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Abstract

We present a self-supervised framework that learns population-level codes for
arbitrary ensembles of neural recordings. We address key challenges in scaling
models with neural time-series data, namely, sparse and variable electrode distribu-
tion across subjects and datasets. The Population Transformer (PopT) stacks on
top of pretrained representations and enhances downstream decoding by enabling
learned aggregation of multiple spatially-sparse data channels. The pretrained
PopT lowers the amount of data required for downstream decoding experiments,
while increasing accuracy, even on held-out subjects and tasks. Beyond decoding,
we interpret the pretrained PopT and fine-tuned models to show how they can be
used to extract neuroscience insights from massive amounts of data. We release
our code as well as a pretrained PopT to enable off-the-shelf improvements in
multi-channel intracranial data decoding and interpretability.

1 Introduction

Building effective representations of neural data is an important tool in enabling neuroscience research.
Recordings from the brain such as intracranial (iEEG) and scalp (EEG) electroencepholography,
consist of time series recorded simultaneously from multiple channels. The relationships between
these time series are complex, and governed by the underlying functional connectivity that exists
between brain regions. Our goal is to build an effective model of multi-channel activity. Recently,
improvements have been made in modeling for the single channel setting [1, 2]. This suggests an
approach for learning multi-channel representations via aggregating single channel embeddings.
However, this is not a trivial task. For brain recordings, particularly iEEG, one must contend with
sparse and variable electrode layouts, which change the semantics of input channels from subject to
subject. This forces many Brain Machine Interface (BMI) approaches to rely on expensive schemes,
in which models are retrained for each new participant, requiring large amounts of data for calibration
[3–7]. To this end, we propose a self-supervised learning framework, Population Transformer (PopT),
which is specifically designed to aggregate single-channel encodings across variable electrode layouts.

PopT is a self-supervised pretraining approach on a transformer backbone that learns subject-generic
representations of arbitrary electrode ensembles. Transformers offer the flexibility to learn aggregate
information across channel configurations, but large amounts of data is needed to train the attention
weights [8]. During pretraining, we train on large amounts of unannotated data and simultaneously
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optimize both a channel-level and ensemble-level objective. This requires the model to (1) build
subject-generic representations of channel ensembles and (2) meaningfully distinguish temporal
relationships between different ensembles of channels.

Our PopT approach is modular, and builds on top of powerful single-channel temporal embeddings,
which provides two key advantages. First, by separating the single-channel embedding and multi-
channel-aggregation into different modules, we make our approach agnostic to the specific type
of temporal embedding used, leaving room for future independent improvements along either the
temporal or spatial dimension (an approach that has been validated in video modeling [9]). Second,
by taking advantage of learned channel embeddings, PopT training is computationally lightweight
compared to end-to-end counterparts (Appendix E) and baseline aggregation approaches, allowing
for adoption in lower compute resource environments.

Empirically, we find that our pretrained PopT outperforms existing aggregation approaches, highlight-
ing the usefulness of learning spatial relationships during pretraining. Moreover, we find that these
benefits hold even for subjects not seen during pretraining, lending to its usefulenss for new subject
decoding. We also find that the pretrained PopT weights themselves reveal interpretable patterns for
neuroscientific study.

Our main contributions are:

1. a lightweight, generic SSL framework, Population Transformer (PopT) that learns arbitrary
joint representations of channel embeddings across unannotated datasets of neural activity.

2. a demonstration that a pretrained PopT benefits downstream performance, interpretability,
and training efficiency in comparison to baseline aggregation approaches.

3. a trained and usable off-the-shelf model that computes population-level representations of
high temporal resolution intracranial neural recordings.

