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Abstract

This paper presents a novel method to enhance the reliability of image classification
models during deployment in the face of transient hardware errors. By utilizing
enriched text embeddings derived from GPT-3 with question prompts per class
and CLIP pretrained text encoder, we investigate their impact as an initialization
for the classification layer. Our approach achieves a remarkable 5.5× average
increase in hardware reliability (and up to 14×) across various architectures in the
most critical layer, with minimal accuracy drop (0.3% on average) compared to
baseline PyTorch models. Furthermore, our method seamlessly integrates with
any image classification backbone, showcases results across various network
architectures, decreases parameter and FLOPs overhead, and follows a consistent
training recipe. This research offers a practical and efficient solution to bolster the
robustness of image classification models against hardware failures, with potential
implications for future studies in this domain. Our code and models are released
at https://github.com/TalalWasim/TextGuidedResilience.

1 Introduction

As transistors in hardware shrink in size, they become more susceptible to random bit-flips from
environmental factors such as cosmic particle strikes [44], voltage droops [53], manufacturing
defects [55], and/or aging effects [36]. This is particularly noticeable at scale, where even small error
rates in hardware components can cause data corruptions that affect large-scale corporations such
as Google [23] or Meta [13], prompting these corporations to deploy major resources to address the
issue [56]. The problem of silent data corruptions, or SDCs, is further exacerbated in safety-critical
domains (such as in autonomous vehicles, medical devices, or robotics), where even a few errors can
lead to fatal and undesirable consequences.

At the same time, the rise of ML algorithms proliferating data centers and safety-critical domains
means that hardware robustness to this particular domain is extremely important. Recent work
has shown that as little as a single (non-adversarial) bit flip during a DNN’s inference can cause
wrong predictions by the model [34]. In the context of a self-driving car, this can potentially lead to
consequential downstream decision making which can be fatal, such as accelerating instead of braking
(e.g., by classifying a truck as a bird for instance) [34]. Thus, it is imperative to understand and mitigate
the effect of hardware bit flips on an executing software application, where our focus here is on vision
classification for its broad applicability and importance.

The current state-of-the-art technique to mitigate hardware errors is full modular hardware redundancy.
This is the approach taken recently by Tesla in their Full Self-Driving (FSD) chip, where they employ a
fully redundant co-processor with additional wiring, logic, and packaging to run two parallel inferences
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for comparison (and rerunning on a mismatch) [64]. While this approach is effective in identifying and
mitigating errors during inference, the associated 2× overhead is excessive and potentially unscalable
for many domains which may need to operate under stricter hardware, energy, and cost budgets.

While memory errors can be protected by traditional error-correcting code (ECC) or additional parity
bits at a fraction of the cost of full redundancy, errors that occur during computation are more difficult
to address at low cost. Further, they are also exceptionally difficult to detect, since they are many
times silent and do not cause an application to crash but still result in incorrect outcomes. Recent
research at the intersection of ML and silent data corruption (SDC) detection has explored the use
of low-cost dynamic range detectors during deployment [7], selective feature-map duplication [40],
and inference re-execution [41] to detect and mitigate single-bit flips at run time in order to avoid full
modular redundancy while targeting high error coverage. While these techniques have shown promise,
they are more reactive in that they target inference, with the objective of hardening a pre-existing model
to function in a faulty environment. Instead, in this work, we introduce what we believe is the first
training-side technique, with the objective of developing out-of-the-box models that are more resilient
against transient bit-flips in hardware.

In this paper, we present a novel software-driven solution to improve hardware reliability in neural net-
works. Our approach combines textual information from the Contrastive Language-Image Pre-training
(CLIP) [49] model with visual information from a traditional classification neural network to strongly
attenuate the effect of single-bit hardware errors in the computational components of a model. The
proposed method is based on the observation that textual information can often provide useful context to
interpret visual data, thereby enhancing the accuracy of error detection and correction. Our experiments
show that the combination of textual and visual information can improve the reliability of a neural
network’s classification layer by up to 14× compared to traditional error detection and correction tech-
niques, with minimal changes to pre-existing training recipes and their corresponding training accuracy.

The primary contributions of this paper are:

1. Contribution 1: We propose a simple training methodology combining textual and visual
information about an image to improve a model’s robustness to hardware-based, transient
computational errors which can occur during model deployment (§4).

