
Normalizing self-supervised learning for provably
reliable Change Point Detection

1st Alexandra Bazarova
Applied AI Center

Skoltech
Moscow, Russia

A.Bazarova@skoltech.ru

2nd Evgenia Romanenkova
Applied AI Center

Skoltech
Moscow, Russia

shulgina@phystech.edu

3rd Alexey Zaytsev
Applied AI Center

Skoltech
Moscow, Russia

A.Zaytsev@skoltech.ru

Abstract—Change point detection (CPD) methods aim to
identify abrupt shifts in the distribution of input data streams.
Accurate estimators for this task are crucial across various real-
world scenarios. Yet, traditional unsupervised CPD techniques
face significant limitations, often relying on strong assumptions
or suffering from low expressive power due to inherent model
simplicity. In contrast, representation learning methods overcome
these drawbacks by offering flexibility and the ability to capture
the full complexity of the data without imposing restrictive
assumptions. However, these approaches are still emerging in the
CPD field and lack robust theoretical foundations to ensure their
reliability. Our work addresses this gap by integrating the ex-
pressive power of representation learning with the groundedness
of traditional CPD techniques. We adopt spectral normalization
(SN) for deep representation learning in CPD tasks and prove
that the embeddings after SN are highly informative for CPD.
Our method significantly outperforms current state-of-the-art
methods during the comprehensive evaluation via three standard
CPD datasets.

Index Terms—change point detection, self-supervised learning,
time series analysis

I. INTRODUCTION

Change point detection (CPD) is designed to identify unex-
pected changes in data streams as quickly and accurately as
possible. Such a problem statement has been vital for decades
for various real-world problems, spanning detailed theoretical
analysis and the development of diverse applied methods. The
examples include industrial quality control [1], medicine [2],
video surveillance [3], finance [4], climate change [5], human
activity recognition [6], and more. Most of these problems
fall under the unsupervised setting due to the frequent un-
availability of annotated data [3], [7]. This common scenario
necessitates robust techniques that can operate effectively
without labeled examples.

Traditionally, CPD problems in the unsupervised setting are
solved via different theoretically-justified parametric and non-
parametric approaches [8], [9]. Although these methods have
a solid theoretical base, they suffer from strong assumptions
about the underlying distribution and type of changes [10],
[11]. For example, they look for the change in the mean or
the variance in the underlying distribution [12], [13].

Such limitations can be handled via deep learning meth-
ods: with no assumptions for input data distribution, a well-
designed neural network captures the key aspects of time series

structure, achieving better detection [14], [15]. Moreover, they
provide the only way to work with complex high-dimensional
streams [3]. For the unsupervised setting, self-supervised
learning (SSL) methods provide a consistent approach for,
e.g., anomaly detection, among other problems. These methods
have been widely used and led to advances for specific
problems and modalities [7], [16]. However, only a few papers
on this topic have been published in the context of change
point detection [15], [17], [18]. The problem is the complexity
of the representation space in an unsupervised regime and no
explanation of their behavior even for anomaly detection [19],
[20]. Thus, there is no theoretically rigorous understanding of
how to construct the most suitable embeddings for successful
CPD.

We take the best of both worlds: our method improves
state-of-the-art representation learning models and aligns them
with classic theory from the CPD area to produce reasonable
embedding space. Within our approach, the SN forces the
representation learning model to keep distributional shifts in
embedding space, leading to superior empirical performance.
The results are supported by theoretical justification and
various experiments for different datasets and models.

Our main contributions are:
• A proof that the usage of Spectral Normalization (SN)

for neural networks ensures that changes in the raw data
are preserved in the representation space, maintaining the
test power for standard change point detection methods.

• A framework based on self-supervised representation
learning augmented with SN for change point detection.
As base SSL methods, we consider two models: con-
trastive TS2Vec [7] and non-contrastive TS-BYOL —
our adaptation of BYOL [16] for time series data. The
pipeline is presented in Figure 1.

• Empirical evidence on the effectiveness of the proposed
framework for three standard CPD datasets.

II. RELATED WORKS

We focus on the development of CPD methods in the
unsupervised setting. It is of particular interest since it is often
challenging to obtain annotated data due to the complexity
and high cost of the annotation process. For example, in
the oil&gas domain, well-log data segmentation [21] requires

ar
X

iv
:2

41
0.

13
63

7v
2

 [
cs

.L
G

]
 3

 D
ec

 2
02

4

Time

F
ea

tu
re

Future, XfPast, Xp

Representation
model

Spectral Normalization+

yp yf

Test statistic
evaluation

Decision about a
change point at time t

t

Fig. 1. The structure of the proposed change point detection procedure based
on a model obtained via self-supervised learning with spectral normalization.

experts’ involvement for annotation. Another example is the
medical imaging domain [22], where the annotation process
is very time-consuming and sometimes even includes the
consultation of several experts. Thus, all methods that do not
need labels from the experts are valuable from a practical point
of view.

A substantial part of the unsupervised CPD methods com-
pares a predefined statistic of time series subintervals with
some threshold: if the value exceeds the threshold — the
model alarms a change point. There are different ways to
define such statistics, including likelihood ratio as in CUSUM
methods [23], [24], the observability matrices-based dissim-
ilarity as in subspaces analysis approaches [25], [26], Infor-
mation entropy [27], or simple distance in kernel spaces [28].
However, all methods described above have significant draw-
backs: they all either strongly rely on assumptions about
the distribution of the time series data or the state space
model, only take into consideration a few characteristics (like
temporal shape) of the data, not being able to reflect the
complexity of its structure, or are limited by the simplicity
of the structure of the selected statistics.

Deep learning-based methods for the CPD task are par-
ticularly interesting because they do not require strong as-
sumptions about the input data, are more flexible in terms of
architecture than kernel- or graph-based methods, and allow to
work with various data types, including images and video [3].
One example of such a method is KL-CPD [14], which
extends kernel-based approaches by considering deep kernel
learning; the authors of [14] have shown that this method
outperforms multiple classical approaches. However, KL-CPD
is still bounded by the shape of the kernel and does not
fit the unsupervised paradigm. Given the chosen setting, we
turn to self-supervised representation learning methods. These
methods have shown outstanding performance [7], [16], being
very versatile and thus suitable for various tasks. In the context
of CPD, they are not very widely researched yet. One of the

key works in this field is TS-CP2 [15], which first applied
contrastive learning to the considered task. Briefly, contrastive
learning aims to learn such an embedding space in which
similar sample pairs stay close to each other while dissimilar
ones are far apart. The authors of [15] have shown that this
approach is beneficial for change point detection; however,
their method, as well as other existing ones in this area, relies
on the intuitive explanation of its behavior, lacking a rigorous
theoretical foundation.

