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Abstract

We present a self-supervised framework that learns population-level codes for1

intracranial neural recordings at scale, unlocking the benefits of representation2

learning for a key neuroscience recording modality. The Population Transformer3

(PopT) lowers the amount of data required for decoding experiments, while in-4

creasing accuracy, even on never-before-seen subjects and tasks. We address5

two key challenges in developing PopT: sparse electrode distribution and varying6

electrode location across patients. PopT stacks on top of pretrained representa-7

tions and enhances downstream tasks by enabling learned aggregation of multiple8

spatially-sparse data channels. Beyond decoding, we interpret the pretrained PopT9

and fine-tuned models to show how it can be used to provide neuroscience in-10

sights learned from massive amounts of data. We release a pretrained PopT to11

enable off-the-shelf improvements in multi-channel intracranial data decoding and12

interpretability.13

1 Introduction14

Building effective representations of neural recordings is an important tool in enabling neuroscience15

research. We are particularly interested in modeling intracranial recordings, which rely on probes16

placed within the brain to provide high temporal resolution recordings of local neural activity [1, 2].17

Because of its dispersed placement within the brain volume, intracranial recordings suffer from18

data sparsity. Moreover, there is often significant variability in probe placement across subjects19

[1, 2], leading to high variability in input channel meaning. Historically, constructing decoders from20

intracranial data has relied on supervised learning [3, 2, 4–6], but this requires experimenters to21

collect annotated data, which is scarce due to patient availability and labor-intensive labeling.22

To improve decoding data-efficiency, self-supervised pretraining on unannotated data can be employed23

to first learn generic representations of the recordings. This means that the model does not have to24

use valuable annotated samples to learn how to do feature extraction before it can do classification,25

improving the reach of neuroscientific research.26

In this paper, we are interested in developing generic representations of multi-channel intracranial27

recordings that enable efficient adaptation to a wide range of downstream decoding tasks. Prior work28

has shown how to pretrain subject-specific [7] or channel-specific [8] models of intracranial data, but29

such techniques ignore inter-channel relationships or commonalities that might exist across subjects.30

The most general approach would be to pretrain using data from multiple datasets, but would require31

tackling the aforementioned challenges of sparse electrode coverage and variable electrode placement32

between subjects.33

We propose Population Transformer (PopT), a self-supervised pretraining approach on transformers34

[9] that learns subject-generic representations of arbitrary electrode ensembles (Figure 1). During35
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pretraining, we simultaneously optimize both a channel-level and ensemble-level objective, that36

requires the model to (1) build representations of channels in the context of other channels and (2)37

meaningfully distinguish temporal relationships between different ensembles of channels.38

Our approach builds on top of pretrained single-channel embeddings, which has two key advantages.39

First, by separating the single-channel embedding and multi-channel-aggregation into different40

modules, we make our approach agnostic to the specific type of temporal embedding used, leaving41

room for future independent improvements, an approach that has been validated in video modeling42

[10]. Second, by taking advantage of pretrained channel embeddings, we make our population-level43

training lightweight, allowing for adoption in lower compute resource environments.44

Empirically, we find that our pretrained PopT outperforms existing aggregation approaches, highlight-45

ing the usefulness of learning spatial relationships during pretraining. Moreover, we find that these46

benefits hold even for subjects not seen during pretraining, lending to its usefulenss for new subject47

decoding. We also find that the pretrained PopT weights themselves reveal interpretable patterns for48

neuroscientific study.49

Our main contributions are:50

1. a lightweight, generic SSL framework, Population Transformer (PopT) that learns arbitrary51

joint representations of channel embeddings across unannotated datasets of neural activity.52

2. a demonstration that a pretrained PopT benefits downstream performance, interpretability,53

and training efficiency in comparison to baseline aggregation approaches.54

3. a pretrained off-the-shelf model that computes population-level representations of intracra-55

nial neural recordings.56

2 Population Transformer Approach57

We propose a self-supervised training scheme to learn a subject-generic model that handles arbitrary58

electrode configurations. Our loss function has two discriminative components: (1) channel-wise59

— the model identifies outlier channels swapped with activity from a different timepoint, requiring60

sensitivity to surrounding channel context; (2) ensemble-wise — the model determines if two channel61

ensembles occurred consecutively, requiring ensemble-level context awareness. This objective62

effectively simulates many in-silico brain ablations, training the model to learn connections between63

regions in the presence of these ablations.64

A key aspect of our method is the fact that our objective is discriminative, rather than reconstructive,65

as is often the case in self-supervision [11, 8]. We found this to be necessary, because in practice, the66

temporal embeddings often have low effective dimension (see [8]), and reconstruction rewards the67

model for overfitting to “filler” dimensions in the feature vector (see Appendix G).68

