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Action-semantic Consistent Knowledge for
Weakly-Supervised Action Localization
Yu Wang, Member, IEEE, Shengjie Zhao, Senior Member, IEEE, and Shiwei Chen

Abstract—Weakly-supervised temporal action localization aims
to detect temporal intervals of actions in arbitrarily long
untrimmed videos with only video-level annotations. Owing to
label sparsity, learning action consistency is intractable. In this
paper, we assume that frames with similar representations in
a given video should be considered as the same action. To this
end, we develop a query-based contrastive learning paradigm to
ensure action-semantic consistency. This mechanism encourages
normalized embeddings with the same class to be pulled closer
together, while embeddings from different classes are repelled
apart. Besides, we design a two-branch framework, consisting
of a class-aware branch and a class-agnostic branch, to learn
salient features and fine-grained clues respectively. To further
guarantee the action-semantic consistency of the two branches,
unlike previous methods that handle each branch indepen-
dently, we model the relationship between the two branches
to avoid unreasonable predictions. Finally, the proposed model
demonstrates superior performance over existing methods on
the publicly available THUMOS-14 and ActivityNet-1.3 datasets.
Substantial experiments and ablation studies also demonstrate
the effectiveness of our model.

Index Terms—Temporal action localization, Contrastive learn-
ing, Action-semantic consistency

I. INTRODUCTION

Temporal action localization (TAL) aims to detect action
intervals in untrimmed videos. As a fundamental task for video
understanding [1], [2], [3], it has drawn widespread attention
from research, facilitating the rapid and remarkable advance
in the fully-supervised settings [4], [5], [6]. Nevertheless, the
prohibitively expensive cost of annotations is unacceptable in
industrial production. For this reason, weakly-supervised TAL
(WS-TAL) [7], [8], [9] with only video-level labels has been
advocated to tackle this issue recently.

Owing to label sparsity, a majority of WS-TAL approaches
[10], [11], [12], [13], [14], [15] convert the localization into a
classification task. In this paradigm, algorithms are designed to
detect temporal regions contributing to video-level predictions.
Specifically, these approaches first disintegrate untrimmed
videos into non-overlapping snippets, on which snippet-wise
attention activations and class activation sequence (CAS) are
generated. Action regions are localized by thresholding and
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Fig. 1: Given a video containing the action “Scuba diving”,
the normalized representations of frames containing this action
should be pulled close, while the context and background
should be repelled apart.

merging consecutive activations along the time dimension. In
particular, there exist two kinds of approaches, i.e., class-aware
and class-agnostic. The class-aware mechanism typically em-
ploys multiple instance learning (MIL) [16], [17] to generate
snippet-wise activations for each class and aggregate them
with top-k confidence. MIL-based algorithms focus on extract-
ing salient features that correspond the most to video-level
predictions, resulting in them dominating and suppressing the
activation values of other areas. However, these suppressed
regions with lower confidence are beneficial to guarantee
the integrity of actions. On the contrary, the class-agnostic
mechanism concentrates on modeling the fine-grained patterns.
They independently generate class-agnostic attention scores
for each snippet, representing the confidence that it belongs
to the foreground, background, and context. Afterwards, a
temporal pooling over all snippets with attention scores is
utilized to get a compact video-level representation. Despite
accessing all snippet features, such class-agnostic attention
scores are semantically ambiguous and incapable of detecting
accurate temporal boundaries. To address this dilemma, Wang
et. al [10] proposes a two-branch structure to integrate class-
agnostic and class-agnostic paradigms into a unified frame-
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work, where both the fine-grained and salient representations
are extracted for more precise localization. Nevertheless, the
two branches are independently designed to model different
aspects of actions, resulting in potential inconsistencies and
conflicts in activation values. For this reason, AICL [18]
utilizes contrastive learning with an action consistency con-
straint to reduce the difference. SMEN [19] introduces a
novel slow-motion mining strategy and explicitly induces two
branches encoding slow- and normal-motion respectively. In
this paper, we follow the two-branch structure component of
a class-aware branch and a class-agnostic branch. Since the
class-agnostic branch cannot perceive semantic information,
it is difficult to search for solutions and is prone to model
collapse in the absence of snippet-level annotations. To this
end, we further leverage the semantic knowledge of the class-
aware branch to instruct the class-agnostic branch’s learning
process. In this manner, semantic priors from the class-aware
branch narrow the solution space of the class-agnostic branch
while avoiding prediction conflicts of two branches, which is
conducive to learning action-semantic consistency. In fact, the
success of semantic distillation in weakly supervised scenarios
has also been verified for the action recognition task [20].

Besides, whether the confidence level of each frame is
accurate directly affects the quality of subsequent boundary
regression. Owing to label sparsity, there are no explicit
signals to supervise this procedure. To address this intractable
problem, the temporal class activation map (TCAM) [21] is
developed to ensure that snippets responding to the video-level
classification have high confidence. some attention generation
and aggregation strategies [22], [23], [24] are also proposed
to alleviate this issue. Wang et. al [10] introduce a global
dictionary to facilitate similar representations to be considered
as the same action class. In this manner, they hope to guarantee
semantic consistency between snippets. However, a global
dictionary in [10] forces all video actions to have similar
representations, which is unreasonable as each video has its
specific scenario and context. In this paper, we design a query-
based mechanism with contrastive learning to ensure that
snippets with similar representations are considered the same
actions. Specifically, each query retrieves semantic-specific ac-
tion and is updated dynamically according to the video context.
Then the snippets retrieved by the same dynamic query are
clustered together with contrastive learning, as illustrated in
Fig. 1. In this fashion, the semantic relationship of snippets
is dynamically and explicitly investigated to encourage more
reasonable localization in the weakly-supervised setting.