Our work takes the next step in developing these methods.
We propose applying the spectral normalization (SN) method,
which was initially used to stabilize GANs [29], to the
representation learning models. The SN method has already
been used as a mechanism for ensuring the invertibility of
neural networks [30]; we, in turn, extend this idea to obtain
specific statistical properties of the learned representations.
This technique allows us to align the expressive power of deep
self-supervised learning with the existing mathematical meth-
ods, providing theoretical justification for the reasonableness
of the learned representations from the change point detection
point of view.

III. METHODOLOGY

Let us begin with the formal statement of change point
detection problem [31]. As input, we have a sequence of inde-
pendent D-dimensional observations x1,x2, . . . that possibly
has a change in distribution at an unknown moment ν. So,
observations x1,x2, . . . ,xν come from one distribution, while
xν+1,xν+2, . . . — from another distribution. Without loss of
generality we can assume that xi belongs to the D-dimensional
sphere SD−1. The moment ν of the abrupt change is called the
change point, with ν = ∞ denoting the absence of a change.
The goal is to detect the change point as precisely as possible,
avoiding false alarms and long delays.

Following the state-of-the-art CPD methods [15], we pro-
pose to solve this problem in the representations space instead
of the raw data space. The goal of the transition into the
representation space is to capture the underlying structure of
the time series, discard measurement artifacts and noise, and
reduce data dimensionality. The paper [32] shows that In-
foNCE loss facilitates this by maximizing mutual information
between the representations.

While getting rid of the noise, we need to make sure that
nothing important is lost — we hope that the representations,
if not more informative than the raw data itself, are at least
as informative as the raw data in the context of the change
point detection task.

To ensure this, we propose applying the spectral normal-
ization (SN) technique [29] on the weight matrices {Wl}Ll=1

for an L-layered representation learning network. At every
training step (before the optimization step), the SN method
evaluates the spectral norm of the matrix λ̂ ≈ ∥Wl∥2 via the
power iteration method [33] and then enforces it to be less
than a predefined hyperparameter c:

Wl =

{
c · Wl

λ̂
, if c < λ̂,

Wl, otherwise.
(1)

This technique should be beneficial for representation learn-
ing in the context of CPD, as it enhances the test power-
preserving property in neural networks. Below, we (1) describe
the theoretical justification for this argument and (2) provide
experimental evidence suggesting that SN benefits the change
point detection quality.

A. Spectral Normalization preserves the CPD quality

Consider the following problem setting. Let x1, . . . ,xt

be a sequence of independent observations. Before the CP,
observations come from the distribution p∞, after — from
p0. Both distributions and the change point ν are considered
unknown. The change point detection problem is a problem
of testing a hypothesis H0 versus an alternative H1:

H0 : ν = t, i.e. xi ∼ p∞ ∀ 1 ≤ i ≤ t, (2)
H1 : ν ∈ {1, . . . , t− 1}, i.e. x≤ν ∼ p∞, x>ν ∼ p0.

We will consider the two most common approaches in this
setting: the two-sample tests built on kernel-based statistics
and the likelihood ratio-based tests. Below, it is shown that
spectral normalization ensures the transition into the space of
representations:

1) in the case of two-sample kernel-based tests — does not
change the type II error rate of convergence to zero (for
no assumptions about the data distribution at all);

2) in the case of likelihood ratio-based CPD tests — does
not decrease the power of such tests (for reasonable
assumptions about the data distribution).

But first, let us outline the main property that the spectral
normalization equips the neural networks with.

1) Bi-Lipschitz neural networks: The paper [19] showed
that the SN technique ensures the bi-Lipschitz property for
the neural networks G of the form:

G(X) = h ◦ g(X), (3)

where g(X) = AX + B, and h(X) is a composition of L
residual blocks:

h(X) = hL ◦ · · · ◦ h1(X), (4)
hl(X) = X+ gl(X), l = 1, . . . , L,

where gl(X) = σ(WlX + B). Here, we can consider the
case of consecutive mappings of xi s.t. yi = G(Xi−w:i) and
Y = {yi}ti=1 or the case when Y = G(X) is a single vector;
i.e., the mapping G may (depending on the specific CPD
procedure) have an image in either Rd or Rt×d. Inside gl(X),
σ is a sigmoid function, but other non-linearity functions are
possible. Neural networks of such form are common among
the modern methods [34], [35].

More precisely, the authors of [19] proved the following
lemma:

Lemma III.1. [19] Consider a hidden mapping h : X → H
of a form (4). If for 0 < α ≤ 1 all gl’s are α-Lipschitz, i.e.,
∥gl(X)− gl(X

′)∥H ≤ α∥X−X′∥X ∀(X, X′) ∈ X 2. Then:

L1∥X−X′∥X ≤ ∥h(X)− h(X′)∥H ≤ L2∥X−X′∥X , (5)

where L1 = (1− α)L, L2 = (1 + α)L.

Let X = H = Rn, and ∥.∥2 denote the Euclidean distance.
Since the SN technique enforces ∥Wl∥2 ≤ c, and the Lipschitz
constant of the residual block (4) is bounded by ∥Wl∥2:

∥gl(X)−gl(X
′)∥2 ≤ ∥WlX−WlX

′∥2 ≤ ∥Wl∥2∥X−X′∥2.

With c ≤ 1, the spectral normalized hidden mapping h ensures
that the Euclidean norm is preserved; the same is true for the
aforementioned mapping G(X) = h◦g(X). Note that in finite
dimensional vector spaces, all norms are equivalent; hence, the
preservation of the Euclidean distance implies the preservation
of any vector norm distance. We will say that the mappings
for which lemma III.1 holds are distance-preserving.

2) Preservation of kernel distances: In change point de-
tection, the test statistic S(X) is often a function of kernel
distances between the observations k(x,x′) [28], [36]. Most
popular kernels, such as RBF k(x,x′) = exp

(
−∥x−x′∥2

2

2σ2

)
,

rely on the vector norm of the difference ∥x − x′∥. In the
previous section, we proved the bi-Lipschitz property of the
SN networks, i.e., the preservation of such distances. Then,
the following statement holds.