2. Contribution 2: We rigorously evaluate our proposed methodology using both traditional
accuracy-based metrics from the ML community, as well as reliability-based metrics from
the hardware resiliency community§5. Our results provide a favorable tradeoff, where,
on average, a 0.32% validation accuracy loss on the ImageNet dataset translates to a
hardware reliability improvement of up to 14× (§6). Furthermore, we show that the 0.32%
average accuracy loss is statistically insignificant by analyzing the statistical distribution
of predictions across both the original, unhardened model and our novel, robust model (§7).

3. Contribution 3: We provide a thorough discussion based on state-of-the-art visualization
techniques and empirical data to explain why our method performs better, with ablation
studies, intuitive explanations, and statistical validation (§7).

2 Scope and Limitations

This work is not about adversarial robustness, but rather focuses on hardware-based fault mitigation and
analysis. Two high-level distinctions between these two are that (1) we do not assume a malicious adver-
sary, but rather environmental effects which cause faults to occur in the hardware during the execution
of a model [54, 33, 12, 58, 28, 6, 5], and (2) adversarial attacks typically corrupt the input of a model,
while we focus on computational errors (i.e., neuron corruptions), which may occur in multiply-and-
accumulate (MAC) operations during execution due to environmental- or manufacturing-based effects.

In the context of safety-critical systems and/or large-scale systems, these hardware errors are important
to identify and mitigate to avoid data corruption at-scale, or fatally worse outcomes in real-time
systems. While we believe the concept of resilience may be similar to adversarial robustness or
Out-of-Domain (OOD) reliability (and in fact, our idea to use CLIP stems from this similarity), we
focus our evaluation on improving hardware reliability. Exploring the correlation between hardware
reliability and these other domain-specific reliability concepts is of particular interest for future work.

2



3 Related Work

Unimodal Vision Models: The AlexNet [31] model, introduced in 2012, was a Convolutional Neural
Network (CNN) that gained popularity by winning the ImageNet [10] competition. It was followed
by other models like VGG [57], which emphasized smaller filter sizes and deeper networks, and
ResNet [20], which addressed the vanishing gradient problem with skip connections, enabling the
training of very deep networks. More recent models such as EfficientNet [59], and MobileNet [24]
have further improved efficiency and accuracy by utilizing compound scaling and lightweight
architectures for mobile devices. However, CNNs have limitations such as limited receptive field
and spatial inductive biases. To overcome these limitations, transformer-based approaches have
emerged in computer vision. Inspired by the Transformer [61] architecture in natural language
processing, the Vision Transformer (ViT) [14] model was proposed. It processes image patches as
sequences and achieves competitive performance on various benchmarks. Other studies, like the Swin
Transformer [38, 37] and MaxViT [60], have built upon the success of ViTs, focusing on improving
accuracy and computational efficiency. Additionally, there are hybrid works that take inspiration from
both Transformers and CNNs, such as FocalNets [65], which propose an efficient alternative to the
self-attention operator, focal modulation, based on Convolutions. These models are typically trained
using a cross-entropy objective. However, they have shown high susceptibility and unreliability to hard-
ware errors [45, 51, 34, 35, 39], such as bit flips in the weights and activations. To ensure trustworthy
deployment for real-world applications, it is crucial to establish strong resilience and reliability.

Multi-Modal Vision-Language Models: Advances in Natural Language Processing (NLP) has
led to the development of vision-language models like CLIP [49], Align [26], and Florence [66].
These models consist of image and text encoders and are trained using a contrastive approach
with extensive image-text pairs. The goal is to establish a shared feature space between visual
and textual features, allowing models like CLIP [49] to gain a nuanced understanding of visual
concepts. This approach benefits various downstream tasks such as "zero-shot" image classification,
semantic segmentation [50, 17, 68], object detection [15], point cloud classification [67], and video
recognition [46]. Additionally, CLIP has demonstrated impressive generalization capabilities on
out-of-distribution tasks, including evaluations on datasets like ImageNet-A [22], ImageNet-R [21],
ImageNet-Sketch [62] and ImageNetV2 [52]. However, training a CLIP model from scratch is
prohibitively expensive. To address this, researchers have employed techniques like using enriched
text prompts from large language models [48] such as GPT-3 [4] or employing prompting/finetuning
methods [70, 69, 27, 46, 63] to enhance performance on out-of-distribution tasks.