In general, the main contributions and innovations of this
work are summarized as follows:

1) We propose a novel Action-Semantic Consistency net-
work (ASC-Net) consisting of class-aware and class-
agnostic branches to jointly extract salient and fine-
grained features of actions for more accurate localiza-
tion. Besides, the semantic knowledge is distilled from
the class-aware branch to the class-agnostic branch to
narrow the search space of solutions.

2) Despite the infeasibility of accessing snippet-level an-
notations, we assume that snippets with similar repre-
sentations in a specific video should be considered as

the same action. Therefore, we propose a novel query-
based mechanism with a contrastive loss to dynamically
investigate the semantic relationship of actions for more
reasonable localization.

3) Extensive experiments on THUMOS-14 and Activi-
tyNet1.3 datasets demonstrate that ASC-Net achieves
remarkable advances over existing methods. Also, the
detailed ablation studies uncover the effectiveness of the
proposed mechanisms.

II. RELATED WORK

A. Action Recognition

As a fundamental task in video understanding, action recog-
nition is mainly dedicated to recognizing categories of actions
in trimmed videos. Some investigations even directly utilize
off-the-shelf action recognition models to extract video-level
features for more complex downstream tasks [25], [26], [27],
[28], [20], [29]. Conventional action recognition methods [30],
[31] heavily depend on manually well-designed criteria for
feature extraction, which is inefficient and time-consuming.
With the rise of deep neural networks and their powerful
capabilities in tackling computer vision [32], [33], [34], [35],
some research has attempted to investigate spatio-temporal dy-
namics of videos in an end-to-end fashion, e.g., C3D [36], I3D
[37], TSM [38], SlowFast [39], and video swin transformer
[40]. In this paper, I3D [37] is utilized for preliminary feature
extraction from untrimmed videos.

B. Fully-Supervised Temporal Action Localization

Different from action recognition, TAL requires models
to predict not only the categories of actions, but also the
temporal intervals. Typically, the fully-supervised paradigm
has access to frame-wise annotations. The primary approaches
are categorized into two groups, i.e., bottom-up and top-down.
In detail, the bottom-up methods [41], [42], [43] predict the
results of each frame, which are further aggregated by taking
some well-designed post-processing strategies. On the con-
trary, the top-down methods [44], [45], [46], [47], [48], [49],
[50] often rely on state-of-the-art object detection techniques
in the image domain. They first generate action proposals
along the temporal direction. Then the boundaries of intervals
are further refined by prior knowledge or regression-based
mechanisms. Undoubtedly, the fully-supervised paradigm re-
quires fine-grained annotations, which is fairly labor-intensive
and time-consuming.

C. Weakly-Supervised Temporal Action Localization

To alleviate the demand for annotations in a fully-supervised
setting, WS-TAL has received surging attention recently. Since
only video-level labels are available, the principle of WS-TAL
is to discover frames that respond to video-level classification
as temporal action intervals. As a result, the mainstream meth-
ods are roughly categorized into two groups, i.e., class-aware
and class-agnostic. First, the class-aware pipeline utilizes the
MIL mechanism to learn category-specific CAS, and then
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Fig. 2: The overview of ASC-Net. It consists of the class-agnostic and class-aware modules, which jointly extract salient and
fine-grained features of actions. Since the class-aware module is sensitive to semantics, it is designed to instruct the class-
agnostic module. The final localization results are acquired with a fusion operation on their outputs. Besides, a query-based
mechanism is developed to encode the semantic relationship of actions dynamically. ⊕ and ⊗ represent element-wise addition
and tensor multiplication, respectively.

picks up a top-k discriminative subset to construct video-
level classification scores. Specifically, W-TALC [17] jointly
optimizes MIL loss and co-activity similarity loss to detect
activities at a fine granularity. BaS-Net [51] proposes an
asymmetrical MIL-based weight-sharing architecture with a
filtering module and contrasting objectives to suppress activa-
tions from background frames. ACM-Net [11] constructs both
a hybrid attention module and a MIL module to distinguish
action instances, context, and non-action instances. Ren et.
al [52] develops proposal-based MIL to inhibit low-quality
proposals. CoLA [53] pioneeringly introduces the contrastive
representation learning paradigm with an efficient sampling
strategy for hard snippet mining. PivoTAL [54] injects prior
knowledge into MIL-Based structure from a localization-by-
localization perspective to further refine boundaries. DELU
[55] proposes a generalized evidential deep learning frame-
work for WS-TAL, where both video- and snippet-level un-
certainty are considered. Nevertheless, class-aware methods
rely on MIL and have a major limitation in that they only
concentrate on the most salient features but ignore fine-grained
clues. To address this problem, FC-CRF [56] attempts to erase
progressively the most discriminative parts to highlight other
less discriminative snippets. In contrast, our method integrates
the class-aware mechanism and class-agnostic mechanism to
complement each other. Besides, the proposed method forces
the class-aware module to instruct the class-agnostic one for
effective learning.