To make our model subject and configuration agnostic, we provide the 3D position of each electrode,69

providing a common position embedding across subjects. We also vary subset sizes during sampling70

to ensure the model handles ensembles of different sizes, accommodating neuroscience experiments71

with varying electrode counts and analysis levels. Additionally, we select disjoint subsets to prevent72

the model from solving tasks through trivial copying.73

Architecture A schematic of our Population Transformer (PopT) approach is shown in Figure 1.74

Consider a given subject with Nc channels indexed by C = {1, ..., Nc}. Activity from channel i at75

time t can be denoted by xt
i. The PopT takes as input an interval of brain activity X = {xt

i|i ∈ C}76

from a given time t and a special [CLS] token. Per channel, each interval of brain activity is passed77

through a temporal embedding model T , in our case BrainBERT, to obtain a representation of each78

channel’s temporal context.79

Before being inputted to the PopT, each channel’s 3D position is added to this embedding, so the80

final input is XB = {T (x) + pos(i) +N (0, σ)|x ∈ X}. Here, we add Gaussian fuzzing to prevent81

overfitting to a particular set of coordinates. Spatial location is given by the electrode’s Left, Posterior,82

and Inferior coordinates [12]; see [8] for details on how these were obtained. Each coordinate is83

encoded using sinusoidal position encoding [9]. And the three encodings are concatenated together84

to form the position embedding pos(i) = [eleft; epost.; einf].85

The core of PopT consists of a transformer encoder stack (see Appendix C: Architectures). The output86

of the PopT are spatial-contextual embeddings of the channels Y = {yi} as well as an embedding of87
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Figure 1: Schematic of our approach. The inputs to our model (a) are the combined neural activities
from a collection of intracranial electrodes in a given time interval. These are passed to a frozen
temporal embedding model, which produces a set of time-contextual embedding vectors (yellow).
The 3D position of each electrode (red) is added to these vectors to produce the model inputs (orange).
The PopT produces space-contextual embeddings for each electrode and a [CLS] token (blue), which
can be fine-tuned for downstream tasks. During pretraining, (b) the PopT is trained on two objectives
simultaneously: channel-wise loss and ensemble-wise loss. In channel-wise, PopT must determine
whether an input channel has been replaced (green) with activity at a random other time that is
inconsistent with the majority of inputs (orange or brown). In ensemble-wise, PopT determines
whether two different ensembles (orange vs brown) represent consecutive or non-consecutive times.

the CLS token ycls. During pretraining, the PopulationTransformer additionally is equipped with a88

linear layer head for the [CLS] token output and separate linear layer heads for all other individual89

token outputs. These produce the scalars ỹcls and ỹi and respectively, which are used in the objective90

(see Figure 1a).91

Pretraining Our pretraining objective has two components: channel-wise and ensemble-wise92

losses (see Figure 1b). First, we describe our channel-wise discriminative learning. The model must93

determine whether a channels activity has been swapped with activity from a random time. Precisely,94

activity from each channel i is drawn from a time ti. All channels are drawn from the same time95

ti = T , and then 10% of the channels are randomly selected to have their activity replaced with96

activity from the same channel, but taken from a random point in time ti ̸= T . Then, given the token97

outputs of PopT, the channel-wise loss function LC is the binary cross entropy.98

Next, we describe the ensemble-wise discrimination task. Two different subsets of channels SA, SB ⊂99

C are chosen with the condition that they be disjoint SA ∩ SB = ∅. During pretraining, the100

model receives the activities from these channels at separate times XA = {xt
i | i ∈ SA} and101

XB = {xt′

i | i ∈ SB}. The objective of the task is then to determine whether these states XA and102

XB have occurred consecutively in time or are separated by some further, randomly selected interval.103

Given the output of the classification head, the loss function LN is simply the binary cross entropy.104

Then, our complete objective function is L = LN + LC .105

Fine-tuning During fine-tuning, the [CLS] intermediate representation, ỹcls of the pretrained PopT106

is passed through a single layer linear neural network to produce a scalar ŷcls. This scalar is the input107

to binary cross entropy loss for our decoding tasks (see Section 3). After fine-tuning, we perform108

interpretability analysis on [CLS] attention weights with techniques outlined in Appendix F.109

