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ABSTRACT

Diffusion large language models (dLLMs) have recently drawn considerable at-
tention within the research community as a promising alternative to autoregres-
sive generation, offering parallel token prediction and lower inference latency.
Yet, their parallel decoding potential remains largely underexplored, as existing
open-source models still require nearly token-length decoding steps to ensure per-
formance. To address this, we introduce dParallel, a simple and effective method
that unlocks the inherent parallelism of dLLMs for fast sampling. We identify
that the key bottleneck to parallel decoding arises from the sequential certainty
convergence for masked tokens. Building on this insight, we introduce the core of
our approach: certainty-forcing distillation, a novel training strategy that distills
the model to follow its original sampling trajectories while enforcing it to achieve
high certainty on masked tokens more rapidly and in parallel. Extensive experi-
ments across various benchmarks demonstrate that our method can dramatically
reduce the number of decoding steps while maintaining performance. When ap-
plied to the LLaDA-8B-Instruct model, dParallel reduces decoding steps from 256
to 30 on GSMSK, achieving an 8.5x speedup without performance degradation.
On the MBPP benchmark, it cuts decoding steps from 256 to 24, resulting in a
10.5x speedup while maintaining accuracy.

1 INTRODUCTION

Diffusion large language models (dLLMs) (Yu et al., 2025a; [Zhang et al., [2025} |Y1 et al.| [2024)
have emerged as a promising alternative to autoregressive LLMs (Achiam et al.| [2023; Bai et al.|
2023). By leveraging bidirectional attention, they overcome the sequential generation bottleneck and
enable parallel, random-order text generation, offering the potential for substantial improvements in
inference efficiency. This potential has already been demonstrated in proprietary models such as
Mercury (Labs et al.,2025), Gemini-Diffusion, and Seed-Diffusion (Song et al., 2025).

However, realizing this parallelism in existing open-source dLLMs remains challenging. Open im-
plementations such as LLaDA (Nie et al. [2025; Zhu et al.| 2025) and Dream (Ye et al., 2025,
still require a number of decoding steps proportional to the sequence length to maintain generation
quality, resulting in limited inference efficiency. Many recent efforts have attempted to accelerate
dLLMs. Some approaches (Ma et al., [2025; |Liu et al., 2025; [Wu et al.|, 2025} [Hu et al.|, 2025)) re-
duce the time cost per decoding step by enabling KV caching. Other works (Israel et al., 2025} /Wei1
et al., 2025} |Li et al., [2025ajb; \Gwak et al., 2025; Ben-Hamu et al.| 2025) focus on optimizing par-
allel sampling algorithms to accelerate inference by reducing the necessary decoding steps. Despite
these advancements, existing methods have yet to fully unlock the parallel potential of dLLMs, as
highly parallel decoding consistently leads to degraded performance.

This paper focuses on training dLLMs to unleash their potential for parallel decoding. We identify
the core bottleneck as their sequential certainty convergence. Although dLLMs predict all masked
tokens in parallel at each step, the certainty of these predictions still converges in a left-to-right se-
quential order. This sequential propagation of certainty prevents the model from reliably determining
multiple tokens simultaneously, forming the key bottleneck to highly parallel decoding. Employing
naive teacher forcing or diffusion forcing (Chen et al., [2024) training is insufficient to resolve this
issue, as they solely focus on trajectory alignment. Consequently, a new training paradigm centered
on predictive certainty itself is needed for dLLMs to further unlock parallelism.



Under review as a conference paper at ICLR 2026

Original LLaDA-8B-Instruct : GSMSK Acc: 75.7% Avg Step: 256

Step 0: [Prompt] To determine how many
Step 1: [Prompt] To determine how many kilometers

Step 2: [Prompt] To determine how many kilometers can

Step 3: [Prompt] To determine how many kilometers can run

Step 4: [Prompt] To determine how many kilometers can run in

Step S: [Prompt] To determine how many kilometers Lily can run in

Step 6: [Prompt] To determine how many kilometers Lily can run in hours,

Step 7: [Prompt] To determine how many kilometers Lily can run in eight hours,
l Step 8: [Prompt] To determine how many kilometers Lily can run in eight hours, we
Step 9: [Prompt] To determine how many kilometers Lily can run in eight hours, we need

dnpoadg xg'g

dParallel (Ours) : GSMS8K Acc: 76.1% Avg Step: 30

Step 0: [Prompt] To determine how many
& Step 1: [Prompt] To determine how many kilometers Lily can run in eight hours, we need

Figure 1: Our method achieves highly parallel decoding. Compared to the original LLaDA Model,
dParallel decodes over 8 tokens per step on GSMS8K while preserving the accuracy.

Building on this insight, we present certainty-forcing distillation, a simple and effective training
strategy that directly leverages token certainty as a training signal. The core idea is to convert
dLLM’s inherently sequential certainty propagation into a more parallel convergence process. Con-
cretely, we guide a pretrained dLLM to self-distill along its original semi-autoregressive decoding
trajectory to maintain trajectory consistency, while simultaneously minimizing its predictive entropy
over correctly predicted masked tokens to enforce high certainty. Certainty-forcing enables more to-
kens to reach high certainty in parallel at each step, thereby significantly extending the boundary of
parallel decoding in dLLMs.

