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Abstract

The success of neural networks depends on the generalization ability, while Shah
et al. [8] conclude that the inherent bias towards simplistic features, a phenomenon
called Simplicity Bias, hurts generalization by preferring simple but noisy features
to complex yet predictive ones. We aim to understand the scenarios when sim-
plicity bias occurs more severely and the factors that help mitigate its effects. We
show that many traditional insights such as increasing training size and increasing
informative feature dimensions are not as effective as balancing the modes of our
data distribution, distorting the simplistic features, or even searching for a good
initialization. Our empirical results reveal intriguing factors of simplicity bias, and
we call for future investigations to a more thorough understanding of simplicity
bias and its interplay with the related fields.

1 Introduction

The effectiveness of deep neural networks largely hinges on their generalization ability, which is
influenced by how closely the model class’s inductive bias aligns with the prior assumptions of the
real world. Consequently, researchers strive to uncover the underlying model biases and to design
algorithms with biases that best match the real-world scenarios.

Conventional wisdom favors simple models with fewer small-magnitude parameters. Approaches
following this methodology include parameter sharing [5] and regularization [4, 9, 12]. Moreover,
recent work [1, 3, 11] attributes the generalizability of neural networks optimized by stochastic
gradient descent (SGD) to an inherent bias towards simpler features, named Simplicity Bias (SB).

However, taking into account the margin of the decision boundary, Shah et al. [8] present the
negative impacts of extreme SB: relying exclusively on simple features impairs the robustness of
neural networks, leading to poor generalization and out-of-distribution performance. Inspired by
the piecewise-linear decision boundary of ReLU-activated multi-layer perceptrons, they proposed
synthetic datasets composed of linear slabs and formulated the notion of “simple features” by the
number of slabs of the optimal decision boundary that relies on that feature alone. Experiments
show that neural networks neglect complex features even if they are more predictive and lead to
larger margins, and regularization techniques as well as adversarial training do not mitigate this issue.
Methods aiming to resolve the issue, such as gradient regularization for model ensembles [10], lack
theoretical guarantee and still have gaps with the optimal performance.

Despite the comprehensive experiments in Shah et al. [8], a number of intriguing or counter-intuitive
factors that influence the emergence of simplicity bias remain unrevealed. In this paper, we extend
their work by investigating the effect of the feature dimensionality, data distribution, training size,
and noisiness of the synthetic dataset to demonstrate the complexity of simplicity bias and the factors
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that mitigate or amplify this phenomenon. We hope our work can bring new insights to the discussion
of simplicity bias and its relationship to training dynamics and other areas.

2 Related work

Simplicity bias. Some regard SB as the source of regularization and generalization by showing that
the learned high-probability functions of deep neural networks (DNNs) tend to have low Lempel-Ziv
complexity [11]. Similar arguments are based on the evidence that a DNN tends to learn simple
patterns first [1, 12]. However, opposite viewpoints suggest that the extreme SB leads the neural
networks to exclusively rely on the simplest features despite the better predictive power of the
complex ones [8]. The resultant small margin classifiers, therefore, exhibit poor generalization and
robustness performance.

Resolving simplicity bias. Multiple methods that encourage a deep model to learn complex features
are proposed. Assuming that simple solutions are unlikely to be optimal, Dagaev et al. [2] utilizes a
low-capacity network, which is only capable of capturing simple patterns, to detect and downweigh
the shortcuts learned by a high-capacity network. Another group of methods focuses on balanced
learning across features, through either regularization techniques [7] or enforcing disagreement
among a group of models to make use of diverse features [6, 10].

3 Preliminaries and setup

Following the seminal prior work on SB [8], we generate multidimensional synthetic data composed
of discriminative while complex features and noisy while simple features as our proxy dataset to
understand when extreme simplicity bias happens and how to mitigate their effects. On this dataset,
we follow their tradition and use four metrics, training accuracy, validation accuracy, S-Randomized
accuracy, and Sc-Randomized accuracy to understand a neural network’s bias towards simple features.

Data generation. We focus on a binary classification problem and employ the synthetic dataset
proposed in [8], where each sample is a d-dimensional vector (i.e., with d features). Among the d
features, one feature is designed to be “simple" and the remaining are engineered to be “complex" in
the sense that a complex feature requires a more sophisticated discriminatory boundary to separate
the data. In our dataset, which is composed of slab groups of data, a boundary’s sophistication is
measured by its number of linear pieces, as visualized in Fig. 1. The detailed data generation process
is specified in Appendix A.
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Figure 1: Illustration of feature simplicity and visualization of two dimensions of the generated noisy
dataset. In each figure, one dot represents one data sample (y = +1 in red, y = −1 in blue) and
x-axis and y-axis each visualize one feature dimension.

