

000 001 002 003 004 005 BRIDGING DEGRADATION DISCRIMINATION AND 006 GENERATION FOR UNIVERSAL IMAGE RESTORATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Universal image restoration is a critical task in low-level vision, requiring the
028 model to remove various degradations from low-quality images to produce clean
029 images with rich detail. The challenges lie in sampling the distribution of high-
030 quality images and adjusting the outputs on the basis of the degradation. This
031 paper presents a novel approach, Bridging Degradation discrimination and Gen-
032 eration (BDG), which aims to address these challenges concurrently. First, we pro-
033 pose the Multi-Angle and multi-Scale Gray Level Co-occurrence Matrix (MAS-
034 GLCM) and demonstrate its effectiveness in performing fine-grained discrimina-
035 tion of degradation types and levels. Subsequently, we divide the diffusion train-
036 ing process into three distinct stages: generation, bridging, and restoration. The
037 objective is to preserve the diffusion model’s capability of restoring rich textures
038 while simultaneously integrating the discriminative information from the MAS-
039 GLCM into the restoration process. This enhances its proficiency in address-
040 ing multi-task and multi-degraded scenarios. Without changing the architecture,
041 BDG achieves significant performance gains in all-in-one restoration and real-
042 world super-resolution tasks, primarily evidenced by substantial improvements in
043 fidelity without compromising perceptual quality.
044

1 INTRODUCTION

045 Image restoration aims to remove degradations from low-quality (LQ) images and to reconstruct
046 high-quality (HQ) images while maintaining consistent semantic and texture details. In the context
047 of deep learning (LeCun et al., 2015), image restoration can be further conceptualized as a condi-
048 tional generation task: employing LQ images as a condition, using neural networks to sample the
049 distribution of the corresponding HQ images.

050 Universal image restoration (Luo et al., 2023; Zheng et al., 2024; Hu et al., 2025) represents an
051 emerging and significant subfield of image restoration, which is intended to challenge the restora-
052 tion model to effectively identify a myriad of complex or previously unseen degradations. This
053 requires that the restoration model possesses two capabilities: (1) *degradation discrimination* and
054 (2) *conditional generation*. The former propels the model to discern the degradation present in input
055 images, thereby enhancing the model’s adaptability, whereas the latter enables the model to gener-
056 ate the HQ images based on the LQ images, fulfilling the restoration. These two capabilities lead
057 researchers to develop universal image restoration models from two distinct perspectives. Several
058 methods (Li et al., 2022a; Zhang et al., 2023a; Potlapalli et al., 2023; Marcos V. Conde, 2024; Hu
059 et al., 2025) employ additional degradation discrimination networks (or parameters) to guide the
060 model in identifying the degradation. This approach has demonstrated efficacy in all-in-one image
061 restoration tasks. However, it results in over-smoothed outcomes due to the fidelity-focused learning
062 objectives, and may not perform well in real-world scenarios. In contrast, Wang et al. (2024); Yu
063 et al. (2024); Wu et al. (2024); Lin et al. (2024); Chen et al. (2025) focus on effectively exploiting
064 generation prior of the pre-trained generation model to output rich textures. These methods have
065 proven effective in real-world and photo-realistic image restoration tasks. However, for the all-in-
066 one image restoration task, these methods struggle to produce detailed content consistent with the
067 LQ image. This issue potentially arises from the diffusion model erroneously interpreting mildly
068 degraded images as severely degraded, compelling it to generate rich but inconsistent detail, thereby
069 causing less fidelity.

To maintain the generation prior of the diffusion model while improving its restoration fidelity in other common tasks, we propose **Bridging Degradation discrimination and Generation (BDG)**. The essence of BDG lies in the seamless integration of fine-grained degradation discrimination capabilities with robust high-quality image generation within a single model. This configuration enables the model to effectively address degradation presented in diversified or complex forms and subsequently produce HQ images.

For degradation discrimination, we employ **Multi-Angle and multi-Scale Gray Level Co-occurrence Matrix (MAS-GLCM)** to distinctly identify complex and diversified degradations. Through visualization, T-SNE clustering, and KNN classification, we practically demonstrate that our MAS-GLCM surpasses previous degradation characterizations, *e.g.*, gradients (Ma et al., 2020), frequency (Ji et al., 2021), parameters (Potlapalli et al., 2023), and instructions (Luo et al., 2023; Marcos V. Conde, 2024), in advanced fine-grained degradation discrimination. Based on this finding, BDG utilizes MAS-GLCM to endow the model with degradation discrimination abilities.

For bridging degradation discrimination and generation prior, we design a three-stage diffusion method by modifying the parameters in the diffusion reserve formula. **(I)** During the generation stage, the model incrementally captures pixel dependency through a denoising process. **(II)** In the bridging stage, the model incorporates residual information as an input condition. The inherent degradation discrimination capacity of the residual (Tang et al., 2024a) provides advantageous conditions for the introduction of a fine-grained degradation discrimination ability. Accordingly, we accomplish BDG by aligning the GLCM features with the diffusion features in the bridging stage. **(III)** In the restoration stage, the focus of the model shifts from generating HQ images to prioritizing training in restoration ability. During this stage, continued alignment of the GLCM features with the diffusion features is necessary. This alignment ensures that the model’s fine-grained degradation discrimination ability can be retained. After firmly bridging the degradation discrimination and the generation prior, we attain superior restoration performance in both all-in-one image restoration and real-world super-resolution, thereby illustrating BDG’s effectiveness.

The proposed BDG framework facilitates the precise attainment of a high-fidelity, universal restoration model that effectively accommodates arbitrary degradation arising from the image generation model. By capitalizing on the nuanced degradation discrimination capabilities of MAS-GLCM, coupled with the integration of a robust pre-trained generative model, models trained within the BDG paradigm achieve an optimal equilibrium between content fidelity and detail restoration in the context of image restoration tasks.

2 RELATED WORK

Degradation diversities in restoration. To enhance the adaptability of restoration models, researchers have initiated studies that aim to develop a single model capable of addressing multiple restoration tasks, a process known as all-in-one restoration (Li et al., 2022a). In this context, the restoration model is expected to effectively restore input images with various degradations. Numerous methods (Li et al., 2022a; Potlapalli et al., 2023; Zhang et al., 2023a; Luo et al., 2023; Marcos V. Conde, 2024; Hu et al., 2025) are designed to improve all-in-one restoration performance by introducing the degradation discrimination capability. AirNet (Li et al., 2022a) uses MoCo (He et al., 2020), while IDR (Zhang et al., 2023a) creates physical degradation models for identifying degradations. PromptIR (Potlapalli et al., 2023) incorporates additional parameters through dynamic convolutions to enable universal image restoration without relying on embedded features. DCPT (Hu et al., 2025) approaches the restoration model as a degradation classifier to encourage it to learn about the diversity of degradation. In contrast, (Wang et al., 2023b; Zheng et al., 2024; Qin et al., 2024) aim to allow the model to extract features independently of degradation, ensuring that its output is solely linked to the intrinsic distribution of the images.

Generation priors for real-world restoration. To improve the applicability of restoration models in real-world settings (Wang et al.), researchers have begun to incorporate generation priors into these models. Pre-trained in high-quality real-world images, large-scale image generation models (Esser et al., 2021; Rombach et al., 2022; Peebles & Xie, 2023; Tian et al., 2024; Esser et al., 2024; Liu et al., 2024) are considered proficient in fitting complex image distributions. Existing real-world restoration techniques (Kawar et al., 2022; Fei et al., 2023; Wang et al., 2024; Wu et al., 2024; Yu et al., 2024; Lin et al., 2024) attempt to leverage this capability of pre-trained

large-scale image generation models to address scenarios involving intricate image distribution challenges. DDRM (Kawar et al., 2022) is the pioneering method for employing the generative prior of a diffusion model (Ho et al., 2020), thus markedly enhancing the perceived effectiveness of the restoration model. GDP (Fei et al., 2023) attributes these improvements offered by pre-trained generative models to their inherent general image priors. StableSR (Wang et al., 2024) capitalizes on the generative prior of stable diffusion (Rombach et al., 2022), leading to a substantial enhancement in the perceived effectiveness of the restoration model in real-world scenarios. DiffBIR (Lin et al., 2024) expands this capability to include a variety of blind image restoration tasks. SUPIR (Yu et al., 2024) advances the field by making significant contributions to large-scale restoration models through the integration of scaling. SeeSR (Wu et al., 2024) explores how high-level semantics can better assist diffusion-based restoration. PURE Wei et al. (2025) also successfully used pre-trained autoregressive MLLM to adapt to real-world super-resolution.