The impact of such text-guided classification on hardware resilience and reliability is an unexplored
topic in literature. The strong generalization capabilities demonstrated by text-guided classification
models like CLIP suggest the potential for improved resilience to hardware errors. By leveraging
the semantic supervision provided by text, these models can acquire a nuanced understanding of visual
concepts, which may help them to better handle and adapt to errors or inconsistencies in hardware.

Hardware Resilience and Reliability: As NN-based image classification models begin to take off
in vision-based tasks (such as for autonomous driving, or AV, systems), their robustness to hardware
perturbations has become of paramount importance for practical deployment and government
certification [25]. For example, Tesla’s FSD uses the simplistic full duplication method to achieve
high resilience, effectively allocating double the silicon to detect and correct errors [64]. However, due
to the high associated costs of full modular duplication, an open call for cheaper yet equally accurate
techniques has surfaced in recent years [45].

Rather than relying on hardware solutions for hardware faults, software-based solutions have risen to
prominence due to their comparatively lower overhead in this fast-moving field. Proposed techniques
leverage unique insights about the application domain (namely, neural networks) to systematically
detect and recover from errors. Selective duplication of feature maps in CNNs [40], value attenuation
in the form of range-detectors [7], and temporal re-execution of inferences [41] have all shown to be
adept at identifying errors in a low-cost manner, with reasonable guarantees on error coverage.

However, all prior research in the field assumes a model is already trained and ready for deployment,
and only then does the task of making it more resilient to hardware errors come into play (by using
some of the aforementioned techniques above). In contrast to prior work, our focus in this paper is
to provide a training routine that generates robust models directly using textual-visual information
(§4). Effectively, our technique is a training-based method for designing robust image classification
models, evaluated for its robustness to single-bit, transient hardware errors at run-time.
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Figure 1: The proposed Architecture: D questions for each class (total C) are hand-crafted. These
are fed to a GPT-3 [4] model, to obtain D detailed descriptions per class. A CLIP text encoder is used
to produce text embeddings, which are averaged across descriptions. The text embeddings initialize
a projection layer which is then trained alongside the randomly initialized backbone.

4 Our Approach

Multimodal pretrained models like CLIP [49], which are used for image classification, have
demonstrated the ability to learn generalized representations. These models are trained on vast datasets
of language-image pairs in a contrastive manner, resulting in impressive zero-shot capabilities and
effective transfer learning to various downstream tasks.

Given this strong generalization, we ask the following question: can the generalized representations
of these Vision-Language models help improve hardware reliability?. Our method augments the
standard training of image classification models by utilizing textual context from the CLIP text encoder,
allowing us to improve hardware resilience with minimal train and test time overhead.

We start by providing a brief overview of vision-language pre-training, specifically focusing on
CLIP in §4.1. However, our methodology can be applied to other vision-language models that share
similarities with CLIP, such as ALIGN and Florence. Following the overview, we provide a detailed
explanation of our text-guided classification scheme in §4.2.

4.1 Overview of the CLIP Model

Conventional methods of image classification have traditionally used the common Cross-Entropy
loss-based training for a closed-set classification problem [57, 20, 38, 37]. However, recently there
has been a trend to employ text supervision for image classification rather than one-hot labels such as
major works on contrastive language-image pretraining like CLIP [49]. The CLIP model is composed
of two encoders that encode the visual content of images and their corresponding text descriptions,
respectively. These encoded representations are then compared using a cosine similarity objective.

4.2 Proposed Text-Guided Classification

Consider an input image I∈RH×W×3 of spatial size H×W with 3 channels Red, Green, and Blue (R,
G, and B). A standard image classification model [57, 20, 37] maps the input image to the classification
domain RC , where C is the number of classes. However, it has been shown that such a model is
unreliable and susceptible to bit errors [8, 41], especially in the classification layer [43].

To counter this problem we propose our text-guided image classifier which modifies the last layer of the
image classification model to incorporate text features. Hence, this modification applies to any image
classification model, regardless of the underlying architecture. Given an input image I∈RH×W×3, we
first map it to a latent dimension RE where E is the embedding length of the CLIP Text Encoder. We
then apply a classification projection Pclass which maps the latent dimension RE to RC . We initialize
the projection layer Pclass using features obtained from the CLIP text encoder for each class.