Furthermore, the class-agnostic mechanism employs
attention-based approaches and focuses on the general
actions in the video. In specific, UntrimmedNets [57]
designs a soft-attention structure to search for relevant

snippets for boosted performance. DGAM [12] finds an
action-confusion phenomenon and proposes a conditional
Variational Auto-Encoder (VAE) for the effective separation
of action and context instances. ASL [8] explores a general
independent concept of action by investigating a class-
agnostic actionness network. HAM-Net [23] develops a
hybrid attention mechanism to model an action in its entirety.
LGCA [24] explores an adaptive multi-modal fusion strategy
with leaky gated cross-attention. However, these class-
agnostic approaches fail to perceive action semantics and
stuck in sub-optimal solutions. To overcome this drawback,
Wang et. al proposes a two-stream network incorporating
class-aware and class-agnostic mechanisms to extract both
salient and fine-grained features. AICL [18] highlights
inconsistency between the class-aware and class-agnostic
branches, proposing a consistency constraint to reduce the
discrepancy between them. In contrast, we also integrate
such two mechanisms into a unified framework, where the
class-aware branch’s semantic knowledge is distilled to
instruct the learning process of the class-agnostic branch,
leading to the shrinkage of the search space while ensuring
the prediction consistency of two branches.

Besides, an intractable issue in WS-TAL is label sparsity.
Due to the absence of frame-wise annotations, it hinders the
generation of high-quality CAS. For this reason, some efforts
attempt to alleviate it through pseudo-labels or knowledge
distillation. Specifically, Xu et. al [58] argues that relations at
the category and sequence levels are crucial for WS-TAL, and
facilitate accurate and complete localization through knowl-
edge distillation. CO2-Net [14] investigates multi-modal fea-
ture re-calibration and modal-wise consistency with pseudo-
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labels. RSKP [59] explores a representative snippet knowledge
propagation framework, which generates better pseudo labels
via representative snippet knowledge propagation. ASM-Loc
[60] adopts a multi-step proposal refinement to improve the
quality of action proposals with instance-level pseudo-labels
progressively. TSCN [61] fuses the attention sequence of RGB
and optical-flow modalities to generate segment-level pseudo-
labels, while UGCT [62] adopts the RGB and optical-flow
modalities to yield pseudo labels for each other by leverag-
ing their complementarity. Nevertheless, these efforts fail to
consider the semantics of actions, which is critical for action
detection [63]. Intuitively, the same action should have similar
representations for a specific video. To this end, we develop
a query-based contrastive learning paradigm to ensure action-
semantic consistency. This mechanism encourages normalized
embeddings from the same class to be pulled closer together,
while embeddings from different classes are repelled apart.

III. METHODOLOGY

In this section, an overview and formulation of WS-TAL
are first presented, and then the detailed contents of the pro-
posed algorithm are described. Finally, extensive experiments
and ablation studies on publicly available THUMOS-14 and
ActivityNet1.3 benchmarks are conducted.

A. Overview

Given an arbitrarily long untrimmed video, which embodies
a set of action instances {Ai = (asi , a

e
i , y)}Mi=1, where asi and

aei represent the start timestamp and the end timestamp for
the i-th action, and M is the number of action instances in
the video. y ∈ RC+1 is the ground truth, where C is the
number of action categories and the 0-th dimension denotes
the non-action background category. y(j) = 1 if the j-th
action presents in the video and y(j) = 0 otherwise. The
proposed architecture consists of three sub-modules: the class-
agnostic branch, the class-aware branch, and the query-based
semantic-aware mechanism. The overview of the proposed
framework is displayed in Fig. 2. Specifically, I3D [37] is first
adopted to extract spatio-temporal representations of videos.
To further enhance the expressiveness, the I3D representations
are fed into an extra residual block, leading to the improved
features x = [x1, ..., xT ] ∈ RT×D, where T is the length
of snippets and D is the dimension of features. Afterwards,
the class-aware branch utilizes x to generate class-specific
responses, which encode dominant segments but suppress
activation values of other regions. So the class-agnostic branch
is formulated to capture simultaneously fine-grained clues.
Besides, the class-aware branch can perceive action semantics
and therefore transfers its knowledge into the class-agnostic
branch. Outputs from two branches are late-fused to acquire
the resulting predictions. In this fashion, we hope that the
model can ensure the action-semantic consistency of the two
branches while extracting both salient features and fine-grained
features. Furthermore, we assume that frames with similar
representations in a given video should be considered the
same action. To this end, we design a query-based contrastive
learning strategy to ensure action-semantic consistency during

training, encouraging normalized embeddings from the same
class to be pulled closer together. In contrast, embeddings from
different classes are repelled apart. In the following sections,
we will elaborate on the details of each part.

B. Class-agnostic Branch
The class-agnostic branch attempts to generate attention for

each snippet by optimizing video-level classification. Specif-
ically, our model utilizes x to yield three attention scores
for each frame, i.e., afg = (afgt )Tt=1, act = (actt )

T
t=1, and

abg = (abgt )Tt=1, which stand for the confidence that the t-
th frame belongs to the foreground, context, and background.
Then these attention scores are adopted to aggregate video-
level features through temporal average pooling operations
with an attention selector:

xfg =

∑
t∈Sfg

afgt xt∑
t∈Sfg

afgt
,

xct =
∑

t∈Sct
actt xt∑

t∈Sct
actt

,

xbg =

∑
t∈Sbg

abgt xt∑
t∈Sbg

abgt
,

(1)

where Sfg , Sct, and Sbg are respectively the foreground set,
context set, and the background set hit by the attention selector.
Specifically, the selector leverages knowledge from the class-
aware branch described in section III-C to filter the attention.
Since the class-aware branch is capable of perceiving semantic
information, it has extraordinary guiding significance for the
generation of class-agnostic attention. Next, a shared fully
connected layer following a softmax operation is applied on
video-level features xfg , xct, and xbg to yield classification
predictions ŷagsfg , ŷagsct , and ŷagsbg for the foreground, the
context, and the background respectively. In fact, the class-
agnostic branch employs knowledge from all frames and
therefore concentrates on fine-grained clues, which plays a
complementary role with the parallel class-aware branch that
captures salient features.

