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Abstract

Watermarking the outputs of generative models has emerged as a promising ap-
proach for tracking their provenance. Despite significant interest in autoregressive
image generation models and their potential for misuse, no prior work has at-
tempted to watermark their outputs at the token level. In this work, we present
the first such approach by adapting language model watermarking techniques to
this setting. We identify a key challenge: the lack of reverse cycle-consistency
(RCC), wherein re-tokenizing generated image tokens significantly alters the to-
ken sequence, effectively erasing the watermark. To address this and to make our
method robust to common image transformations, neural compression, and removal
attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that
improves RCC, and (ii) a complementary watermark synchronization layer. As
our experiments demonstrate, our approach enables reliable and robust watermark
detection with theoretically grounded p-values. Code and models are available at
https://github.com/facebookresearch/wmar.
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Figure 1: We watermark autoregressively generated images together with text in a theoretically principled way
by adapting LLM watermarking. We identify and address the novel challenges present in this setting (Sec. 3) via
a custom (de)tokenizer finetuning procedure (Sec. 3.1) and a watermark synchronization layer (Sec. 3.2).

1 Introduction

Autoregressive models are powerful frameworks for understanding and generating diverse content
types. By converting multiple modalities into discrete representations via custom tokenizers [81, 101,
117], a single transformer is able to seamlessly process multiple domains, including text, images [11,
15, 96, 106], audio [8, 24], and even molecules [39]. Following patterns observed in large language
models (LLMs), established scaling laws [2, 36, 89] demonstrate that the performance of these
models improves predictably with size and computational resources, leading to increasing adoption
across research and industry [21, 71, 75]. Most notably, in the image domain, autoregressive models
are widely studied as an alternative to diffusion models for high-quality generation [79, 91, 97, 115].

Watermarking generative model outputs. Regardless of the specific method, the widespread
deployment of high-quality generative models has made the detection of AI-generated content
increasingly challenging. This has raised significant concerns about misuse, including deepfakes,
harmful content generation, and intellectual property violations. One promising direction to help
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address these issues is generative AI watermarking, in which the model provider proactively embeds
imperceptible signals into generated content to verify its origin later.

Recent research in this area can be categorized into post-hoc methods, which modify already generated
content in a model-agnostic way [9, 12, 22, 29, 86, 128], and modality-specific generation-time
methods, which alter the generation process of a specific model [1, 20, 28, 48, 105, 112]. The latter
are the standard in LLM watermarking, offering theoretically grounded watermark detection with
provably low false positive rates. However, most image watermarking research focuses on diffusion
models, and no prior work has attempted to adapt LLM watermarks to other token types, which could
be a way to develop a robust and theoretically principled watermark that is tailored to autoregressive
image generation models. This motivates our key question:

Can we robustly watermark autoregressive image generation models at the token level?

This work. To answer this question, we extend LLM watermarks to watermark autoregressively
generated image tokens as illustrated in Fig. 1. We identify and address a key technical challenge.
Namely, while image tokenization is designed to be forward cycle-consistent, i.e., tokenizing and
detokenizing an image does not significantly alter it, reverse cycle-consistency (RCC) is often violated.
In particular, we show that decoding model-generated tokens and then re-tokenizing the resulting
image leads to, on average, one-third of the tokens being different. The tokens differ even more if
the images are transformed between generation and watermark detection (e.g., JPEG compressed or
cropped), which is a common scenario in practice. While RCC may not be important for generative
model performance, it is a crucial prerequisite for robust generation-time watermarking.

To mitigate this, we adopt two main strategies, shown in Fig. 1. We introduce a lightweight finetuning
procedure that optimizes the detokenizer and tokenizer to be more reverse cycle-consistent, improving
watermark power and robustness to valuemetric transformations (e.g., JPEG) and attacks such as diffu-
sion purification [74] and neural compression [5, 14, 25, 83]. To then improve robustness to geometric
transformations (e.g., flips), we introduce a complementary post-hoc watermark synchronization layer,
repurposing localized watermarking [86] to detect and revert geometric transformations and recover
original tokens. As our experiments show, this results in a watermark that is quality-preserving,
effective, and robust. To inspire future work, in Sec. 5 we take first steps to extend our approach to
audio, another modality where autoregressive generation via tokenization is popular [8, 18, 24, 73].

Our main contributions are: (i) the first study of watermarking for autoregressive image generation,
and the identification of reverse cycle-consistency (RCC) as a key challenge (Sec. 3); (ii) a lightweight
finetuning procedure that improves RCC and watermark power (Sec. 3.1); (iii) a watermark synchro-
nization layer for geometric robustness (Sec. 3.2); and (iv) a thorough empirical evaluation showing
our watermark preserves generation quality and is robust to a wide range of attacks (Sec. 4).

2 Background and Related Work

Autoregressive image models. A long-studied approach to image generation, and the focus of our
work, is to first learn an image tokenizer and then train a (conditioned) autoregressive model M such
as a transformer, to create images by generating corresponding token sequences [79, 91, 97, 100,
104, 115, 116]. Notable examples of such models include DALL-E [79], Parti [115], VAR [97], and
RAR [116]. This approach is central to models for interleaved multimodal generation [11, 15, 32, 61,
62, 96, 106, 118], such as Chameleon [11], AnyGPT [118], or Janus [106]. In this work, we do not
consider other models that combine diffusion with autoregressive mechanisms [26, 58, 68, 110, 127].

Tokenization. Formally, for a target modality m (in this work primarily text or image, but also
audio in Sec. 5), a tokenizer Tm maps each data sample x to a sequence of integer tokens s =
(s1, . . . , sT ) ∈ V T , where V is the predefined vocabulary. The detokenizer Dm attempts to reverse
this process. Most text tokenizers are based on byte-pair encoding (BPE) [31]. While alternative
approaches have been explored [58, 97], the tokenization of images overwhelmingly relies on
vector quantization (VQ) [33, 58]. Most models use VQ-VAE [81, 101] or its variants VQGAN [25],
ImprovedVQGAN [114], and FSQ [70]. VQ tokenizers generally consist of an encoder network E and
a quantizer QC . E maps x to a sequence of soft latents z = E(x) ∈ RT×d. Then, QC replaces each
zi with the index of the nearest entry in a codebook C ∈ R|V |×d to obtain discrete tokens s ∈ V T :

si = QC(zi) = argmin
j∈{1,...,k}

∥zi − Cj∥22. (1)
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The detokenizer Dm replaces each si with the corresponding ẑi = Csi (hard latents), and then
applies a decoder network D to obtain the detokenized sample x̂ = D(ẑ). All components (E, C,
and D) are typically trained jointly, primarily with the reconstruction objective.