2 Related Work

Self-supervised learning on neural data Channel independent pretrained models are a popular
approach for neural spiking data [10], intracranial brain data [1, 11], and general time-series [2].
Additionally, in fixed-channel neural datasets, approaches exist for EEG [12–14], fMRI [15–17], and
calcium imaging [18] datasets. However, these approaches do not learn population-level interactions
across datasets with different recording layouts, either due to a single-channel focus or the assumption
that the channel layout is fixed. Several works pretrain spatial and temporal dimensions across
datasets with variable inputs [19–23], but most simultaneously learn the temporal embeddings with
the spatial modeling, which make them challenging to interpret and computationally expensive to
train, especially for high temporal resolution signals. To our knowledge, we are the first to study
the problem of building pretrained channel aggregation models on top of pre-existing temporal
embeddings trained across neural datasets with variable channel layouts, allowing for modeling of
high quality neural data.

Modeling across variable input channels Modeling spatial representations on top of temporal
embeddings has been found to be beneficial for decoding [3, 24, 25], but prior works use supervised
labels, so do not leverage large amounts of unannotated data. The brain-computer-interface field has
studied how to align latent spaces [26–30] which either still requires creating an alignment matrix
to learn across datasets or only provides post-training alignment mechanisms rather than learning
across datasets. Other approaches impute missing channels or learn latent spaces robust to missing
channels [31–33], but these are more suited for the occasional missing channel rather than largely
varying sensor layouts. We directly learn spatial-level representations using self-supervised learning
across datasets to leverage massive amounts of unannotated intracranial data.

3 Population Transformer Approach

Figure 1 overviews our Population Transformer (PopT) approach. The key ideas are: (1) to learn a
generic representation of neural recordings that can handle arbitrary electrode configurations; and
(2) to employ a modular system design that uses a transformer architecture to aggregate information
from existing per-channel temporal embeddings. To do so, we employ a self-supervised pretraining
approach to learn ensemble and channel level representations. Afterwards, one can fine-tune PopT on
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Figure 1: Schematic of our approach. The inputs to our model (a) are the neural activities
from a collection of electrodes in a given time interval (bottom). These are passed to a frozen
temporal embedding model (dotted red outline: BrainBERT [1] shown), which produces a set of time
embedding vectors (yellow). The 3D positions of each electrode (red) are summed with these vectors
to produce the model inputs (orange, lower). PopT produces space-contextual embeddings (orange,
top) for each electrode and a [CLS] token (blue, top), which can be fine-tuned for downstream tasks.
In pretraining, PopT learns two objectives simultaneously. In the first, (b) PopT determines whether
two different sets of electrodes (orange vs brown) represent consecutive or non-consecutive times.
In the second objective, (c) PopT must determine whether an input channel has been replaced with
activity at a random other time that is inconsistent with the majority of inputs.

downstream decoding tasks. In addition to offering strong decoding results, including generalization
to new subjects with different electrode configurations than training subjects (see Section 5), the
modular system design is computationally lightweight (see Appendix E), can benefit from improved
temporal representations, and is more readily interpretable (see Figure 2b).

Architecture A schematic of our Population Transformer (PopT) approach is shown in Figure 1.
We adopt a transformer backbone due to its ability to accommodate variable channel configurations.
Consider a given subject with N channels indexed by C = {1, ..., Nc}, and an arbitrary subset of
channels S ⊆ C. Let xt

i ∈ RT denote a time window of activity from channel i that begins at time t,
where T is the number of time samples in the interval. The PopT takes as input a collection of such
channels activities, Xt = {xt

i|i ∈ S}, as well as a special [CLS] token. Per channel, each interval of
brain activity is passed through a temporal embedding model B, in the figure’s case BrainBERT [1],
to obtain a representation of each channel’s temporal context, B(xt

i) ∈ Rd, where d is the embedding
dimension. For BrainBERT, the first step of pre-processing involves obtaining the STFT for the
signal, but preprocessing will differ depending on the embedding model used.