Lemma III.2. Consider two observations xi, xj ∈ SD−1

and their representations yi, yj . Consider the RBF kernel
k(x,x′). SN networks preserve RBF kernel distance, i.e.
∃Ĉ, C̃ > 0:

Ĉk(xi,xj) ≤ k(yi,yj) ≤ C̃k(xi,xj).

We provide the proof in the Appendix A-C. Note that this
statement holds for both G : X → Rd and G : X → Rt×d.

3) Kernel-based test: In our experiments, we consider
the MMD (maximum mean discrepancy) [36] as a kernel-
based statistic. This is a nonparametric probabilistic distance
commonly used in two-sample tests. Given a kernel k of the
RKHS Hk, the MMD distance between two distributions P
and Q is defined as

MMD2
k(P, Q) = ∥µP − µQ∥2Hk = (6)

= EP [k(ζ, ζ
′)]− 2EP,Q[k(ζ, ξ)] + EQ[k(ξ, ξ

′)],

where µP = Eζ∼P [k(ζ, .)], µQ = Eξ∼Q[k(ξ, .)] are the kernel
mean embeddings of distributions P and Q, accordingly. We
use the biased empirical estimate of the MMD distance: given
observations Z = (ζ1, . . . , ζm) ∼ P, Ξ = (ξ1, . . . ξm) ∼ Q

MMD2
b(Z, Ξ) =

1

m2

∑
i

∑
j

k(ζi, ζj)− (7)

− 2

m2

∑
i

∑
j

k(ζi, ξj) +
1

m2

∑
i

∑
j

k(ξi, ξj).

For kernels that are preserved under distance-preserving map-
pings, the following theorem holds.

Theorem 1. Consider two sequences of observations X =
[x1, . . . ,xn] and X̂ = [x̂1, . . . , x̂n],xi, x̂i ∈ SD−1. Denote by
Y, Ŷ their images under the distance-preserving mapping G.
Consider a bounded kernel 0 ≤ k(x,x′) ≤ K that is preserved

under G and the corresponding sample MMDk
b statistic. The

MMDk
b -based two-sample test of level α has the same type

II error rate O(n− 1
2) of convergence to zero in the space of

embeddings Y as in the space of raw observations X .

For proof, see Appendix A-D. Note that the MMD statistic
based on RBF kernels is a particular case of Theorem 1; we
use this statistic in our experiments.

To sum up, spectral normalization ensures that SN mappings
preserve kernel distances, which, in turn, leads to the preserva-
tion of MMDb-based two-sample test properties in the latent
space.

4) Likelihood ratio tests: Suppose that p0, p∞ in the setting
(2) are known. Consider the likelihood ratio of an interval
X = [x1, . . . ,xt] ∈ Rt×D in the setting (2) as its test statistic:

S(X) =
p
[1:t]
0 (x1, . . . ,xt)

p
[1:t]
∞ (x1, . . . ,xt)

. (8)

The following proposition gives sufficient conditions for the
neural network G : Rt×D → Rt×d of the form (3) to preserve
likelihood ratio for elliptical distributions.

Proposition III.1. Consider a sequence of independent vari-
ables X = [x1, . . . ,xt] distributed according to an elliptical
distribution with a possible change in mean at an unknown
location ν. Consider G(X) of the form (3), with h(X) being
an invertible function. Denote by Y = [y1, . . . ,yt] the
transformation of the original sequence, i.e. Y = G(X).

Let p0 and p∞ be the joint PDFs tested for the original
sequence X, p̂0 and p̂∞ be the corresponding joint PDFs for
the transformed sequence Y. Then

p0(X)

p∞(X)
=

p̂0(Y)

p̂∞(Y)
. (9)

The proof is presented in the Appendix.
Therefore, for the neural network G(X) to preserve like-

lihood ratio, it is sufficient for its component h(X) to be
invertible. Thankfully, the SN technique provides this property.
As mentioned, the SN enforces the Lipschitz constant of gl to
be not greater than c for any predefined c > 0. The authors of
[30] show that for c < 1, such restraint ensures the invertibility
of the residual block hl (4). Hence, applying SN to all layers
h1, . . . , hL enforces the invertibility of h(X).

This likelihood ratio preservation property entails the fol-
lowing theorem.

Theorem 2. Consider a statistical CPD test based on the
likelihood ratio. The proposed strategy ensures that for any
elliptical distribution, the power of such test of level α
preserves, i.e.,

PH1
(reject H0 | raw data space) = (10)

=PH1
(reject H0 | representation space).

The proof is given in Appendix A-B.
Summary. The SN technique ensures the test power-

preserving property in neural networks. This property is valu-
able since it encourages the results of any considered statistical

test of considered form not to deviate too much when carried
out in the latent space instead of the observation space. Test
power preservation is in some way similar to information
preservation but through the lens of the change point detection
task.

B. General pipeline

Now that we have outlined the theoretical properties of the
proposed approach let us describe the general CPD pipeline
depicted in Figure 1 that we follow. The pipeline consists of
three stages: (1) representation construction, (2) test statistic
calculation, and (3) change point detection.

In the first stage, following the standard sliding window
technique, the raw time series data is cropped into a sequence
of overlapping time intervals X of length 2w; for each
interval, we consider separately its first Xpast ∈ Rw×D and
second part Xfuture ∈ Rw×D. Then, each Xpast and Xfuture is
transformed into its representation. Denote the embeddings by
(Ypast, Yfuture).

In the second stage, for each pair (Ypast, Yfuture), the test
statistic is calculated. We consider two test statistics: the cosine
distance and the MMD-score.

In the last stage, the change point detection, we estimate the
change points from the obtained statistic values. We report a
change at every pair of intervals where the statistic is greater
than some empirically chosen threshold δ: an example is
shown in Figure 2.

Observations

Co
sin

e
di

st
an

ce
s Threshold

Distances

Fig. 2. Cosine distances between the subsequent subintervals of observations.
The value above a predefined threshold indicates the presence of a change-
point. The color filled area denotes that the corresponding intervals contain a
change point.

C. Models

As base models, we consider two self-supervised models:
TS2Vec [7] and our adaptation of BYOL [16] for time series
data. During the CPD procedure, the embeddings of TS2Vec
are obtained in two modes: either an interval is mapped to
its embedding, i.e., the model performs the mapping G :
Rw×D → Rd — and the corresponding test statistic is the
cosine distance — or an interval is mapped into a sequence
of embeddings, i.e., G : Rw×D → Rw×d — and the MMD-
score is used as the statistic. For BYOL, only the mapping to
a single embedding is performed to calculate then the cosine
distance.