3 METHODS

3.1 DEGRADATION CHARACTERIZATION

Methods utilizing degradation characterizations Ma et al. (2020); Ji et al. (2021); Potlapalli et al. (2023); Luo et al. (2023); Marcos V. Conde (2024) have been widely demonstrated to enhance restoration performance under various degradations. Existing degradation characterizations are tied to image content, *e.g.*, the Sobel operator (Ma et al., 2020) focuses the texture at edge. When used to align with the restoration network, the network predominantly aligns with image content, thus inhibiting the ability to capture degradation-specific information.

To achieve a more refined degradation characterization that is minimally affected by image content, we introduce the **MAS-GLCM** and substantiate its proficiency in discriminating degradation. MAS-GLCM is designed on the basis of GLCM, which serves as an effective extractor of image texture, depicting the texture characteristics of an image by evaluating spatial associations between pixels at different gray levels. Specifically, the GLCM constitutes a matrix that computes the frequency with which pixel pairs of given gray levels co-occur within an image. Each matrix element quantifies the occurrences of one gray value in conjunction with another at specified distances and orientations. Since its computation does not involve processing the image’s content, GLCM’s result inherently discards information about the image content. Given a gray image $I \in \mathbb{R}^{H \times W}$, its GLCM M can be expressed as follows.

$$M_{\Delta x, \Delta y}(i, j) = \sum_{x=1}^W \sum_{y=1}^H \begin{cases} 1, & \text{if } I(x, y) = i \text{ and} \\ & I(x + \Delta x, y + \Delta y) = j \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

where $\Delta x, \Delta y$ denotes the distances selected in the horizontal and vertical directions.

MAS-GLCM. Our objective is to determine the average value of GLCM in various groups of $\Delta x, \Delta y$, to fully extract information that encompasses multiple angles and scales, thereby extracting degradation-related information at multiscales and avoiding being trapped in locality. Considering $\Delta x, \Delta y$ can be formulated by the angle ϑ and the module l as $\Delta x = l \cdot \sin(\vartheta)$, $\Delta y = l \cdot \cos(\vartheta)$. Given multiple ϑ and l , we compute the average value of their M to obtain our MAS-GLCM M_{mas} , which can be formulated as follows.

$$M_{mas} = \frac{1}{n \times m} \sum_{i=1, j=1}^{L, \Theta} M_{L_i \cdot \sin(\Theta_j), L_i \cdot \cos(\Theta_j)}, \quad (2)$$

where L represents different scales $L = l_1, l_2, \dots, l_n$ and Θ represents different angles $\Theta = \vartheta_1, \vartheta_2, \dots, \vartheta_m$.

Fine-grained degradation discrimination. We demonstrate that M_{mas} has fine-grained degradation discrimination capability through visualization and clustering analysis, as shown in Figure 1.

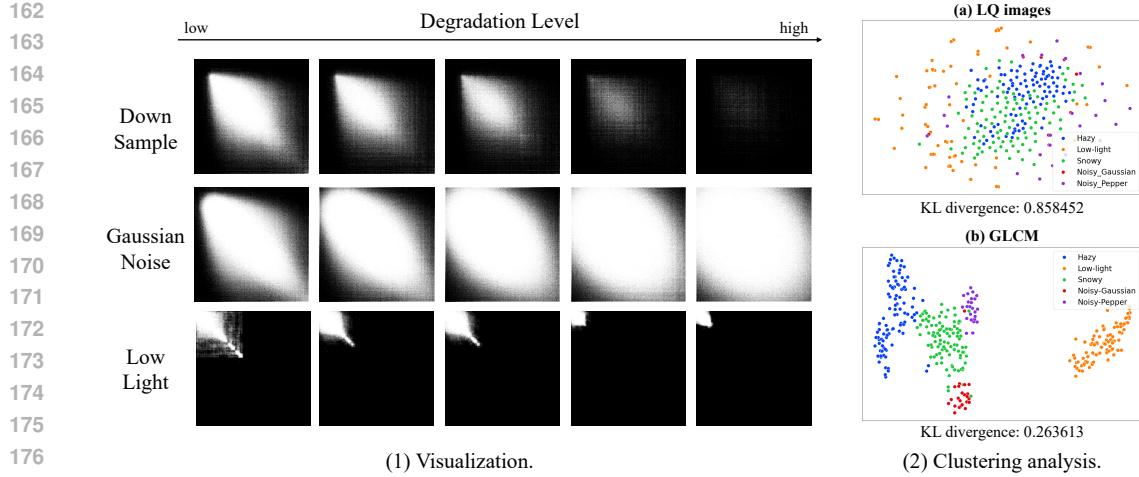


Figure 1: (1) Visualization of MAS-GLCM in varying degradation levels. With an increase in degradation levels, the MAS-GLCM exhibits significant transformations. (2) The results of the T-SNE analysis for LQ images and MAS-GLCM across various degradation types demonstrate that MAS-GLCM possesses an enhanced capacity to distinguish between degradation types.

- **Visualization.** Figure 1 (1) displays the MAS-GLCM at various degradation levels. We select a clean image with three simulated degradation types: downsampling, Gaussian noise, and low-light. For each degradation type, five distinct levels are defined, details in Appendix A. The visualization indicates that MAS-GLCM significantly changes with varying degradation levels.
- **Clustering analysis.** Figure 1 (2) illustrates the T-SNE results associated with the degradation cluster using LQ images and MAS-GLCM. Following T-SNE clustering, MAS-GLCM exhibits a much lower KL divergence compared to LQ images, indicating superior clustering efficacy. More results on real-world datasets are shown in Appendix A. This claim is further supported by the visualization of the clustering results.
- **Classification analysis.** Table 1 compares the degradation characteristics in classification tasks for type and level, including haze, low light, snow, Gaussian noise, and Pepper noise, with Gaussian noise variances of 15, 25, 50, 75, and 100, using a KNN classifier (details in Appendix A). The classification results demonstrate that MAS-GLCM shows superior performance, especially in the fine-grained degradation level classification task.

Degradation Characterization	Type Acc (%)	Level Acc (%)
LQ images	51.44	20.00
Sobel (gradient)	40.80	23.33
Laplace (gradient)	83.05	20.83
Fourier	65.80	30.83
MAS-GLCM (Ours)	97.13	74.17

Table 1: MAS-GLCM has substantial capability in the classification of both types and levels of degradation.

3.2 CONDITIONAL GENERATION

The diffusion model has been widely proven to have superior generative capacities (Rombach et al., 2022). Their inherent generation ability (Fei et al., 2023) significantly helps the model in addressing restoration tasks in real-world degradation. Following (Wang et al., 2024; Zheng et al., 2024; Wu et al., 2024), we use the diffusion model to learn how to fit the distribution of HQ images.

Condition mechanisms. In contrast to image generation tasks, image restoration tasks possess a pronounced condition in the form of the LQ image, which serves as a guidance for the model. Common techniques for incorporating such conditional information in diffusion-based image restoration models include methods such as Cross Attention, ControlNet (Zhang et al., 2023b), residuals (Yue et al., 2023; Liu et al., 2024), etc. Following (Liu et al., 2024; Zheng et al., 2024), we use residuals and LQ images or their latents as conditions.

216 In a nutshell, the forward process of the diffusion model we use is as follows.
 217

$$218 \quad 219 \quad x_t = x_{t-1} + \alpha_t x_{res} + \beta_t \epsilon_{t-1} - \delta_t x_{lq}, \quad (3)$$

220 where x_t is the diffusing result in timestep t , $x_{res} := x_{lq} - x_{hq}$ is the residual of the LQ image (or
 221 its latent) x_{lq} and the HQ image (or its latents) x_{hq} . α_t , β_t , and δ_t is the noise coefficient of x_{res} ,
 222 standard Gaussian noise ϵ , and x_{lq} , respectively.

223 In the sampling process, we omit the noise term to change this diffusion to an implicit probabilistic
 224 model (Mohamed & Lakshminarayanan, 2016). The derivation can be found in Appendix B.
 225

$$226 \quad 227 \quad x_{t-1} = x_t - \alpha_t x_{res}^\theta - \frac{\beta_t^2}{\beta_t} \epsilon^\theta + \delta_t x_{lq}. \quad (4)$$

228 **Discussion.** Eq. 4 is the basis for us to bridge the degradation discrimination and the generative
 229 prior. As derived from Eq. 4, the image generation or restoration capability of this diffusion model
 230 is governed by three parameters: α , β , and δ . We shall examine the performance of this diffusion
 231 model in the subsequent three cases:
 232

- 233 **Generation.** $\alpha_t \equiv 0$ and $\delta_t \equiv 0$, Eq. 4 will degenerate into $x_{t-1} = x_t - \frac{\beta_t^2}{\beta_t} \epsilon^\theta$. This
 234 formula is formally equivalent to the denoising formula of the Variance Exploding (VE)
 235 SDE (Song et al., 2021). The model in this stage only has generation abilities, as it has not
 236 been provided with the necessary conditions for restoration, such as x_{res} or x_{lq} .
- 237 **Bridging.** Only $\delta_t \equiv 0$, Eq. 4 will degenerate into $x_{t-1} = x_t - \alpha_t x_{res}^\theta - \frac{\beta_t^2}{\beta_t} \epsilon^\theta$. The
 238 diffusion model is capable of comprehending degradations by leveraging the degradation-
 239 aware information (residual x_{res} (Tang et al., 2024b)), while preserving its generation prior.
- 240 **Restoration.** All parameters are scheduled as normal, Eq. 4 does not degenerate. Note that
 241 we set $\alpha_t \neq \delta_t$, so the introduction of x_{lq} will not be diluted by x_{res} . Due to direct injection
 242 of x_{lq} , the predicted image x_0^θ can have stronger fidelity. *Different from the DiffUIR* (Zheng
 243 et al., 2024), sampling of BDG predicts both noise and residual to obtain the generation
 244 (noise prediction) prior, whereas DiffUIR only predicts residual, missing out on acquiring
 245 the generation prior in diffusion models.