4



A naive way to obtain the text features would be to simply pass each class name through the text encoder.
However, this is less robust to distribution shifts [70], and we argue that it would therefore be less re-
liable. Instead, we follow [48] and augment the class labels using a large question-answering language
model like GPT-3 [4]. We ask GPT-3 a total of D questions for each class in the total number of classes
C, making a total ofC×D questions. For each question, GPT-3 outputs detailed text descriptions, form-
ing D number of descriptions per class, which we then pass through the CLIP text encoder to produce
embeddings of shape C×D×E. We then average over the descriptions per class, to form the final em-
bedding tensor of shapeC×E, where each class c∈1,...,C has an embedding vector inRE . This tensor
is then used to initialize the projections layer Pclass. Figure 1 summarizes our proposed approach.

5 Evaluation Methodology

We evaluate our approach on two fronts: first, the impact of our technique on the classification accuracy
of the model; and second, the hardware reliability impact of our new technique.

5.1 Evaluation Infrastructure

For each backbone, we train a baseline model (the default architecture), and our modified classification
model on the ImageNet training set. For both methods, we follow the standard PyTorch [47] training
recipe. We then report accuracy and resilience on the ImageNet validation set and compare across mul-
tiple architecture families. We train our models on 4×A100 GPUs and run the training routine for both
the original and our modified models to the same number of epochs and with the same hyperparameters
as described in the PyTorch Github repository 1 for a fair comparison. Our results are presented in
§6, in Table 1. For the ablation study presented in Table 3, we train each model on 8×V100 GPUs.

5.2 Hardware Reliability Evaluation Methodology

To evaluate the reliability of the proposed model compared to the original model, we use the
GoldenEye [43] testbed for error analysis. We describe how this testbed works in more detail in this
section. Due to the exponentially large number of potential hardware error sites (e.g., a single bit
flipping in a random register during any dynamic cycle for any image during inference at deployment
time), it is impractical to explore all possible error locations and values for a given error model to
perform an exhaustive evaluation of a DNN. Instead, error injection mechanisms are used to statistically
evaluate the likelihood of errors propagating and corrupting an application’s output [34, 8, 39, 40].

In this work, we use a transient single-bit flip error model for evaluation, a commonly used abstraction
for modeling hardware faults [34, 18, 35, 2, 19]. In particular, we focus on errors that occur in
activation values (i.e., neurons), during inference. We assume that memory is protected via ECC or
parity (which is common in commercial and safety-critical systems [42]), allowing us to focus on
computational errors in hardware (i.e., MAC operations).

An error injection experiment involves flipping a single bit in the entire network (i.e., from 0→1 or
1→0), and then comparing the final classification of the network with respect to the original, baseline
correct output. We use PyTorchFI [39] to perform the random bit flip, and we perform 4096 unique
error injection experiments per layer, totaling more than 4.3 million experiments across all our models
and corresponding to a 99% confidence level with less than 0.23% confidence interval [32].

To measure reliability, we calculate the rate of all errors which led to an image misclassification, as
a function of all the injections performed. Recent work [41] has proposed a more accurate metric
called ∆Loss, which captures the same information as mismatches but converges asymptotically faster.
Conceptually, the ∆Loss metric calculates the difference in cross entropy (CE) between a fault-free
inference and an erroneous inference, rather than purely looking at a binary mismatch. Consequently,
it provides more granular information per error injection experiment. We use the ∆Loss metric for
comparing the reliability of each layer in the network for the original, baseline training routine and
our proposed, textual-augmented technique. To gather overall network-level reliability improvement,
we average the ∆Loss information gathered from each layer, producing a singular value to compare
the baseline model and our proposed text-guided model. We note that it is a simple mapping to go

1https://github.com/pytorch/vision/tree/main/references/classification
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back to the mismatch-based metric and ground this in a hardware-centric FIT-rate, while this work
leverages the ∆Loss metric for it’s drastically faster speed and accuracy [41].