In the whole paper, we follow the tradition and denote LM-5 as the dataset where one feature
dimension forms a 5-slab and the remaining dimensions form 2-slab. MS-57 represents a dataset
where one dimension forms a 7-slab while the remaining form 5-slab. A \hat notation denotes
a noisy dataset, where the simple feature dimension is noisy and non-discriminative, as shown in
Fig. 1b and Fig. 1c. Given this customized noisy dataset, our goal is to probe when a model relies
exclusively on one non-informative simple feature rather than the complex ones.
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Metrics. Apart from the training and validation accuracy, we also report S-Randomized accuracy,
the validation classification accuracy when the simple feature values are randomly shuffled, and
Sc-Randomized accuracy, the validation classification accuracy with the complex feature values
randomly shuffled. A low S-Randomized accuracy, therefore, implies reliance on simple features.

4 Intriguing factors affecting SB

In this section, we conduct controlled experiments by varying one variable of interest at a time, observe
its impact on the occurrence of simplicity bias, and discuss the insights. In each experiment, our
baseline model and hyperparameters follow the prior work [8] unless otherwise specified. Specifically,

• We experiment on three datasets, L̂MS-5, L̂MS-7, and M̂S-57, each defaultly with 50000
training samples.

• The baseline model is a fully connected neural network with ReLU activations, where the
number of hidden layer is 1 and the latent dimension is 300. It is trained with SGD with
learning rate α = 0.3, weight decay λ = 5.0 · 10−4, and no momentum.

4.1 More dimensions of predictive features are more of a hindrance

The experiments conducted by Shah et al. [8] are all based on d = 50, meaning each sample has
one noisy simple feature and 49 predictive complex features. Intuitively, providing more informative
features by, for example, increasing d to 150 as in our experiment, should reduce the model’s reliance
on simple features and thus mitigate simplicity bias. However, we observe that models of the same
complexity (i.e., architecture) tend to suffer more from simplicity bias when the data has more
informative features, as shown in Fig. 2, although the features are independently generated.
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Figure 2: Results of four accuracy metrics with different input dimensions. As the input dimension
increases, the model tends to focus more exclusively on the simple but noisy feature. Dots aligned
vertically represent the results of different metrics on the same model.

4.2 Training size matters less than the balanced modes of our data distribution

It has been almost a consensus that the size of the training set matters, so increasing training size is
expected to mitigate simplicity bias given that the model has a large enough capacity. However, in
our experiment (as shown in Fig. 3a), the bias of our models towards simple features stays invariant
to the number of training samples, as illustrated by their consistently low S-Randomized accuracy.

Fortunately, though training size does not mitigate SB effectively, balancing the modes of our training
data distribution helps. Unlike previous work [8] which distributes a fixed larger probability to sample
from the central slabs, we denote the probability of sampling from the slabs on the two farthest sides
as P+ and evaluate the performance under different values of P+. As shown in Fig. 3b, experiments
indicate that reliance on simple features can be largely reduced by increasing P+, i.e., balancing the
distribution modes. Additionally, this phenomenon is also observed when the activation function is
changed to tanh (Fig. 4b and 4e) and sigmoid (Fig. 4c and 4f) apart from the baseline ReLU under
the same settings.
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Figure 3: Accuracies with respect to varying number of samples or changing the side proportion in
L̂MS-5. We conduct experiments for each setting with different random seeds and plot the average
accuracy (lines) and individual results (dots). The figures show that the model’s reliance on simple
features does not decrease much as the number of samples increases, while varying side proportion
plays an impactful role. Each dot represents a model with ReLU activation that is trained until
convergence to at least 99.5% training accuracy or reaching the maximum tolerable iterations.
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(e) L̂MS-7, tanh
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Figure 4: Training and validation accuracies with different P+. P− is fixed at the value in Section A.2.
We can observe that the undesirable gap in repliance on simple vs. complex features can be largely
mitigated by sampling data equally from each slab.
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4.3 When simple features become noisy, they become less simple

A neural network prefers noisy simple features to predictive complex features, while how noisy is too
noisy? To investigate how the noisiness of simple features affects a model’s preferred features for
prediction, we vary the noise proportion (i.e., the proportion of the data points that are noisy) in the
range [0.1, 0.4] on M̂S-(5,7).
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(a) M̂S-(5,7) with 40k samples.
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(b) M̂S-(5,7) with 100k samples.

Figure 5: Accuracies vs. noise proportion on M̂S-(5,7) of different sizes.

As shown in Fig. 5a, as noise proportion increases, S-randomized accuracy increases, which indicates
that the model’s predictions rely less and less on the simple features. When simple features become
noisy enough, there exists an “inflection point,” after which the model occasionally resorts to
complex features for prediction and achieves a smaller generalization gap. Similar tendencies can
also be observed in Fig. 5b, where the model relies entirely on complex features to make predictions
when simple features become noisy to some extent.

Therefore, we conclude that a model has SB when data has a small noise proportion; a large noise
proportion gives no SB. Moreover, the model’s preference for features does not vary smoothly with
respect to the noisiness of the simple features but shifts drastically beyond a certain point. Based
on this phenomenon, we hypothesize that there is a certain noise level beyond which the models’
perception of “feature simplicity” is flipped: The noisier, the more complex the simple feature
becomes, which motivates the model to utilize Sc instead.