To allow the model to learn a common brain state representation across layouts, each channel’s
embedding is summed with its 3D position, so that the final processed input to the PopT is
Xt

B = {B(xt
i) + pos(i) +N (0, σ)|xt

i ∈ Xt}. The PopT receives this as an S × d matrix. Spa-
tial location is given by the electrode’s Left, Posterior, and Inferior coordinates for iEEG electrodes
[34], and XYZ positions for EEG electrodes. We add Gaussian fuzzing to each coordinate location to
prevent overfitting to a particular set of coordinates. Membership in a particular ensemble (see below:
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ensemble-wise loss) is also encoded. The four encodings are concatenated together to form the
position embedding pos(i) = [eleft; epost.; einf; eensemble], where e is given using a sinusoidal position
encoding that represents a scalar coordinate as a unique combination of sines [35].

The core of PopT consists of a transformer encoder stack (see Appendix A: Architectures). The
output of the PopT are spatial-contextual embeddings of the channels Y = {yi} and an embedding of
the CLS token ycls. During pretraining, the PopT additionally is equipped with a linear head for the
[CLS] token output and separate linear heads for all other individual token outputs. These produce
the scalars ỹcls and ỹi respectively, which are used in the pretraining objective (Figure 1b and c).

Self-supervised loss Our loss function has two discriminative components: (1) ensemble-wise —
the model determines if activities from two channel ensembles occurred consecutively, requiring an
effective brain state representation at the ensemble-level, (2) channel-wise — the model identifies
outlier channels that have been swapped with a different timepoint’s activity, requiring sensitivity to
surrounding channel context.

A key aspect of our method is the fact that our objective is discriminative, rather than reconstructive,
as is often the case in self-supervision [36, 1]. In practice, the temporal embeddings often have low
effective dimension (see Wang et al. [1]), and reconstruction rewards the model for overfitting to
“filler” dimensions in the feature vector (Section 5).

Pretraining In ensemble-wise discrimination (fig. 1b), two different subsets of channels SA, SB ⊂ C
are chosen with the condition that they be disjoint SA ∩ SB = ∅. During pretraining, the model
receives the activities from these channels at separate times Xt

A = {xt
i | i ∈ SA} and Xt′

B = {xt′

i |
i ∈ SB}. The objective of the task is then to determine whether these states Xt

A and Xt′

B have
occurred consecutively in time (|t − t′| = 500ms) or are separated by some further, randomly
selected interval. Given the output of the classification head, the loss function LN is the binary
cross-entropy. We also vary the number of input channels during sampling to ensure the model
handles ensembles of different sizes. Additionally, we select disjoint subsets for ensemble-wise
discrimination to prevent the model from solving tasks through trivial copying.

In channel-wise discrimination (fig. 1c), the model must determine whether a channel’s activity has
been swapped with activity from a random time. Precisely, activity from each channel i is drawn
from a time ti. All channels are drawn from the same time ti = T , and then 10% of the channels
are randomly selected to have their activity replaced with activity from the same channel, but taken
from a random point in time ti ̸= T . Then, given the token outputs of PopT, the channel-wise loss
function LC is the binary cross-entropy. Then, our complete objective function is L = LN + LC .

Fine-tuning During fine-tuning, the [CLS] intermediate representation, ỹcls of the pretrained PopT
is passed through a single layer linear neural network to produce a scalar ŷcls. This scalar is the input
to binary cross entropy loss for our decoding tasks (see Section 4). After fine-tuning, we perform
interpretability analysis on [CLS] attention weights with techniques outlined in Appendix D.

4 Experiment Setup

Data We use the publicly available subject data from Wang et al. [1]. Data was collected from
10 subjects (total 1,688 electrodes, with a mean of 167 electrodes per subject) who watched 26
movies (19 for pretraining, 7 for downstream decoding) while intracranial probes recorded their brain
activity. To test decoding with arbitrary ensemble sizes, we select subsets of electrodes based on their
individual linear task decodability, with the smallest subsets containing the electrodes with highest
decodability. We follow the trialization and data preprocessing practices used in Wang et al. [1].