Prior work has shown that the activation values of the final layer of a network are typically the most
vulnerable to single-bit perturbation, as this layer directly impacts the final classification [43]. For this
reason, we target our technique and analysis on the last layer, in an effort to mitigate errors at this stage.
To ensure a fair comparison, we compare the last layer of the baseline model with the weighted average of
the last two layers of our proposed model. This is because our proposed technique technically splits the
original last layer into two fully connected layers: the latent representation (B×E) and a projection layer
(E×C). We combine these last two layers into a single layer (B×C) for efficiency and a fair head-to-head
evaluation during inference (we keep them separate during training for initializing the projection layer).

We further show the necessity of the rich GPT-3 initialization of our method through an ablative study
in Table 3. Finally, we provide a qualitative analysis using Ablation-CAM [11] as well as quantitative
analysis for per-image inferences in §7 to further validate the benefits and trade-offs of our textual-
visual-based approach for improved hardware reliability. We use the concept of the Top2Diff from
the hardware reliability literature [41] to build intuitive arguments on the reliability of our model. The
Top2Diff metric is simply the difference in classification accuracy between the top inferred class and the
second-highest class. A large Top2Diff directly translates to better reliability, as the catalyst required by
a single bit flip to overcome and flip the classification from the correct class to a different class is larger.

6 Results

Our main results across various backbones are summarized in Table 1. For each model backbone, we
trained a baseline version using the training recipe provided by PyTorch, followed by our own method
trained using the text-guided initialization via GPT-3, again with the same recipe. We used the same
set of hyperparameters for both models (detailed hyperparameters are reported in Appendix A). We
report the accuracy of the baseline model, the accuracy of our proposed approach, the difference in the
number of parameters of the two versions, the difference in FLOPs, and the improvement in reliability
on the last layer and across the entire backbone. We observe multiple takeaways in our results, which
are described below.

Table 1: The tables present results across various backbones, reporting top-1 accuracy on the
ImageNet [10] validation set for both the baseline and our method. Additionally, we report the change
in total parameters and FLOPs (a negative sign indicates a decrease), the improvement in last-layer
and overall model reliability, and a percentage increase in Top2Diff.

Backbone Acc.
Baseline

Acc.
Ours

Additional
Params

(w.r.t baseline)

Additional
FLOPs

(w.r.t baseline)

Improvement
in Reliability
(Last Layer)

Improvement
in Reliability

(Overall)

Improvement
in Top2Diff

Alexnet [31] 56.43% 57.28% −1.49M −1.50M 7.92× 4.67× 2.83%
VGG-16-BN [57] 73.45% 72.96% −1.49M −1.50M 14.43× 9.64× 1.62%
VGG-19-BN [57] 74.40% 74.01% −1.49M −1.50M 13.29× 8.67× 1.13%
ResNet-18 [20] 69.60% 69.68% 0.26M 0.26M 2.87× 1.91× 3.07%
ResNet-34 [20] 73.25% 72.62% 0.26M 0.26M 3.89× 2.53× 2.08%
ResNet-50 [20] 75.64% 74.84% −0.49M −0.49M 4.48× 2.96× 3.35%
ResNet-101 [20] 77.25% 75.52% −0.49M −0.49M 4.33× 2.77× 3.13%
ResNet-152 [20] 77.98% 76.18% −0.49M −0.50M 4.47× 2.85× 3.09%
MobileNet-V2 [24] 71.87% 71.83% −0.11M −0.09M 3.92× 2.43× 5.36%
MaxViT-T [60] 82.98% 83.08% 0.26M 0.28M 3.38× 2.63× 2.62%
Swin-V2-T [37] 80.97% 80.02% 0.13M 0.15M 1.65× 1.07× 2.85%
Swin-V2-S [37] 82.71% 82.86% 0.13M 0.15M 3.51× 2.60× 3.04%
FocalNet-T [65] 80.23% 80.77% 0.13M 0.14M 3.87× 2.61× 2.61%
FocalNet-S [65] 82.01% 82.52% 0.13M 0.14M 4.73× 3.50× 3.10%