We evaluate the effectiveness of our method on two representative open-source dLLMs: LLaDA, a
native dLLLM trained from scratch, and Dream, a dLLM initialized from an autoregressive LLM.
Comprehensive experiments across multiple benchmarks demonstrate that our approach signifi-
cantly reduces the number of decoding steps in dLLMs, while maintaining comparable performance.
For instance, when applied to the LLaDA-8B-Instruct model, our approach achieves an 88% reduc-
tion in decoding steps on GSM8K (Cobbe et al.}[2021)), yielding an 8.5x speedup without sacrificing
accuracy (Fig[T). On MBPP (Austin et al.| 2021b), it further reduces decoding steps by 91%, deliv-
ering a 10.5x acceleration while maintaining performance. Furthermore, the training process of our
method is highly efficient and low-cost. Leveraging Low-Rank Adaptation (LoRA) 2022),
the training can be completed in just 10 hours on only eight AS000 GPUs with 24 GB memory each.

In conclusion, we present dParallel, a learnable approach that unleashes the potential of parallel
decoding in dLLMs, drastically reducing the number of decoding steps. Our analysis identifies
the core bottleneck as the sequential convergence of certainty across masked tokens. To address
this, we introduce a certainty-forcing distillation strategy that ensures consistency with the original
generation trajectory while encouraging masked tokens to attain high certainty faster and more in
parallel. Extensive experiments demonstrate the effectiveness of our method. This work establishes
a new baseline and provides a foundation for future research on few-step and parallel dLLMs.

2 RELATED WORKS

Diffusion Language Models. In recent years, diffusion models (Ho et al.,2020; [Song et al., 2020)
have established dominance in the field of visual generation (Rombach et al.| [2022; |Podell et al.,
[2023}, [Ruiz et all, 2023}, [Zhang et al, 2023). However, their application to text generation remains
highly challenging. Masked diffusion models (Shi et al.} 2024} [Austin et al., 20214} [Sahoo et al.}
2024} [Zheng et al.}[2024;[Lou et al.} 2023)have emerged as a promising approach, modeling language
in the discrete space by predicting masked tokens, thereby offering the potential for fast and parallel
decoding. Building upon this idea, two representative dLLMs, LLaDA and Dream
[2025), have recently attracted significant attention from the community, demonstrating
that dLLMs can achieve performance comparable to autoregressive LLMs at the billion-parameter
scale. Beyond these developments, there is also growing interest in reasoning dLLMs
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2025 [Wang et al.| [2025b; [Zhu et al., 2025)), multimodal dLLMs (You et al., [2025; [Yu et al.,[2025b;
Yang et al.,2025; L1 et al., 2025c), and code generation (Gong et al., 2025} Xie et al.;2025) dLLMs.

Accelerating Diffusion Language Models. The potential of dLLMs in inference efficiency remains
largely underexplored. Recent studies have increasingly focused on accelerating the decoding pro-
cess of dLLMs. Some approaches (Ma et al., 2025; [Liu et al., [2025; |Wu et al., [2025; |[Hu et al.,
2025}, |Chen et al.|, [2025)) aim to reduce the time cost for each decoding step by enabling caching
mechanisms and employing token dropping during inference. Other works (Israel et al.| 2025} |Wei
et al.} 2025; |L1 et al.| |2025ajb; |Gwak et al.,2025; |Ben-Hamu et al., 2025) focus on reducing the total
number of decoding steps by designing improved sampling strategies. In addition, hybrid methods
(Wang et al.| [2025a; |Arriola et al., 2025)have been proposed that combine the generative paradigms
of dLLMs and autoregressive LLMs, training models to realize more efficient inference pipelines.
SDTT Deschenaux & Gulcehre|(2024) employs progressive distillation to reduce the inference steps.
Further effort|Xu & Yang|(2025) leverages quantization techniques to construct lightweight dLLMs.

3 PRELIMINARIES

Masked Diffusion Language Models (MDLMs). Unlike AR-LLMs that predict tokens in a strict
left-to-right fashion, MDLMs (Shi et al., 2024; Austin et al., [2021a}; Zheng et al., [2024)formulate
generation as a probabilistic process consisting of a forward masking corruption and a reverse de-
noising recovery. The forward process corrupts a clean sequence g into x; at level ¢ € [0, 1]:

L
gz, | 20) = [ [(1 —)8(z = 2) + t6(zi = [MASK])]. (1)
i=1
The reverse process is parameterized by a mask predictor py, which attempts to recover x( from x;.
At each step, the model predicts all masked tokens jointly:

po(wo|x) = [ = pola | ), )

i:xi=[MASK]

The training objective, defined as the negative log-likelihood restricted to masked positions, has
been shown to upper bound the model’s negative log-likelihood (Ou et al., [2024):

L

1 . )
L£(0) = ~Er oo, |7 > 1fxf = MASK]|logpe(f | z1)| - 3)
=1

Sampling Process. Inference proceeds through a discretized reverse process: at each step the model
predicts distributions for all masked tokens in parallel, samples provisional tokens, and then applies
a dynamic remasking strategy to determine which positions remain masked for further refinement.

Unlike autoregressive decoding, this procedure allows multiple tokens to be determined in parallel,
thereby enabling more flexible and potentially faster generation.

4 METHOD

4.1 THE BARRIERS TO PARALLEL DECODING

Diffusion language models are designed, in principle, for highly parallel token prediction. Yet in
practice, this theoretical promise breaks down. To understand this discrepancy, we analyze the cer-
tainty dynamics of token predictions in dLLMs, revealing why their potential for parallel decoding
remains unrealized.