Watermarking AI-generated outputs. Methods for watermarking of AI-generated outputs broadly
fall into two main categories based on the stage at which the watermark is introduced. Generation-time
watermarks directly alter generations to embed statistically detectable patterns, and are the standard
for LLM watermarking [1, 16, 48, 53]. Similar approaches also exist for diffusion models [28, 105,
112]. In contrast, post-hoc watermarks modify previously generated outputs in a modular model-
agnostic way, by paraphrasing text [4, 12, 123] or altering image pixels [9, 10, 43, 65, 67, 93, 128].

For both of these categories, we say that a watermarking scheme is zero-bit if only the presence of
the watermark can be detected, and multi-bit if it embeds a binary message. This message embedding
is sometimes done in a localized way [86, 88], such that a different message can be extracted from
different parts of the same data sample (e.g., one per pixel). While post-hoc watermarks have broad
applicability, generation-time approaches that introduce semantic changes to the content often offer
superior robustness to attacks such as diffusion purification [84] and provide provable, key-based
guarantees on false positive rates (unlike neural extraction methods, where recovered bits may be
biased or correlated [28, App. B.5]).

LLM watermarking. In this work, we focus on the LLM watermark of Kirchenbauer et al. [48]
(KGW, green/red scheme). At each step i of generation, this method uses a secret key and previous
h tokens of context si−h:i to pseudorandomly partition the vocabulary V of the tokenizer into γ|V |
green tokens Gi and other red tokens Ri. The logits corresponding to Gi are then increased by δ,
the watermark strength. The watermark detector computes the score S =

∑T
i=h+1 1(si ∈ Gi) as

the number of green tokens in the given sequence of T tokens. Under the null hypothesis H0 (no
watermark), S follows a binomial distribution with parameters T − h and γ. The p-value (often
denoted as p) is calculated as:

p-value(S, T, h, γ) = Prob (X ≥ S | X ∼ Binomial(T − h, γ)) . (2)

A low p-value proves that the content was generated with M (more details in App. B) .

Concurrent work. Several concurrent works also study watermarks for autoregressive image
models: INDEXMARK [99] (by replacing generated tokens in a way inspired by KGW), C-
REWEIGHT [109] (via semantic partitioning similar to the one we describe at the bottom of App. F.2),
LBW [42] (via KGW-style biasing), and WIAR [69] (from the perpsective of radioactivity [88]).
Wu et al. [108] concurrently apply KGW and DiPmark [107] to autoregressive speech generation. As
elaborated on in the following sections, our work uniquely addresses the core issue of low reverse
cycle-consistency via finetuning, proposes a synchronization mechanism that can boost geometric
robustness beyond this work, and heavily centers the evaluation on robustness against a wide range of
realistic transformations and attacks, such as geometric modifications and diffusion purification.

3 Watermarking Autoregressive Image Generation

In this section, we present our approach to watermarking autoregressive image models. We identify
and address the key challenge of low reverse cycle-consistency (RCC) via tokenization finetuning
(Sec. 3.1) and watermark synchronization (Sec. 3.2). As our experiments in Sec. 4 demonstrate, this
leads to a strong and robust watermark that does not affect generation quality.

Setting. A model provider (Alice) deploys an autoregressive model M that may generate arbitrarily
interleaved text and images, using a tokenizer Tm and detokenizer Dm for each modality m ∈
{text, image}. In line with the most prominent choices, we assume BPE for text [31] and VQ for
images [25, 101]. Alice’s goal is out-of-model, generation-time, zero-bit watermarking (see Sec. 2),
i.e., embedding a later detectable watermark in all outputs of M, without modifying the model’s
weights. We assume that Bob has only black-box access to M, and no access to any Tm or Dm.

Adapting LLM watermarking. When M generates text, we directly apply KGW (Sec. 2) with
context size h = 1. For images, using a fixed split (h = 0), known to make watermarks insecure for
text, i.e., easy to reverse-engineer [44, 49, 125], may in our case be a more viable choice due to the
opacity of the VQ tokenizers. We thus explore both h ∈ {0, 1} in our experiments in Sec. 4. Another
degree of freedom is the choice of watermark context—we did not find exploiting the 2D structure
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Figure 2: Example of our watermark on an autoregressively generated image. We generate the upper half of the
image without the watermark. We then complete the bottom half in the same way (left) or with the watermark
(right). The overlay indicates generated image tokens detected as green ( ), red ( ), or ignored as a duplicate ( ).
The watermark only alters semantics and could be detected even when applied only partially as in this case.

of images to be beneficial, despite the intuition that using tokens that correspond to spatially close
regions as the watermark context (instead of those last generated by the autoregressive model) may
benefit robustness. This idea and more values of watermark parameters are explored in App. F.2.

Detection. Given samples x(i) of varying modalities that Alice suspects were generated by M
(e.g., a post on a breed of hen as in Fig. 1), she can apply Eq. (2) in a unified way. We first tokenize
each x(i) to s(i) of length T (i) tokens, and score it using the corresponding h(i) to obtain a score
S(i). We next sum all S(i), T (i), and h(i), and deduplicate scored (context, token) pairs across all
samples to preserve statistical soundness [27, 45, 48, 87]. Then, we apply Eq. (2) to obtain a single
p-value. Notably, the same γ must be used across all modalities. Alice may reject H0 (flag content as
watermarked) if the p-value is below the desired false positive rate (FPR). In Sec. 4.3 we investigate
the benefits of jointly watermarking multiple modalities, and discuss the involved tradeoffs.

In Fig. 2, we visualize the watermark on an image generated with TAMING [25], by applying it only
on the second half of generated tokens. As we later confirm in Sec. 4, the watermark imperceptibly
modifies images by altering semantics, while achieving high watermark confidence (low p-value).

Challenge: reverse cycle-consistency (RCC). The tokens s shown in Fig. 2 as input to the detector
are those generated by the autoregressive model, which is not realistic. In practice, to apply the
detector to a sample x′, Alice must first tokenize it as s′ = Tm(x′). If tokens s′ significantly differ
from s, the watermark may be lost. To quantify this, we define the token match as:

TM(s, s′) =
1

T

T∑
i=1

1(si = s′i), (3)

where s′ = Tm(Dm(s)). We say that reverse cycle-consistency (RCC) holds if TM(s, s′) ≈ 1.
In App. C.3 we discuss similar concepts studied in prior work and relate them to RCC.

Interestingly, RCC is not guaranteed to hold even in the text domain, despite BPE tokenizers ensuring
forward cycle-consistency (FCC), i.e., Dtext(Ttext(x)) = x always holds. For example, if tokens A,
B and their concatenation AB all exist in the vocabulary, then the token sequence [A,B] will be re-
tokenized as a single token AB due to the greedy tokenization algorithm of BPE, effectively violating
RCC. In App. C.1 we discuss this in more detail and provide a real example. Still, RCC in text largely
holds in practice, which is also evidenced by the fact that no prior LLM watermarking work has
cited related challenges. We confirm this experimentally: across 1000 completions generated with
LLAMA3.1-8B-INSTRUCT the average token match was 0.995.

