SecLineρ,l,p and SecLineρ,p,u, and thus the
conditions hold by Prop. B.4.

• Case 5: The segments are both tangent lines,
TanLineρ,p, and thus the conditions hold by Prop. B.3.

The proof for the cases shown in Table. V is analogous.

Proof. Theorem IV.5. We can prove the soundness of M ′′ by
induction on the number of invocations of the ADDPLBOUND
method. If it is never invoked, then M ′′ = M ′ which is
a sound abstraction. In the inductive case, it follows from
Lemma IV.4 that adding an additional piecewise-linear bound
does not exclude variable assignments that respect the precise
sigmoid function. On the other hand, when M [α] |= Φ, the
ADDPLBOUND method will be invoked at least once, which
precludes α as a counter-example with respect to M ′′. That
is, M ′′[α] |= Φ.

APPENDIX C
ENCODING PIECE-WISE LINEAR REFINEMENT USING

LEAKYRELU

We observe that it is possible to encode the piecewise-
linear bounds that we add during abstraction refinement using
LeakyReLU functions. While we do not leverage this fact
in this paper, we lay out the reduction to LeakyReLU in
this section to show how future work usingverification tools
supporting LeakyReLUs could benefit.

A LeakyReLU rα is a piecewise linear function with two
linear segments:

rα(x) =

{
α · x if x ≤ 0

x if x > 0
,

where α ≥ 0 is a hyper-parameter.
Given a piecewise linear function with two linear segments:

h(x)− ρ(p) =

{
β(x− p) if x ≤ p
γ(x− p) if x > p

We can rewrite h as the following:

h(x) = γ ∗ rα(x− p) + ρ(p), where α :=
β

γ

Note that the α value is always valid (i.e., α ≥ 0) because
we always choose both β and γ to be positive. This means
that we can potentially encode the piecewise linear bounds as
affine and leaky relu layers. For example, the piecewise linear
upper bound y ≤ h(x) for a sigmoid y = ρ(x) can be encoded
as

a1 = x− p (10a)
a2 = rα(a1) (10b)
a3 = a2 + ρ(p) (10c)
y = a3 + a4 (10d)
a4 ≤ 0, (10e)

where a1, a2, a3, a4 are fresh auxilliary variables. Eqs. a) and
c) can be modeled by feed-forward layers. Eq. b) can be
modeled by a leaky relu layer. If we treat a4 as an input
variable to the neural network, Eq. d) can be modeled as a
residual connection. This suggests that we could, in principle,
express the abstraction as an actual piecewise-linear neural
network (with bounds on the input variables (e.g., a4), making
it possible to leverage verifiers built on top of neural network
software platforms such as Tensorflow or Pytorch.

APPENDIX D
DETAILS ON TRAINING AND CVAES

A. Dataset
We consider the well-known MNIST and CIFAR-10

datasets. The MNIST dataset contains 70, 000 grayscale im-
ages of handwritten digits with dimensions 28×28, where we
used 60, 000 images for training and held 10, 000 for testing.
The CIFAR-10 dataset contains 60, 000 colored images of 10
classes with dimensions 3× 32× 32, where we used 50, 000
images for training and held 10, 000 for testing.

To perturb the images, we adapt the perturbations imple-
mented in [10].6 When training and testing the models, we

6https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create
c/make cifar c.py
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sample images from the dataset and randomly perturb each
image with a strength parameter c that is sampled uniformly
from the ranges given in Table VI.

TABLE VI: Perturbation range in the training data

Dataset Perturbation Range of c

MNIST

brightness [.0, .5]
rotation [−60, 60]

gaussian blur [1.0, 6.0]
shear [0.2, 1.0]

contrast [0.0, 0.4]
translate [1.0, 5.0]

scale [0.5, 0.9]

CIFAR10

brightness [.05, .3]
contrast [.15, .75]

fog [.2, 1.5], [1.75, 3]
gaussian blur [.4, 1]

B. Architecture
On each dataset, we train a conditional variational encoder

(CVAE) with three components: prior network, encoder net-
work, and decoder network (generator). We also train a set
of classifiers. In this section, we detail the architecture of
these networks. The architectures for the MNIST networks are
shown in Tables VII–XIII. Those of the CIFAR networks are
shown in Tables XIV–XIX. The output layers of the generators
use sigmoid activation functions. All hidden-layers use ReLU
activation functions.