3 Experiment Setup110

Data We use the publicly available subject data from [8]. Data was collected from 10 subjects111

(total 1,688 electrodes, with a mean of 167 electrodes per subject) who watched 26 movies while112

intracranial probes recorded their brain activity. The movie transcripts were aligned to the brain113
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activity so that features such as volume, pitch, etc. could be associated with the corresponding sEEG114

readings. 19 of the sessions are used for pretraining. 7 of the sessions are held-out for evaluation.115

Decoding We evaluate the effectiveness of our pretrained PopT model by fine-tuning it on the116

four downstream decoding task used in the evaluation of [8]. Two of the tasks are audio focused:117

determining whether a word is spoken with a high or low pitch and determining whether a word is118

spoken loudly or softly. And two of the tasks have a more linguistic focus: determining whether the119

beginning of a sentence is occurring or determining whether any speech at all is occurring.120

Our approach enables decoding on any arbitrary size of ensemble. We verify that our model is able to121

leverage additional channels for improved decoding performance that scales the number of inputs. To122

test this, we first order the electrodes by their individual linear decodability per task, and we increase123

the number of channels available to the model at fine-tuning time.124

Baselines We want to determine whether the information about spatial relationships learned during125

pretraining was useful at fine-tuning time. For comparison, we concatenate the single-channel126

temporal embeddings and train a linear (Linear) or non-linear (DeepNN) aggregator on the decoding127

task. This sets a baseline for how much improvement is achievable from existing aggregation128

approaches [13]. To determine whether our performance can be attributed to using a more powerful129

architecture, we also fine-tune a PopT without pretraining, i.e. with randomly initialized weights.130

4 Results131

Decoding Performance We find that using a pretrained PopT significantly benefits downstream132

decoding compared to baseline channel aggregation techniques (Table 1). Additionally, while scaling133

performance with increasing number of channels is a challenging task for most baseline aggregation134

approaches, a pretrained PopT is able to scale well with increasing ensemble sizes (Figure 2a).135

To gain confidence on our method’s generalizability to channel encoders, we applied our framework136

to two different channel encoders: (1) an sEEG temporal encoder (BrainBERT [8]) and (2) a general137

time-series encoder (TOTEM [14]). We see significant boosts in performance with the pretrained138

PopT in both cases when compared with baseline aggregation approaches, across all 4 auditory-139

linguistic tasks (Table 1). These results suggest that our framework can generalize to benefit joint140

aggregation of other single-channel embeddings and neural recording modalities.141

Pitch Volume Sent. Onset Speech/Non-speech

BrainBERT: single channel 0.53± 0.05 0.58± 0.08 0.68± 0.04 0.66± 0.09
Linear + BrainBERT 0.59± 0.08 0.66± 0.08 0.70± 0.09 0.71± 0.11
Deep NN + BrainBERT 0.58± 0.08 0.67± 0.08 0.71± 0.10 0.72± 0.10
Non-pretrained PopT 0.53± 0.06 0.61± 0.13 0.74± 0.10 0.70± 0.08
Pretrained PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07

TOTEM: single channel 0.53± 0.01 0.53± 0.02 0.69± 0.03 0.65± 0.04
Linear + TOTEM 0.55± 0.02 0.66± 0.03 0.79± 0.04 0.77± 0.05
Deep NN + TOTEM 0.57± 0.02 0.67± 0.03 0.78± 0.03 0.75± 0.05
Non-pretrained PopT 0.53± 0.02 0.64± 0.02 0.79± 0.03 0.77± 0.05
Pretrained PopT 0.60± 0.02 0.73± 0.02 0.86± 0.03 0.84± 0.06