RCC in image generation. We repeat this experiment on image models, presenting the results in
Table 1 (full details in App. E.1). We also consider the case where images undergo transformations
(x → a(x)) before re-tokenization. Without transformations (Original), RCC is already weaker

Table 1: Average token match between 1000 image token sequences generated with TAMING (see Sec. 4) and
their re-tokenized versions, which may also undergo image transformations before re-tokenization.

Original Blur ksz = 9 Noise σ = 0.1 JPEG Q = 25 Brighten 2× Rotate 10◦ Flip ↔ Crop 0.75

0.66 0.26 0.17 0.31 0.11 0.02 0.01 0.01
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Figure 3: A replica E′ of the encoder and the decoder D are jointly trained to improve reverse-cycle consistency,
i.e., make E′(D(ẑ)) close to ẑ for most generations of the autoregressive model M, even under transformations.

than expected with TM = 0.66. As Sec. 4 will show, this often suffices under ideal conditions (e.g.,
our example in Fig. 2 has a p-value of 10−9 after re-tokenization). However, common valuemetric
transformations (blur, noise, JPEG, brighten) lower TM (e.g., to 0.31 for JPEG with Q = 25), and
geometric ones (rotate, flip, crop) cause a further drop to almost 0. Two key factors explain this
behavior. First, neural image tokenizers are trained for FCC, not RCC. Their training data does not
include detokenized samples, which often lie off-manifold. Second, spatial sensitivity of the tokenizer
causes semantic-preserving edits to easily alter most tokens. We next show how to mitigate this.

3.1 Finetuning for Reverse Cycle-consistency

We propose a finetuning procedure (illustrated in Fig. 3) that improves RCC in image tokenizers.
Recall the VQ components (Sec. 2): encoder E, quantizer QC with codebook C, and decoder D.
Let D0, E0 be the original weights of D and E. To avoid costly retraining of M, we must keep
(E,QC , C) fixed; otherwise, we risk modifying the codebook semantics (directly or by changing
how images are encoded by E), which harms the autoregressive model. Thus, we propose to only
finetune D and an encoder replica E′ (initialized to E0). E′ is used only for watermark detection,
while the original E may be used to condition M on images. Unlike usual VQ training that promotes
FCC, we optimize RCC: we aim to learn a decoder D whose outputs E′ can reliably invert.

Finetuning objectives. We first precompute tokenizations s from a set of images, which we use as
our training data. We encourage RCC by minimizing the following loss:

LRCC(s) = E
a∼A

∥ẑ − E′(a(D(ẑ)))∥22. (4)

Its goal is to match the original hard latents ẑ = Cs to soft latents obtained after detokenization
and encoding using E′. To ensure RCC holds robustly even under transformations, we uniformly
sample an augmentation a ∼ A with preset probability paug in each training step, or set it to identity
otherwise. Our augmentation set A includes valuemetric (brighten, contrast, JPEG) and weak
geometric transformations (e.g. ±1◦ rotation), with strength ramped up over training (see App. E.1).

To retain decoder quality we introduce a regularization that keeps the effect of D close to the effect
of its initial weights D0 via a mixture of MSE and LPIPS perceptual loss [122]:

Lreg(s) = ∥D(ẑ)−D0(ẑ)∥22 + LLPIPS(D(ẑ), D0(ẑ)). (5)

We found this sufficient as a quality constraint and easier to train compared to loss functions that
compare reconstructions to the original images or the use of adversarial discriminators.

We jointly train D and E′ to minimize: L(s) = LRCC(s) + λ · Lreg(s), where λ is a tradeoff
hyperparameter. In Sec. 4 we demonstrate that this efficiently boosts RCC and watermark robustness
against valuemetric attacks, neural compression, and diffusion purification [74].

3.2 Post-hoc Watermark Synchronization

Semantic-preserving geometric transformations (e.g., flips) easily change image tokenization as each
token loosely corresponds to a local image patch. Therefore, RCC finetuning alone cannot recover the
watermark. One could run the watermark detector on multiple transformed image copies (rescaled,
rotated, etc.), but this is costly and significantly inflates false positives as noted in prior work [48].
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Figure 4: Watermark synchronization. Localized messages are embedded into a generated watermarked image
and later used to discover the unknown transformation and revert it, which recovers the original watermark.

Localization as synchronization. To address this in a more practical way, we repurpose localized
watermarks (see Sec. 2) as a synchronization signal. More precisely, we locally embed a fixed set of
messages whose detection estimates the applied transform, which we then aim to invert before apply-
ing the original watermark detector. To not degrade original performance, our watermark should be
robust to the addition of this signal, which we verify in Sec. 4. Detecting this signal could in principle
be taken as evidence that the image is watermarked, as in some of the prior post-hoc watermarking
schemes that explore synchronization [34, 66]. However, applying the original watermark detector
is still necessary to obtain theoretically grounded p-values that can be combined with other samples
across modalities as described above. Moreover, as we will see in Sec. 4, post-hoc watermarks are
generally much more brittle to adversarial purification compared to the approach we propose.

Reverting transformations. In Fig. 4, we show our instantiation of this idea, where we embed four
32-bit synchronization messages {032, 016116, 116016, 132} via the method of Sander et al. [88] into
the four image quadrants. We observe that the original watermark is well preserved (with p-value
p = 5 · 10−38) after adding the synchronization signal. However, a horizontal flip shuffles tokens
and breaks detection (p = 0.66). To identify this, we apply an algorithm that searches over a grid of
rotation angles, and for each fits the best axis-aligned pair of orthogonal lines that separate the four
messages. This is sufficient to identify and revert flips, rotations, and crops followed by upscaling
to the respective model’s original generation size, which we revert by downscaling and padding
appropriately. We note that our synchronization pattern (quadrants) assumes crops that preserve one
corner—as we discuss in Sec. 6, the same idea can be directly extended to arbitrary crops by using a
more elaborate synchronization pattern. In our example in Fig. 4, our procedure detects that a flip
was applied and restores p = 5 · 10−38. Full algorithm and more examples are deferred to App. D.1.

In the following, we empirically show that synchronization enhances geometric robustness, comple-
menting RCC finetuning. This step is further aided by the use of small geometric augmentations during
RCC finetuning, as they effectively compensate for minor errors in our transformation estimates.

4 Experimental Evaluation

In Sec. 4.1, we measure the effect of RCC finetuning (Sec. 3.1) and the synchronization layer
(Sec. 3.2) on RCC, quality, and the power of our watermark. Sec. 4.2 studies robustness under
common transformations and attacks, while Sec. 4.3 studies joint watermarking of text and images.
Additional experimental details and results are given in App. E and App. F, respectively.