1) TS2Vec: [7] leverages hierarchical contrastive loss for
learning informative time series representations. The structure
of the model is depicted in Figure 3.

In the TS2Vec encoder learning pipeline, the input time
series is cropped into two overlapping subseries, creating
augmented views of the original data. These samples are
then encoded into timestamp-wise sequences of embeddings.
The resulting embeddings are contrasted in two dimensions:
temporal and instance-wise. The loss for the t-th timestamp of
the i-th sample in a batch includes two corresponding terms:

L(i,t)
inst = − log

exp(hi,t · h′
i,t)

Sinst
i

,

Sinst
i =

B∑
j=1

(
exp(hi,t · h′

j,t) + 1(i ̸= j) exp(hi,t · hj,t)
)
;

L(i,t)
temp = − log

exp(hi,t · h′
i,t)

Stemp
i

,

Stemp
i =

∑
t′∈Ω

(
exp(hi,t · h′

i,t′) + 1(t ̸= t′) exp(hi,t · hi,t′)
)
.

Here, hi,t and h′
i,t refer to the projections of representations

of the same timestamp but from two different augmentations
of the original sample; Sinst

i is the sum over the batch; Ω
refers to the overlapping part of the two subseries.

The contrasting is performed hierarchically: after each
iteration of loss calculation, the max pooling operation is
executed along the time axis until the dimension of the time
axis reduces to one. The final loss comprises of multiple
terms corresponding to different levels of representations’
granularity.

2) TS-BYOL: We adapt the self-supervised BYOL [16]
model, originally designed for images, as an alternative source
of representations. The model (Figure 4) consists of two
asymmetrical parts: the ”target” and ”online” networks. The
online network has an additional prediction head and is trained
via backpropagation, while the target network’s weights are
updated slowly using exponential moving average (EMA):

ξ := βξ + (1− β)θ, (11)

where ξ and θ denote the weights of the target and the online
network, accordingly, and the hyperparameter β is usually
close to 1. In our experiments, we set β = 0.996.

Online and target networks build embeddings h′,h′′ from
augmented views X′,X′′ of the same sample X. The online
network minimizes the L2-norm difference between normal-
ized embeddings h̄ = h

∥h∥2
to match the target network’s

embeddings:

L(h′,h′′) = ∥h̄′ − h̄′′∥22 = 2− 2
⟨h′,h′′⟩

∥h′∥2∥h′′∥2
. (12)

For the augmentations, we use only the random cropping of
length w from an interval of length 2w, as a similar procedure
provides optimal performance in [37]. The architecture con-
sists of a sequence of 1-D convolutions, followed by ReLU
nonlinearities and dropouts, as a backbone; both projection
and prediction heads are two-layer MLPs.

During CPD, we use representations y produced by the
backbone neural network, not by the projection heads, and
compute cosine distances between the representations of in-
tervals of neighbor windows.

IV. RESULTS

A. Compared methods

• TS-CP2 [15] is a self-supervised model intended for
change point detection. It was the first method to leverage
contrastive learning to obtain informative time series data
representations.

• KL-CPD [14] is a principled CPD framework that em-
ploys deep kernel learning for two-sample hypothesis
testing, being another option for NN-based CPD.

• ESPRESSO [27] is a hybrid approach that exploits both
statistical and temporal shape properties in the CPD
process. This method does not involve deep learning
while showing decent performance.

• A self-supervised TS2Vec [7] employs hierarchical con-
trastive loss for representation learning, showing state-of-
the-art results in time series classification, forecasting and
anomaly detection. SN-TS2Vec is our modification of the
TS2Vec model: we performed spectral normalization for
each of its convolutional layers.

• An SSL approach BYOL [16] provides an additional
way to obtain a representation learning model via a non-

encoderoverlap

representations

contrasting

positive

negative

negative

raw input

max
pool

max
pool

contrasting

max
pool

max
pool

...
crop

crop

B

T

Fig. 3. TS2Vec architecture. The upper part of the figure is the hierarchical
contrasting procedure; the lower part is the selection of positive and negative
pairs.

X

X'

X''

Backbone Projection
head

Backbone Projection
head

Prediction
head

h''

h'

Representation, y

EMA
Augmentation

Augmentation

stop grad

LossEMA

Target

Online

Fig. 4. BYOL’s architecture. The upper part is the training Online network,
and the lower part is the Target network with disabled backpropagation.

contrastive loss function. We employ SN-BYOL in some
experiments to compare SN-equipped version to a vanilla
one.

Suffixes cos and MMD denote the type of test statistic that
is used during the change point detection procedure: either the
cosine distance or the MMD score, accordingly.

B. Datasets

We provide the analysis of our method on the datasets
below. These datasets are considered, following TS-CP2 [15],
since we aimed to compare this SOTA model to our method.
All datasets are publicly available.

• Yahoo [38]. It is a widely used anomaly detection bench-
mark consisting of time series that contain metrics of the
various Yahoo services with manually labeled anomalies.
Following [15], we used the fourth benchmark since it
includes annotations of change points.

• HASC [39]. This dataset contains human activity data
collected by three-axis accelerometers. We used the same
subset as [14] and [15]. Change points in this time series
indicate alternations in the type of activities (stay, walk,
jog, skip, stair up, and stair down).

• USC-HAD [40]. The dataset also contains human activity
data monitored by wearable sensors. The observed data
represents basic daily life activities such as walking,
sitting, sleeping, etc. We followed the pipeline from [15]
and combined 30 random activities from six participants,
using only the data from the accelerometer.

TABLE I
DATASETS

Dataset Domain #Timestamps 1 #Sequences #CP 2

Yahoo R+ 164K 100 208
USC-HAD R3 97K 6 30
HASC R3 39K 1 65

C. F1-score for change point detection

Since we aim to compare our model to the current SOTA
in this field, TS-CP2 [15], we used their equivalent of F1-
score for the change point detection task as the primary metric
of detection quality This procedure’s inputs are a sequence
of binary ground truth labels (for each interval, whether it
contains a change point or not) and a sequence of predicted
labels, and the output is a value between 0 and 1. The metric
suggests that in order to correctly detect a change point, it is
sufficient for the detection algorithm to indicate the presence
of a change point in at least one of the consecutive intervals
containing it. For extra details, see the TS-CP2 paper [15].