C. Class-aware Branch
Since the above class-agnostic mechanism cannot perceive

action semantics, the sparsity of action instances is prone to
cause the model to fall into suboptimal solutions [21]. For
this reason, the class-aware module is dedicated to overcoming
this problem. It takes a MIL-based strategy to extract salient
features that correspond the most to video-level predictions. In
detail, the class-aware module maps the representation x into
the action category space by applying an extra dropout and a
fully-connected layer. In this action category space, we get a
class activation sequence (CAS) v ∈ RT×(C+1). The attention
afg , act, and abg are further used to weight v and therefore
acquire the foreground CAS zfg , the context CAS zct, and the
background CAS zbg:

zfg = afg × v,
zct = act × v,
zbg = abg × v.

(2)
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In this manner, the CAS-specific zfg , zct, zbg interact with
the corresponding class-agnostic attention, which induces the
model to learn consistent knowledge despite no explicit su-
pervised signals. Next, we take a MIL strategy which chooses
respectively the top-k values of zfg , zct, and zbg for the class
c along the temporal direction, the mean value of which is
utilized to produce video-level classification results as follows:

ωc
fg =

1

k
max

Oc
fg

⊂zfg [:,c],

|Oc
fg

|=k

∑
o∈Oc

fg

o,

ωc
ct =

1

k
max

Oc
ct⊂zct[:,c],
|Oc

ct|=k

∑
o∈Oc

ct

o,

ωc
bg =

1

k
max

Oc
bg

⊂zbg [:,c],

|Oc
bg

|=k

∑
o∈Oc

bg

o,

(3)

where Oc
fg , Oc

ct, and Oc
bg are sets that consist of the top-

k classification activation values for the class c, and : is a
slice operation. The cardinality of sets defined by the hyper-
parameter k is proportional to the length of the video and
usually assigned as k = max(⌊T/σ⌋, 1), where σ is a hyper-
parameter related to datasets. In this fashion, salient features
with top-k confidence are encoded, and ωc

fg , ωc
ct, and ωc

bg

represent respectively the confidence that the video contains
action instances with the class c for the foreground, the
context, and the background. Then, a softmax operation is
applied on ωc

fg , ωc
ct, and ωc

bg to acquire normalized proba-
bility distribution over action categories from a video-level
prediction perspective:

ŷawa
fg (c) =

exp(ωc
fg)∑C

c̃=0 exp(ω
c̃
fg)

,

ŷawa
ct (c) =

exp(ωc
ct)∑C

c̃=0 exp(ω
c̃
ct)

,

ŷawa
bg (c) =

exp(ωc
bg)∑C

c̃=0 exp(ω
c̃
bg)

.

(4)

Notably, the above procedure is aware of action semantics,
which is expected to propagate to the previously mentioned
class-agnostic module for consistent predictions. Since seg-
ments with the top-k confidence for the action instances
are supervised by video-level ground truth, it can provide
reliable instructions for the class-agnostic module. To this end,
we propose to distill their semantic knowledge. Specifically,
we let Ifg , Ict, and Ibg denote the set of temporal indexes
corresponding to the foreground, context, and background,
respectively. They are calculated by:

Ifg = argmax
Ifg⊂{1,2,...,T}

|Ifg|=k

∑
i∈Ifg

C∑
j=1

zfg[i, j],

Ict = argmax
Ict⊂{1,2,...,T}

|Ict|=k

∑
i∈Ict

C∑
j=1

zct[i, j],

Ibg = argmax
Ibg⊂{1,2,...,T}

|Ibg|=k

∑
i∈Ibg

C∑
j=1

zbg[i, j].

(5)

Here, because the class-agnostic branch ignores class-specific
information, the choice of index is based on the sum of all
foreground confidences (i.e., all action categories) rather than a
specific class c. Then, Ifg , Ict, and Ibg are further used to guide
attention selection in the class-agnostic module. Specifically,
the attention selector hits the foreground set Sfg , the context
set Sct, and the background set Sbg as follows:

Sfg = Ifg,

Sbg =

{
Ibg − Ifg, Ibg − Ifg ̸= ∅

Ibg, Ibg − Ifg = ∅
,

Sct =

{
Ibg ∩ Ifg, Ibg ∩ Ifg ̸= ∅

Ict, Ibg − Ifg = ∅
,

(6)

where − and ∩ represent difference and intersection operation
respectively. Sfg , Sbg , and Sct are utilized to guide attention
selection in the class-agnostic branch as described in section
III-C. This procedure propagates semantic knowledge between
two modules and also guarantees consistent predictions to
some extent.

Last, the predictions from the class-agnostic and class-aware
modules are integrated through a late-fusion operation:

ŷfg = (ŷags
fg + ŷawa

fg )/2,

ŷct = (ŷags
ct + ŷawa

ct )/2,

ŷbg = (ŷags
bg + ŷawa

bg )/2.

(7)

Then, a cross-entropy loss is employed for the foreground, the
context, and the background classification respectively:

Lfg
cls = −

C∑
c=0

yfg(c)logŷfg(c),

Lct
cls = −

C∑
c=0

yct(c)logŷct(c),

Lbg
cls = −

C∑
c=0

ybg(c)logŷbg(c),

(8)

where yfg , yct and ybg are the corresponding ground truths.
Notably, for yfg , we set yfg(j) = 1 if the j-th action presents
in the video and yfg(j) = 0 otherwise. For ybg , ybg(0) is set
to 1 and all other class indexes are set to 0. Since the context
is action-related but semantically belongs to the background,
we set both yct(0) and yct(j) to 1.