Setup. We consider three autoregressive image generation models. First, the class-conditional
ImageNet transformer from Esser et al. [25] that generates images at resolution 256 × 256 with a
VQGAN tokenizer with |V | = 16384 and downsampling factor f = 16, denoted TAMING below.
Next, the 7B variant of the mixed-modal CHAMELEON [11] that can generate interleaved text and
512× 512 images, with |V | = 8192 and f = 16. Finally, RAR-XL, the 955M configuration of the
state-of-the-art RAR model [116], generating 256× 256 images conditioned on an ImageNet class,
as TAMING, with |V | = 1024 and f = 16. In each experiment, we generate 1000 samples per model
(100 samples per each of 10 ImageNet classes for TAMING and RAR-XL, and 1000 COCO prompts
for CHAMELEON).

We evaluate 4 variants of our method: BASE, which uses original models and tokenizers, FT and
FT+AUGS, which apply the same watermark after RCC finetuning (Sec. 3.1) without and with
augmentations in training, respectively, and FT+AUGS+SYNC, which also uses our watermark
synchronization (Sec. 3.2) on top of augmented-RCC finetuning. We use δ = 2 and γ = 0.25 in all
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Figure 5: Left: Finetuning improves token match (Eq. (3)) between original and re-tokenized image tokens.
Right: All variants achieve TPR ≈1 at FPR of 1%. Finetuning further boosts detection in low-FPR settings.

experiments, h = 1 for TAMING, RAR-XL, and CHAMELEON on text, and h = 0 for CHAMELEON
on images. We finetune models on tokens derived from 50,000 ImageNet training samples for 10
epochs (2h on 16 V100 for TAMING, 2.5h on 8 H200 for CHAMELEON, and 0.5h on 8 H200 for
RAR-XL). Computational efficiency is discussed further in App. F.8.

4.1 Reverse Cycle-Consistency, Watermark Power, and Generation Quality

The key question raised in Sec. 3 is if our proposed finetuning procedure can alleviate the lack of
reverse cycle-consistency (RCC) in image tokenizers, and in turn improve watermark power. We also
measure the effect of watermarking and finetuning on generation quality. In the following, we present
results with TAMING. In App. F.3, we repeat the same experiments on CHAMELEON and RAR-XL
with the same finetuning hyperparameters (see App. E.1) and reach similar conclusions.

Finetuning improves RCC. We generate 1000 class-conditioned ImageNet samples using each
of our 4 variants, and measure token match (TM, Eq. (3)) between the generated tokens and those
obtained by re-tokenizing the image. In our results in Fig. 5 (left), we observe that TM is consistently
below 0.8, as previously seen in Table 1, while for all finetuned variants it is generally above 0.8.
This demonstrates that finetuning is successful in improving RCC. AUGS and SYNC slightly reduce
TM on unmodified images, but significantly increase robustness (see Sec. 4.2).

Finetuning improves watermark power. In Fig. 5 (right), we report the true positive rate (TPR)
of the watermark detector for different false positive rates (FPR). The BASE variant already has
practically viable power, achieving TPR of ≈1 at FPR of 10−2 (dashed line), the setting commonly
considered in prior work [17, 20, 105, 126]. However, RCC gains directly translate to improvements
in watermark power: for all 3 variants, the TPR at lower FPR settings is significantly higher.

Watermarking and finetuning do not harm generation quality. To measure the quality of the
generated samples, we compute FID [37] on 50,000 generations (50 per ImageNet-1K class) for all
variants. We find that none of BASE, FT, and FT+AUGS have FID above 16.7, which is the FID of
an unwatermarked BASE model. This confirms that our watermark preserves generation quality even
after finetuning. The FID of FT+AUGS+SYNC is 17.3, a minor increase inherited from the localized
watermark used for synchronization. We complement this with a comparison of the original and
finetuned decoders using PSNR in App. F.4 and with qualitative samples on all models in App. G.

4.2 Watermark Robustness

An important requirement for a generative model watermark is robustness to common domain-
specific transformations, as well as to removal attacks, which have shown to be effective against other
watermarks [3, 28, 84]. To evaluate this, in Fig. 6 we report the watermark TPR for a fixed FPR of
1% on a range of transformations of different strength, in the same setting as in Fig. 5, using TAMING
(the equivalent results for CHAMELEON and RAR-XL are deferred to App. F.3).

We summarize the results of this experiment for all three models in Table 2, where, as in prior
work [105], we average TPR over a set of (transformation, parameter) pairs, detailed in App. E.2. Our
main conclusions, discussed next, hold across all models, despite the variations in e.g., transformer or
tokenizer codebook size, which demonstrates the transferability of our approach.

Finetuning enables valuemetric and attack robustness. In Fig. 6, we see that the watermark
is fragile to valuemetric and geometric transformations when used on BASE. When we use it on
FT+AUGS, robustness to valuemetric transformations greatly improves, validating our focus on RCC
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synchronization unlocks robustness to geometric transformations. Bottom Right: Our watermark is also fairly
robust to realistic strengths of diffusion purification [74, 84] and neural compression [5, 13, 14, 55, 72, 78, 83].

Table 2: TPR at 1% FPR of our watermark and post-hoc baselines, under valuemetric (Val.) and geometric (Geo.)
transformations, adversarial purification attacks (Adv.) and neural compression (NC). Scores (see App. E.2)
below 0.6 are marked red. RCC finetuning and the synchronization layer lead to a strong and robust watermark.

TAMING (256× 256) CHAMELEON (512× 512) RAR-XL (256× 256)

None Val. Geo. Adv. NC None Val. Geo. Adv. NC None Val. Geo. Adv. NC

Ours

BASE 0.99 0.26 0.01 0.43 0.48 0.98 0.50 0.02 0.80 0.82 0.98 0.22 0.01 0.29 0.27
FT 1.00 0.45 0.01 0.70 0.71 0.99 0.53 0.03 0.85 0.87 1.00 0.74 0.03 0.58 0.76
FT+AUGS 1.00 0.92 0.01 0.70 0.79 0.99 0.89 0.02 0.82 0.88 1.00 0.98 0.03 0.79 0.95
FT+AUGS+SYNC 0.98 0.83 0.82 0.69 0.80 0.97 0.76 0.64 0.81 0.86 1.00 0.89 0.82 0.78 0.94

Post-
hoc

CIN 1.00 0.96 0.00 0.03 0.02 1.00 0.99 0.00 0.14 0.16 1.00 0.95 0.00 0.04 0.01
MBRS 1.00 0.98 0.02 0.36 0.31 1.00 0.99 0.02 0.27 0.56 1.00 0.99 0.01 0.38 0.34
TRUSTMARK 1.00 0.98 0.75 0.40 0.86 1.00 0.97 0.74 0.64 0.99 1.00 0.99 0.75 0.42 0.90
WAM 1.00 0.89 0.98 0.06 0.02 1.00 0.97 0.95 0.26 0.48 1.00 0.92 0.98 0.08 0.02

finetuning. Surprisingly, finetuning also improves robustness to (i) neural compressors [5, 14, 72] of
different strengths (see details in App. E.2), including FLUX and SD VAEs [13, 55, 78, 83], and (ii)
the challenging diffusion purification attack [74]. We remark that high values such as t = 0.3 were
found to excessively alter images, making this regime less relevant [84]. This effect holds for RAR-
XL but is less pronounced for CHAMELEON in Table 2, where our watermark is already robust to these
attacks even without RCC finetuning, likely due to the detector scoring more tokens for larger images.