Certainty Correlates with Prediction Accuracy. We first establish that token-level certainty is
a reliable indicator of prediction correctness. Using LLaDA-8B-Instruct on the GSMS8K test set
(Cobbe et al.| 2021)), we adopt a remasking strategy with varying confidence thresholds and record
the average determined confidence of tokens. Fig|2|(a) shows a strong positive correlation between
token confidence and the generation correctness: tokens resolved at higher confidence consistently
achieve higher accuracy, whereas low-confidence commitments lead to frequent errors. This result
confirms that high certainty is a necessary condition for accurate generation.
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Figure 2: Empirical Studies: (a) The average confidence score exhibits a positive correlation with
generation accuracy. (b) Token confidence propagates sequentially during the decoding process. (c)
Convergence trajectories of confidence for different tokens.

Certainty Converges to Peak Sequentially. The high certainty is not achieved in parallel. Instead,
it propagates sequentially through the sequence. At any given decoding step, the model predicts all
masked tokens, but only a small subset, typically those adjacent to already known context, attain
high confidence. The vast majority of tokens remain in a low-confidence regime until a new context
becomes available. Once a confident token is committed, it provides a new conditioning context that
allows another subset to rise in certainty at the next step.

This dynamic is illustrated in Fig|2| (b), which shows the average confidence of tokens progressing
as a left-to-right propagation over decoding steps. Fig[2](c) further confirms this at the individual
token level, showing confidence trajectories that converge to high certainty in a staggered, sequential
order. Together, these findings reveal that high certainty does not emerge in parallel but unfolds
sequentially through iterative context enrichment.

The Fundamental Bottleneck. The key bottleneck is the sequential convergence of certainty. While
true parallelism requires committing many tokens in a single step, a dLLM gains high certainty only
for a few neighboring tokens per iteration. Forcing multiple commitments too early introduces low-
confidence predictions, causing cascading errors and performance degradation.

Key to Unlocking Parallelism Potential. The above insight illuminates a clear path forward: if
we could guide the model to achieve peak confidence in parallel across multiple token positions,
we could break the sequential bottleneck. However, traditional training strategies, such as teacher
forcing and diffusion forcing (Chen et al., |2024), are inadequate for this purpose, as their focus
on trajectory alignment overlooks the dynamics of predictive certainty. Consequently, unlocking
greater parallelism in dLLMs requires a new training paradigm that directly optimizes for certainty.
We therefore propose certainty-forcing disillation, a novel strategy that reshapes the model’s cer-
tainty dynamics by using token certainty itself as a direct training signal.

4.2 CERTAINTY-FORCING DISTILLATION

We propose certainty-forcing distillation, a straightforward approach that enforces parallel certainty
along the original trajectory without altering it. An overview is shown in Fig[3]

Teacher Trajectory Generation. Let My, be the teacher model (a pre-trained vanilla dLLM),
and let My, be the student model, initialized as an identical copy. We train on a dataset D =
{XOK  where each X () is an instruction prompt. For each prompt, the teacher Mp,. generates
a target response trajectory using a semi-autoregressive remasking strategy with total length L and
block size Ly, producing a sequence Y = (y1,¥2,...,yr). This sequence is partitioned into N
contiguous blocks {B1, Bs, ..., By} such that L = N Xx Ly, where the n-th block is defined as

Bn = (Z/(n—l)Lb+1a e ,yan) forn S {1, . 7]V}

Semi-Autoregressive Forward Masking. To simulate the trajectory generation process for train-
ing, we perturb the clean trajectory Y and create a noisy input sequence Y by applying a semi-
autoregressive structural masking scheme. We first uniformly sample a block index n ~ {0, ..., N—
1}. The sequence is then divided into three distinct parts based on this index: (1) Context Blocks
(¢ < nLy): Tokens within the first n blocks remain unmasked, serving as the model’s context. (2)
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Figure 3: Overview of proposed certainty-forcing distillation. The dLLM is self-distilled along its
original generation trajectory, ensuring consistency with the trajectory throughout training while
encouraging token certainty to converge faster in parallel rather than sequentially.

Active Block (nL, < ¢ < (n + 1)L;): This is the block currently being generated, where its to-
kens are randomly replaced by the token [MASK] with masking probability p,, = ¢. (3) Future
Blocks (¢ > (n+1)Ly): All tokens in subsequent blocks are fully masked, as they have not yet been
generated. This procedure yields a noisy token g; at each position ¢, defined as:

Yis ifi <nLp (Context)
- Yi with probability 1 — ¢ . ) .
i = . . fnlL < 1)Ly (Active Block 4
4 { [MASK] with probability ¢ ifnly <i<(n+1)Ly (Active Block) @
[MASK], ifi > (n+ 1)L, (Future)

The resulting sequence Y simulates an intermediate state in the semi-autoregressive generative pro-
cess, where the model is predicting the (n + 1)-th block given the context of the first n blocks.

Training Objective. Our objective differs from standard dLLM pre-training, which typically aims
to predict all masked tokens across the sequence. Instead, we restrict the learning signal to the
masked tokens within the active block B, ;1. Our training objective is for the student model not
only to replicate the target sampling trajectory within the active block but also to parallel achieve
maximal certainty in its predictions.