248 3.3 TRAINING

250 The BDG training phase can be divided into three distinct stages, each corresponding to the cases
 251 previously discussed. This three-stage methodology is intended to enable the restoration model not
 252 only to retain the generation model's capability for recovering detailed textures, but also to acquire
 253 enhanced knowledge pertinent to degradation. This approach is designed to improve the model's
 254 adaptability to varying task requirements and degradation scenarios. Figure 2 clearly shows this
 255 training process. We introduce each stage sequentially.

256 **Generation Pre-training.** We set the coefficients $\alpha_t \equiv 0$ and $\delta_t \equiv 0$ to correspond to the generation
 257 stage of the diffusion model. At this stage, the model mainly assimilates the generation prior from
 258 extensive and high-quality image datasets.

259 **Bridging stage.** We maintain $\delta_t \equiv 0$ in this stage. A primary objective of this stage is to preserve
 260 the model's generation capabilities. Specifically, conditional on Eq. 4, it is imperative that the model
 261 accurately predicted the distribution $p_\theta(x_{t-1}|x_t)$ based on $q(x_{t-1}|x_t, x_0, x_{res}, x_{in})$.

$$263 \quad 264 \quad \mathcal{L}_{gen} = D_{KL}(q(x_{t-1}|x_t, x_0, x_{res}, x_{in})||p_\theta(x_{t-1}|x_t)) \\ 265 \quad = \mathbb{E}_{q(x_t|x_0)} [\|\mu(x_t, x_0) - \mu_\theta(x_t, t)\|^2] \\ 266 \quad = \mathbb{E}_{t, \epsilon, x_{res}} \left[\|\alpha_t(x_{res}^\theta - x_{res}) + \frac{\beta_t^2}{\beta_t} (\epsilon^\theta - \epsilon)\|^2 \right]. \quad (5)$$

267 Next, to effectively integrate the fine-grained degradation classification capability with the genera-
 268 tion process, we introduce a novel degradation-generation bridging strategy. Specifically, a neural
 269

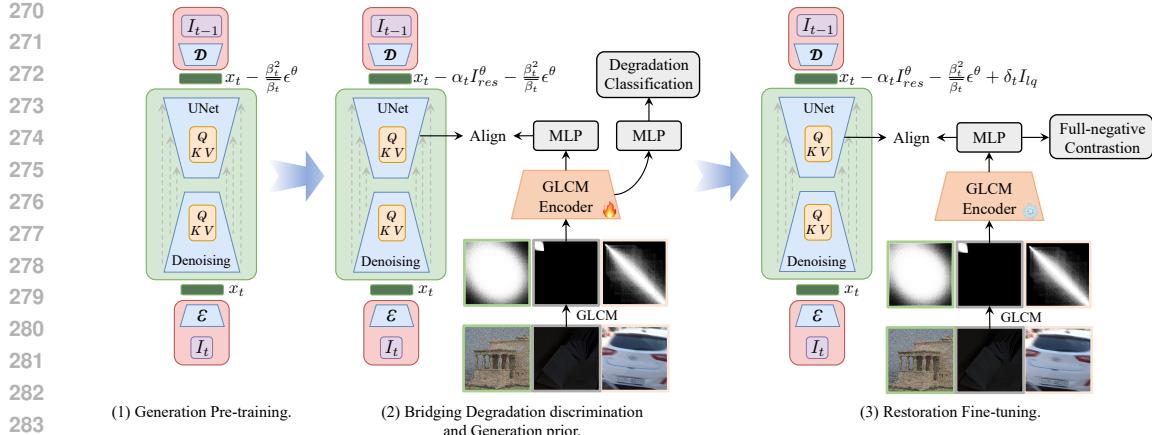


Figure 2: Three training stages in BDG. (1) During the generation stage, the model focuses on obtaining generation priors. (2) In the bridging stage, the MAS-GLCM, which can identify degradation fine-grainedly, is aligned with the features of the pre-trained generation model, thereby endowing the model with initial capabilities in degradation discrimination. (3) In the restoration stage, the model is tasked with performing restoration.

network is utilized to extract the abstract features of MAS-GLCM M_{mas} . Given that M_{mas} demonstrates a robust fine-grained degradation classification capability, its high-dimensional features F_{mas} are considered to embody this capability. Furthermore, these features are aligned with the intermediate features of the Diffusion Model F_{diff} .¹ The loss function is as follows.

$$\mathcal{L}_{bridge} = \frac{1}{2} \mathbb{E}[\mathcal{H}(y^{m2d}(F_{mas}), p^{m2d}(F_{mas})) + \mathcal{H}(y^{d2m}(F_{diff}), p^{d2m}(F_{diff}))], \quad (6)$$

where $p^{m2d}(F_{mas})$ is the soft-maxed similarity between F_{mas} and F_{diff} , y^{m2d} denotes the one-hot ground-truth similarity of F_{mas} , and \mathcal{H} is the cross-entropy function.

Finally, it is imperative to employ a loss function to ensure that F_{mas} has fine-grained degradation classification capabilities. As illustrated in Figure 2 (2), an additional MLP is used to process F_{mas} , which is then optimized using the loss of degradation classification.

$$\mathcal{L}_{deg-cls} = \mathcal{H}(\text{MLP}(F_{mas}), C), \quad (7)$$

where C is the one-hot degradation class.

In **real-world** scenarios, degradation is challenging to categorize into distinct classes. A sound approach to emulate real-world degradation involves the fusion of simple degradations in multiple orders (Wang et al.; Zhang et al., 2021). For example, Real-ESRGAN (Wang et al.) exemplifies this by accumulating four types of degradation: blur, downsampling, JPEG compression, sinc artifacts and noise, iteratively superimposed eight steps. Each step in this chain represents an increased level of degradation complexity. Accordingly, we define eight intermediate states (e.g., after the first operation, second, etc.), which serve as pseudo-labels indicating the stage (or "order") of degradation application. These orders act as surrogates for degradation severity and compositional complexity. By training the model to recognize these order levels, it learns to implicitly estimate how heavily an image has been degraded, enabling better adaptation to varying degrees of real-world distortion. This provides a more feasible and meaningful learning signal than attempting to assign discrete type labels that may not reflect actual conditions for real-world super-resolution task. This task is termed "order classification", and its associated loss function can be derived by replacing C in Eq. 7 with the one-hot order class.

In summary, the loss function at this stage is as follows.

¹We select the first-layer feature of the UNet decoder as F_{diff} .

324
325
326

$$\mathcal{L}_{bdg} = L_{gen} + \lambda(\mathcal{L}_{bridge} + \mathcal{L}_{deg-cls}), \quad (8)$$

327 where λ balances these losses and is set to 0.1 by default.

Restoration Fine-tuning. Subsequent to the bridging stage, it is imperative to enhance the fidelity of predicted images and the fine-grained degradation discrimination ability. Specifically, it is crucial to ensure that the x_{gt}^θ predicted by the diffusion model aligns closely with the ground truth x_{gt} while allowing the features of the diffusion model to accurately discern degradation using \mathcal{L}_{bridge} . Thus, we define \mathcal{L}_{rft} as follows:

$$\mathcal{L}_{rft} = \|x_{gt}^\theta - x_{gt}\|_1 + \lambda\mathcal{L}_{bridge}. \quad (9)$$

In **real-world** scenarios, the degradation observed in images is distinctly different. To improve the model’s ability to recognize degradation, we reframe the degradation classification problem during the bridging stage as a contrastive learning task that involves only negative samples (“full negative contrastive learning”). Negative samples are those exhibiting different types or levels of degradation, and our goal is to extend the distance between pretrained MAS-GLCM’s features F_{mas} for each negative sample.

$$\mathcal{L}_{fcnl} = \sum_{i \in \mathcal{B}_1} \sum_{j \in \mathcal{B}_2} (1 - \cos(F_{mas}^i, F_{mas}^j)), \quad (10)$$

where $\cos(f^i, f^j)$ denotes the cosine similarity between vectors f^i and f^j . Within real-world super resolution task, $\mathcal{L}_{rft} = \|x_{gt}^\theta - x_{gt}\|_1 + \lambda(\mathcal{L}_{bridge} + \mathcal{L}_{fcnl})$

It is important to note that we do not implement this loss during the bridging stage. In the bridging stage, the feature extractor of M_{mas} is still training, and full negative contrastive learning would result in a representation collapse (Hu et al., 2021). In contrast, in the RFT stage, the weights of the feature extractor are frozen, rendering the model immune to the effects of representation collapse.