Synchronization enables geometric robustness. Geometric robustness (bottom left in Fig. 6)
remains low across all models, even with FT+AUGS, which is expected as autoregressive models
cannot preserve token sequences under semantic changes like flips, and the watermark is lost.
This motivated our synchronization layer (Sec. 3.2), which estimates and reverts such changes.
As Fig. 6 and Table 2 show, synchronization significantly improves geometric robustness while
preserving watermark power on unmodified images. However, this comes at the cost of a minor drop
in valuemetric robustness. Namely, moderate valuemetric transformations sometimes disrupt the
synchronization signal, causing us to estimate and revert a non-existent geometric transformation.
Such a mistake corrupts most tokens and breaks the watermark. This does not happen for strong
valuemetric transformations that often fully destroy the synchronization signal, as in this case we
keep the image intact. A more elaborate and robust synchronization layer could likely minimize this
undesirable effect while further extending the scope of supported transformations; we propose several
concrete directions in Sec. 6.

Comparison to post-hoc methods. As noted above, no prior work targets watermarking of autore-
gressive image generation. Thus, in Table 2 we compare to post-hoc methods [9, 43, 67, 88] applied on
top of generated images. While they are comparably or more robust than our watermark on valuemet-
ric transformations, each post-hoc watermark is either fully removed by geometric ones or not robust
to attacks (adversarial purification and neural compressors). Further, our watermark yields p-values
grounded in randomness, with theoretical guarantees inherited from LLM watermarking [27, 49, 126]
and empirically validated in App. F.5. In contrast, post-hoc methods use neural extractors to recover
messages and may introduce bias in their p-value estimators [28, App. B.5] and [86, App. B].
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Finally, as a token-level generation-time method, our method is the only one able to watermark
content via semantic modifications (see Fig. 2). In App. F.6 we provide an additional comparison
to generation-time watermarks for diffusion models, despite their inapplicability to our target models.

4.3 Joint Watermarking of Interleaved Modalities

Finally, we explore joint watermarking of multiple modalities generated by the same autoregressive
model. Eq. (2) shows that scoring more tokens that are all equally watermarked improves power.
However, acquiring more tokens is not always possible—in such cases, jointly watermarking multiple
modalities may be necessary to reliably detect the watermark. For example, consider that Alice aims
to prove if an online article was generated by her model M. To simulate this, we run CHAMELEON
(FT+AUGS) in interleaved mode on 1000 prompts to produce text and an image, and we model
attempts to conceal the use of M by randomly changing text tokens (a proxy for paraphrasing [52]).
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Figure 7: Joint watermark detection on
text and image generations.

Benefits of joint watermark detection. The orange line
in Fig. 7 shows TPR at 1% FPR when only text is watermarked,
quickly degrading with more text corruption. As Alice uses all
text available to her in this scenario, it is hard for her to improve
detection. However, if both text and the image were originally
watermarked with our method, detection on combined tokens
as described in Sec. 3 significantly boosts watermark power
(top purple, Clean). At 10% text corruption TPR improves
from ≈0.9 to 1.0, and stays above 0.94 even in the hardest case,
where text-only TPR drops to ≈0. Alice also gets a rigorous
p-value, which would be hard if modalities were watermarked
separately. As our method is robust to moderate image trans-
formations, a similar trend holds when adding Gaussian noise
with σ = 0.1 (middle purple, Weak Noise).

Importantly, there is a tradeoff—integrating a weak watermark-
ing signal can degrade detection. We see this for σ = 0.3 (bottom purple, Strong Noise), where TPR
drops below 0.6 at 10% corruption, i.e., text-only detection is preferable. In a related study in App. F.7
we analyze the entropy of text and image tokens, and in App. H we provide a more detailed discussion
of joint watermarking and present extended results and example interactions with CHAMELEON. In-
spired by this, in the following section we explore the extension of our method to additional modalities.

5 Extension to Additional Modalities: Audio Case Study

In this final section we ask: Can our approach be extended to other modalities? In an attempt to
answer this, we conduct a preliminary study on autoregressive audio generation [8, 18, 24, 73, 120,
124] focusing on MOSHI [24], a transformer-based speech-text foundation model. We observe similar
challenges and main results as for images, while noting several important differences. We defer many
details to App. C.2 (RCC experiment), App. D.2 (synchronization details), App. E.3 (experimental
details), and present extended results of audio experiments in App. F.9.

Audio tokenization. MOSHI’s tokenizer (MIMI) relies on residual vector quantization (RVQ) [23,
54, 57, 117]. RVQ iteratively quantizes the residuals of the previous quantizer, such that si =
(s1i , .., s

K
i ) for K different codebooks C1, .., CK (K streams) Each token here represents ≈80 ms.

RCC in audio. Défossez et al. [24, Sec. 6.4] already investigate the RCC properties of MOSHI’s
tokenizer. They observe that the first stream is somewhat cycle-consistent, while this degrades for
later ones. We obtain similar results and also show that TM further worsens under transformations
(highpass, speedup). For instance, in an experiment on 1000 generated sequences, we measure
average TM of 0.36 (original), 0.21 (highpass 500 Hz), and 0.16 (1.1× speedup). This motivates an
adaptation of RCC finetuning (Sec. 3.1) and synchronization (Sec. 3.2) to audio.

RCC finetuning. To instantiate the finetuning procedure from Sec. 3.1 we make the following
changes to Eqs. (4) and (5). We use the pre-projection soft latents as target since the quantization is
done in a projected space [54]. We replace LPIPS with multi-resolution STFT loss [111]. Finally,
during training we apply augmentations from a set A that includes audio-specific valuemetric edits
(high/low/bandpass, gaussian/pink noise, etc.) as well as small (1-10ms) time-frequency shifts.
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Synchronization. In contrast to images, no localized audio embedder proved robust: we
found San Roman et al. [86] to not be precise enough under time-frequency edits (see App. D.2). Thus,
our following experiment focuses primarily on the influence of finetuning. Future work on audio-
specific localized watermarking could improve on this, motivated by the synchronization usecase.