Accuracy impact: Our proposed model has a small accuracy reduction on the backbone compared to
the baseline, ranging from −1.77% to +0.52%, for an average decrease of .3%. Despite the reduction,
we find that our proposed model is in fact more confident in its accurate predictions based on the
difference between the top two classes (the Top2Diff ). For ResNet50, the Top2Diff for the baseline
model is 70.32%, while the Top2Diff of our model is 73.67%, a +3.35% improvement. A similar
phenomenon is observed across all models, where the average Top2Diff increases by 2.50%. Further,
we perform an additional study in §7.4, where we empirically show that this accuracy impact is indeed
minimal, especially compared to the upside observed in reliability improvement.
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Table 2: The tables present results across various datasets (CIFAR10 [29], CIFAR100 [30],
FOOD101 [3], and STL10 [9]) for two backbones (ResNet-50 [20] and FocalNet-T [65]), reporting top-
1 accuracy on the respective validation set for both the baseline and our method. Additionally, we report
the improvement in last-layer and overall model reliability, and a percentage increase in Top2Diff.

Dataset Backbone Acc.
Baseline

Acc.
Ours

Improvement
in Reliability
(Last Layer)

Improvement
in Reliability

(Overall)

Improvement
in Top2Diff

CIFAR10 [29] ResNet-50 [20] 95.07% 95.29% 2.04x 1.71x 6.70%
CIFAR10 [29] FocalNet-T [65] 94.76% 94.94% 2.47x 1.30x 3.58%

CIFAR100 [30] ResNet-50 [20] 78.23% 78.53% 2.19x 1.65x 3.69%
CIFAR100 [30] FocalNet-T [65] 77.06% 79.21% 3.21x 1.58x 2.90%

FOOD101 [3] ResNet-50 [20] 83.13% 83.97% 2.66x 2.15x 2.78%
FOOD101 [3] FocalNet-T [65] 85.64% 85.91% 3.28x 2.85x 1.70%

STL10 [9] ResNet-50 [20] 47.73% 52.68% 2.10x 1.91x 2.45%
STL10 [9] FocalNet-T [65] 62.74% 63.78% 2.23x 1.72x 1.96%

Model Size and Runtime Impact: Our proposed method marginally increases the total number of
parameters, on average, by 0.18M compared to the baseline. This reduction is model-dependent, as
it depends on the second-to-last layer feeding into the latent representation (B×E) before moving
onto the projection layer (E×C) for the final prediction. A few models (such as deeper ResNet’s and
VGG) actually observe a slight decrease in total model parameters, which is topology dependent. This
parameter difference translates to a small increase/decrease of FLOPs during inference, respectively,
as show in column 5. Overall, our proposed technique produces models with similar size and runtime
to the baseline on average.

Evaluation on Additional Datasets: We evaluate our method on additional datasets (CIFAR10 [29],
CIFAR100 [30], Food101 [3], and STL10 [9]) for two networks: ResNet-50 [20] and FocalNet-T [65]..
Our results, shown below in Table 2, validate that our technique is general and can work across an
array of model types and datasets. Furthermore, we did not have to modify any hyperparameters in
the process, suggesting the ease of our technique as well as the increased benefit from a reliability
point of view. Additionally, adding these new datasets further support our claims that our technique has
negligible impact on model training accuracy, whilst still providing us with a large upside in resilience.

Reliability Evaluation: Most importantly, our proposed technique significantly improves the
hardware reliability of the model, as this was the intention behind the method. The most significant
change occurs on the last layer, where the average reduction is model-family specific. In other
words, the ResNet family observes an average 4.01× hardware reliability improvement and the VGG
family observes a 13.68× improvement on the final layer, using the ∆Loss metric as explained in
§5. This difference is related to the baseline backbone, where in general the ResNet family baseline
can be considered more reliable than the VGG family to hardware errors [41], resulting in a larger
improvement with our proposed technique for the less robust model family (VGG). Overall, we
observe improvements across the board for all models studied, signifying the benefits of our technique.
Similarly, looking at a model’s end-to-end hardware reliability, we find the average to be 9.16× better
for the VGG family, and 2.61× for the ResNet family. While this value is strongly influenced by the
last layer, we observe that most layers in the network do get a modest hardware resilience improvement,
captured by the averages listed in the table and additional results in Appendix C.