To enforce consistency between the student model’s generated trajectory and that of the teacher, we
apply standard Cross-Entropy (CE) loss on the masked tokens of the active block, denoted as M, :

1 -
LConsistency = _W Z 1ng9 (yi | Y)a @)
“ieM,

where py(y; | Y) denotes the probability assigned by the student model to the correct token y; at
position ¢, conditioned on the noisy input sequence Y. However, conventional CE loss is insufficient
for our certainty-maximizing target. It focuses solely on correctness, and once the correct token is
predicted, the gradient quickly vanishes, offering no incentive to further increase confidence.

To explicitly encourage highly confident predictions, we introduce a term that directly minimizes
the entropy of the model’s output distribution, incorporating a temperature parameter 7. This loss
is applied only to the masked tokens in the active block that the student model already predicts
correctly. Formally, we define the set of correctly predicted tokens as

MC:{iGMa

Y) =y
argg{lggpe(vl ) y} (6)
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Algorithm 1 Certainty-Forcing Distillation (CFD)

Require: Teacher My, student My, ; target trajectory set D = {Y()}K  : temperature 7' > 0;
weight 8 > 0; optimizer O; token length L; block length L;; mask ratio ¢ € (0, 1].

Notation: H(p) = —>_, .\, p(v)logp(v)
1: for j =1...Iteration do

2: Sample Y ~ D, n ~ {0,1,...,L/Lb— 1};

32 (Y, M,) < SEMI-AR-FOWARDMASKING(Y, q,n, L, Ly);

4: z + My, (17),

5: pi(v) + softmax(z;)y, pl(-T)(v) + softmax(z;/T),, Yv €V
6: ‘CConsistency <~ _|Ma|_12ie/\/la 1ngi(yi);

7: M.+ {i € M, | argmax,ey pi(v) = yi };

8 Loatainty < LIMe| > 0] M7V HO);

9: CCFD — £Consistency + ﬁ ['Certainty;

10: Og < 0(95, VGSLCFD);

11: end for

where V denotes the vocabulary. The certainty-forcing loss is then defined as the average entropy of
the predictive distributions for these tokens:

1 - -
Loerainy = 77 Y | — > po(v | Y;T)logps(v | V;T) |, (7)
M| iEM. vEV

where pp(v | Y;T) denotes the temperature-scaled softmax distribution. Minimizing this term
encourages the student model to generate sharper, higher-certainty distributions over the correct
tokens, where 7' controls the strength of the certainty enforcement.

The overall training objective is a combination of consistency loss and the certainty-forcing loss:

ECFD = [fConsislency + B£Certainly» (8)

where [ is a hyperparameter balancing the objective of matching the teacher’s trajectory with the
objective of enforcing high certainty. We find that this simple distillation strategy significantly ac-
celerates the parallel convergence of certainty in dLLMs, thereby unlocking their inherent potential
for parallel decoding. The overall training pipeline is summarized in Algorithm

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We evaluate the effectiveness of our method on two representative open-
source dLLMs: LLaDA-8B-Instruct (Nie et al.,[2025)) and Dream-7B-Instruct (Ye et al.,[2025). The
training is conducted using the LoRA technique (Hu et al.,2022). For semi-autoregressive masking,
we set the block length to L, = 32 for LLaDA and L;, = 256 for Dream, with a fixed masking
ratio of 50%. The certainty loss is applied with a temperature of 7' = 0.5. Full training config-
urations are provided in the appendix. During inference, our models adopt an entropy-threshold
semi-autoregressive remasking strategy , which is inherently consistent with our training objective.

Training Data. As a self-distillation approach, we use prompts from publicly available training
datasets and let the pretrained model generate its own responses as training data. For LLaDA-
8B-Instruct, we sample prompts from the GSM8K (Cobbe et al., |2021), PRM12K (Lightman
et al) [2023) training set, and part of the Numina-Math dataset (Li et al) [2024). Using a semi-
autoregressive strategy with a sequence length of 256 and block length of 32, we generate about
100k target trajectories. For Dream-7B-Instruct, we adopt the same trajectory generation strategy,
and additionally generate code data using prompts from a subset of the AceCode dataset (about 10k)
(Zeng et al.| [2025)). We further filter out responses containing incorrect answers. Importantly, all
training tokens are generated by the model itself, without introducing any external data as targets.

Evaluation Details. We evaluate our models across multiple benchmarks, including two mathe-
matics datasets (GSM8K and MATH (Lewkowycz et al.l [2022)) and two code generation datasets
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Table 1: Evaluation results on LLaDA-8B-Instruct. For all methods, we adopt a semi-autoregressive
remasking strategy with a total sequence length of 256 and a block length of 32. For our approach,
the entropy threshold is set to either 0.45 or 0.5 for different tasks.