Watermarking multiple streams. Early RVQ streams are more reverse cycle-consistent and thus
more likely to preserve the watermark signal. We observe however that limiting watermarking to a
single stream provides too few tokens for reliable statistical testing, significantly increasing p-values.
On the other hand, watermarking all streams introduces noise due to the lack of RCC in later codes.
Empirically, we find that watermarking the first four streams achieves a good balance.

Experimental setting. We perform RCC finetuning to obtain FT and FT+AUGS using the Vox-
Populi [103] dataset, such that final PESQ [82] (perceptual speech quality metric) is 4.3 w.r.t. BASE
samples. For evaluation, we generate 12s watermarked audio samples with MOSHI using 1000 text
prompts generated by LLAMA3.1-8B-INSTRUCT and synthesized to audio with SEAMLESSV2 [6].
We set h = 0 and δ = 2 and watermark the first four audio streams as described above. As in Sec. 4,
we evaluate TPR at 1% FPR and quality, for which in this case we use the MOSNet [24] metric.

Table 3: TPR at 1% FPR and MOSNet [64] of our
watermark, under valuemetric (Val.), time-frequency
(Time) transformations, and neural compression (NC).
MOSNet is 3.80 for unwatermarked generation.

None Val. Time NC MOSNet

Ours
BASE 0.97 0.62 0.24 0.80 3.82
FT 0.99 0.64 0.14 0.84 3.83
FT+AUGS 0.99 0.80 0.24 0.86 3.73

Post-hoc AUDIOSEAL 1.00 0.84 0.55 0.85 3.78

Results. We present the results in Table 3. As
for images, we do not observe notable quality
degradation due to watermarking, and obtain high
watermark strength even without RCC finetun-
ing. We find that BASE already has nonzero time-
frequency robustness, likely due to non-semantic
streams being used to carry the watermark. Fine-
tuning without augmentations, interestingly, im-
pairs time-frequency RCC, which is later recov-
ered by FT+AUGS. We hypothesize that this
drop is due to catastrophic forgetting [50] as the
model learns to detokenize the audio in a way that is not robust to time-frequency transformations.
This suggests that augmentations are a key component of finetuning, matching our results on images.
Yet, while FT+AUGS improves valuemetric robustness, it fails to raise time-frequency robustness to
satisfactory levels, leaving this question open for future work. Finally, while we are not aware of audio
equivalents of diffusion purification used in Sec. 4, we evaluate robustness to neural compression
(DAC [54] and EnCodec [23]). We observe results comparable to post-hoc AUDIOSEAL [86], even
though in contrast to AUDIOSEAL we do not explicitly train against EnCodec during finetuning.

6 Conclusion and Limitations

Our work successfully applies watermarking to the previously unexplored setting of autoregressive
image generation, addressing low reverse cycle-consistency (RCC) through a custom finetuning stage
and a synchronization layer. Experiments demonstrate the power, robustness, and practicality of our
watermark across a range of settings. By broadening the scope of generative model watermarking,
we believe this work takes an important step towards more reliable content provenance.

Limitations. Our method’s scope could be extended in several important ways. As noted in Sec. 2,
we target the most prominent models that tokenize images via VQ. Our method is thus not applicable
to models that use continuous representations or hybrids that combine autoregressive and diffusion
models [26, 58, 68, 127]. Another dimension is modality: we present initial audio experiments
in Sec. 5, but this direction could be investigated further, e.g., finding ways to improve time-frequency
robustness. Next, our synchronization relies on off-the-shelf localized watermarks to embed a fixed
pattern (quadrants, see Fig. 4), which is suboptimal for several reasons. First, localized watermarks are
trained to embed arbitrary patterns. Training a custom synchronization layer2, potentially integrated
with RCC finetuning, would be a more principled approach that could significantly improve robustness.
Second, using more elaborate synchronization could both improve the quality of our transformation
estimation step, but also expand its scope, e.g., to support arbitrary crops as discussed in Sec. 3.2.
Finally, our method is not robust to combined removal attacks (to disrupt synchronization) and
geometric attacks (to decrease token match)—to the best of our knowledge, this attack would also
break most other contemporary watermarks.

2We explore this in our follow-up work SYNCSEAL [30].

10



Acknowledgements

We thank Sylvestre-Alvise Rebuffi, Tom Sander, Hervé Jégou, Alex Mourachko, Hady Elsahar, Robin
San Roman, Ram Pasunuru, and Emily Dinan for insightful discussions throughout the project. We
are grateful to anonymous reviewers for their valuable feedback.

References

[1] Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs, 2023.

[2] Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan
Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for
generative mixed-modal language models. In ICML, 2023.

[3] Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng,
Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, et al. Waves: Benchmarking
the robustness of image watermarks. In ICML, 2024.

[4] Dara Bahri and John Wieting. A watermark for black-box language models. arXiv preprint
arXiv:2410.02099, 2024.

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Varia-
tional image compression with a scale hyperprior. In ICLR, 2018.

[6] Loïc Barrault, Yu-An Chung, Mariano Cora Meglioli, David Dale, Ning Dong, Paul-Ambroise
Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, et al. Seamlessm4t-
massively multilingual & multimodal machine translation. arXiv preprint arXiv:2308.11596,
2023.

[7] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. Compressai: a
pytorch library and evaluation platform for end-to-end compression research. arXiv preprint
arXiv:2011.03029, 2020.

[8] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin,
Matthew Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and
Neil Zeghidour. Audiolm: A language modeling approach to audio generation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2022.

[9] Tu Bui, Shruti Agarwal, and John Collomosse. Trustmark: Universal watermarking for
arbitrary resolution images. arXiv preprint arXiv:2311.18297, 2023.

[10] Tu Bui, Shruti Agarwal, Ning Yu, and John Collomosse. Rosteals: Robust steganography
using autoencoder latent space. In CVPR, 2023.

[11] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

[12] Yapei Chang, Kalpesh Krishna, Amir Houmansadr, John Wieting, and Mohit Iyyer. Postmark:
A robust blackbox watermark for large language models. In EMNLP, 2024.

[13] Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao
Lu, and Song Han. Deep compression autoencoder for efficient high-resolution diffusion
models. arXiv, 2024.

[14] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression
with discretized gaussian mixture likelihoods and attention modules. In CVPR, 2020.

[15] Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
multimodal models for interleaved image-text generation. arXiv preprint arXiv:2407.06135,
2024.

[16] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models.
Cryptology ePrint Archive, 2023.

11



[17] Hai Ci, Pei Yang, Yiren Song, and Mike Zheng Shou. Ringid: Rethinking tree-ring watermark-
ing for enhanced multi-key identification. arXiv preprint arXiv:2404.14055, 2024.

[18] Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
Alexandre Défossez. Simple and controllable music generation. NeurIPS, 2024.