D. Query-based Semantic-aware Mechanism

Since the label sparsity in WS-TAL, learning action con-
sistency is intractable. Nevertheless, we assume that frames
with similar representations in a given video should be
considered to belong to the same action. For this reason,
we develop a query-based contrastive learning paradigm to
encourage normalized embeddings with the same class to
be pulled closer together while repelling embeddings from
different classes apart. Specifically, we formulate a set of
learnable queries g ∈ R(C+1)×D, whose cardinality is the
same as action categories. Here we hope each query can
retrieve action-specific patterns. However, these queries are
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Supervision Method mAP@t-IoU(%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Fully
Supervised

SSN [64] 66.0 59.4 51.9 41.0 29.8 - - -
BSN [65] - - 53.5 45.0 36.9 28.4 20.0 -
BMN [48] - - 56.0 47.4 38.8 29.7 20.5 -

BSN++ [49] - - 59.9 49.5 41.3 31.9 22.8 -
G-TAD [50] - - 66.4 60.4 51.6 37.6 22.9 -

Weakly
Supervised †

3C-Net [66] 59.1 53.5 44.2 34.1 26.6 - 8.1 -
PreTrimNet [67] 57.5 50.7 41.4 32.1 23.1 14.2 7.7 23.7

SF-Net [7] 71.0 63.4 53.2 40.7 29.3 18.4 9.6 40.8
Ju et al. [68] 72.3 64.7 58.2 47.1 35.9 23.0 12.8 44.9
LACP [69] 75.7 71.4 64.6 56.5 45.3 34.5 21.8 52.8

Weakly
Supervised

MAAN [22] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
BasNet [51] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3

EM-MIL [70] 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
DGAM [12] 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0

A2CL-PT [71] 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
CoLA [53] 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9

HAM-Net [23] 65.4 59.0 50.3 41.1 31.0 20.7 11.4 39.8
ACSNet [72] - - 51.4 42.7 32.4 22.0 11.7 -

ACM-Net [11] 65.3 59.2 49.5 38.4 27.4 16.4 6.9 37.6
ASL [8] 67.0 - 51.8 - 31.1 - - -

D2-Net [73] 65.7 60.2 52.3 43.4 36.0 - - -
AUMN [13] 66.2 61.9 54.9 44.4 33.3 20.5 9.0 41.5

UM [74] 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
FAC-Net [15] 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2
ACG-Net [75] 68.1 62.6 53.1 44.6 34.7 22.6 12.0 42.5
CO2-Net [14] 70.1 63.6 54.5 45.7 38.3 26.4 13.4 44.6
ASM-Loc [60] 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1

DELU [55] 71.5 66.2 56.5 47.7 40.5 27.2 15.3 46.4
P-MIL [52] 71.8 67.5 58.9 49.0 40.0 27.1 15.1 47.0

Wang et al. [10] 73.0 68.2 60.0 47.9 37.1 24.4 12.7 46.2
AICL [18] 73.1 67.8 58.2 48.7 36.9 25.3 14.9 46.4

Xu et al. [58] 73.1 66.9 58.3 48.8 36.5 24.4 13.4 45.9
ASC-Net (ours) 74.1 69.9 61.8 50.9 38.3 24.5 12.8 47.5

TABLE I: Quantitative comparisons on THUMOS-14 dataset. The mAP is used as an evaluation criterion at different t-IoU
thresholds (from 0.1 to 0.7 in steps of 0.1). The symbol † means extra training data are used.

video-independent, and thus they are improved using a cross-
attention mechanism through video-specific representations x.
In specific, the representation x is normalized as u using a ℓ2
normalization layer, and then queries are further augmented
as follows:

Q = gWq,

K = uWk,

V = uWv,

g′ = softmax(
QKT

√
dk

)V,

(9)

where Wq , Wk, and Wv are learnable matrices, dk is the
dimension of representations, and g′ is the improved queries.
In this manner, g′ is video-related and contains both contextual
information and action appearance of video-specific, which is
conducive for subsequent semantic learning.

Afterwards, for the representation ut, suppose it is recog-
nized as the class c when generating the foreground CAS
zfg , and then we impose a contrastive constraint on it so that
snippets with the same category are clustered. Therefore, we
optimize an infoNCE loss [76] as follows:

Lnce = − 1

T

T∑
t=1

log
exp(ut · g′[argmaxc v(t), :])∑C

c=0 exp(ut · g′[c, :])
(10)

In this manner, we explicitly encourage snippets identified as
the same category to have similar representations.

E. Overall Loss Function

Following the previous work [10], we also introduce an
extra guide loss to mitigate the discrepancy of responses from
the class-agnostic and class-aware modules:

Lgui =
1

T

T∑
t=1

|1− afgt − zfg[t, 0]|. (11)

Therefore, the overall loss is formulated as:

Lall = Lfg
cls + λ1Lct

cls + λ2Lbg
cls + λ3Lnce + λ4Lgui (12)

where λ1, λ2, λ3 and λ4 are weights that control the impor-
tance of different terms.

F. Inference

During inference, one can get video-level classification
results ŷfg and attention-weighted CAS zfg . Then, we choose
consecutive frames that construct proposals (t̂s, t̂e, ϕ(c)) for
class c by imposing a threshold α on zfg and a threshold β
on afg . Different α are typically adopted to generate proposals
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with various scales. t̂s and t̂e denote the start and end frames.
Following [77], ϕ(c) is the refined confidence that action c
involves in this proposal. ϕ(c) absorbs the confidence scores
from adjacent areas:

ϕin(c) =

∫ t̂e

t̂s
zfg[t, c]

t̂e − t̂s
,

ϕout(c) =

∫ t̂s

t̂s−t̂v
zfg[t, c] +

∫ t̂e+t̂v

t̂e
zfg[t, c]

2× t̂v
,

ϕ(c) = ϕin(c)− ϕout(c) + γŷfg(c).