Decoding We evaluate the effectiveness of our pretrained PopT model by fine-tuning it on the four
downstream decoding task used in the evaluation of Wang et al. [1]. Two of the tasks are audio
focused: determining whether a word is spoken with a high or low pitch and determining whether
a word is spoken loudly or softly. And two of the tasks have a more linguistic focus: determining
whether the beginning of a sentence is occurring or determining whether any speech at all is occurring.

Our approach enables decoding on any arbitrary size of ensemble. We verify that our model is able to
leverage additional channels for improved decoding performance that scales the number of inputs. To
test this, we first order the electrodes by their individual linear decodability per task, and we increase
the number of channels available to the model at fine-tuning time.
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Baselines We want to determine whether the information about spatial relationships learned during
pretraining was useful at fine-tuning time. For comparison, we concatenate the single-channel
temporal embeddings and train a linear (Linear) or non-linear (DeepNN) aggregator on the decoding
task. This sets a baseline for how much improvement is achievable from existing aggregation
approaches [37]. To determine whether our performance can be attributed to using a more powerful
architecture, we also fine-tune a PopT without pretraining, i.e. with randomly initialized weights.

5 Results

Decoding Performance We find that using a pretrained PopT consistently benefits downstream
decoding compared to baseline channel aggregation techniques (Table 1). Additionally, while scaling
performance with increasing number of channels is a challenging task for most baseline aggregation
approaches, a pretrained PopT is able to scale well with increasing ensemble sizes (Figure 2a).

Model Pitch Volume Sent. Onset Speech/Non-speech

BrainBERT:
Linear Agg. 0.59± 0.08 0.66± 0.08 0.70± 0.09 0.71± 0.11
Deep NN Agg. 0.58± 0.08 0.67± 0.08 0.71± 0.10 0.72± 0.10
Non-pretrained PopT 0.53± 0.06 0.61± 0.13 0.74± 0.10 0.70± 0.08
Pretrained PopT 0.69± 0.07∗ 0.84± 0.06∗ 0.86± 0.05∗ 0.89± 0.07∗

TOTEM:
Linear Agg. 0.55± 0.02 0.66± 0.03 0.79± 0.04 0.77± 0.05
Deep NN Agg. 0.57± 0.02 0.67± 0.03 0.78± 0.03 0.75± 0.05
Non-pretrained PopT 0.53± 0.02 0.64± 0.02 0.79± 0.03 0.77± 0.05
Pretrained PopT 0.60± 0.02∗ 0.73± 0.02∗ 0.86± 0.03∗ 0.84± 0.06∗

Table 1: Pretraining PopT is critical to downstream decoding performance We test on a variety
of audio-linguistic decoding tasks (see Section 4) with 90 channels as input. The temporal encoder
used for aggregation in sections 1 and 2 are denoted in the section header. We also evaluate against an
end-to-end pretrained iEEG model in section 3. Shown are the ROC-AUC mean and standard error
across subjects. Best per section are bolded. Asterisks ∗ indicate that the bolded model is significantly
better than the second-place model (p < 0.05, Wilcoxon rank-sum).

To gain confidence on our method’s generalizability to channel encoders, we applied our framework
to two different channel encoders: (1) an sEEG temporal encoder (BrainBERT [1]) and (2) a general
time-series encoder (TOTEM [2]). We see significant boosts in performance with the pretrained PopT
in both cases when compared with baseline aggregation approaches, across all 4 auditory-linguistic
tasks (Table 1). These results suggest that our framework can generalize to benefit joint aggregation
of other single-channel embeddings and neural recording modalities.

Interpretability To analyze what our massively pretrained + fine-tuned model for sEEG data may be
doing, we uncover the attention weights the model places on each input channel. We find agreement
in our model’s attention placement with brain regions typically involved in langauge processing (e.g.
Wernicke’s area), especially in the Speech vs. Non-speech downstream task (Figure 2b).