5 Discussion

Throughout our experiments, we have shown a number of intriguing factors that affect the presence
of simplicity bias in neural networks optimized by SGD on the synthetic dataset. More complex but
predictive features does not induce the model to utilize them; a balanced dataset can be more useful
than a large long-tail dataset; the dramatic change in the feature preferences of models when the
simple features are more corrupted may imply the effectiveness of deliberate distortion of simplistic
features to boost model performance. Based on these findings, we hope to call for more thorough
studies of the factors contributing to simplicity bias, possibly with experiments on realistic datasets.

Besides, the existence of simplicity bias is found to be dependent on the random initialization of
models, and the mechanism behind is unclear. Future work may also focus on finding (or disproving
the existence of) a region where neural networks are less prone to simplicity bias, or collaborating
with related work on training dynamics to mitigate it.

Acknowledgments We thank Jhih-Yi Hsieh for thorough discussion and help with the initial draft.
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A Synthetic data

A.1 Generation of synthetic data

The synthetic dataset [8] contains N samples {(x(i), y(i))}N−1
i=0 of d-dimensional features {x(i) =

(x
(i)
0 , x

(i)
1 , · · · , x(i)

d−1)}
N−1
i=0 and binary labels {y(i)}N−1

i=0 where y(i) ∈ {−1,+1}. Each dimension
Xj ∈ [−wj , wj ] has width wj and is a sj-slab feature, with different sj’s bringing different levels
of simplicity. Any consecutive slab pieces are separated by margin γj , possibly filled with noise,
making up ζj proportion of data. For each sample in the dataset, Y is sampled independently from
the Bernoulli distribution with P (Y = −1) = P (Y = +1) = 1/2. For each data point and its
corresponding label y(i), we sample each feature dimension Xj independently based on the feature
class.

For each dimension Xj , we first split the interval [−wj , wj ] into sj intervals with margin γj . Let

lj =
2wj − 2γj(sj − 1)

s

denote the width of each slab; we may then find the intervals {U (k)
j }sj−1

k=0 to be

U
(k)
j = [−w + k(lj + 2γj),−w + k(lj + 2γj) + lj ] .

Then, we define the alternating intervals of positive slabs and negative slabs by

U+
j = U

(0)
j ∪ U

(2)
j ∪ · · · ∪ U

2(⌈
sj
2 ⌉−1)

j ; U−
j = U

(1)
j ∪ U

(3)
j ∪ · · · ∪ U

2⌊
sj
2 ⌋−1

j .
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Figure 6: Illustration of a 5-slab feature. The red slabs are in U+ for positive samples, and the blue
slabs are in U− for negative samples.

Based on the slab intervals, we sample x
(i)
j based on the conditional probability density p(x

(i)
j |y(i)).

To ensure equal variances Var[Xj |Y = 1] = Var[Xj |Y = −1] for both positive and negative
samples, we define the side slabs as

U+,s
j = U

(0)
j ∪ U

2(⌈
sj
2 ⌉−1)

j ; U−,s
j = U

(1)
j ∪ U

2⌊
sj
2 ⌋−1

j ,

and let P+
j ,P−

j denote hyperparameters denoting the probability of sampling from the slabs on both
farthest sides of the positive and negative class, respectively. The probability density functions are
shown in Equation 1 and 2.

f
x
(i)
j |y(i)=−1

(x) =


P−

j

2lj
if x ∈ U−,s

j ,

1−P−
j(

⌊
sj
2

⌋−2
)
lj

if x ∈ U−
j \ U−,s

j ,

0 otherwise.

(1)

f
x
(i)
j |y(i)=+1

(x) =


P+

j

2lj
if x ∈ U+,s

j ,

1−P+
j

(⌈
sj
2

⌉−2)lj
if x ∈ U+

j \ U+,s
j ,

0 otherwise.

(2)

Noisy features. For the features Xj with noise proportion ζj > 0, we generate noise labels Zj

independently of Y by P (Zj = 1) = ζj , P (Zj = 0) = 1 − ζj . For Zj = 0, Xj is generated
according to Y exactly by Equation 1 and 2 above. For Zj = 1, Xj is uniformly distributed in the
gaps [−w,w] \ (U+

j ∪ U−
j ) regardless of Y .

7



A.2 Specification of our datasets

Following the convention in [8], we use L̂MS and M̂S datasets in our experiments:

• L̂MS-k has each feature containing one 2-slab (i.e. linear) block and multiple k-slab blocks.
For k = 5, P+

j = 1/4 and P−
j = 1 (note that U−,s

j = U−
j in this case); for k = 7,

P+
j = 1/8 and P−

j = 1/2. The linear feature is noised with ζ0 = 0.1, and the more
complex k-slab features have 100% predictive power.

• M̂S-(m, n) has each feature containing one noisy m-slab block and multiple n-slab blocks
without noise. P are the same as in L̂MS-k.
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