(13)

Notably, zfg and ŷfg are respectively frame-level and video-
level responses, and their integration can more comprehen-
sively reflect the confidence of action instances. The hyper-
parameter γ controls the importance of them. Besides, t̂v =
t̂e−t̂s

5 describes the inflated contrast area. The final prediction
results are acquired by applying a Non-Maximum Suppression
(NMS) on ϕ(c).

IV. EXPERIMENTS

A. Dataset and Setting

In this section, we evaluate the proposed ASC-Net on
two commonly used datasets, i.e., THUMOS-14 [80] and
ActivityNet-1.3 [81], which cover a large variety of action
instances and categories, involving a large range of video
lengths and fine-grained discrepancies between actions and
background. Next, we will elaborate on the details of datasets
and experimental settings.
THUMOS-14 Dataset. THUMOS-14 [80] is a popular action
localization dataset, where each video includes 15 action
instances on average and the length of videos varies from
a few minutes to tens of minutes. The training set and test
set consist of 200 untrimmed videos and 213 untrimmed
videos, respectively. Besides, 20 action categories occur in this
dataset. Since the length of videos varies widely and is suitable
for assessing the generalization of algorithms, THUMOS-14
is typically used to evaluate the localization performance of
algorithms.
ActivityNet-1.3 Dataset. ActivityNet-1.3 [81] is a larger-scale
dataset for temporal action localization. About 35% segments
in videos have fine-grained discrepancies between actions and
background instances, making it challenging to distinguish
them. As a result, we choose this dataset to evaluate the
localization performance. The training set, validation set, and
test set include 10024 videos, 4926 videos, and 5044 videos,
respectively. In this paper, we follow [10] and evaluate the
model performance on the validation set.
Evaluation Criteria. In this paper, we follow previous work
and employ the mean Average Precision (mAP) with different
temporal Intersection over Union (t-IoU) thresholds to evaluate
the model performance. Specifically, the t-IoU from 0.1 to 0.7
in steps of 0.1 is adopted for THUMOS-14, and from 0.5 to
0.95 in steps of 0.05 is adopted for ActivityNet-1.3.
Implementation Details. In this paper, we first sample con-
secutively non-overlapping 16 frames of videos as snippets.
Based on this, I3D network [37] is employed to extract RGB
and optical-flow representations, which are concatenated into

2048-dimensional vectors. These representations encode both
the appearance and temporal characteristics of actions. ASC-
Net is implemented with PyTorch, trained on GeForce RTX
3090 GPUs, and trained using an Adam optimizer with a
learning rate of 1e-4. We train the model for 30 epochs for
all datasets. The hyper-parameters λ1, λ2, and λ3 are all set
to 0.1, and λ4 is set to 7e-3. γ is assigned to 0.25 and the
dropout rate is 0.5. Besides, the NMS with a t-IoU threshold
of 0.4 is employed. For THUMOS-14, σ is set to 8, 8, and
3 for the foreground, context, and background, respectively.
The batch size is 8 and the snippet length is set to 750. The
threshold α ranges from 0.2 to 0.25 in steps of 0.05, and β
ranges from 0.2 to 1.0 in steps of 0.02. For ActivityNet-1.3 σ
is assigned to 2, 10, and 10 for the foreground, the context,
and the background, respectively. The batch size is 32 and the
snippet length is set to 75. The thresholds α and β are range
from 0.005 to 0.02 in steps of 0.005.

B. Comparison with State-of-the-Art Methods

In this section, we conduct quantitative experiments on
THUMOS-14 and ActivityNet-1.3 benchmarks and compare
their results with state-of-the-art methods. In addition, some
methods utilizing fully-supervised signals and extra data dur-
ing training are also displayed for reference. In general, ASC-
Net achieves significant progress under the same circum-
stances. Below we will detail the main results of two datasets.

First, the comparison results with state-of-the-art approaches
on the THUMOS-14 dataset are displayed in Table I. We
can observe that ASC-Net achieves significant performance
improvements over other methods at most t-IoU thresholds.
Besides, we also report the average mAP (AVG) of all t-
IoU thresholds for comprehensive evaluations, where ASC-
Net acquires the highest AVG 47.5. Some algorithms with
extra training corpus and supervised signals are also listed
in the table so that the boundaries and gaps of performance
can be observed. Actually, our approach achieves similar or
even better performance. Notably, DELU [55] achieves better
localization accuracy over other methods at t-IoU from 0.5
to 0.7. One main reason is that DELU adopts a progressive
learning strategy to focus on the entire action instances grad-
ually. Despite achieving good performance, it is inefficient.
Nevertheless, a combination of progressive learning and the
proposed action-semantic consistency learning may be a future
research direction.