[19] Gabriela Csurka, Frédéric Deguillaume, Joseph Ó Ruanaidh, and Thierry Pun. A bayesian
approach to affine transformation resistant image and video watermarking. In Information
Hiding, 1999.

[20] Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes
Welbl, Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie
Hayes, Nidhi Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan
Cemgil, Zahra Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis
Hassabis, and Pushmeet Kohli. Scalable watermarking for identifying large language model
outputs. Nature, 2024.

[21] DeepMind. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[22] Google DeepMind. Identifying ai-generated images with synthid, 2023. Accessed on Jun 15,
2025.

[23] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

[24] Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time
dialogue. arXiv preprint arXiv:2410.00037, 2024.

[25] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In CVPR, 2021.

[26] Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing
Sun, Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative
models with continuous tokens. arXiv preprint arXiv:2410.13863, 2024.

[27] Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three
bricks to consolidate watermarks for large language models. In IEEE WIFS, 2023.

[28] Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The
stable signature: Rooting watermarks in latent diffusion models. In ICCV, 2023.

[29] Pierre Fernandez, Hady Elsahar, I Zeki Yalniz, and Alexandre Mourachko. Video seal: Open
and efficient video watermarking. arXiv preprint arXiv:2412.09492, 2024.
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results shown in Sec. 4.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper extensively discusses the limitations in Sec. 6, covering scope, threat
model assumptions that could be relaxed, and limitations of watermark synchronization.
Computational efficiency is discussed in App. F and App. A.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not prove any new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All needed details are given in Sec. 4 and App. E.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code to reproduce the RCC finetuning, as well as the syn-
chronization mechanism at https://github.com/facebookresearch/wmar. We use
public implementations of generative models, namely: https://github.com/CompVis/
taming-transformers/, https://github.com/facebookresearch/chameleon/,
https://github.com/facebookresearch/chameleon/, https://github.com/
kyutai-labs/moshi. They all provide open-weight models. For Chameleon, the
image generation capability can be reproduced using the Anole model and repository:
https://github.com/GAIR-NLP/anole. All implementation details are provided
in App. E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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Justification: All basic details needed to interpret the results are stated in Sec. 4; additional
details are deferred to App. E for brevity.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars primarily due to the computational cost of running
the finetuning and generation experiments. However, we used large numbers of samples for
each experiment to ensure that the results are stable and not sensitive to random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this in Sec. 4 and App. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics. This study does not involve
human subjects or inappropriate use of data. We do not foresee any harmful consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See App. A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public implementations of generative models and weights, which are
all under permissive licenses for research use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the finetuning code to reproduce the RCC finetuning, as well as
the synchronization code, which are the primary new assets introduced in the paper. Models
themselves will likely not be released, as they are based on existing models with their own
licenses.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Ethical Statement

A.1 Societal Impact

Watermarking in general improves the traceability of content, be it AI-generated or not. It can have
positive consequences, for example when it is used to trace the origin of fake news or to protect
intellectual property. This traceability can also have negative consequences, for example when it is
used to trace political opponents in authoritarian regimes or whistleblowers in secretive companies.
Besides, it is not clear how to disclose watermark detection results, which may foster a closed
ecosystem of detection tools. It may also exacerbate misinformation by placing undue emphasis on
content that is either not detected, generated by unknown models, or authentic but used out of context.
We however believe that the benefits of watermarking outweigh the risks, and that the development
of robust watermarking methods is a positive step for society.

A.2 Environmental impact

The cost of experiments and model training is high, though order of magnitude less than training the
generative models themselves. Finetuning the image tokenizer as done in the paper takes ≤ 32 GPU-
hours. We also roughly estimate that the number of GPU-days used for running all our experiments
is around 500, i.e., 12k GPU-hours. This amounts to total emissions in the order of 1 ton of CO2eq.
Estimations are conducted using the Machine Learning Impact Calculator presented by Lacoste
et al. [56]. Namely, using a default grid, we compute 250W × 12000h = 3000 kWh × 0.3 kg eq.
CO2/kWh = 900 kg eq. CO2. We do not consider memory storage, CPU-hours, production cost of
GPUs/CPUs, etc.

B Technical Details of LLM Watermarking

We here more thoroughly introduce LLM watermarking, following the notation in Sec. 2.

Generation. We consider an autoregressive model M generating a sequence of tokens s =
(s1, s2, . . . , sT ), where each token st is sampled from a probability distribution conditioned on
the previous tokens p(st|s<t). In practice, the model outputs a vector of logits ℓ ∈ R|V |, where V
is the vocabulary (which we can assume in the most general case can contain text, audio or image
tokens), which is transformed into a probability distribution p = softmax(ℓ/τ), with τ being a
temperature parameter.

The watermark scheme modifies the token selection process using a secret key ξ. A cryptographic
hash function takes as input h previous tokens (st−h, . . . , st−1) (the context window) and the secret
key ξ, producing a seed for a random number generator (RNG) that influences the choice of the next
token st.

Two prominent LLM watermarking approaches are:

• The method of Kirchenbauer et al. [48] (KGW), which uses RNG to randomly partition
the vocabulary V into a greenlist Gt and a redlist Rt, where Gt contains a proportion γ of
the vocabulary. The logit of each token in the greenlist is increased by δ > 0, effectively
boosting the probability of selecting tokens from the greenlist.

• The method of Aaronson and Kirchner [1], which uses a different approach based on the
RNG to sample secret values for each token. Although we do not present it in this work for
simplicity, it could have been adapted in the same way to watermark autoregressive models.

In this paper we focus on KGW. As the first study of watermarking for autoregressive image
models, choosing a relatively simple, well-studied and well-understood scheme allowed us to focus
on key issues particular to our setting (e.g., RCC). We do think that it would be interesting to
explore other schemes and improvements of KGW as well—our key contributions (RCC finetuning,
synchronization) could be directly used, as they are orthogonal to the underlying scheme choice.
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Detection. For the KGW method that we focus on, the watermark detection process analyzes a
token sequence s and computes a score S based on the count of green tokens:

S =

T∑
t=h+1

1(st ∈ Gt), (6)

where Gt is the greenlist for position t, which depends on the h preceding tokens and the secret key ξ.

Statistical hypothesis testing. Detection uses a statistical hypothesis test distinguishing between
H0: “the sequence is not watermarked with secret key ξ” and the alternative H1: “the sequence was
generated with a watermark with secret key ξ.” Previous approaches, such as those by Kirchenbauer
et al. [48] and Aaronson and Kirchner [1], relied on a Z-test to compare the count of green tokens S
to its expected value under the null hypothesis H0. In this work we instead adopt an exact test [27],
which is more accurate, especially for short sequences.