Table 1: Pretraining PopT is critical to downstream decoding performance. We test on a
variety of audio-linguistic decoding tasks (see Section 3) with either a single channel (row 1) or
90 channels (rows 2-5) as input. Two different temporal encoders are used: BrainBERT [8] (top
section) and TOTEM [14] (bottom section). Shown are the ROC-AUC mean and standard error across
subjects. We see that all aggregation approaches (rows 2-5) outperform single-channel decoding (row
1). Pretraining PopT and then fine-tuning it for downstream decoding results in significantly better
performance (bold) compared to non-pretrained aggregation approaches (rows 2-4). This gain cannot
be explained by simply providing more temporal embeddings, as evidenced by the performance of
Linear and Deep NN (rows 2 and 3) that take the concatenated raw temporal embeddings as input.
Neither can the gain be attributed to simply using a Transformer architecture, as is shown by a
comparison with a non-pretrained PopT (row 4).
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Figure 2: (a) Pretrained PopT enables downstream performance scaling with ensemble size
Increasing channel ensemble size from 1 to 90 (x-axis), we see pretrained PopT (green) decoding
performance (y-axis) not only beat non-pretrained approaches (orange, purple, grey), but also
continually improve more with increasing channel count. Shaded bands show the standard error
across subjects. (b) Attention weights from a fine-tuned PopT identify candidate functional brain
regions. Candidate functional maps can be read from attention weights of a PopT fine-tuned on our
decoding tasks. Note the weight placed on regions near Wernicke’s area (black arrow) for this Speech
vs. Non-speech tuned model. Lower brain figure highlight regions related to auditory-linguistic
processing such as language production area Broca’s area and language understanding Wernicke’s
area (adapted from [15]). (c) Pretrained PopT is more sample efficient when fine-tuning. Varying
the number of samples available to each model at train time (x-axis), we see how the pretrained
PopT is highly sample efficient, requiring only a fraction of samples to reach the full performance
level of non pretrained aggregation approaches (dashed lines). Bands show standard error across
test subjects. Stars indicate performance of the model trained on the full fine-tuning dataset. (d)
Pretrained PopT is consistently more compute efficient when fine-tuning. Number of steps
required for each model to reach final performance during fine-tuning (dashed lines). We find that
pretrained PopT consistently requires fewer than 750 steps (each step is training on a batch size of
256) to converge, in contrast to the 2k steps required for the non pretrained PopT. Linear aggregation
can be similarily compute efficient, but occasionally benefits from more training steps depending on
dataset size. Bands show standard error across test subjects. Stars indicate fully trained performance.

Interpretability To analyze what our massively pretrained + fine-tuned model for sEEG data may be142

doing, we uncover the attention weights the model places on each input channel. We find agreement143

in our model’s attention placement with brain regions typically involved in langauge processing (e.g.144

Wernicke’s area), especially in the Speech vs. Non-speech downstream task (Figure 2b).145

Efficiency To show that our technique is accessible to low data and compute regimes, we demonstrate146

that a pretrained PopT reaches the same decoding performance as other baseline approaches with147

an order of magnitude fewer samples and steps (Figure 2c and d). Pretraining PopT itself on more148

unnanotated data is also an order of magnitude more lightweight than pretraining existing end-to-end149

temporal-spatial models (see Appendix B). By focusing on population-level learning and leveraging150

the growing base of pretrained single-channel embedding techniques, our framework is efficient for151

learning new decoding tasks and continual pretraining.152

5 Conclusion153

We presented a self-supervised learning scheme for learning effective representations of intracranial154

activity from temporal embeddings. By decoupling temporal and spatial feature extraction, we are155

able to leverage existing temporal embeddings to learn spatiotemporal representations efficiently156

and with a smaller number of parameters. We showed that self-supervised pretraining imbues our157

model with knowledge of spatial relationships between these embeddings and improved downstream158

decoding that scales with the number of available channels. This scheme produces interpretable159

weights from which attention weight maps can be read to help uncover learned relationships from160

the massively pretrained framework. Finally, we release the pretrained weights for our PopT with161

BrainBERT inputs as well as our code for plug-and-play pretraining with any temporal embedding.162
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A Related Work291

Self-supervised learning on neural data Channel independent pretrained models are a popular292

approach for neural spiking data [16], intracranial brain data [8, 17], and general time-series [14].293

Additionally, in fixed-channel neural datasets, approaches exist for EEG [18–20], fMRI [21–23], and294

calcium imaging [24] datasets. However, all of this work do not learn population-level interactions295

across datasets with different recording layouts due to the single-channel focus or the ability to296

assume fixed-channel setups. Several works pretrain spatial and temporal dimensions across datasets297

with variable inputs [25–29], but most simultaneously learn the temporal embeddings with the spatial298

modeling, which make them challenging to interpret and computationally expensive to train. As far299

as we know, we are the first to study the problem of building pretrained channel aggregation models300

on top of pre-existing temporal embeddings trained across datasets with variable sampling of input301

channels, allowing for modeling of high quality (>2kHz sampling rate) intracranial data.302