7 Discussion and Analysis

We perform a series of additional studies to validate and better understand the insights of our proposed
method. First, we describe an ablation study on the initialization of the projection layer in §7.1. Second,
we provide a qualitative explanation of the impact of errors on the baseline versus our proposed method
using the state-of-the-art Ablation-CAM visualization in §7.2. Third, we analyze the impact of the
baseline training versus our method’s training on the activation values produced by each model, and use
this to provide an intuitive explanation for the improved hardware reliability in §7.3. Finally, in §7.4,
we further discuss the tradeoff between the small accuracy drop on the validation set compared with
the large improvement in hardware reliability by studying the output classification accuracy of images.
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7.1 Ablation Study

Our ablation study (Table 3) measures the improvement in hardware reliability for different projection
initialization techniques on ResNet50. We compare 1) a random initialization, 2) a CLIP-based
initialization ("a photo of a [CLASS]" prompt), and 3) our CLIP+GPT-3 initialization.

Table 3: Ablation for type of initialization on the projection layer. CLIP refers to a simple hand-crafted
prompt "a photo of a [CLASS]" while CLIP+GPT refers to the proposed method in §4.

Backbone Projection
Initialization

Improvement
in Reliability
(Last Layer)

Improvement
in Reliability

(Across Backbone)

ResNet-50 random 1.74× 1.09×
ResNet-50 CLIP 5.06× 3.28×
ResNet-50 CLIP+GPT-3 6.09× 3.93×

In general, we find that any text-based projection initialization helps improve reliability, as observed via
the "random" experiment which gives a 74% last layer improvement, and an overall 9% improvement
across the network compared to the baseline. However, a more intelligent projection initialization via
CLIP improves the hardware reliability up to 3.28× across the network (5.06× for the final layer) and
good prompting via GPT-3 to "describe a [CLASS]" further improves it to 3.93× (6.09× for the final
layer). To summarize, our ablation study validates that our good hardware reliability improvements
indeed come from our proposed initialization.

7.2 Ablation-CAM Visualization

(a) Class Label: "Admiral"

(b) Class Label: "Welsh springer spaniel"

(c) Class Label: "African hunting dog"

Figure 2: Comparative Visualization of Baseline and Our version of ResNet-50 Before and After Single
Bit Flip Error Injection. Each subfigure presents the original image, alongside the Class Activation
Mapping (CAM) visualizations for both the baseline and our model before and after error injection.
Prior to error injection, both models concentrate on key features of the images for classification. Post
error injection, the baseline model’s focus diverges, for instance, from the African hunting dog to
the surrounding foliage (Figure 2c), whereas our model maintains its original focus, demonstrating
its robustness against the induced error.

Ablation-CAM is a visualization technique developed for DNNs that employs a gradient-free
approach [11]. A departure from conventional gradient-based methods, Ablation-CAM systematically
removes parts of the network, allowing a deeper understanding of the individual feature map units
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contributing to the model’s decisions. This ablation process generates a coarse localization map,
highlighting regions in the network’s input image that are critical for predictions.

In our study, we chose Ablation-CAM to visualize the decision-making process of our models
(original versus our proposed technique). Ablation-CAM’s gradient-free nature offers a more robust
way of comprehending the focus areas within deep learning models, addressing the limitations of
gradient-based methods, such as susceptibility to noise in the gradient and the inability to capture
the entire network’s collective decision-making process [1]. Furthermore, Ablation-CAM’s ability
to evaluate model trustworthiness [11] was critical in understanding the robustness of our models to
error injection. By observing how the models’ focus shifts in response to error injection, we could
make judgments about their resilience and reliability. This unique combination of features made
Ablation-CAM an ideal tool for our study.

Figure 2 depicts our results for three images on the ResNet50 backbone (Additional visualizations are
presented in Appendix B). We inject 2000 random errors in weights across the network (for visualization
purposes) and project the impact on the input image, to see how the model responds to the same exact per-
turbations. Our results highlight the fact that despite the many errors, our proposed technique maintains
focus on the important features which correspond to better hardware-level reliability as discussed in §6.

7.3 Value Ranges

Another angle we study in this work is the impact of our proposed technique on the value of ranges for ac-
tivation values (i.e., neurons) of a model. Prior work has shown that smaller values during computations
typically are more robust to single-bit perturbations, as their impact does not propagate as far (except for
errors in the exponent fields of a floating point value, which range detectors or quantization can help mit-
igate). In fact, Google previously proposed a ReLU6 [24] activation function to clip values above the ar-
bitrary value of 6, later used as a range detector for reliability purposes [16]. Similarly, an organic reduc-
tion in values is beneficial from a hardware reliability perspective, which we target with our approach.
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Figure 3: Observed Neuron values for ResNet50. The Y-axis shows the max absolute value
(Figure 3a) and mean absolute value (Figure 3b) observed by profiling the ImageNet dataset on the
baseline and our model on a per-layer basis. It can be seen that both max and mean are viable choices
for profiling network neuron value ranges, and result in similar trends.