Efficiency To show that our technique is accessible to low data and compute regimes, we demonstrate
that a pretrained PopT reaches the same decoding performance as other baseline approaches with
an order of magnitude fewer samples and steps (Figure 2c and d). Pretraining PopT itself on more
unnanotated data is also an order of magnitude more lightweight than pretraining existing end-to-end
temporal-spatial models (see Appendix E). By focusing on population-level learning and leveraging
the growing base of pretrained single-channel embedding techniques, our framework is efficient for
learning new decoding tasks and continual pretraining.

Ablation of loss components and position information An ablation study confirms that both the
network-wise and channel-wise component of the pretraining objective contribute to the downstream
performance (Table 2). We also find that including the 3D position information for each channel is
critical for decoding. Additionally, we find that the discriminative nature of our loss is necessary for
decoding. Attempting to add an L1 reconstruction term to our pretraining objective results in poorer
performance, perhaps because the model learns to overfit on low-entropy features in the embedding.
Our discriminative loss requires the model to understand the embeddings in terms of how they can be
distinguished from one another, which leads the model to extract more informative representations.
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Figure 2: (a) Pretrained PopT enables downstream performance scaling with ensemble size
Increasing channel ensemble size from 1 to 90 (x-axis), we see pretrained PopT (green) decoding
performance (y-axis) not only beat non-pretrained approaches (orange, purple, grey), but also
continually improve more with increasing channel count. Shaded bands show the standard error
across subjects. (b) Attention weights from a fine-tuned PopT identify candidate functional brain
regions. Candidate functional maps can be read from attention weights of a PopT fine-tuned on our
decoding tasks. Note the weight placed on regions near Wernicke’s area (black arrow) for this Speech
vs. Non-speech tuned model. Lower brain figure highlight regions related to auditory-linguistic
processing such as language production area Broca’s area and language understanding Wernicke’s
area (adapted from [38]). (c) Pretrained PopT is more sample efficient when fine-tuning. Varying
the number of samples available to each model at train time (x-axis), we see how the pretrained
PopT is highly sample efficient, requiring only a fraction of samples to reach the full performance
level of non pretrained aggregation approaches (dashed lines). Bands show standard error across
test subjects. Stars indicate performance of the model trained on the full fine-tuning dataset. (d)
Pretrained PopT is consistently more compute efficient when fine-tuning. Number of steps
required for each model to reach final performance during fine-tuning (dashed lines). We find that
pretrained PopT consistently requires fewer than 750 steps (each step is training on a batch size of
256) to converge, in contrast to the 2k steps required for the non pretrained PopT. Linear aggregation
can be similarily compute efficient, but occasionally benefits from more training steps depending on
dataset size. Bands show standard error across test subjects. Stars indicate fully trained performance.

Pitch Volume Sent. Onset Speech/Non-speech

PopT 0.69± 0.07 0.84± 0.06 0.86± 0.05 0.89± 0.07
PopT w/o group-wise loss 0.66± 0.07 0.83± 0.06 0.84± 0.04 0.88± 0.08
PopT w/o channel-wise loss 0.67± 0.06 0.81± 0.08 0.84± 0.06 0.87± 0.09
PopT w/o position encoding 0.59± 0.07 0.67± 0.10 0.75± 0.08 0.79± 0.08
PopT with reconstruction loss 0.60± 0.11 0.73± 0.11 0.81± 0.05 0.83± 0.09
PopT with L1 reconstruction only 0.56± 0.04 0.65± 0.08 0.73± 0.10 0.74± 0.10

Table 2: PopT ablation study. We individually ablate our losses and positional encodings during
pretraining then decode on the resulting models. Shown are ROC-AUC mean and standard error
across subjects. The best performing model across all decoding tasks uses all three of our proposed
components, showing that they are all necessary. Removing our positional encoding during pretraining
and fine-tuning drops the performance the most, indicating that position encoding is highly important
for achieving good decoding. Additionally, we attempt adding a reconstruction component to the loss
or purely using the L1 mask loss, but find that this leads to poorer performance (last two rows).