D. Main results

Table II compares SN-TS2Vec to three other state-of-the-art
CPD methods. For both Yahoo!A4Benchmark and USC-HAD
datasets, the SN-TS2Vec approach with the cosine distance

1Total number of timestamps.
2Total number of change points.

used as a test statistic achieves two of the three best results.
For the HASC dataset, all TS2Vec variants show results
close to KL-CPD and ESPRESSO, outperforming the TS-
CP2 approach. So, SN-TS2Vec either dominates the existing
methods or performs almost as well as they do.

As for the TS-BYOL model, even though it does not
achieve SOTA performance, it shows solid results on the
Yahoo!A4Benchmark dataset. Comparison of the SN-BYOL
to its vanilla version confirms that the SN technique enhances
model properties in the context of CPD task.

TABLE II
F1 MEASURE FOR DIFFERENT DETECTION MARGINS FOR THE PROPOSED

SN-TS2VEC APPROACH VS EXISTING CPD METHODS.

Dataset Model Detection margin
24 50 75

TS-CP2 0.64 0.81 0.843
KL-CPD 0.579 0.576 0.544

ESPRESSO 0.224 0.340 0.4442
TS-BYOL 0.5 0.706 0.768
SN-BYOL 0.694 0.766 0.789

TS2Vec 0.688 0.788 0.816
SN-TS2Vec, cos 0.726 0.775 0.852

Yahoo

SN-TS2Vec, MMD 0.692 0.81 0.851
100 200 400

TS-CP2 0.824 0.857 0.833
KL-CPD 0.743 0.718 0.632

ESPRESSO 0.633 0.833 0.833
TS-BYOL 0.5 0.796 0.933
SN-BYOL 0.5 0.636 0.722

TS2Vec 0.873 0.97 0.952
SN-TS2Vec, cos 0.736 0.909 1

USC-HAD

SN-TS2Vec, MMD 0.909 0.809 1
60 100 200

TS-CP2 0.4 0.438 0.632
KL-CPD 0.479 0.473 0.467

ESPRESSO 0.288 0.423 0.693
TS-BYOL 0.316 0.398 0.26
SN-BYOL 0.403 0.416 0.418

TS2Vec 0.476 0.467 0.444
SN-TS2Vec, cos 0.476 0.306 0.663

HASC

SN-TS2Vec, MMD 0.476 0.467 0.444

1) TS2Vec with and without SN: The results of the com-
parison of the model modifications are presented in Table III.
The experiments were conducted for three different window
sizes for each dataset; the hidden representations size was
set to 16 for the Yahoo and USC-HAD datasets and to 32
for the HASC dataset. On the Yahoo!A4Benchmark dataset,
the SN-TS2Vec strongly outperforms its vanilla version, with
the cosine distance version being slightly dominant over the
MMD-score one. The results on USC-HAD also show the
superiority of the SN version: two out of three best results for
each dataset belong to it. On the HASC dataset, all models
demonstrate comparable results.

We also provide the extended version of this comparison
in Figure 5, considering multiple code sizes (i.e., hidden
dimensions). The results on the Yahoo!A4Benchmark con-
firm that the SN technique enhances the properties of the
representations; for two other datasets, the SN improves the
results for approximately half of the code sizes. Note that these
two datasets contain significantly fewer change points than

Yahoo!A4Benchmark. Therefore, the results on the latter are
more representative.

16 32 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Window size = 24

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Window size = 50

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window size = 75

without SN
SN

16 20 32
0.0

0.1

0.2

0.3

0.4

Se
qu

en
tia

l F
1-

sc
or

e Window size = 60

16 20 32
0.0

0.1

0.2

0.3

0.4

Window size = 100

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Window size = 200

without SN
SN

16 20 32
0.0

0.2

0.4

0.6

0.8

Window size = 100

16 20 32

Code size
0.0

0.2

0.4

0.6

0.8

1.0
Window size = 200

16 20 32
0.0

0.2

0.4

0.6

0.8

1.0
Window size = 400

without SN
SN

Fig. 5. Comparison of TS2Vec performance with and without spectral
normalization on all datasets. The cosine distance was used as the test statistic.
The upper row — Yahoo!A4Benchmark, middle — HASC, lower — USC-
HAD.

TABLE III
COMPARISON OF VANILLA TS2VEC VS SN-TS2VEC PERFORMANCE FOR

TWO TEST STATISTICS: COSINE DISTANCE AND MMD-SCORE.

Model Detection margin
Yahoo

24 50 75
TS2Vec, cos 0.688±0.035 0.788±0.021 0.816±0.019
TS2Vec, MMD 0.624±0.048 0.764±0.03 0.796±0.033
SN-TS2Vec, cos 0.726±0.021 0.775±0.018 0.852±0.001
SN-TS2Vec, MMD 0.692±0.115 0.81±0.034 0.851±0.037

USC-HAD
100 200 400

TS2Vec, cos 0.873±0.063 0.97±0.052 0.952±0.083
TS2Vec, MMD 0.724±0.132 0.909±0 1±0
SN-TS2Vec, cos 0.736±0.212 0.909±0 1±0
SN-TS2Vec, MMD 0.909±0 0.809±0 1±0

HASC
60 100 200

TS2Vec, cos 0.476±0 0.467±0 0.444±0
TS2Vec, MMD 0.476±0 0.467±0 0.444±0
SN-TS2Vec, cos 0.476±0 0.306±0.142 0.663±0.089
SN-TS2Vec, MMD 0.476±0 0.467±0 0.444±0

2) TS-BYOL with and without spectral normalization: To
enrich our comparison, we conducted additional experiments
with an alternative self-supervised approach, TS-BYOL, on
all three datasets. The basic TS-BYOL was compared to the
TS-BYOL with SN. The results can be seen in Figure 7. It is
clear that TS-BYOL with SN either outperforms or performs

on par with its vanilla version on two of three datasets —
Yahoo!A4Benchmark and HASC. The results obtained on the
USC-HAD dataset are different; however, it should be noted
that the total number of change points in the test set of USC-
HAD is the smallest among all datasets, and the standard
deviation of the obtained metrics is relatively high (up to
std = 0.4). Therefore, the results on USC-HAD are not as
representative as those of the other two datasets.

E. The dynamics of the representations

We compared the dynamics of the representations for
Vanilla TS2Vec and SN-TS2Vec. The experiment was per-
formed as follows:

1) For each change point, we sampled a subsequence of
length 300 right before the CP; let us call it X.