Modeling across variable input channels Modeling spatial representations on top of temporal303

embeddings have been found to be beneficial for decoding [3, 7, 30], but prior works use supervised304

labels, so do not leverage large amounts of unannotated data. The brain-computer-interface field has305

been studying how to align latent spaces [31–35] which either still requires creating an alignment306

matrix to learn across datasets or only provides post-training alignment mechanisms rather than307

learning across datasets. Other approaches impute missing channels or learn latent spaces robust to308

missing channels [36–38], but these are more suited for the occasional missing channel rather than309

largely varying sensor layouts. We directly learn spatial-level representations using self-supervised310

learning across datasets to leverage massive amounts of unannotated intracranial data.311

B Model and Compute Requirements312

e5 e50 e90

PopT 20M
Deep NN 3M 20M 36M
Linear 3.8k 38k 69k
Brant [25] 500M
LaBraM [27] 350M

Table 2: Parameter counts. Since PopT takes existing temporal embeddings as input, the number of
parameters that must be trained is an order of magnitude less than recent end-to-end approaches.

GPU count GPU type Time to train TFLOPS

PopT 1 NVIDIA TITAN RTX (24GB) 2 days 2.1M
Brant [25] 4 NVIDIA Tesla A100 (80G) 2.8 days 18.8M

LaBraM [27] 8 NVIDIA Tesla A800 (40G) – –

Table 3: Pretraining compute requirements Based on published train times (none were given for
LaBraM) it is evident that PopT has smaller hardware and shorter training time requirements.
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C Architectures and training313

Pretrained PopT The core Population Transformer consists of a transformer encoder stack with314

6 layers, 8 heads. All layers (N = 6) in the encoder stack are set with the following parameters:315

dh = 512, H = 8, and pdropout = 0.1. We pretrain the PopT model with the LAMB optimizer [39]316

(lr = 1e− 4), with a batch size of nbatch = 256, and train/val/test split of 0.98, 0.01, 0.01 of the data.317

We pretrain for 500,000 steps, and record the validation performance every 1,000 steps. Downstream318

evaluation takes place on the weights with the best validation performance. We use the intermediate319

representation at the [CLS] token dh = 512 and put a linear layer that outputs to dout = 1 for320

fine-tuning on downstream tasks. These parameters for pretraining were the same for any PopT that321

needed to be pretrained (hold-one-out subject, subject subsets, ablation studies).322

Non-pretrained PopT The architecture for the non-pretrained PopT is the same as the pretrained323

PopT (above). However, no pretraining is done, and the weights are randomly initialized with the324

default initializations.325

Linear The linear baseline consists of a single linear layer that outputs to dout = 1. The inputs are326

flattened and concatenated BrainBERT embeddings demb = 756 or TOTEM embeddings demb = 64327

from a subset of channels S ⊂ C. Thus, the full input dimension is dinput = demb ∗ |S|.328

Deep NN The inputs are the same as above, but the decoding network now consists of 5 stacked329

linear layers, each with dh = 512 and a GeLU activation.330

Downstream Training For both PopT models, we train with these parameters: AdamW optimizer331

[40], lr = 5e−4 where transformer weights are scaled down by a factor of 10 (lrt = 5e−5),332

nbatch = 256, a Ramp Up scheduler [41] with warmup 0.025 and Step LR gamma 0.99, reducing333

100 times within the 2000 total steps that we train for. For Linear and DeepNN models, we train with334

these parameters: AdamW optimizer [40], lr = 5e−4, nbatch = 256, a Ramp Up scheduler [41] with335

warmup 0.025 and Step LR gamma 0.95, reducing 25 times within the 17,000 total steps we train for.336

For all downstream decoding, we use a fixed train/val/test split of 0.8, 0.1, 0.1 of the data.337

Compute Resources To run all our experiments (data processing, pretraining, evaluations, inter-338

pretability), one only needs 1 NVIDIA Titan RTXs (24GB GPU RAM). Pretraining PopT takes 2339

days on 1 GPU. Our downstream evaluations take a few minutes to run each. For the purposes of340

gathering all the results in the paper, we parallelized the experiments on roughly 8 GPUs.341

D Decoding tasks342

We follow the same task specification as in Wang et al. [8], with the modification that the pitch and343

volume examples are determined by percentile (see below) rather than standard deviation in order to344

obtain balanced classes.345

Pitch The PopT receives an interval of activity and must determine if it corresponds with a high or346

low pitch word being spoken. For the duration of a given word, pitch was extracted using Librosa’s347

piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz, FFT window length of 2048,348

hop length of 512, and 128 mel filters). For this task, for a given session, positive examples consist of349

words in the top-quartile of mean pitch and negative examples are the words in the bottom quartiles.350

Volume The volume of a given word was computed as the average intensity of root-mean-square351