6 Conclusion

We presented a self-supervised learning scheme for learning effective representations of intracranial
activity from temporal embeddings. By decoupling temporal and spatial feature extraction, we are
able to leverage existing temporal embeddings to learn spatiotemporal representations efficiently
and with a smaller number of parameters. We showed that self-supervised pretraining imbues our
model with knowledge of spatial relationships between these embeddings and improved downstream
decoding that scales with the number of available channels. This scheme produces interpretable
weights from which attention weight maps can be read to help uncover learned relationships from
the massively pretrained framework. Finally, we release the pretrained weights for our PopT with
BrainBERT inputs as well as our code for pretraining with any temporal embedding.
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A Architectures and training

Pretrained PopT The core Population Transformer consists of a transformer encoder stack with
6 layers, 8 heads. All layers (N = 6) in the encoder stack are set with the following parameters:
dh = 512, H = 8, and pdropout = 0.1. We pretrain the PopT model with the LAMB optimizer [39]
(lr = 1e− 4), with a batch size of nbatch = 256, and train/val/test split of 0.98, 0.01, 0.01 of the data.
We pretrain for 500,000 steps, and record the validation performance every 1,000 steps. Downstream
evaluation takes place on the weights with the best validation performance. We use the intermediate
representation at the [CLS] token dh = 512 and put a linear layer that outputs to dout = 1 for
fine-tuning on downstream tasks. These parameters for pretraining were the same for any PopT that
needed to be pretrained (hold-one-out subject, subject subsets, ablation studies).

Non-pretrained PopT The architecture for the non-pretrained PopT is the same as the pretrained
PopT (above). However, no pretraining is done, and the weights are randomly initialized with the
default initializations.

Linear The linear baseline consists of a single linear layer that outputs to dout = 1. The inputs are
flattened and concatenated BrainBERT embeddings demb = 756 or TOTEM embeddings demb = 64
from a subset of channels S ⊂ C. Thus, the full input dimension is dinput = demb ∗ |S|.
Deep NN The inputs are the same as above, but the decoding network now consists of 5 stacked
linear layers, each with dh = 512 and a GeLU activation.

Downstream Training For both PopT models, we train with these parameters: AdamW optimizer
[40], lr = 5e−4 where transformer weights are scaled down by a factor of 10 (lrt = 5e−5),
nbatch = 256, a Ramp Up scheduler [41] with warmup 0.025 and Step LR gamma 0.99, reducing
100 times within the 2000 total steps that we train for. For Linear and DeepNN models, we train with
these parameters: AdamW optimizer [40], lr = 5e−4, nbatch = 256, a Ramp Up scheduler [41] with
warmup 0.025 and Step LR gamma 0.95, reducing 25 times within the 17,000 total steps we train for.
For all downstream decoding, we use a fixed train/val/test split of 0.8, 0.1, 0.1 of the data.

Compute Resources To run all our experiments (data processing, pretraining, evaluations, inter-
pretability), one only needs 1 NVIDIA Titan RTXs (24GB GPU RAM). Pretraining PopT takes 2
days on 1 GPU. Our downstream evaluations take a few minutes to run each. For the purposes of
gathering all the results in the paper, we parallelized the experiments on roughly 8 GPUs.

B Decoding tasks

We follow the same task specification as in Wang et al. [1], with the modification that the pitch and
volume examples are determined by percentile (see below) rather than standard deviation in order to
obtain balanced classes.

Pitch The PopT receives an interval of activity and must determine if it corresponds with a high or
low pitch word being spoken. For the duration of a given word, pitch was extracted using Librosa’s
piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz, FFT window length of 2048,
hop length of 512, and 128 mel filters). For this task, for a given session, positive examples consist of
words in the top-quartile of mean pitch and negative examples are the words in the bottom quartiles.