Benchmark  Method #Steps | Latency] Speedupt Accuracyt
LLaDA-8B-Instruct 256 18.6s 1.0x 75.7%
Dual-Cache 256 9.7s 1.9x% 72.9%
%SOB%SK Few-step Decoding 64 4.7s 4.0x 68.6%
(0-shot) Conf-threshold Decoding 72 5.2s 3.6% 75.5%
Consistency Distillation 64 4.7s 4.0x 69.9%
dParallel (Ours) 30 2.2s 8.5 76.1%
LLaDA-8B-Instruct 256 50.9s 1.0x 33.5%
Dual-Cache 256 11.3s 4.5% 32.6%
MATH Few-step Decoding 64 12.7s 4.0x 26.3%
(4-shot) Conf-threshold Decoding 97 17.6s 2.9x% 33.2%
Consistency Distillation 64 12.7s 4.0x 28.0%
dParallel (Ours) 46 8.9s 5.7x 31.5%
LLaDA-8B-Instruct 256 23.5s 1.0x 38.4%
Dual-Cache 256 9.8s 2.4x% 34.1%
HumanEval Few-step Decoding 64 5.9s 4.0x 19.5%
(0-shot) Conf-threshold Decoding 77 6.7s 3.5% 37.2%
Consistency Distillation 64 5.9s 4.0x 19.5%
dParallel (Ours) 33 2.9s 8.2x 40.2%
LLaDA-8B-Instruct 256 50.1s 1.0x 42.4%
Dual-Cache 256 10.7s 4.7x 39.8%
MBPP Few-step Decoding 64 12.5s 4.0x 19.6%
(3-shot) Conf-threshold Decoding 68 12.8s 3.9%x 41.6%
Consistency Distillation 64 12.5s 4.0x 25.0%
dParallel (Ours) 24 4.8s 10.5x 40.8%

(HumanEval (Chen et al [2021) and MBPP (Austin et al., 2021b)). For GSM8K, we append a
chain-of-thought (CoT) prompt (Wei et al., 2022)) after each question. We report accuracy, the av-
erage number of decoding steps, latency, and speedup ratio to provide a comprehensive evaluation.
All efficiency evaluations are conducted on NVIDIA RTX 6000 Ada GPUs.

Baselines. We evaluate the original dLLM under its official default inference setting, and further
compare our approach with four baselines that seek to accelerate the generation: (1) Dual-Cache:
enable KV-cache on both prefix tokens and suffix tokens (Wu et al., [2025). (2) Few-step Decoding:
reducing the number of decoding steps used by the original dLLM. (3) Conf-threshold Decoding:
apply adaptive remasking based on the model’s confidence in predicting masked tokens (Wu et al.,
2025} |Yu et al.l [2025b), with the confidence threshold set as 0.90 or 0.95 depending on the task.
(4) Consistency Distillation: training the dLLM to predict all remaining masked tokens from inter-
mediate state along its own generation trajectory (Luo et al.l [2023). The training data and LoRA
configuration are the same as our method.

5.2 MAIN RESULTS

Results on the Native LLaDA Model. As shown in Table[I] directly reducing the decoding steps
of the original model leads to a substantial drop in performance. Consistency distillation has only
a marginal effect on LLaDA, offering a slight improvement over the original model under the same
number of steps. The confidence-threshold remasking strategy preserves accuracy, but its paral-
lelism is limited, averaging only 3—4 tokens decoded per step. In contrast, our method significantly
pushes the boundaries of parallel inference in dLLMs, achieving more than 8 tokens decoded per
step on average while still maintaining performance. Notably, for LLaDA, we trained using only
prompts from mathematical tasks, yet the model still exhibited a remarkable improvement in paral-
lel decoding ability on code tasks.

Results on the AR-initialized Dream Model. As shown in Table[2] our method also demonstrates
superior performance on the Dream model, which is initialized from an AR-LLM. Compared to
other approaches designed to reduce the number of decoding steps, dParallel achieves a substan-
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Table 2: Evaluation results on Dream-8B-Instruct. The original model uses the official inference
setting with a sequence length of 256. Other methods adopt semi-autoregressive remasking with the
same length and a block size of 32. The entropy threshold for our method is set to either 0.45 or 0.5.

Benchmark  Method #Steps | Latency] Speedupt Accuracyt
Dream-7B-Instruct 256 17.2s 1.0x 82.9%
Dual-Cache 256 8.2s 2.1x 79.5%
aNBK Few-step Decoding 64 43s 4.0% 59.0%
(0-shot) Conf-threshold Decoding 61 4.0s 4.3x 81.9%
Consistency Distillation 64 4.3s 4.0x 75.6%
dParallel (Ours) 39 2.5s 6.9x 82.1%
Dream-7B-Instruct 256 17.5s 1.0x 39.5%
Dual-Cache 256 8.2s 2.1x 38.8%
MATH Few-step Decoding 64 4.4s 4.0x 16.7%
(0-shot) Conf-threshold Decoding 93 6.1s 2.9x% 38.9%
Consistency Distillation 64 4.4s 4.0x 29.6%
dParallel (Ours) 63 4.1s 4.2x 38.3%
Dream-7B-Instruct 256 25.9s 1.0x 52.4%
HumanEval Dual-Cache ) 256 8.4s 3.1x 47.0%
_Instruct Few-step Decoding ) 64 6.5s 4.0x 16.5%
(0-shot) Conf-threshold Decoding 71 7.3s 3.5% 53.1%
Consistency Distillation 64 6.4s 4.0x 34.2%
dParallel (Ours) 37 3.8s 6.9x 54.3%
Dream-7B-Instruct 256 19.8s 1.0x 58.8%
MBPP Dual-Cache 256 8.9s 2.2% 52.8%
_Instruct Few-step Decoding ) 64 5.0s 4.0x 25.0%
(0-shot) Conf-threshold Decoding 43 3.3s 5.9x% 56.4%
Consistency Distillation 64 5.0s 4.0x 37.4%
dParallel (Ours) 29 2.2s 8.8x 56.2%
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Figure 4: Comparison of speed—accuracy trade-off curves between confidence-threshold decoding
and our method. (a) and (b) show results on the LLaDA model for GSM8K and HumanEval, respec-
tively. (c) and (d) present results on the Dream model for GSM8K and HumanEval benchmarks.

tially higher speedup while maintaining accuracy, thereby greatly enhancing decoding parallelism.
It is worth noting that we observed a risk of degeneration toward the original AR LLLM when train-
ing Dream with semi-autoregressive masking. To avoid this issue, we employed standard random
masking over the entire sequence instead. Consequently, the acceleration gains of our method on
Dream are slightly lower than those observed on LLaDA.