(RMS) (rms function, frame and hop lengths 2048 and 512 respectively). As before, positive examples352

are the words in the top-quartile of volume and negative examples are those in the bottom quartiles.353

Sentence onset Negative examples are intervals of activity from 1s periods during which no speech is354

occurring in the movie. Positive examples are intervals of brain activity that correspond with hearing355

the first word of a sentence.356

Speech vs. Non-speech Negative examples are as before. Positive examples are intervals of brain357

activity that correspond with dialogue being spoken in the stimuli movie.358
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E Data359

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Held-
out

1
19 91 Thor: Ragnarok 1.83

Fantastic Mr. Fox 1.75
The Martian 0.5 x

2

12 100 Venom 2.42
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5
Guardians of the Galaxy 2 3
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42 x

3
18 91 Cars 2 1.92 x

Lord of the Rings 1 2.67
Lord of the Rings 2 (extended
edition)

3.92

4 9 135 Megamind 2.58
Toy Story 1.33
Coraline 1.83 x

5 11 205 Cars 2 1.75 x
Megamind 1.77

6
12 152 Incredibles 1.15

Shrek 3 1.68 x
Megamind 2.43

7 6 109 Fantastic Mr. Fox 1.5

8 4.5 72 Sesame Street Episode 1.28

9 16 102 Ant Man 2.28

10 12 173 Cars 2 1.58 x
Spider-Man: Far from Home 2.17

Table 4: Subject statistics Subjects used in PopT training, and held-out downstream evaluation.
Table taken from [8]. The number of uncorrupted, electrodes that can be Laplacian re-referenced are
shown in the second column The average amount of recording data per subject is 4.3 (hrs).

F Interpretation Methods360

Candidate functional brain regions from attention weights After fine-tuning our weights on a361

decoding task, we can examine the attention weights of the [CLS] output for candidate functional362

brain regions. We obtain a normalized Scaled Attention Weight metric (see next section) across all363

subjects to be able to analyze candidate functional brain regions across sparsely sampled subject364

datasets. The Scaled Attention Weight is computed from raw attention weights at the [CLS] token365

passed through the attention rollout algorithm [42]. The resulting weights from each channel are then366

grouped by brain region according to the Destrieux layout [43].367

Scaled Attention Weight First, we obtain an attention weight matrix across all trials which includes368

weights between all tokens. Then, we perform attention rollout [42] across layers to obtain the369

contributions of each input channel by the last layer. We take the resulting last layer of rollout weights370

for all channels, where the target is the [CLS] token, normalize within subject, and scale by ROC371

AUC to obtain the Scaled Attention Weight per channel. Finally, we plot the 0.75 percentile weight372

per region, as mapped by the Destrieux atlas [43] using Nilearn [44].373
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G Ablation study374

Ablation of loss components and position information An ablation study confirms that both the375

network-wise and channel-wise component of the pretraining objective contribute to the downstream376

performance (Table 5). We also find that including the 3D position information for each channel is377

critical for decoding. Additionally, we find that the discriminative nature of our loss is necessary for378

decoding. Attempting to add an L1 reconstruction term to our pretraining objective results in poorer379

performance, perhaps because the model learns to overfit on low-entropy features in the embedding.380

Our discriminative loss requires the model to understand the embeddings in terms of how they can be381

distinguished from one another, which leads the model to extract more informative representations.382

Pitch Volume Sent. Onset Speech/Non-speech

PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07
PopT w/o group-wise loss 0.66± 0.07 0.83± 0.06 0.84± 0.04 0.88± 0.08
PopT w/o channel-wise loss 0.67± 0.06 0.81± 0.08 0.84± 0.06 0.87± 0.09
PopT w/o position encoding 0.59± 0.07 0.67± 0.10 0.75± 0.08 0.79± 0.08
PopT with reconstruction loss 0.60± 0.11 0.73± 0.11 0.81± 0.05 0.83± 0.09
PopT with L1 reconstruction only 0.56± 0.04 0.65± 0.08 0.73± 0.10 0.74± 0.10

Table 5: PopT ablation study. We individually ablate our losses and positional encodings during
pretraining then decode on the resulting models. Shown are ROC-AUC mean and standard error
across subjects. The best performing model across all decoding tasks uses all three of our proposed
components, showing that they are all necessary. Removing our positional encoding during pretraining
and fine-tuning drops the performance the most, indicating that position encoding is highly important
for achieving good decoding. Additionally, we attempt adding a reconstruction component to the loss
or purely using the L1 mask loss, but find that this leads to poorer performance (last two rows).
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