Volume The volume of a given word was computed as the average intensity of root-mean-square
(RMS) (rms function, frame and hop lengths 2048 and 512 respectively). As before, positive examples
are the words in the top-quartile of volume and negative examples are those in the bottom quartiles.

Sentence onset Negative examples are intervals of activity from 1s periods during which no speech is
occurring in the movie. Positive examples are intervals of brain activity that correspond with hearing
the first word of a sentence.

Speech vs. Non-speech Negative examples are as before. Positive examples are intervals of brain
activity that correspond with dialogue being spoken in the stimuli movie.
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C Data

Subj. Age (yrs.) # Elec-
trodes

Movie Recording
time (hrs)

Held-
out

1
19 91 Thor: Ragnarok 1.83

Fantastic Mr. Fox 1.75
The Martian 0.5 x

2

12 100 Venom 2.42
Spider-Man: Homecoming 2.42
Guardians of the Galaxy 2.5
Guardians of the Galaxy 2 3
Avengers: Infinity War 4.33
Black Panther 1.75
Aquaman 3.42 x

3
18 91 Cars 2 1.92 x

Lord of the Rings 1 2.67
Lord of the Rings 2 (extended
edition)

3.92

4 9 135 Megamind 2.58
Toy Story 1.33
Coraline 1.83 x

5 11 205 Cars 2 1.75 x
Megamind 1.77

6
12 152 Incredibles 1.15

Shrek 3 1.68 x
Megamind 2.43

7 6 109 Fantastic Mr. Fox 1.5

8 4.5 72 Sesame Street Episode 1.28

9 16 102 Ant Man 2.28

10 12 173 Cars 2 1.58 x
Spider-Man: Far from Home 2.17

Table 3: Subject statistics Subjects used in PopT training, and held-out downstream evaluation.
Table taken from [1]. The number of uncorrupted, electrodes that can be Laplacian re-referenced are
shown in the second column The average amount of recording data per subject is 4.3 (hrs).

D Interpretation Methods

Candidate functional brain regions from attention weights After fine-tuning our weights on a
decoding task, we can examine the attention weights of the [CLS] output for candidate functional
brain regions. We obtain a normalized Scaled Attention Weight metric (see next section) across all
subjects to be able to analyze candidate functional brain regions across sparsely sampled subject
datasets. The Scaled Attention Weight is computed from raw attention weights at the [CLS] token
passed through the attention rollout algorithm [42]. The resulting weights from each channel are then
grouped by brain region according to the Destrieux layout [43].

Scaled Attention Weight First, we obtain an attention weight matrix across all trials which includes
weights between all tokens. Then, we perform attention rollout [42] across layers to obtain the
contributions of each input channel by the last layer. We take the resulting last layer of rollout weights
for all channels, where the target is the [CLS] token, normalize within subject, and scale by ROC
AUC to obtain the Scaled Attention Weight per channel. Finally, we plot the 0.75 percentile weight
per region, as mapped by the Destrieux atlas [43] using Nilearn [44].
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E Model and Compute Requirements

e5 e50 e90

PopT 20M
Deep NN 3M 20M 36M
Linear 3.8k 38k 69k
Brant [19] 500M
LaBraM [21] 350M

Table 4: Parameter counts. Since PopT takes existing temporal embeddings as input, the number of
parameters that must be trained is an order of magnitude less than recent end-to-end approaches.

GPU count GPU type Time to train TFLOPS

PopT 1 NVIDIA TITAN RTX (24GB) 2 days 2.1M
Brant [19] 4 NVIDIA Tesla A100 (80G) 2.8 days 18.8M

LaBraM [21] 8 NVIDIA Tesla A800 (40G) – –

Table 5: Pretraining compute requirements Based on published train times (none were given for
LaBraM) it is evident that PopT has smaller hardware and shorter training time requirements.
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