Superior Efficiency—Performance Trade-off. In Fig[d] we compare our method against the original
model with confidence-threshold decoding in terms of the efficiency—performance trade-off curve.
Our approach achieves a substantially better trade-off. On LLaDA with GSM8K, at the same 9.4 x
speedup, our method attains 16.5% higher accuracy than confidence-threshold decoding. On Hu-
manEval, at the same 9.3 speedup, our method improves accuracy by 21.3%. Results on Dream
exhibit a similar curve. These findings strongly demonstrate that our method effectively broadens
the boundary of parallel decoding in diffusion language models.

Faster and Parallel Certainty Convergence. As illustrated in Fig[5] the original dLLM exhibits
a sequential convergence of token certainty, where each step produces high confidence only for a
small set of neighboring tokens, while the majority remain in a low-confidence range. Confidence-
based decoding can extend the boundary of token certainty but still follows a sequential propagation
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Figure 5: Average token confidence at the 8th and 16th decoding steps for LLaDA-8B-Instruct
Model on GSM8K. The proposed certainty-forcing strategy reshapes the original sequential cer-
tainty convergence into a faster and more parallel convergence process.

Table 3: Ablation study on different training strategies of our method using the LLaDA model.

Consistency ~ Certainty =~ Semi-AR GSMSK-CoT (0-shot) HumanEval (0-shot)
Loss Loss Masking #Steps | Speed T Acc? #Steps| Speedt Acct
v v 53 4.5% 73.5% 71 3.6x 36.0%
v v 23 104x  57.8% 28 9.8x 30.5%
v v 44 5.5x 73.3% 61 4.3x% 32.9%
v v v 30 8.5% 76.1% 33 8.2x 40.2%

pattern. In contrast, our dParallel, trained with certainty-forcing distillation, transforms this process
into a significantly faster and more parallel convergence of certainty. Such parallel convergence
further unlocks the potential of dLLMs for highly efficient parallel decoding.

5.3 ABLATION STUDY

Ablation Study on Training Strategy. We conducted an ablation study to validate the effectiveness
of our proposed certainty-forcing distillation, with the results shown in Table[3] When the certainty-
forcing loss is removed, the remaining consistency loss is insufficient to alter the sequential con-
vergence pattern of the dLLM, resulting in speed and performance similar to the baseline model.
Conversely, applying only the certainty loss without enforcing trajectory consistency achieves high
decoding speed but leads to a sharp performance drop. Finally, our use of semi-autoregressive
forward masking effectively aligns the trajectory generation process with self-distillation, yielding
superior efficiency and performance. These results collectively demonstrate that each component in
the training process is essential.

Ablation Study on Masking Ratio. We conduct an  Typle 4: Performance of our method applied
ablation study to determine the optimal masking ra- (o LLaDA-8B-Instruct on GSMS8K with dif-
tio, training LLaDA for one epoch with various set-  ferent masking ratios used in the forward
tings as shown in Table[d We find that a fixed mask- process during training.

ing ratio of 50% yields the best performance, offer- Masking Ratio #Steps | Speed | Acc |
ing significant acceleration while preserving accu- rry——— 3 T %
racy. In contrast, both higher and lower fixed ratios, 259% 35 73x  69.9%
as well as random ratios, lead to a noticeable accu- 75% 38 6.7x  73.7%
racy degradation. This suggests that a 50% ratio cre- 15000(;/:’ gé g?: ;61 ~3IZZ

ates an optimal trade-off between the training signals
for consistency and certainty by balancing masked and unmasked tokens. Importantly, training with
this fixed ratio does not impair the model’s ability to handle variable ratios during inference.

6 CONCLUSION

In this paper, we present dParallel, a simple yet effective method that unleashes the parallel de-
coding potential of dLLMs. At the core of our approach is certainty-forcing distillation, a novel
training strategy that maintains trajectory consistency while compelling high-certainty predictions,
thus overcoming the sequential certainty propagation issue. Extensive experiments across various
benchmarks validate the effectiveness of our method. Our work establishes a new baseline for par-
allel decoding in dLL.Ms and explores a new avenue for dLLM training paradigms.
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APPENDIX

A MORE IMPLEMENTATION DETAILS

In Table[5] we present the training configuration used for the certainty-forcing distillation process.
For data generated by LLaDA-8B-Instruct (Nie et al.l|2025) and LLaDA-1.5 (Zhu et al.l [2025)), we
standardized sequence lengths by padding or truncating with the end-of-sequence token to a fixed
length of 384 tokens. In contrast, for Dream-7B-Instruct (Ye et al.,|2025)), we preserved the original
response length of 256 tokens per sample without modification. Additionaly, we set the balance
weight 8 = 2 for all training.