2) We cloned each X and replaced the last half with the
subsequence from right after the CP, denoting the sample
obtained by X̂. Thus, for each CP, we have X and X̂:
their first halves are identical, while their last halves
belong to different distributions.

3) After that, we transformed X and X̂ into a sequence of
representations via the sliding window procedure.

4) Finally, we calculated cosine similarities between the
corresponding representations in X and X̂, obtaining a
sequence of similarities for each CP. Supposedly, they
should begin to diverge right after a CP appears.

We averaged the obtained similarity arrays over all the change
points. The results are presented in Figure 6. For two out of
three considered datasets, the embeddings obtained with SN-
TS2Vec diverge faster, achieving greater dissimilarity values.
This visualization confirms that SN-TS2Vec is more suitable
for CPD tasks than its vanilla version.

0 20 40 60 80 100 120
Interval position

0.7

0.8

0.9

1.0
Yahoo!A4Benchmark

Vanilla TS2Vec
SN-TS2Vec

0 20 40 60 80 100 120 140
0.850

0.875

0.900

0.925

0.950

0.975

1.000

Co
sin

e
sim

ila
rit

y HASC

0 50 100 150 200

0.6

0.7

0.8

0.9

1.0
USC-HAD

Fig. 6. The dynamics of the representations. Blue color corresponds to vanilla
TS2Vec, and orange — to its SN version. Sliding window sizes: 60 for HASC,
75 for Yahoo!A4Benchmark, 100 for USC-HAD. Each value at the position
i corresponds to the similarity between the representations of X[i : i + w]
and X̂[i : i+ w].

V. ACKNOWLEDGMENTS

The research was supported by the Russian Science Foun-
dation grant 20-7110135.

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Window size = 24

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Window size = 50

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Window size = 75

without SN
SN

16 20 32
0.0

0.1

0.2

0.3

0.4

Se
qu

en
tia

l F
1-

sc
or

e Window size = 60

16 20 32
0.0

0.1

0.2

0.3

0.4

Window size = 100

16 20 32
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Window size = 200

without SN
SN

16 20 32
0.0

0.1

0.2

0.3

0.4

0.5
Window size = 100

16 20 32

Code size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Window size = 200

16 20 32
0.0

0.2

0.4

0.6

0.8

Window size = 400

without SN
SN

Fig. 7. Comparison of TS-BYOL performance with and without spectral
normalization on all datasets. The upper row — Yahoo!A4Benchmark, mid-
dle — HASC, lower — USC-HAD.

VI. CONCLUSION

Our findings provide a step forward in the CPD field, bridg-
ing the gap between the expressive ability of representation
learning models and the theoretical grounds of CPD problems.

We showed how to design self-supervised learning models
with respect to CPD task specificity. The main contribution
is the usage of Spectral Normalization, which, as we theoret-
ically and empirically demonstrate, preserves test power for
various two-sample tests in latent space. Thus, the resulting
representations appear to be more robust for further change
detection.

Through a series of experiments, we confirm the effective-
ness of the self-supervised approach, showing that the modern
TS2Vec model outperforms current state-of-the-art approaches
for CPD. Moreover, Spectral Normalization enhances the
performance of TS2Vec, leading to a 5% improvement in the
target F1 metrics.

REFERENCES

[1] S. Basu and M. Meckesheimer, “Automatic outlier detection for time
series: an application to sensor data,” Knowledge and Information
Systems, vol. 11, pp. 137–154, 2007.

[2] S. Liu, A. Wright, and M. Hauskrecht, “Change-point detection method
for clinical decision support system rule monitoring,” Artificial intelli-
gence in medicine, vol. 91, pp. 49–56, 2018.

[3] E. Romanenkova, A. Stepikin, M. Morozov, and A. Zaytsev, “Indid: In-
stant disorder detection via a principled neural network,” in Proceedings
of the 30th ACM International Conference on Multimedia, pp. 3152–
3162, 2022.

[4] S. Banerjee and K. Guhathakurta, “Change-point analysis in financial
networks,” Stat, vol. 9, no. 1, p. e269, 2020.

[5] N. Itoh and J. Kurths, “Change-point detection of climate time series
by nonparametric method,” in Proceedings of the world congress on
engineering and computer science, vol. 1, pp. 445–448, 2010.

[6] S. Aminikhanghahi and D. J. Cook, “Using change point detection
to automate daily activity segmentation,” in 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pp. 262–267, IEEE, 2017.

[7] Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu,
“Ts2vec: Towards universal representation of time series,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8980–
8987, 2022.

[8] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series
change point detection,” Knowl. Inf. Syst., vol. 51, pp. 339–367, May
2017.

[9] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, vol. 167, p. 107299, 2020.

[10] F. Enikeeva and Z. Harchaoui, “High-dimensional change-point detec-
tion under sparse alternatives,” The Annals of Statistics, vol. 47, no. 4,
pp. 2051–2079, 2019.

[11] F. Gustafsson, “The marginalized likelihood ratio test for detecting
abrupt changes,” IEEE Transactions on automatic control, vol. 41, no. 1,
pp. 66–78, 1996.

[12] S. Gharghabi, C.-C. M. Yeh, Y. Ding, W. Ding, P. Hibbing, S. LaMunion,
A. Kaplan, S. E. Crouter, and E. Keogh, “Domain agnostic online
semantic segmentation for multi-dimensional time series,” Data mining
and knowledge discovery, vol. 33, pp. 96–130, 2019.

[13] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point
detection in time-series data by relative density-ratio estimation,” Neural
Networks, vol. 43, pp. 72–83, 2013.

[14] W.-C. Chang, C.-L. Li, Y. Yang, and B. Póczos, “Kernel change-
point detection with auxiliary deep generative models,” in International
Conference on Learning Representations, (Vancouver, Canada), ICLR,
2018.

[15] S. Deldari, D. V. Smith, H. Xue, and F. D. Salim, “Time series change
point detection with self-supervised contrastive predictive coding,” in
Proceedings of The Web Conference 2021, WWW ’21, Association for
Computing Machinery, 2021.

[16] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al.,
“Bootstrap your own latent-a new approach to self-supervised learning,”
Advances in neural information processing systems, vol. 33, pp. 21271–
21284, 2020.

[17] S. Chatterjee, “Changepoint detection using self supervised variational
autoencoders,” 2021.

[18] X. Bao, L. Chen, J. Zhong, D. Wu, and Y. Zheng, “A self-supervised
contrastive change point detection method for industrial time series,”
Engineering Applications of Artificial Intelligence, vol. 133, p. 108217,
2024.