TABLE VII: Prior

Type Parameters/Shape

Input 28 × 28

Dense 784 × 1

Dense 300 × 1

Dense 8 × 2

TABLE VIII: Encoder

Type Parameters/Shape

Input 28 × 28 × 2

Dense 784 × 1

Dense 300 × 1

Dense 8 × 2

TABLE IX: MLP GEN1

Type Param./Shape

Input 28 × 28 + 8

Dense 200 × 1

Dense 784 × 1

TABLE X: MLP GEN2

Type Param./Shape

Input 28 × 28 + 8

Dense 400 × 1

Dense 784 × 1

TABLE XI: MLP CLS1

Type Parameters/Shape

Input 28 × 28

Dense 32 × 1

Dense 32 × 1

Dense 10 × 1

TABLE XII: MLP CLS2

Type Parameters/Shape

Input 28 × 28

Dense 64 × 1

Dense 32 × 1

Dense 10 × 1

TABLE XIII: MLP CLS3

Type Parameters/Shape

Input 28 × 28

Dense 128 × 1

Dense 64 × 1

Dense 10 × 1

TABLE XIV: Prior

Type Parameters/Shape

Input 32 × 32 × 3

Dense 3072 × 1

Dense 300 × 1

Dense 8 × 2

TABLE XV: Encoder

Type Parameters/Shape

Input 32 × 32 × 3 × 2

Dense 3072 × 1

Dense 300 × 1

Dense 8 × 2

TABLE XVI: CONV GEN1

Type Param./Shape

Input 32 × 32 × 3 + 8

Dense 32 × 32 × 4

Conv 3 1 × 1 filters, padding 0

TABLE XVII: CONV GEN2

Type Param./Shape

Input 32 × 32 × 3 + 8

Dense 32 × 32 × 4

Conv 3 3 × 3 filters, padding 1

TABLE XVIII: CONV CLS1

Type Params./Shape

Input 32 × 32 × 3

Conv 3 3 × 3 filters, stride 3

Conv 3 2 × 2 filters, stride 2

Dense 25 × 1

Dense 10 × 1

TABLE XIX: CONV CLS2

Type Params./Shape

Input 32 × 32 × 3

Conv 3 3 × 3 filters, stride 2

Conv 3 2 × 2 filters, stride 2

Dense 25 × 1

Dense 10 × 1

C. Optimization

We implement our models and training in PyTorch. The
CVAE implementation is adapted from that in [9]. On both
datasets, we trained our CVAE networks for 150 epochs
using the ADAM optimizer with a learning rate of 10−4 and
forgetting factors of 0.9 and 0.999. In addition, we applied
cosine annealing learning rate scheduling. Similar to [3], we
increase β linearly from β = 0 at epoch 1 to β = 0.01 at
epoch 40, before keeping β = 0.01 for the remaining epochs.
We use a batch size of 256.

The ERM classifiers on the MNIST dataset are trained with
the ADAM optimizer with a learning rate of 10−3 for 20
epochs. The classifiers for the CIFAR-10 dataset are trained
with the ADAM optimizer with learning rate 10−3 for 200
epochs. The classifiers in Sec. V-E are also all trained with
the ADAM optimizer with a learning rate of 10−3 for 20
epochs. For PGD, we use a step size of α = 0.1, a perturbation
budget of ϵ = 0.3, and we use 7 steps of projected gradient
ascent. For IRM, we use a small held-out validation set to
select λ ∈ {0.1, 1, 10, 100, 1000}. For MDA, we use a step
size of α = 0.1, a perturbation budget of ϵ = 1.0, and we use
10 steps of projected gradient ascent.

D. Computing resources

The classifiers used in Section V-E were trained using a
single NVIDIA RTX 5000 GPU. The other networks were
trained using 8 AMD Ryzen 7 2700 Eight-Core Processors.