Furthermore, we further demonstrate the superiority of
ASC-Net on the ActivityNet-1.3 dataset. Results are summa-
rized in Table II. Benefiting from the powerful capabilities
of the developed model, we obtain the best localization ac-
curacy at almost all t-IoU thresholds, as well as the AVG.
Incredibly, our results are also superior to some algorithms
with extra training data and supervised signals, attributed to
the well-designed novel framework and action-semantic con-
sistent knowledge learning strategies. Since ActivityNet-1.3
has fine-grained discrepancies among features, the desirable
performance achieved by ASC-Net further proves that it has
indeed learned some subtle features.
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Supervision Method mAP@t-IoU(%)
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

Fully
Supervised

SSN [64] 41.3 38.8 35.9 32.9 30.4 27.0 22.2 18.2 13.2 6.1 26.6
BSN [65] 46.5 - - - - 30.0 - - - 8.0 30.0

G-TAD [50] 50.4 - - - - 34.6 - - - 9.0 34.1
Weakly

Supervised †

CMCS [78] 36.8 - - - - 22.0 - - - 5.6 -
3C-Net [66] 35.4 - - - - 22.9 - - - 8.5 -
LACP [69] 40.4 - - - - 24.6 - - - 5.7 -

Weakly
Supervised

UntrimmedNet [57] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7 3.6
AutoLoc [77] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3 16.0

TSM [38] 30.3 - - - - 19.0 - - - 4.5 -
CleanNet [79] 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6
Bas-Net [51] 34.5 - - - - 22.5 - - - 5.2 -
DGAM [12] 40.6 37.0 33.2 29.8 26.6 23.2 19.7 15.1 10.4 5.2 24.1

EM-MIL [70] 37.4 - - - - 23.1 - - - 2.0 -
TSCN [61] 35.3 - - - - 21.4 - - - 5.3 -

ACM-Net [11] 40.0 36.8 33.9 30.5 27.0 24.0 20.2 15.9 11.0 6.1 24.5
A2CL-PT [71] 36.8 - - - - 22.0 - - - 5.2 -
AUMN [13] 38.3 - - - - 23.5 - - - 5.2 -
RSKP [52] 40.6 - - - - 24.6 - - - 5.9 -

ASM-Loc [60] 41.0 - - - - 24.9 - - - 6.2 -
Wang et al. [10] 41.8 38.5 35.8 32.6 29.2 25.7 22.7 17.5 12.6 6.5 26.3

P-MIL [52] 41.8 - - - - 25.4 - - - 5.2 -
Xu et al. [58] 41.2 - - - - 25.0 - - - 6.5 -

ASC-Net (ours) 43.1 40.3 37.4 34.1 31.4 28.5 25.3 21.0 15.3 4.6 28.1

TABLE II: Quantitative comparisons on ActivityNet-1.3 dataset. The mAP is used as an evaluation criterion at different t-IoU
thresholds (from 0.5 to 0.95 in steps of 0.05). The symbol † means extra training data are used.

Lfg
cls Lbg

cls Lct
cls Lgui Lnce 0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

✓ 65.1 58.8 49.0 38.9 27.7 16.4 8.3 37.7
✓ ✓ 67.1 61.0 50.7 40.5 29.8 18.4 9.4 39.6
✓ ✓ ✓ 68.8 63.4 53.7 43.4 32.8 21.1 10.4 41.9
✓ ✓ ✓ ✓ 71.5 65.7 57.7 47.4 35.6 22.7 11.1 44.5
✓ ✓ ✓ ✓ ✓ 74.1 69.9 61.8 50.9 38.3 24.5 12.8 47.5

TABLE III: Ablation study on the variants of loss function for THUMOS-14 dataset. The mAP with different t-IoU thresholds
is used as evaluation criteria.

Lfg
cls Lbg

cls Lct
cls Lgui Lnce 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

✓ 40.2 37.9 35.2 32.5 29.3 26.8 22.9 19.2 13.6 3.6 26.1
✓ ✓ 40.7 38.2 35.6 32.6 29.6 27.0 23.2 19.4 13.8 3.5 26.4
✓ ✓ ✓ 41.3 38.5 36.0 32.9 30.0 27.2 23.6 19.7 14.2 3.6 26.7
✓ ✓ ✓ ✓ 42.0 39.0 36.5 33.4 30.4 27.6 24.2 20.4 14.5 3.8 27.2
✓ ✓ ✓ ✓ ✓ 43.1 40.3 37.4 34.1 31.4 28.5 25.3 21.0 15.3 4.6 28.1

TABLE IV: Ablation study on the variants of loss function for ActivityNet-1.3 dataset. The mAP with different t-IoU thresholds
is used as evaluation criteria.

Method mAP@t-IoU(%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

ASC-Net/wo 73.2 69.1 60.2 48.7 36.4 22.8 12.4 46.1
ASC-Net/w 74.1 69.9 61.8 50.9 38.3 24.5 12.8 47.5

TABLE V: Ablation study on model structure for THUMOS-
14. ASC-Net/w means the attention selector is adopted for the
interactive modeling between the class-agnostic and the class-
aware modules, and ASC-Net/wo indicates that there are no
interactive behaviors.

C. Ablation Study

To verify the effectiveness of model components, we make
sufficient ablation studies in terms of network structure and
loss terms on two datasets. Especially, we first explore the in-

Method mAP@t-IoU(%)
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

ASC-Net/wo 41.9 38.7 36.0 33.1 29.4 25.8 22.9 18.5 13.1 4.0 26.3
ASC-Net/w 43.1 40.3 37.4 34.1 31.4 28.5 25.3 21.0 15.3 4.6 28.1

TABLE VI: Ablation study on model structure for ActivityNet-
1.3. ASC-Net/w means the attention selector is adopted for the
interactive modeling between the class-agnostic and the class-
aware modules, and ASC-Net/wo indicates that there are no
interactive behaviors.

fluence of different loss terms on localization accuracy, predic-
tion results from the corresponding variants are shown in Table
III and IV. Results from THUSMOS-14 and ActivityNet-1.3
consistently demonstrate that the comprehensive loss function
can yield the best performance at all t-IoU thresholds. Also,
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Method mAP@t-IoU(%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Class-agnostic 58.7 53.1 42.5 32.8 22.0 12.3 4.6 32.3
Class-aware 65.1 59.8 49.7 40.6 29.2 18.3 8.9 38.8

ASC-Net 68.8 63.4 53.7 43.4 32.8 21.1 10.4 41.9

TABLE VII: Ablation study on model structure for THUMOS-
14. The integration of class-agnostic and class-aware modules
is investigated.