4 EXPERIMENTS

We perform an evaluation of our BDG across three distinct restoration tasks. **(1) All-in-one:** a model is trained to restore images in multiple degradation, including *real-world* scenarios. **(2) Mixed degradation:** a model restores images affected by composite degradation. **(3) Real-world:** real-world super-resolution task is also used to test BDG.

In the all-in-one and mixed degradation image restoration task, we employ a 36M UNet pre-trained on ImageNet. In the real-world super-resolution task, Stable Diffusion 2 (Rombach et al., 2022) is utilized as a baseline without incorporating additional architectures such as cross-attention or control-net. The implementation details are: batch size 256, learning rate 3×10^{-4} , and AdamW optimizer with $(\beta_1, \beta_2) = (0.9, 0.95)$. For each task, we train 300k iterations. The bridging stage and the restoration fine-tuning stage each have 150k iterations.

Detailed datasets, metrics, and qualitative results are provided in Appendix C due to the page limit.

4.1 ALL-IN-ONE IMAGE RESTORATION

We train a 5D all-in-one image restoration model with simulated dataset following DiffUIR (Zheng et al., 2024). This model is validated on simulated and real-world scenarios.

Results in 5D all-in-one task are reported in Table 2. Our BDG attains the State-of-The-Art (SoTA) performance across all tasks. Compared to DiffUIR (Zheng et al., 2024), which employs the same architecture and a similar diffusion sampling process, significant improvements are realized, measuring 3.72 dB, 2.30 dB, 1.39 dB, and 1.94 dB for deraining, low light enhancement, dehazing, and deblurring, respectively. In contrast to the recently leading method DCPT (Hu et al., 2025), an enhancement of 2.46 dB is also observed in deraining. In particular, the restoration fidelity of

Method	Deraining (6sets)		Enhancement		Desnowing		Dehazing		Deblurring (4sets)	
	PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow	PSNR \uparrow	SSIM \uparrow
Prompt-IR	29.56	0.888	22.89	0.847	31.98	0.924	32.02	0.952	27.21	0.817
DA-CLIP	28.96	0.853	24.17	0.882	30.80	0.888	31.39	0.983	25.39	0.805
DiffUIR-L	31.03	0.904	25.12	0.907	32.65	0.927	32.94	0.956	29.17	0.864
InstructIR \dagger	31.35	0.911	24.33	0.887	32.71	0.934	32.08	0.957	29.58	0.874
RAM-PromptIR \dagger	32.17	0.914	24.88	0.891	32.75	0.939	33.79	0.976	29.76	0.871
DCPT-PromptIR \dagger	32.29	0.921	25.39	0.893	32.79	0.941	32.94	0.956	30.32	0.888
BDG (Ours)	34.75	0.974	27.42	0.930	32.86	0.950	34.33	0.993	31.11	0.904

Table 2: **All-in-one Image Restoration** results. \dagger means the methods are retrained within datasets we used for fair comparison. The best and second results are shown in red and blue respectively.

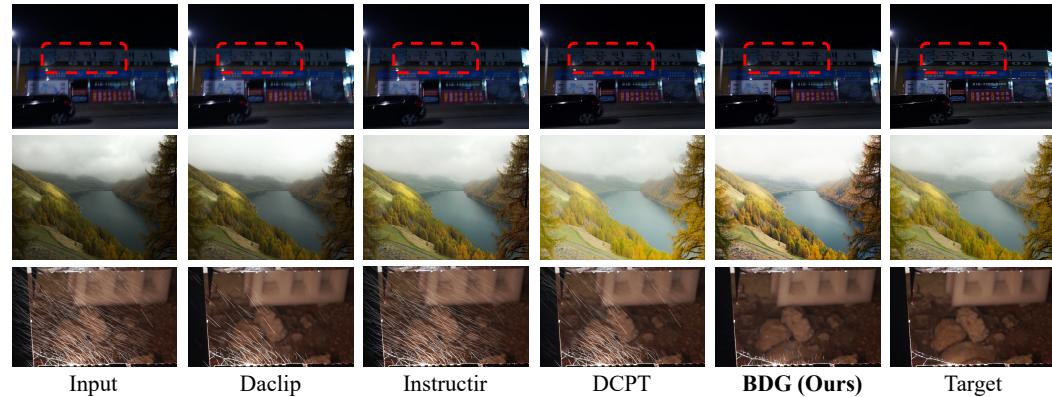


Figure 3: **Visual comparison on the 5D all-in-one image restoration task.** From top to bottom, each row corresponds to: deblurring, low-light enhancement, and deraining.

the large-scale unified visual generation model (Wang et al., 2023b) is inferior to that of the model specifically trained for restoration.

Degradation	Snow		Haze		Low-light	
	Method \downarrow	PIQE \downarrow / BRISQUE \downarrow	PIQE \downarrow / BRISQUE \downarrow	PIQE \downarrow / BRISQUE \downarrow	PIQE \downarrow / BRISQUE \downarrow	PIQE \downarrow / BRISQUE \downarrow
DA-CLIP	31.34 / 24.45		47.67 / 34.90		37.64 / 27.45	
InstructIR	33.35 / 24.41		50.97 / 31.45		36.08 / 26.31	
DCPT-NAFNet	32.59 / 25.02		52.40 / 37.97		35.48 / 26.97	
UniRestore	32.69 / 27.16		46.88 / 30.95		34.63 / 27.05	
FoundIR	33.18 / 26.20		61.14 / 42.26		44.17 / 33.51	
BDG (Ours)	31.45 / 24.00		47.59 / 34.75		34.44 / 27.41	

Table 3: **Real-world restoration results** in four real-world degradation types under the zero-shot setting. The best and second results are shown in red and blue respectively.

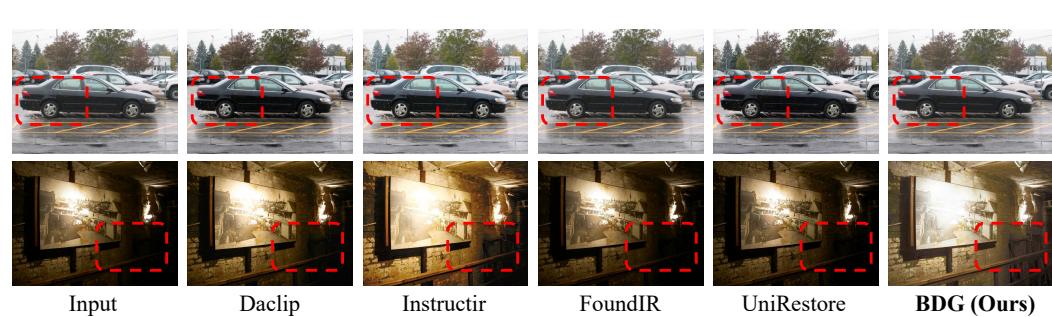


Figure 4: **Visual comparison on the real-world all-in-one image restoration task.** From top to bottom, each row corresponds to: desnowing and low-light enhancement.

Results in real-world scenarios are reported in Table 3. According to these quantitative metrics, BDG attains the majority of the best and the second-best results, notably achieving the lowest PIQE

in the low-light enhancement task. In other real-world degradations, BDG also achieves the lowest or the second-lowest PIQE and BRISQE, demonstrating its robustness. In comparison to diffusion-based methods lacking degradation identification (Zheng et al., 2024; Li et al., 2024), BDG demonstrates enhanced fidelity while maintaining the detailed texture restoration prowess inherent to the generation model.

4.2 IMAGE RESTORATION UNDER MIXED DEGRADATION

We also train and test our BDG for the mixed degradation scenarios (Guo et al., 2025).

Method	CDD11-Double					CDD11-Triple				
	L+H	L+R	L+S	H+R	H+S	L+H+R	L+H+S			
PromptIR	24.49	.789	25.05	.771	24.51	.761	24.54	.924	23.70	.925
WGWSNet	24.27	.800	25.06	.772	24.60	.765	27.23	.955	27.65	.960
WeatherDiff	21.83	.756	22.69	.730	22.12	.707	21.25	.868	21.99	.868
OneRestore	25.79	.822	25.58	.799	25.19	.789	29.99	.957	30.21	.964
MoCE-IR	26.24	.817	26.25	.800	26.04	.793	29.93	.964	30.19	.970
BDG (Ours)	27.27	.833	26.67	.817	26.59	.809	34.21	.975	34.42	.979
									26.14	.809
									26.45	.809

Table 4: *Comparison to state-of-the-art on composited degradations.* The best and second results are shown in red and blue respectively.