APPENDIX E
EVALUATION ON VNN-COMP-21 BENCHMARKS

We also evaluate our techniques on the 36 sigmoid bench-
marks used in VNN-COMP-2021. We exclude the benchmark



where a counter-example can be found using the PGD attack
and evaluate on the remaining 35 benchmarks. In particu-
lar, we run a sequential portfolio approach where we first
attempt to solve the query with α-β-CROWN [18, 34, 44]
(competition version), and if the problem is not solved, we
run PRIMA+CEGAR. Table IV shows the results. As a point
of comparison, we also report the numbers of the top three
performing tools [18, 31, 44, 52, 67] during VNN-COMP-21
on these benchmarks. 7 While α-β-CROWN is already able to
solve 29 of the 35 benchmarks, with the abstraction refinement
scheme, we are able to solve 1 additional benchmark. We note
that during the competition, α-β-crown did not exhaust the 5
minute per-instance timeout on any of these benchmarks.8 This
suggests that the solver was not able to make further progress
once the analysis is inconclusive on the one-shot abstraction
of the sigmoid activations. On the other hand, our technique
provides a viable way to make continuous progress if the one-
shot verification attempt fails.

APPENDIX F
EVALUATION OF AN EAGER REFINEMENT STRATEGY

We also compare the lazy abstraction refinement strategy
with an eager approach where piecewise-linear bounds are
added for each sigmoid from the beginning instead of added
lazily as guided by counter-examples. In particular, we attempt
to add one piecewise-linear upper-bound and one piecewise-
linear lower-bound, each with K linear segments, for each
sigmoid activation function. The segment points are evenly
distributed along the x-axis. We evaluate on the same MNIST
benchmarks as in Table II, using K = 2 and K = 3. The
results are shown in Table XXI. While the two strategies are
still able to improve upon the perturbation bounds found by the
pure abstract-interpretation-based approach DP, the means of
the largest certified δ values for the eager approach are signif-
icantly smaller than those of the CEGAR-based configuration
we propose. Interestingly, while K=3 uses a finer-grained over-
approximation compared with K=2, the former only improves
on one of the six benchmark sets. This suggests that the
finer-grained abstraction increases the overhead to the solver
and is not particularly effective at excluding spurious counter-
examples on the set of benchmarks that we consider, which
supports the need for a more informed abstraction refinement
strategy such as the one we propose.

APPENDIX G
LICENSES

The MNIST and CIFAR-10 datasets are under
The MIT License (MIT). The Marabou verification
tool is under the terms of the modified BSD license
(https://github.com/NeuralNetworkVerification/Marabou/blob/
master/COPYING).

7https://arxiv.org/abs/2109.00498
8https://github.com/stanleybak/vnncomp2021 results/blob/main/results

csv/a-b-CROWN.csv
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TABLE XX: Comparison on the VNN-COMP-21 benchmarks

Model # Bench.
α-β-CROWN VeriNet ERAN Ours

robust time(s) robust time(s) robust time(s) robust time(s)

6x200 35 29 12.9 20 2.5 19 145.5 30 83.2

Dataset Gen. Class.
K=2 K=3 DP+CEGAR

δ time(s) δ time(s) δ time(s) # ref.

MNIST MLP GEN1 MLP CLS1 0.137 ± 0.043 88.9 0.137 ± 0.042 109.8 0.157 ± 0.057 84.1 1.5 ± 1.1
MLP GEN2 MLP CLS1 0.109 ± 0.031 114.5 0.109 ± 0.031 199.0 0.118 ± 0.049 114.8 1.0 ± 1.1
MLP GEN1 MLP CLS2 0.126 ± 0.045 64.0 0.129 ± 0.044 95.9 0.15 ± 0.059 120.6 1.2 ± 1.2
MLP GEN2 MLP CLS2 0.108 ± 0.038 159.0 0.106 ± 0.036 133.8 0.121 ± 0.049 191.6 0.8 ± 1.1
MLP GEN1 MLP CLS3 0.132 ± 0.043 139.5 0.131 ± 0.042 190.0 0.146 ± 0.059 186.9 1.0 ± 1.1
MLP GEN2 MLP CLS3 0.105 ± 0.033 107.1 0.098 ± 0.035 87.5 0.122 ± 0.041 163.3 0.6 ± 1.0

TABLE XXI: Evaluation results of the eager approach. We also report again the results of DP+CEGAR, which is the same as Table II.
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