Method mAP@t-IoU(%)
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

Class-agnostic 27.4 25.1 23.5 21.8 19.1 17.3 14.9 11.2 8.8 2.5 17.1
Class-aware 38.9 35.2 33.8 30.1 26.7 23.3 20.2 15.7 11.9 3.1 23.9

ASC-Net 41.3 38.5 36.0 32.9 30.0 27.2 23.6 19.7 14.2 3.6 26.7

TABLE VIII: Ablation study on model structure for
ActivityNet-1.3. The integration of class-agnostic and class-
aware modules is investigated.

employing any loss term can achieve better performance than
removing them, which proves their utility. Notably, introducing
the proposed semantic queries with a Lnce loss brings a more
significant performance boost than other loss terms. Compared
with the variant without semantic queries, the average mAP
increases from 44.5 to 47.5 for THUMOS-14 and from 27.2
to 28.1 for ActivityNet-1.3. This phenomenon also reveals the
importance of action-semantic information for WS-TAL in the
absence of fully-supervised signals.

Based on the above observation, we observe that the
performance of some castrated variants is superior to the
previous approaches. The reason for this is the advanced model
structure. To this end, we further investigate the impact of
network structure. First, the relationship between the class-
agnostic and the class-aware modules is investigated. The
attention selector of the class-agnostic module is discarded,
and therefore there are no interactions with the class-aware
module. Experimental results are demonstrated in Table V and
VI. Undoubtedly, the version with interactions between two
modules achieves better performance, where the class-aware
module can propagate semantic knowledge into the class-
agnostic module and guarantee action-semantic consistency.
On the other hand, the integration of class-agnostic and class-
aware modules is critical for prediction. For fair comparison,
only Lfg

cls, Lct
cls, and Lbg

cls are used because Lnce and Lgui

are only involved in the class-aware module. Then we can
localize action instances by post-processing afg and zfg for
class-agnostic and class-aware counterparts, respectively. The
experimental results on THUMOS-14 and ActivityNet-1.3 are
displayed in Table VII and Table VIII. Unsurprisingly, the
complete model acquires the best results compared to its
castrated variants. We also discover that the performance of
the class-aware module is better than that of the class-agnostic
module, which is reasonable since the class-aware module
is sensitive to semantic information, but the class-agnostic
module is not.

In addition, we also analyze the computational expenses of
different structures during inference, and report the average
time for each sample on Nvidia GeForce RTX 3090 GPUs,
as shown in Table IX. Since the independent class-agnostic
branch does not need to tackle semantic information of action

Dataset ASC-Net Class-aware Branch Class-agnostic Branch
THUMOS-14 0.083s 0.074s 0.041s

ActivityNet-1.3 0.131s 0.127s 0.092s

TABLE IX: The average time cost of different model structures
during inference. Results are acquired by testing samples on
Nvidia GeForce RTX 3090 GPUs.

(a) Skiing

(b) Wakeboarding

(c) Kayaking

Fig. 3: We show the qualitative results of three examples
with different loss terms. (a) A sample contains the action of
“Skiing”. (b) A sample contains the action of “Wakeboarding”.
(c) A failed sample contains the action of ‘Kayaking”. (1)
Ground Truth (2) Lfg

cls (3) Lfg
cls + Lbg

cls (4) Lfg
cls + Lbg

cls + Lct
cls

(5) Lfg
cls+Lbg

cls+Lct
cls+Lgui (6) Lfg

cls+Lbg
cls+Lct

cls+Lgui+Lnce

instances, it spends minimal inference time. The complete
ASC-Net consumes slightly more time than the class-aware
branch, but almost the same, due to the parallel structure of
the two branches. Also, the video length of ActivityNet-1.3 is
longer than THUMOS-14, so the inference cost is greater. In
a nutshell, the proposed two-branch structure achieves better
localization performance at a tolerable time cost.

D. Qualitative Visualization

In this section, we visualize some examples and qualitatively
investigate the localization performance of ASC-Net with
different loss terms. In these three examples, ASC-Net with a
complete loss detects more accurate action intervals compared
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with other castrated variants. Notably, for the first example
of Skiing, the background changes are more obvious so that
action features are more prominent. Therefore, it is easier
to learn. However, background transitions are smoother in
the second example, and thus it is more challenging and the
algorithm needs to focus on semantic information. When ASC-
Net is equipped with Lnce, the localization accuracy is signif-
icantly improved. This phenomenon also indicates the utility
of the proposed query-based semantic mechanism. In addition,
we also give a failed example. Since the third example is shot
from a first-person perspective and some content is incomplete,
ASC-Net fails to localize action intervals.

V. CONCLUSION

In this paper, a novel ASC-Net consisting of class-aware and
class-agnostic modules is developed to jointly extract salient
and fine-grained features. The class-aware module is also
utilized to guide the class-agnostic module for action-semantic
consistency. Furthermore, we assume that frames with similar
representations in a given video should be considered as the
same action. So we design a query-based contrastive learning
paradigm to ensure action-semantic consistency. ASC-Net is
verified on publicly available THUMOS-14 and ActivityNet-
1.3 datasets, and extensive experiments and ablation studies
reveal its effectiveness.
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