Results in mixed degradation scenarios are reported in Table 4. Compared to the previous SoTA method (Zamfir et al., 2025), BDG demonstrates substantial performance improvements across all mixed degradation scenarios, with particularly notable improvements in scenarios characterized by haze and rain (H+R) degradations, where the enhancement reaches 4.28 dB.

4.3 REAL-WORLD SUPER-RESOLUTION

We conduct experiments on real-world super-resolution.

Datasets	Metrics	BSRGAN	Real-ESRGAN	FeMaSR	StableSR	SUPiR	SeeSR	DiffBIR	PASD	LDM	ResShift	BDG (Ours)
DIV2K-Val	PSNR \uparrow	21.87	21.94	20.85	20.84	18.68	21.19	20.94	20.77	21.26	21.75	24.1977
	SSIM \uparrow	0.5539	0.5736	0.5163	0.4887	0.4664	0.5386	0.4938	0.4958	0.5239	0.5422	0.6241
	LPIPS \downarrow	0.4136	0.3868	0.3973	0.4055	0.4102	0.3843	0.4270	0.4410	0.4154	0.4284	0.3669
	DISTS \downarrow	0.2737	0.2601	0.2428	0.2542	0.2207	0.2257	0.2471	0.2538	0.2500	0.2606	0.2571
	FID \downarrow	64.28	53.46	53.7	36.57	32.18	31.93	40.42	40.77	41.93	55.77	43.49
	MANIQA \uparrow	0.4834	0.5251	0.4869	0.5914	0.5491	0.6198	0.6205	0.6049	0.5237	0.5232	0.5066
	MUSIQ \uparrow	59.11	58.64	58.1	62.95	65.33	68.33	65.23	66.85	56.52	58.23	61.2826
	CLIPQA \uparrow	0.5183	0.5424	0.5597	0.6486	0.6035	0.6946	0.6664	0.6799	0.5695	0.5948	0.6396
DrealSR	PSNR \uparrow	28.75	28.64	26.9	28.13	24.41	28.17	26.76	27	27.98	28.46	28.7961
	SSIM \uparrow	0.8031	0.8053	0.7572	0.7542	0.6696	0.7691	0.6576	0.7084	0.7453	0.7673	0.8039
	LPIPS \downarrow	0.2883	0.2847	0.3169	0.3315	0.3844	0.3189	0.4599	0.3931	0.3405	0.4006	0.3282
	DISTS \downarrow	0.2142	0.2089	0.2235	0.2263	0.2448	0.2315	0.2749	0.2515	0.2259	0.2656	0.2774
	MANIQA \uparrow	0.4878	0.4907	0.442	0.5591	0.457	0.6042	0.5923	0.585	0.5043	0.4586	0.4899
	MUSIQ \uparrow	57.14	54.18	53.74	58.42	64.53	64.93	61.19	64.81	53.73	50.6	58.7432
RealSR	CLIPQA \uparrow	0.4915	0.4422	0.5464	0.6206	0.58	0.6804	0.6346	0.6773	0.5706	0.5342	0.6053
	PSNR \uparrow	26.39	25.69	25.07	24.7021	22.67	25.18	24.77	24.29	25.48	26.31	25.5105
	SSIM \uparrow	0.7654	0.7616	0.7358	0.7085	0.6567	0.7216	0.6572	0.663	0.7148	0.7421	0.7509
	LPIPS \downarrow	0.267	0.2727	0.2942	0.3002	0.3545	0.3019	0.3658	0.3435	0.318	0.346	0.3016
	DISTS \downarrow	0.2121	0.2063	0.2288	0.2139	0.2385	0.2223	0.231	0.2259	0.2213	0.2498	0.2574
	MANIQA \uparrow	0.5399	0.5487	0.4865	0.6221	0.5396	0.6442	0.6253	0.6493	0.5423	0.5285	0.5578
RealSR	MUSIQ \uparrow	63.21	60.18	58.95	65.78	66.09	69.77	64.85	68.69	58.81	58.43	64.6183
	CLIPQA \uparrow	0.5001	0.4449	0.527	0.6178	0.5171	0.6612	0.6386	0.659	0.5709	0.5444	0.6332

Table 5: *Real-world super resolution results* on synthetic and real-world benchmarks. The best and second best results of each metric in diffusion-based methods are highlighted in red and blue, respectively.

Results in real-world super-resolution are shown in Table 5. We have the following observations. (1) Our BDG consistently scores the highest or second highest in PSNR, SSIM, and LPIPS across all datasets. (2) BDG shows a notable improvement in fidelity. In DIV2K-Val, BDG outperforms 2.45 dB in comparison to the second-best diffusion method and all GAN-based methods in PSNR. This huge enhancement is because diffusion-based methods often generate textures that deviate from the ground truth, putting the results at a disadvantage in full-reference metrics. In contrast, BDG closely aligns the output with LQ images through Eq. 4, securing favorable results in full-reference

486 metrics. (3) In non-reference metrics such as MANIQA, MUSIQ and CLIPQA, BDG outperforms
 487 its baseline (Rombach et al., 2022) and ResShift (Yue et al., 2023). BDG effectively informs the
 488 model about the type or level of degradation, avoiding the model from creating textures that are
 489 inconsistent with GT at lower levels of degradation. Overall, BDG excels in full-reference metrics
 490 while being competitive in non-reference metrics.

491 4.4 ABLATION STUDY

492 The results of the aforementioned experiments generally prove that BDG leads to a significant gain
 493 in restoration performance. In this subsection, we mainly analyze the impact of different components
 494 in BDG on the restoration results. We perform ablation studies on 5D all-in-one image restoration
 495 and real-world super-resolution.

Bridging	RFT	PSNR / SSIM	Bridging	RFT	PSNR / SSIM / CLIPQA
300k	0	30.25 / 0.871	300k	0	28.35 / 0.7988 / 0.5839
0	300k	31.03 / 0.908	0	300k	28.73 / 0.8093 / 0.4787
150k	150k	32.09 / 0.950	150k	150k	28.80 / 0.8039 / 0.6053

502 Table 7: Ablation of training stages on all-in-one restoration task (left) and real-world super-
 503 resolution task (right).

504 **Impact of training stages.** As shown in Table 7, the optimal restoration performance is achieved
 505 when both the bridging stage and the RFT stage are present.

\mathcal{L}_{gen}	\mathcal{L}_{bridge}	$\mathcal{L}_{deg-cls}$	PSNR / SSIM	\mathcal{L}_{bridge}	\mathcal{L}_{fcnl}	PSNR / SSIM / CLIPQA
✓	✗	✗	31.11 / 0.883	✗	✗	27.57 / 0.7821 / 0.5839
✓	✓	✗	20.88 / 0.847	✗	✓	28.23 / 0.7988 / 0.5935
✓	✓	✓	32.09 / 0.950	✓	✗	27.88 / 0.7844 / 0.5589
				✓	✓	28.80 / 0.8039 / 0.6053

513 Table 9: Ablation of losses in the bridging stage (left) and the RFT stage (right).

514 **Impact of losses.** As demonstrated in Table 9, the loss functions that we have developed for the
 515 bridging stage and the RFT stage result in improvements in restoration fidelity while maintain-
 516 ing perceptual integrity. The performance of the model deteriorates markedly when reliance is not
 517 placed on $\mathcal{L}_{deg-cls}$. We contend that in the absence of $\mathcal{L}_{deg-cls}$, the MAS-GLCM encoder is devoid
 518 of discrimination objectives, leading to a model collapse issue. Consequently, the diffusion features
 519 become aligned with the collapsed MAS-GLCM encoder, resulting in suboptimal results. In con-
 520 trast, with only \mathcal{L}_{gen} , the collapsed MAS-GLCM encoder does not adversely impact the restoration
 521 models, thus still achieving a certain degree of restoration performance.

524 5 CONCLUSION

525 This paper presents Bridging Degradation discrimination and Generation (BDG) for universal image
 526 restoration. The BDG approach proficiently enhances the model’s capability to perform restoration
 527 contingent upon type or level of input degradation while effectively leveraging the generative prior
 528 to enrich the detail and texture of the output image. Specifically, we design MAS-GLCM to finely
 529 identify the degradation. Subsequently, by reformulating the diffusion backward process equation,
 530 we design a three-stage diffusion training method. It endows the model with the ability to discern
 531 degradation while preserving its capacity to generate superior texture details by aligning the MAS-
 532 GLCM with the diffusion features. We substantiate the efficacy of BDG in the context of all-in-
 533 one image restoration, mixed degradation image restoration and real-world super-resolution. In
 534 our future works, we aim to further expand BDG to address these tasks through a unified network
 535 architectures and parameters.