Our training was conducted on two NVIDIA H100 GPUs, with a per-GPU mini-batch size of 1 and
a gradient accumulation step of 32, resulting in an effective global batch size of 64. Notably, despite
the relatively large model sizes, the adoption of parameter-efficient fine-tuning (PEFT) (Hu et al.,
2022) and the use of shorter sequence lengths kept the memory footprint remarkably low. The entire
training process required only 23 GB of GPU memory, meaning that it can be efficiently reproduced
even on multiple consumer-grade GPUs with 24 GB of memory each. This efficiency highlights the
practicality of our approach, as it enables large-scale distillation training to be carried out on widely
accessible hardware rather than being restricted to specialized high-memory accelerators.

Table 5: The training configuration for certainty-forcing distillation across three base models.

Base Model | LoRA Rank LoRA Alpha Learning Rate Lr-Schedule Batchsize Epoch
LLaDA-8B-Instrcut 32 32 2e-5 constant 64 6
LLaDA-1.5 128 128 2e-5 constant 64 4
Dream-7B-Instrcut 16 16 2e-5 cosine 64 3

Table 6: Evaluation results on LLaDA-1.5 Model across four benchmarks.

Benchmark  Method #Steps | Latency|l Speedup{ Accuracy?
GSMSK LLaDA-8B-Instruct 256 19.1s 1.0x 76.0%
(0-shot) dParallel (Ours) 30 2.3s 8.5x 76.3%
MATH LLaDA-8B-Instruct 256 50.0s 1.0x 34.0%
(4-shot) dParallel (Ours) 45 8.7s 5.7x 32.1%
HumanEval LLaDA-8B-Instruct 256 22.0s 1.0x 41.5%
(0-shot) dParallel (Ours) 46 4.0s 5.6x 40.2%
MBPP LLaDA-8B-Instruct 256 49.0s 1.0x 43.2%
(3-shot) dParallel (Ours) 26 5.1s 9.8 41.6%

B MORE EXPERIMENTAL RESULTS

In Table [6] we report the performance of applying our method to the LLaDA-1.5 model. Extensive
evaluations across four standard benchmarks demonstrate the strong effectiveness of our approach
on this reinforcement learning based model. Specifically, we reduce the original 256 decoding steps
required by the baseline model to only 26—46 steps. This dramatic compression of the decoding steps
delivers substantial acceleration in generation speed, while at the same time preserving accuracy and
reliability across tasks.

In Figure[6] we present the average token confidence of the LLaDA-8B-Instruct model on GSM8K,
measured across the first 160 positions over the initial 16 decoding steps. The results reveal that the
original dLLM exhibits a clear sequential convergence of token certainty: each step yields high con-
fidence for only a narrow band of neighboring tokens, while the majority remain in a low-confidence
range. Although confidence-based decoding can extend the certainty frontier, it still follows this se-
quential propagation pattern. By contrast, our proposed dParallel, trained with certainty-forcing
distillation, reshapes this process into a substantially faster and more parallel convergence of cer-
tainty. This parallel convergence further unlocks the efficiency potential of dLLMs, enabling highly
parallel decoding.
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C CASE STUDY

We also present additional case studies in Figure[7} Figure[8] and Figure[9} Our dParallel achieves
significantly reduced decoding steps while maintaining the generation quality.

D LIMITATIONS AND FUTURE WORK

The primary limitation of our method is its reliance on the performance of the pretrained dLLM.
While our approach achieves substantial gains in inference efficiency by unleashing the potential of
parallel decoding and maintains strong accuracy, it cannot significantly improve the performance if
the base model itself is weak.

As a next step, we plan to extend our certainty-forcing strategy to the pretraining stage of dLLMs
and substantially scale up the training data to explore the performance boundary of our approach.
Currently, we have only used a relatively small dataset of around 10k math problems. We believe
that by dramatically increasing both the size and diversity of the training data, our method can
yield further improvements: not only activating highly parallel decoding, but also enhancing overall
model performance and demonstrating stronger generalization.

E ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects or
sensitive personal data. All datasets used are publicly available and properly licensed. While our
method focuses on improving the efficiency of diffusion language models, we recognize potential
risks of misuse in harmful applications and encourage responsible use aligned with ethical and legal
standards.

F REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Detailed descriptions of
model architectures, training objectives, and experimental settings are provided in the main text and
Appendix. All datasets used are publicly available, and their preprocessing steps are documented in
the main paper and appendix. Additionally, we include pseudocode and implementation details to
facilitate replication, and source code is provided in the supplementary materials.

G THE USE OF LARGE LANGUAGE MODELS

In this paper, we only use large language models to correct grammar and spelling errors.
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Prompt: Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers
can she run in 8 hours? Please reason step by step, and put your final answer within \boxed{}.

LLaDA-8B-Instruct # 256 Decoding Steps
To determine how many kilometers Lily can run in 8 hours, we need
to break down the problem into two parts: the distance she runs in the
first 4 hours and the distance she runs in the next 4 hours.

First, let's calculate the distance she runs in the first 4 hours:
- She runs at a speed of 12 kilometers per hour for 4 hours.
- Distance = Speed x Time

- Distance = 12 km/h x 4 hours = 48 km

Next, let's calculate the distance she runs in the next 4 hours:
- She runs at a speed of 6 kilometers per hour for 4 hours.