[19] J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lak-
shminarayanan, “Simple and principled uncertainty estimation with
deterministic deep learning via distance awareness,” NeurIPS, vol. 33,
pp. 7498–7512, 2020.

[20] A. Vazhentsev, G. Kuzmin, A. Shelmanov, A. Tsvigun, E. Tsymbalov,
K. Fedyanin, M. Panov, A. Panchenko, G. Gusev, M. Burtsev, et al.,
“Uncertainty estimation of transformer predictions for misclassification
detection,” in ACL, pp. 8237–8252, 2022.

[21] E. Romanenkova, A. Rogulina, A. Shakirov, N. Stulov, A. Zaytsev,
L. Ismailova, D. Kovalev, K. Katterbauer, and A. AlShehri, “Similarity
learning for wells based on logging data,” Journal of Petroleum Science
and Engineering, vol. 215, p. 110690, 2022.

[22] R. Malladi, G. P. Kalamangalam, and B. Aazhang, “Online bayesian
change point detection algorithms for segmentation of epileptic activity,”
in 2013 Asilomar Conference on Signals, Systems and Computers, IEEE,
Nov. 2013.

[23] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
no. 1/2, pp. 100–115, 1954.

[24] X. Shao and X. Zhang, “Testing for change points in time series,”
Journal of the American Statistical Association, vol. 105, p. 1228–1240,
Sept. 2010.

[25] Y. Kawahara, T. Yairi, and K. Machida, “Change-point detection in time-
series data based on subspace identification,” in IEEE ICDM, IEEE, Oct.
2007.

[26] V. Moskvina and A. Zhigljavsky, “An algorithm based on singular spec-
trum analysis for change-point detection,” Communications in Statistics
- Simulation and Computation, vol. 32, p. 319–352, Jan. 2003.

[27] S. Deldari, D. V. Smith, A. Sadri, and F. Salim, “Espresso: Entropy
and shape aware time-series segmentation for processing heterogeneous
sensor data,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, p. 1–24, Sept. 2020.

[28] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappe, “A regularized
kernel-based approach to unsupervised audio segmentation,” in IEEE
ICASSP, IEEE, Apr. 2009.

[29] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in International Conference
on Learning Representations, 2018.

[30] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H.
Jacobsen, “Invertible residual networks,” in International conference on
machine learning, pp. 573–582, PMLR, 2019.

[31] A. Tartakovsky, I. Nikiforov, and M. Basseville, Sequential analysis:
Hypothesis testing and changepoint detection. CRC press, 2014.

[32] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[33] R. V. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der
gleichungsauflösung .,” ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
vol. 9, p. 152–164, Jan. 1929.

[34] V. Ashish, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, p. I, 2017.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, pp. 770–778, 2016.

[36] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” Journal of Machine Learning Research,
vol. 13, no. 25, pp. 723–773, 2012.

[37] A. E. Marusov and A. Zaytsev, “Noncontrastive representation learning
for intervals from well logs,” IEEE Geoscience and Remote Sensing
Letters, vol. 20, pp. 1–5, 2023.

[38] “Yahoo research webscope dataset,,”
[39] N. Kawaguchi, N. Ogawa, Y. Iwasaki, K. Kaji, T. Terada, K. Murao,

S. Inoue, Y. Kawahara, Y. Sumi, and N. Nishio, “Hasc challenge:
gathering large scale human activity corpus for the real-world activity
understandings,” in Proceedings of the 2nd augmented human interna-
tional conference, pp. 1–5, 2011.

[40] M. Zhang and A. A. Sawchuk, “USC-HAD: a daily activity dataset for
ubiquitous activity recognition using wearable sensors,” in Proceedings
of the 2012 ACM Conference on Ubiquitous Computing, (Pittsburgh,
Pennsylvania), pp. 1036–1043, ACM, 2012.

[41] A. K. Gupta and D. K. Nagar, Matrix variate distributions. Chapman
and Hall/CRC, 2018.

[42] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” NeurIPS,
vol. 31, 2018.

APPENDIX A
PROOFS FROM THE SECTION III

A. Proof of proposition III.1

The proof is provided for the case of Gaussian random
variables, but it is clear that the similar calculations may be
performed for any distribution from the elliptical family.
X can be viewed as a sample from the matrix normal

distribution [41], and the joint PDFs p0 and p∞ have the
densities of the following form (with the means M0 and M∞,
accordingly):

p(X|M, U, V) = (13)

= C · exp
(
−1

2
tr
[
V−1(X−M)TU−1(X−M)

])
.

First, consider g(X) = AX+b. It is a linear transformation,
so the distribution of g(X) can be written out explicitly:

p(AX|AM,AUAT ,V) = (14)

= C · exp
(
−1

2
tr
[
V−1(X−M)TATA−TU−1A−1A·

·(X−M)]
)
= C̃ · p(X|M, U, V).

Here we let b = 0 to simplify the calculations. This implies
that the linear transformation preserves the likelihood-ratio of
the intervals. Now let us consider the invertible component
h(X). We know that for invertible transformations the PDF
of the transformed distribution is calculated as

p̂(y) = p(h−1(y))|Jh−1(y)|, (15)

where Jh−1 is the Jacobian matrix of the inverse transforma-
tion h−1. Then the likelihood-ratio after applying h becomes

p̂0(Y)

p̂∞(Y)
=

p0(X)|Jh−1(Y)|
p∞(X)|Jh−1(Y)|

=
p0(X)

p∞(X)
, (16)

i.e. it remains the same.

B. Proof of lemma 2

As was shown in Proposition III.1, spectral normalized
neural networks of a form (3) preserve the likelihood ratio,
i.e., Λ(X) = Λ̂(Y), where Λ(X) and Λ̂(Y) denote the
likelihood ratio in the raw data space and the representation
space, accordingly. Therefore, it is true that for any function
of the likelihood ratio S(Λ) and a predefined threshold h

S(Λ(X)) > h ⇐⇒ S(Λ̂(Y)) > h. (17)

The rejection of the null hypothesis is usually equivalent to the
statistic value exceeding the threshold; hence, due to (17), the
rejection of the null hypothesis in the raw data space coincides
with its rejection in the representation space.