Figure 3 shows the absolute maximum and absolute mean observed neuron values per layer for
ResNet50 across the ImageNet dataset. We find that our proposed technique strongly attenuates
the values in the last layer for both measurems. This result helps explain why our technique is more
reliable, and why it is particularly beneficial for the final layer. The fault-free values are smaller to
begin with, which in turn enable smaller range detectors [7] and also are less likely to change into
a negative impactful error on the classification result. We observe a similar trend across all network
studies in our experiments. We provide additional results for different networks in Appendix C.
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The number representation in hardware also plays a large role in the reliability of a model, which our
proposed technique directly influences. To better understand this effect, we direct the reader to the
hardware implementation of numbers, which typically use the IEEE-754 floating point format, consist-
ing of a sign bit, exponent bits, and mantissa bits. Intuitively, bit flips in the exponent bit are the most
egregious, and having range detectors in place helps detect these types of errors. More subtle, however,
is that depending on the original exponent value, certain bit flips can transform a number to become
much larger or much smaller. In this case, a bit flip in a small number (which we identify as smaller
than 2) has a very high probability of changing to another small value, regardless of which bit is flipped.
In particular, so long as the sign bit or the most significant bit of the exponent (bit 31 and 30) are not the
ones flipped, then the IEEE-754 format guarantees that the new, erroneous number stays under the value
2. As such, the small magnitude change has little impact on the end-to-end inference of a classification,
and masks such errors. This is why it is crucial and advantageous to have smaller neuron values in
a neural network, which various techniques such as batch normalization and our newly proposed
technique help organically enforce (unlike an artificial enforcer such as ReLU6). Thus, our new training
routine helps accomplish this through the use of the projection layer at the tail end of the neural network.

7.4 Understanding the Accuracy Degradation in the Context of Hardware Reliability

To better understand the ∼0.3% accuracy loss of our technique, we wanted to see how the baseline
and proposed models matched up if we excluded low-confidence images (i.e., images "at the border"
during classification). In practice, low-confidence images would not be relied upon for safety-critical
decision-making - hence we wanted to measure the "true" accuracy of the models.
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Figure 4: Model accuracy as a function of Top2Diff deltas for ResNet50. This figure shows that as
we exclude images with low Top2Diff for classification accuracy measurements, our proposed model
recoups accuracy faster than the original baseline model, indicating that many correctly classified
images by the baseline model are borderline correct, to begin with.

We perform a sweep of different Top2Diff values (where "Delta" goes from 1% to 40%) and exclude
the "correct" images that have a Top2Diff value below each sweep point. We measure the new network
accuracy in light of these delta values and found that many images that were classified correctly by
the original model "fell off" as we increased the delta. On the other hand, our proposed model did
not lose its classification accuracy as fast; at a delta of Top2Diff=15, the inflection point occurs where
our method has the same accuracy (i.e., 0% accuracy degradation between models) as the original
model, and improves beyond this point. That said, a 0.3% accuracy loss itself is reasonable in and of
itself for the large hardware reliability gains we observe, yet this discussion point presents a trade-off
opportunity (as a function of Top2Diff) that can enable a model designer to tune their model for
their desired accuracy and hardware reliability targets. To further validate this claim, we find that for
different datasets (Table 2), our technique marginally improves accuracy across the board.

8 Conclusion

In conclusion, our paper presents a software-driven solution to enhance hardware reliability in neural net-
works. By combining textual and visual information, we mitigate the impact of transient bit-flips during
computation. Our approach improves neural network reliability of the most critical layer by up to 14×
compared to the baseline, with minimal changes to training. We contribute a simple training method-
ology, rigorous evaluation using accuracy and reliability metrics, and a comprehensive discussion sup-
ported by visualization techniques. Our work highlights the significance of addressing hardware errors
during training, offering a promising direction for developing robust models against transient bit-flips.
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