- Distance = Speed x Time

- Distance = 6 km/h x 4 hours = 24 km

Now, we add the distances from both parts to find the total distance
she can run in 8 hours:

- Total distance = Distance in the first 4 hours + Distance in the next 4
hours

- Total distance = 48 km + 24 km = 72 km

Therefore, the total distance Lily can run in 8 hours is \boxed {72}
kilometers.

dParallel (Ours) # 28 Decoding Steps
To determine how many kilometers Lily can run in 8 hours, we need
to calculate the distance she covers in each segment of her run and
then sum these distances.

1. **Calculate the distance run in the first 4 hours:**
- Speed: 12 kilometers per hour
- Time: 4 hours
- Distance: Speed x Time = 12 km/h x 4 hours = 48 kilometers

2. **Calculate the distance run in the next 4 hours:**
- Speed: 6 kilometers per hour
- Time: 4 hours
- Distance = Speed x Time = 6 km/h X 4 hours = 24 kilometers

3. **Sum the distances from both segments:**

- Total distance = Distance in the first 4 hours + Distance in the next
4 hours

- Total distance = 48 km + 24 km = 72 kilometers

Therefore, the total distance Lily can run in 8 hours is \boxed{72}.

Prompt: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May? Please reason step by step, and put your final answer within \boxed{}.

LLaDA-8B-Instruct # 256 Decoding Steps
To determine the total number of clips Natalia sold in April and May,
we need to follow these steps:

1. Identify the number of clips Natalia sold in April.
2. Calculate the number of clips Natalia sold in May.
3. Add the number of clips sold in April and May to find the total.

Step 1: Identify the number of clips Natalia sold in April.
Natalia sold 48 clips in April.

Step 2: Calculate the number of clips Natalia sold in May.

Natalia sold half as many clips in May as she did in April. Therefore,
we calculate the number of clips sold in May as follows:

\[ \text{Number of clips sold in May} = \frac{48} {2} =24 ]

Step 3: Add the number of clips sold in April and May to find the total.

We add the number of clips sold in April and May:
\[ \text{Total number of clips sold} =48 +24 =72]

Thus, the total number of clips Natalia sold in April and May is
\(\boxed{72}\).

dParallel (Ours) # 30 Decoding Steps
To determine the total number of clips Natalia sold in April and May,
we need to follow these steps:

1. **Calculate the number of clips sold in May:**

- Natalia sold clips to friends in May.

- She sold half as many clips in May as she did in April.

- Since she sold 48 clips in April:

- Therefore, the number of clips sold in May is \( \frac{48} {2} = 24
\).

2. **Calculate the total number of clips sold in both months:**

- Add the number of clips sold in April to the number of clips sold
in May.

- Total clips sold = Clips sold in April + Clips sold in May

- Total clips sold = 48 + 24

- Total clips sold = 72

Thus, the total number of clips Natalia sold in April and May is
\(\boxed{72}\).

Figure 7: Case study on LLaDA-8B-Instruct Model with chain-of-thought reasoning problem.
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Prompt: from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>>has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>>has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

LLaDA-8B-Instruct # 256 Decoding Steps

Here's the implementation of the ‘has_close_elements’ function:

python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to
each other than

given threshold.

>>>has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>>has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for i in range(len(numbers)):

for j in range(i + 1, len(numbers)):
if abs(numbers[i] - numbers[j]) < threshold:
return True
return False

dParallel (Ours) # 15 Decoding Steps
***python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to
each other than

given threshold.

>>>has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>>has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for i in range(len(numbers)):

for j in range(i + 1, len(numbers)):
if abs(numbers|[i] - numbers|[j]) < threshold:
return True
return False

Figure 8: Case study on LLaDA-8B-Instruct Model with naive code generation task.

Prompt: Write a function to check if the given number is woodball or not..

LLaDA-8B-Instruct # 256 Decoding Steps
To determine if a given number is a "woodball," we need to define
what a "woodball" is. For the sake of this example, let's assume a
"woodball" is a number that is a multiple of 3. Here's a simple
function in Python to check if a given number is a "woodball":

*'python
def is_woodball(number):

e

Check if the given number is a 'woodball' (i.e., a multiple of 3).

Parameters:
number (int): The number to check.

Returns:
bool: True if the number is a 'woodball', False otherwise.

o

return number %
# Example usage:
print(is_woodball(9)) # True
print(is_woodball(5)) # False

In this function, ‘is_woodball’, we use the modulus operator ‘%" to
check if the number is divisible by 3. If the number is divisible by 3
with no remainder, it is a "woodball," and the function returns ‘True'.
Otherwise, it returns "False'.

dParallel (Ours) # 49 Decoding Steps
Sure, I can help you with that. A woodball is a number that is a
multiple of both 3 and 5. Here's a Python function to check if a given
number is a woodball:

**python
def is_woodball(number):
# Check if the number is a multiple of both 3 and 5
if number % 3 == 0 and number % 5 == 0:
return True
else:
return False

# Example usage:

print(is_woodball(15)) # Output: True
print(is_woodball(30)) # Output: True
print(is_woodball(10)) # Output: False
print(is_woodball(17)) # Output: False

This function checks if the number is divisible by both 3 and 5 using
the modulus operator '%". If both conditions are met, it returns ‘True’,
indicating that the number is a woodball. Otherwise, it returns ‘False".

Figure 9: Case study on LLaDA-8B-Instruct Model with instruction-based code generation task.
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