536 **Ethics Statement.** This paper presents work whose goal is to advance the field of image restoration.
 537 There are many potential societal consequences of our work. Given the increasing capabilities of
 538 image restoration techniques, we advocate avoiding the misuse of related technologies, such as
 539 forging misleading images or restoring and enhancing images for malicious purposes.

540 **Reproducibility Statement.** We state that BDG is highly reproducible. Implementation and
 541 datasets details and on our main experiences are provided in Section 4 and Appendix C. It is an-
 542 ticipated that these descriptions can sufficiently demonstrate the reproducibility of BDG. We plan to
 543 open-source the code and weight files after the paper passes peer review.

544
 545 **REFERENCES**
 546

547 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
 548 Dataset and study. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*
 549 Workshops, July 2017.

550 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single
 551 image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF*
 552 international conference on computer vision, pp. 3086–3095, 2019.

553 I Chen, Wei-Ting Chen, Yu-Wei Liu, Yuan-Chun Chiang, Sy-Yen Kuo, Ming-Hsuan Yang, et al.
 554 Unirestore: Unified perceptual and task-oriented image restoration model using diffusion prior.
 555 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17969–17979,
 556 2025.

557 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
 558 structure and texture similarity. *IEEE transactions on pattern analysis and machine intelligence*,
 559 44(5):2567–2581, 2020.

560 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 561 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 562 *tion*, pp. 12873–12883, 2021.

563 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 564 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 565 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 566 2024.

567 Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang, and
 568 Bo Dai. Generative diffusion prior for unified image restoration and enhancement. In *Proceedings*
 569 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9935–9946, 2023.

570 Yu Guo, Yuan Gao, Yuxu Lu, Huilin Zhu, Ryan Wen Liu, and Shengfeng He. Onerestore: A
 571 universal restoration framework for composite degradation. In *European Conference on Computer*
 572 *Vision*, pp. 255–272. Springer, 2025.

573 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 574 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 575 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

576 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 577 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 578 *neural information processing systems*, 30, 2017.

579 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 580 *neural information processing systems*, 33:6840–6851, 2020.

581 JiaKui Hu, Lujia Jin, Zhengjian Yao, and Yanye Lu. Universal image restoration pre-training via
 582 degradation classification. In *The Thirteenth International Conference on Learning Representa-*
 583 *tions*, 2025. URL <https://openreview.net/forum?id=PacBhLzeGO>.

584 Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco: Adversarial contrast for efficient
 585 learning of unsupervised representations from self-trained negative adversaries. In *Proceedings*
 586 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1074–1083, 2021.

587 Xiaozhong Ji, Guangpin Tao, Yun Cao, Ying Tai, Tong Lu, Chengjie Wang, Jilin Li, and Feiyue
 588 Huang. Frequency consistent adaptation for real world super resolution. In *Proceedings of the*
 589 *AAAI Conference on Artificial Intelligence*, volume 35, pp. 1664–1672, 2021.

594 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 595 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 4401–4410, 2019.

597 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 598 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

600 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
 601 age quality transformer. In *Proceedings of the IEEE/CVF international conference on computer*
 602 *vision*, pp. 5148–5157, 2021.

603 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 605 2015.

606 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
 607 Benchmarking single-image dehazing and beyond. *TIP*, 2018.

609 Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restora-
 610 tion for unknown corruption. In *CVPR*, 2022a.

611 Hao Li, Xiang Chen, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. Foundir: Unleashing
 612 million-scale training data to advance foundation models for image restoration. *arXiv preprint*
 613 *arXiv:2412.01427*, 2024.

615 Wei Li, Qiming Zhang, Jing Zhang, Zhen Huang, Xinmei Tian, and Dacheng Tao. Toward real-
 616 world single image deraining: A new benchmark and beyond. *arXiv preprint arXiv:2206.05514*,
 617 2022b.

618 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
 619 Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of*
 620 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.

622 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 623 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
 624 *European Conference on Computer Vision*, pp. 430–448. Springer, 2024.

625 Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
 626 denoising diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 627 *and Pattern Recognition*, pp. 2773–2783, 2024.

629 Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware
 630 deep network for snow removal. *IEEE Transactions on Image Processing*, 27(6):3064–3073,
 631 2018.

632 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling
 633 vision-language models for universal image restoration. In *The Twelfth International Conference*
 634 *on Learning Representations*, 2023.

636 Cheng Ma, Yongming Rao, Yean Cheng, Ce Chen, Jiwen Lu, and Jie Zhou. Structure-preserving
 637 super resolution with gradient guidance. In *Proceedings of the IEEE/CVF conference on computer*
 638 *vision and pattern recognition*, pp. 7769–7778, 2020.

639 Radu Timofte Marcos V. Conde, Gregor Geigle. High-quality image restoration following human
 640 instructions, 2024.

642 Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. *arXiv*
 643 *preprint arXiv:1610.03483*, 2016.

644 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 645 for dynamic scene deblurring. In *CVPR*, 2017.

647 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 648 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

648 Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir:
 649 Prompting for all-in-one image restoration. *NeurIPS*, 2023.
 650

651 Chu-Jie Qin, Rui-Qi Wu, Zikun Liu, Xin Lin, Chun-Le Guo, Hyun Hee Park, and Chongyi Li. Re-
 652 store anything with masks: Leveraging mask image modeling for blind all-in-one image restora-
 653 tion. In *European Conference on Computer Vision*, pp. 364–380. Springer, 2024.

654 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 655 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 656 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

657

658 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 659 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 660 national Conference on Learning Representations*, 2021.

661 Xiaole Tang, Xin Hu, Xiang Gu, and Jian Sun. Residual-conditioned optimal transport: towards
 662 structure-preserving unpaired and paired image restoration. In *International Conference on Ma-
 663 chine Learning*, pp. 47757–47777. PMLR, 2024a.

664 Xiaole Tang, Xin Hu, Xiang Gu, and Jian Sun. Residual-conditioned optimal transport: To-
 665 wards structure-preserving unpaired and paired image restoration. In *Forty-first International
 666 Conference on Machine Learning*, 2024b. URL <https://openreview.net/forum?id=1rBHP1knxP>.

667

668 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 669 Scalable image generation via next-scale prediction. *arXiv preprint arXiv:2404.02905*, 2024.

670

671 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and
 672 feel of images. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 673 2555–2563, 2023a.

674

675 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
 676 diffusion prior for real-world image super-resolution. *International Journal of Computer Vision*,
 677 132(12):5929–5949, 2024.

678 Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images:
 679 A generalist painter for in-context visual learning. In *Proceedings of the IEEE/CVF Conference
 680 on Computer Vision and Pattern Recognition*, pp. 6830–6839, 2023b.

681

682 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind
 683 super-resolution with pure synthetic data. In *International Conference on Computer Vision Work-
 684 shops (ICCVW)*.

685 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
 686 enhancement. In *British Machine Vision Conference*, 2018.

687

688 Hongyang Wei, Shuaizheng Liu, Chun Yuan, and Lei Zhang. Perceive, understand and restore: Real-
 689 world image super-resolution with autoregressive multimodal generative models. *arXiv preprint
 690 arXiv:2503.11073*, 2025.

691 Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang
 692 Lin. Component divide-and-conquer for real-world image super-resolution. In *Computer Vision–
 693 ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
 694 VIII 16*, pp. 101–117. Springer, 2020.

695

696 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr:
 697 Towards semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF
 698 conference on computer vision and pattern recognition*, pp. 25456–25467, 2024.

699 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 700 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assess-
 701 ment. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 pp. 1191–1200, 2022.

702 Wenhao Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep
703 joint rain detection and removal from a single image. In *Proceedings of the IEEE conference on*
704 *computer vision and pattern recognition*, pp. 1357–1366, 2017.

705 Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao,
706 and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image
707 restoration in the wild, 2024.

708 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image
709 super-resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36:
710 13294–13307, 2023.

711 Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, and
712 Radu Timofte. Complexity experts are task-discriminative learners for any image restoration.
713 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12753–12763,
714 2025.

715 Jinghao Zhang, Jie Huang, Mingde Yao, Zizheng Yang, Hu Yu, Man Zhou, and Feng Zhao.
716 Ingredient-oriented multi-degradation learning for image restoration. In *Proceedings of the*
717 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5825–5835, 2023a.

718 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
719 model for deep blind image super-resolution. In *IEEE International Conference on Computer*
720 *Vision*, pp. 4791–4800, 2021.

721 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
722 diffusion models, 2023b.

723 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
724 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
725 *computer vision and pattern recognition*, pp. 586–595, 2018.