C. Proof of the RBF kernel distance preservation

The proof is given for G : Rw×D → Rd; the same
calculations for a two-dimensional codomain of G can also
easily be conducted. Given:

L1∥[xi−w, . . . ,xi]− [xj−w, . . . ,xj]∥2 ≤ ∥yi − yj∥2 ≤
≤ L2∥[xi−w, . . . ,xi]− [xj−w, . . . ,xj]∥2 (18)

Therefore, taking into account that the observations lie on the
unit sphere and the L2-norm properties,

L2
1∥xi − xj∥22 ≤ ∥yi − yj∥22 ≤ L2

2(C + ∥xi − xj∥22), (19)

where C > 0 (a constant). Consequently,

exp
(
−∥yi − yj∥22

2σ2

)
≤ exp

(
−L2

1∥xi − xj∥22
2σ2

)
≤

≤ C̃ exp
(
−∥xi − xj∥22

2σ2

)
. (20)

where C̃ is some positive constant depending only on L1

and σ2. The last inequality uses the fact that the observations
belong to the SD−1. Similarly,

exp

(
−∥yi − yj∥22

2σ2

)
≥ Ĉ exp

(
−∥xi − xj∥22

2σ2

)
. (21)

Thus, the RBF kernel distance is indeed preserved.

D. Proof of Theorem 1

We suppose that the kernel k is preserved under G, i.e.
∃ C̄ > 0, C̃ > 0 such that

Ĉ · k(xi,xj) ≤ k(yi,yj) ≤ C̃ · k(xi,xj), (22)

where yi = G([xi−w, . . . ,xi]).
Denote gw(xi) = G([xi−w, . . . ,xi]). The kernel k(yi,yj)

in the space of the embeddings is equivalent to the kernel
k̃(xi,xj) = k(gw(xi), gw(xj)) in the space of observations.
Therefore, if k(xi,xj) ≤ K ∀xi,xj ∈ X , from (22) immedi-
ately follows that the upper bound k̃(xi,xj) ≤ C̃K ∀xi,xj ∈
X holds.

Consider an MMDb-based hypothesis test of level α with
the kernel k s.t. 0 ≤ k(x, y) ≤ K. It is shown in [36] that this
test has the acceptance region

MMDb(Z,Ξ) <

√
2K

n

(
1 +

√
2 logα−1

)
,

and is consistent:

P
{
|MMDb(Z,Ξ)−MMDk(P,Q)| > 4

(
K

n

) 1
2

+ ε
}
≤

(23)

≤2 exp

(
−ε2n

4K

)
.

The equation (23) shows that the type II error converges
to zero at rate O(n−1/2); note that the change of constant K
to another constant C̃K does not affect the convergence rate.
Therefore, for the MMDb-based hypothesis test of level α, the
type II error convergence rate in the space of embeddings is
the same as in the space of observations.

APPENDIX B
ADDITIONAL EXPERIMENTS

An additional experiment investigates how the SN affects
embedding properties from an uncertainty estimation per-
spective. We conducted the experiment as follows, adopting
pipeline for a classification problem [42]:

• Fit a multivariate Gaussian to the embeddings of train/val
samples (windows tested for a presence of CP).

• Calculate the Mahalanobis distance to this Gaussian for
each test sample.

• Discard the top 5% of test samples with the highest
distances, removing the least ”confident” samples, and
measure the F1-score for the remaining data. This process
is repeated iteratively, reducing the dataset to 5% of its
original size.

Figure 8 shows the F1-score rejection curves for a fixed seed,
comparing SN-TS2Vec with its vanilla version on the HASC
dataset. The SN version consistently outperforms the vanilla
one, confirming its superiority in CPD tasks.

0.0 0.2 0.4 0.6 0.8
Rejected items fraction

0.44

0.46

0.48

0.50

0.52

0.54

Window size = 200
Vanilla TS2Vec, AUC=0.421
SN-TS2Vec, AUC=0.444

0.0 0.2 0.4 0.6 0.8
0.46

0.47

0.48

0.49

0.50
Window size = 60

Vanilla TS2Vec, AUC=0.433
SN-TS2Vec, AUC=0.435

0.0 0.2 0.4 0.6 0.8

0.48

0.50

0.52

Window size = 100
Vanilla TS2Vec, AUC=0.433
SN-TS2Vec, AUC=0.435

Fig. 8. F1-score rejection curves on HASC dataset. Blue color corresponds
to vanilla TS2Vec, and orange — to its SN version. Higher AUCs correspond
to better quality.

APPENDIX C
REPRODUCTION DETAILS

A. Train/val/test split

TABLE IV
TRAIN, VAL, AND TEST SET SIZES

Dataset Train Val Test
Yahoo!A4Benchmark 0.4 0.2 0.4

USC-HAD 0.6 0.2 0.2
HASC 0.6 0.2 0.2

Each dataset was split into three parts, according to the
Table C-A. The size of the test set was the same as in the
TS-CP2 paper [15] for the sake of the comparison.

B. Hyperparameter choice

1) TS-BYOL: A four-layer 1D convolutional backbone with
ReLU and dropout feeds two-layer MLP projection and pre-
diction heads. Trained for 10 epochs (validation every 5), the
best validation checkpoint was used for testing; average over
3 runs.

2) SN-TS2Vec: TS2Vec model parameters: depth = 8,
hidden dims = 128, output dims = code size. Train-
ing, vanilla: 40 epochs (Yahoo!), 10 epochs (HASC), 1
epoch (USC-HAD). SN version: 40 epochs (Yahoo!), 5 epoch
(HASC), 1 epoch (USC-HAD). Validation per epoch; the best
validation checkpoint was used for testing. Averaged over 3
runs.

C. Technical details

All experiments were carried out on the NVidia L40.

	Introduction
	Related works
	Methodology
	Spectral Normalization preserves the CPD quality
	Bi-Lipschitz neural networks
	Preservation of kernel distances
	Kernel-based test
	Likelihood ratio tests

	General pipeline
	Models
	TS2Vec
	TS-BYOL

	Results
	Compared methods
	Datasets
	F1-score for change point detection
	Main results
	TS2Vec with and without SN
	TS-BYOL with and without spectral normalization

	The dynamics of the representations

	Acknowledgments
	Conclusion
	References
	Appendix A: Proofs from the section III
	Proof of proposition III.1
	Proof of lemma 2
	Proof of the RBF kernel distance preservation
	Proof of Theorem 1

	Appendix B: Additional experiments
	Appendix C: Reproduction details
	Train/val/test split
	Hyperparameter choice
	TS-BYOL
	SN-TS2Vec

	Technical details