726 Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, and Wei-shi Zheng. Selec-
727 tive hourglass mapping for universal image restoration based on diffusion model. In *Proceedings*
728 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A EXPERIMENTAL SETTINGS ON STUDIES ABOUT MAS-GLCM
757
758
759

760 **TSNE settings in Sec. 3.1.** In the TSNE visualization results, we select three weather-related degra-
761 dations: haze, snow, and low-light, as well as two types of noise: Gaussian noise and Pepper noise.
762 Degraded image data for hazy, low-light, and snowy conditions are obtained from SOTS, LOL, and
763 Snow100K, respectively, while Gaussian and Pepper noise data are synthesized from the Kodak
764 dataset with a Gaussian noise level of 25 and a Pepper noise ratio of 0.1. This experiment utilizes
765 the TSNE function from “sklearn.manifold” to reduce the data dimensionality to a two-dimensional
766 space, with the number of iterations set to 2k and computation accelerated using four CPU cores.
767

768 **Datasets used in Sec. 3.1.** We select the first 100 images from SOTS, LOL, and Snow100K as
769 representative degraded image data for hazy, low-light, and snowy conditions, respectively, while
770 the data with different noise types and noise levels are generated from the same Kodak dataset. Each
771 image is center-cropped to 256×256 to ensure a consistent resolution. We use the default setting
772 of the KNeighborsClassifier in the Python library sklearn, which assigns equal weights to all neigh-
773 boring points and employs the Minkowski distance with the default parameter $p=2$, corresponding
774 to the Euclidean distance.
775

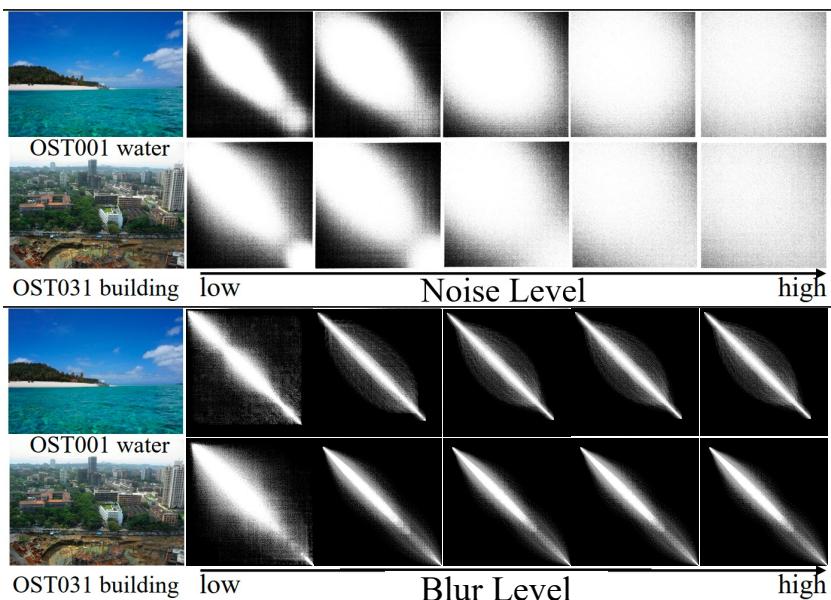
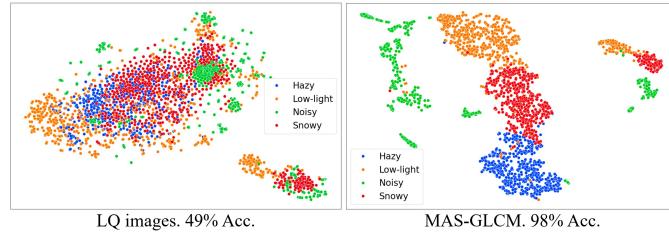
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 5: MAS-GLCM on images with different texture.

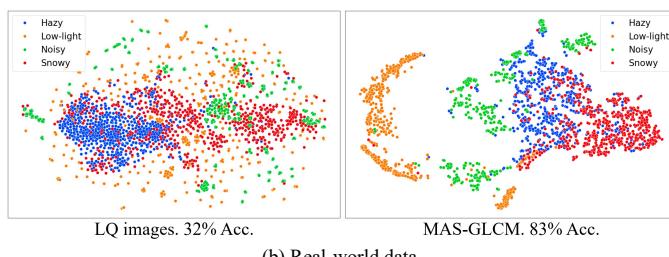
796 **More results on MAS-GLCM.** **(1) MAS-GLCM robustness.** We argue that MAS-GLCM in dif-
797 ferent semantics is not significantly different, as shown in Figure 6. In the OST data set with seven
798 different semantics, MAS-GLCM classifies the degradation well (77% in the noise level classifi-
799 cation). **2) Real datasets.** We evaluate MAS-GLCM on real datasets: low-light (LOLv2), snow
800 (Snow100k), haze (RTTS) and noise (SIDD). The result can be shown in Figure 6 (c). **3) Scaling**
801 **datasets.** We also test MAS-GLCM on 5000 synthetic or real data, with the results shown in Fig-
802 ure 6. **4) Mixed datasets.** We conduct experiments on the CDD dataset, which contains six com-
803 posite degradations: haze+rain, low+haze, low+rain, low+snow, low+haze+rain, and low+haze+snow.
804 T-SNE visualizations of the clustering behavior in Figure 7. These show that MAS-GLCM suc-
805 cefully separates certain categories such as low+snow and low+rain from others. However, it strug-
806 gles to fully distinguish more similar composite degradations, such as low+haze+rain and low+haze.
807
808
809

810
811
812
813
814
815
816
817
818
819
820



(a) Synthetic data.

821
822
823
824
825
826
827
828
829



(b) Real-world data.

830
831
832
833
834
835
836
837
838
839
840
841
842
843

Figure 6: More results on MAS-GLCM.

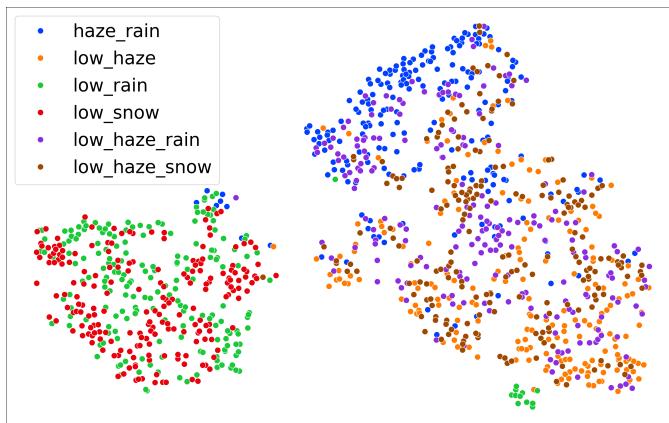


Figure 7: T-SNE results on mixed degradations.

864 **B PROOF OF EQ. 4**
865866 The forward process of the diffusion model we use is as follows.
867

868
869
$$x_t = x_{t-1} + \alpha_t x_{res} + \beta_t \epsilon_{t-1} - \delta_t x_{lq}, \quad (11)$$

870

871 where x_t is the diffusing result in timestep t , $x_{res} := x_{lq} - x_{hq}$ is the residual of the LQ image x_{lq}
872 and the HQ image x_{hq} . α_t , β_t , and δ_t is the noise coefficient of x_{res} , standard Gaussian noise ϵ , and
873 x_{lq} , respectively.874 Since we need to fit the distribution of x_{hq} , we set $x_0 = x_{hq}$. According to the Markov Chain, Eq. 3
875 can be reformulated as follows.
876

877
$$x_t = x_0 + \bar{\alpha}_t x_{res} + \bar{\beta}_t \epsilon - \bar{\delta}_t x_{lq}, \quad (12)$$

878

879 where $\bar{\alpha}_t = \sum_{i=1}^t \alpha_i$, $\bar{\beta}_t = \sqrt{\sum_{i=1}^t \beta_i^2}$, and $\bar{\delta}_t = \sum_{i=1}^t \delta_i$.880 Once this diffusion model is trained, we simulate the distribution $p_\theta^t(x_{t-1}|x_t)$ through
881 $q(x_{t-1}|x_t, x_{lq}, x_0^\theta, I_{res}^\theta)$, where I_{res}^θ is the predicted residual and $x_0^\theta = x_{lq} - x_{res}^\theta$ according to
882 the definition of x_{res} .
883884 Based on the Bayes' theorem, we can obtain the following.
885

886
887
$$\begin{aligned} p_\theta(x_{t-1}|x_t) &\rightarrow q(x_{t-1}|x_t, x_{in}, I_0^\theta, x_{res}^\theta) \\ &= q(x_t|x_{t-1}, x_{in}, x_{res}^\theta) \frac{q(x_{t-1}|I_0^\theta, x_{res}^\theta, x_{in})}{q(x_t|I_0^\theta, x_{res}^\theta, x_{in})} \\ &\propto \exp \left[-\frac{1}{2} \left(\left(\frac{\bar{\beta}_t^2}{\beta_t^2 \bar{\beta}_{t-1}^2} \right) x_{t-1}^2 - 2 \left(\frac{x_t + \delta_t x_{in} - \alpha_t x_{res}^\theta}{\beta_t^2} \right. \right. \right. \\ &\quad \left. \left. \left. + \frac{I_0^\theta + \bar{\alpha}_{t-1} x_{res}^\theta - \bar{\delta}_{t-1} x_{in}}{\bar{\beta}_{t-1}^2} \right) x_{t-1} + C(x_t, I_0^\theta, x_{res}^\theta, x_{in}) \right) \right]. \end{aligned} \quad (13)$$

888

889 As the goal of the formulation is to obtain the distribution of x_{t-1} , we simplify and rearrange it into
890 a form about x_{t-1} and $C(x_t, I_0^\theta, x_{res}^\theta, x_{in})$ is the term unrelated to it. So, the mean $\mu_\theta(x_t, t)$ and
891 the variance $\sigma_\theta(x_t, t)$ of the distribution $p_\theta^t(x_{t-1}|x_t)$ are as follows.
892

901
902
$$\begin{aligned} \mu_\theta(x_t, t) &= x_t - \alpha_t I_{res}^\theta - \frac{\beta_t^2}{\bar{\beta}_t} \epsilon^\theta + \delta_t x_{lq}; \\ \sigma_\theta(x_t, t) &= \frac{\beta_t^2 \bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}. \end{aligned} \quad (14)$$

903
904
905
906

907 **C EXPERIMENTS SETUP AND QUALITATIVE COMPARISONS**
908912 **C.1 ABLATION ON ANGLES AND SCALES IN MAS-GLCM**
913914 We evaluate several configurations with reduced or asymmetric angle and scale settings:
915916

- 917 • Incomplete angles. For instance, using only non-negative angles (e.g., [0, 45, 90, 135, 180])
918 restricts the GLCM to capture co-occurrence patterns from directions above the current
919 pixel, potentially missing symmetric or opposing texture structures.

918 • Reduced angles. Using a sparse set such as [-180, -90, 0, 90, 180] limits the model to only
 919 horizontal and vertical relationships, ignoring diagonal textures that are common in natural
 920 images.
 921 • Limited scales. Reducing the number of distances decreases sensitivity to both fine-grained
 922 and coarse-level texture variations.
 923

angles	scales	Avg. PSNR (dB) / SSIM
[0, 45, 90, 135, 180]	[1, 3, 5]	31.77 / 0.932
[-180, -90, 0, 90, 180]	[-5, -1, 1, 5]	31.93 / 0.944
[-180, -135, -90, -45, 0, 45, 90, 135, 180]	[-5, -3, -1, 1, 3, 5]	32.09 / 0.950

924 Table 10: Ablation on angles and scales in MAS-GLCM.
 925
 926
 927
 928

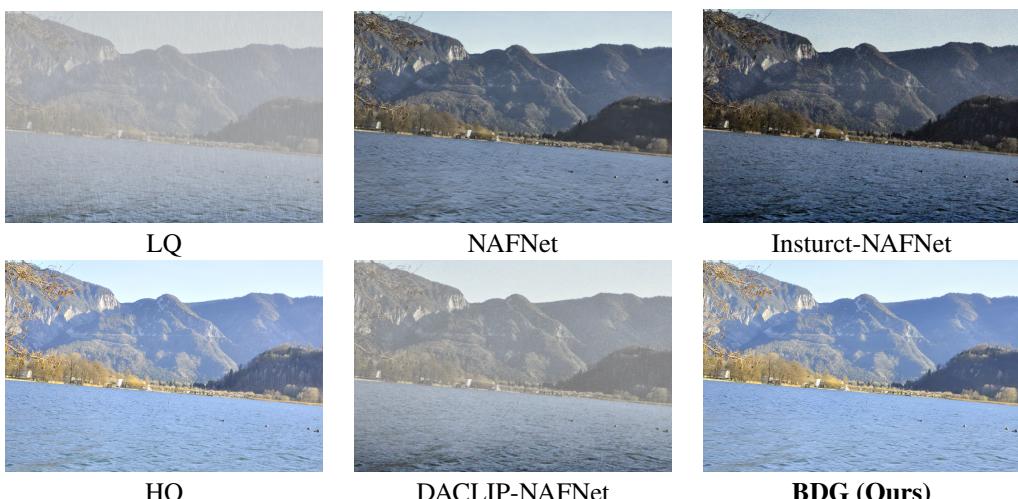
929 As shown in Table 10, when the selected angles and scales provide comprehensive spatial coverage,
 930 restoration performance is consistently strong. The full configuration achieves the best results, in-
 931 dicating that complete directional and scale diversity helps the model better characterize complex
 932 degradation patterns. However, performance degrades noticeably when critical directions or scales
 933 are omitted, particularly when symmetry or diagonal structures are neglected.
 934

935 C.2 5D ALL-IN-ONE RESTORATION

936 **Datasets.** For all-in-one image restoration, datasets are: Rain13k (Yang et al., 2017) and SynRain-
 937 13k (Li et al., 2022b), which contains 13,712 training images for deraining; LOL (Wei et al., 2018),
 938 which contains 485 training images and 15 test images for low-light enhancement; Snow100K Liu
 939 et al. (2018), which contains 50,000 training data, 50,000 testing data for desnowing; RESIDE (Li
 940 et al., 2018), which contains 72,135 training images and 500 test images (SOTS) for dehazing;
 941 GoPro (Nah et al., 2017) and RealBlur for motion deblurring. Following Zheng et al. (2024), we use
 942 the PSNR and SSIM calculated in the Y channel in the YCbCr space as metrics.
 943

944 C.3 MIXED DEGRADATION

945 **Datasets.** For the mixed degradation restoration task, we use the CDD Guo et al. (2025), which
 946 consists of 11 degradations (rain, low light, snow, and their combinations). It has 13,013 image
 947 pairs for training and 2,200 for testing. Following Hu et al. (2025), we use the PSNR and SSIM
 948 calculated in the sRGB space as metrics.
 949

950 **Qualitative comparisons.**951 Figure 8: *Visual comparison on low-light + haze + rain.*
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 C.4 REAL-WORLD SUPER-RESOLUTION
973

974 **Datasets.** Following Wang et al. (2024); Wu et al. (2024), we use the LSDIR Li et al. (2023) and
975 the first 10k images of FFHQ Karras et al. (2019) for training data. Training pairs are synthesized
976 via Real-ESRGAN Wang et al.. For evaluation, we employ the following test sets: (1) We extract 3k
977 randomly cropped 512×512 resolution patches from the DIV2K validation set Agustsson & Timofte
978 (2017), which are subsequently degraded using the same pipeline as used during training. This
979 dataset is henceforth referred to as DIV2K-Val. (2) Additionally, we use center-cropped RealSR Cai
980 et al. (2019) and DRealSR Wei et al. (2020) as real-world benchmarks, following Wang et al. (2024).
981

982 **Metrics.** To offer a comprehensive assessment of the performance of the various methods, we
983 engage in a spectrum of reference and non-reference metrics. PSNR and SSIM, computed in the Y
984 channel in the YCbCr color space, are used as reference-based fidelity metrics, while LPIPS Zhang
985 et al. (2018) and DISTS Ding et al. (2020) serve as reference-based perceptual quality metrics. The
986 FID statistic Heusel et al. (2017) assesses the distributional divergence between the original and
987 reconstructed images. In addition, MANIQA Yang et al. (2022), MUSIQ Ke et al. (2021), and
988 CLIPQA Wang et al. (2023a) are implemented as non-reference image quality metrics.
989

990 **Qualitative comparisons.**
991

1019 Figure 9: BDG handles complex noise and text details in images well, but still faces certain over-
1020 smoothing problems. Please zoom in for better view.
1021

1022 D LIMITATIONS AND FUTURE WORK
1023

1024 There remains considerable scope for advancing the design of MAS-GLCM and BDG. Specifically,
1025 the current implementation of MAS-GLCM does not accommodate the detection of color deviations
1026

1026 or global geometric transformations, and it may exhibit sensitivity to image resolution. Moreover,
1027 BDG depends on a relatively complex three-stage training paradigm. In future work, we intend to
1028 extend the generalization capability of MAS-GLCM to a broader range of low-level vision tasks and
1029 to further simplify and simplify the three-stage training strategy employed in BDG.
1030

1031 **E THE USE OF LARGE LANGUAGE MODELS (LLMs)**
1032

1033 LLMs are used to correct potential grammatical inaccuracies in the manuscript. LLMs do not par-
1034 ticipate in research ideation.
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079