Under H0, S follows a binomial distribution B with parameters (T−h) and γ, where γ is the expected
proportion of green tokens, T is the total number of tokens, and h is the size of the watermark context
window. The p-value determines the likelihood of observing a score as extreme as S under H0, and
is calculated as:

p-value(S, T, h, γ) = Prob (X ≥ S | X ∼ B(T − h, γ)) = Iγ(S, T − h− S + 1), (7)

where Ix(a, b) is the regularized incomplete Beta function.

Sequences are flagged as watermarked if the p-value falls below the desired false positive rate.

Main parameters. The main parameters of the watermarking method are the context window size
h, the watermark strength factor δ and the proportion of green tokens γ.

The context window size h determines how many previous tokens determine the greenlist. A smaller
h increases robustness against text modifications but may bias generation as the same hash is used
more frequently. It typically reduces security since recurring greenlists make the watermark easier
to spoof [44, 125]. When h = 0, the RNG seed depends solely on the secret key ξ, creating fixed
green/red lists for all tokens. For non-text tokens, we hypothesize that h = 0 maintains security since
tokenizer access is restricted and image tokenizers have more degrees of freedom than text ones.

The watermark strength factor δ determines the amount by which the logits of green tokens are
boosted. A higher δ increases the robustness of the watermark, but also increases the risk of
generating low-quality text/images. It is tuned for every model and application.

The proportion of green tokens γ affects both detection sensitivity and generation quality. With low
δ, a smaller γ reduces green token selection during generation, resulting in lower watermark power.
With high δ, it restricts token choice and may lower output quality. During detection, lower γ values
yield more significant p-values since green tokens are less likely to appear by chance [48]. At fixed
watermark power, higher γ distributes the watermark evenly, while lower values concentrate it on
fewer tokens. We set γ to 0.25 in our experiments, as it is a common choice in the literature [1, 48]
and consistently yields good results in our experiments.

C More on Reverse Cycle-consistency

In this section, we elaborate on the case of text tokenizers not being perfectly reverse cycle-consistent
(RCC), discuss audio tokenizers and our experiment measuring RCC in this setting, expanding
on Sec. 5, and discuss related topics studied in prior work.

C.1 RCC in Text Tokenizers

In BPE tokenizers, the vocabulary is initialized with all characters in the training set, and common
character pairs are iteratively merged and added to the vocabulary until the predefined size is reached.
Tokenization is performed greedily from left to right, by always selecting the longest possible token
from V . Detokenization is simply performed by a lookup into V .

RCC can be violated. Text tokenizers are not immune to the RCC issue. For example, consider the
following subset of the GPT-4O tokenizer: {cons : 9673, istent : 20908, consistent : 173878}.
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Due to the greedy property of BPE tokenizers, Dtext is guaranteed to always invert Ttext, e.g.,
Dtext(Ttext(consistent)) = Dtext([173878]) = consistent,

guaranteeing forward cycle-consistency (FCC). In contrast, reverse cycle-consistency (RCC), neces-
sary for a strong watermark, may be violated, e.g.,

Ttext(Dtext([9673, 20908])) = Ttext(consistent) = [173878].

RCC approximately holds for text tokenizers in practice: while it is also a prerequisite for successful
watermarking in text, no prior art has highlighted this as a hurdle. Some works have even shown
that adversaries learning about the watermark can still be successful even if they use a different
tokenizer [44], which is only possible if the tokens match across tokenizers.

Experiment. As discussed in the main text, we confirmed this experimentally. We used LLAMA3.1-
8B-INSTRUCT to generate 1000 answers to prompts from the Open Assistant dataset [51]. We then
compared the generated sequences of tokens with the re-tokenized sequences. Specifically, we took
the token IDs from the model’s generation, detokenized them to text, then re-tokenized this text and
computed the Levenshtein distance between the original and the new token sequence. Our results
showed that the average token match is 99.5%, confirming that text tokenizers exhibit very high
reverse cycle-consistency in practice.

C.2 RCC in Audio Tokenizers

A study of the RCC issue in MOSHI’s tokenizer is already given by the authors [24] (called idem-
potence). We however observe some differences in our study, as well as other key findings, such as
the effect of augmentations, that we summarized in Sec. 5, and that we discuss in more detail in the
following.

RVQ tokenizer. As a reminder, MOSHI’s tokenizer (MIMI) utilizes residual vector quantization
(RVQ) [23, 54, 57, 117]. In RVQ, the quantization process happens iteratively, where each step
quantizes the residual error from the previous quantization. Formally, for each step i, representing
an audio frame of 1920 samples, the tokenization results in a sequence of tokens (s1i , .., s

K
i ) corre-

sponding to K different codebooks C1, .., CK (referred to as K streams). Each token represents
approximately 80 ms of audio. The first token (or stream) is referred to as semantic, because there
is a distillation loss during training with a non-causal model that encourages this first codebook to
capture the most semantically relevant information. Défossez et al. [24] note that this semantic token
exhibits higher cycle-consistency compared to later streams, which are assumed to progressively
capture more fine-grained details, and to be less consistent.

Experimental setup. We measure Token Match (TM) for sequences either (a) generated as recon-
structions of 10-seconds audios from VoxPopuli with the MIMI tokenizer, or (b) generated by the
MOSHI model, as described in App. E.3. This corresponds to ≈125 time-steps for both cases, so
≈1,000 audio tokens (counting all the streams). The audio is subjected to various transformations
before re-tokenization, which include the three categories: valuemetric (lowpass filtering at 3kHz,
addition of strong Gaussian noise at 0.01 amplitude), temporal-frequency (speed modification by
1.25x, cropping 90% of the original audio), and compression-based (MP3 compression at 16kbps,
EnCodec compression).

Results. Table 4 presents the results that supplement the study by Défossez et al. [24]. Notably,
their study only focuses on pre-existing audio sequences, while we also include generated sequences,
which behave differently. For instance, the second stream sometimes shows higher consistency
than other streams contradicting the expectation that only the first (semantic) stream could maintain
high consistency. Different augmentations affect streams differently: e.g., lowpass has less impact
on streams 2 and 3 compared to strong noise addition, while EnCodec strongly decreases TM of
the first stream. Importantly, temporal-frequency augmentations (speed, cropping) reduce TM less
dramatically for MOSHI (0.04-0.15) than would be expected given our image watermarking results
where such transformations typically yield near-zero consistency. This multi-stream aspect presents
challenges and opportunities for watermarking: while complicating RCC analysis, it enables potential
development of more sophisticated techniques leveraging complementary properties across streams.

C.3 Related Concepts

There are several concepts related to RCC that were studied in prior work.
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Table 4: Token Match across different streams for 1000 sequences, where audios are subject to transformations
before re-tokenization. Sequences of tokens are generated either as reconstructions of 10 second VoxPopuli
audios with the MIMI tokenizer, or by the MOSHI model with audio prompts (described in App. E.3).

MIMI tokenizer MOSHI

1 2 3 4 5 6 7 8 Avg. 1 2 3 4 5 6 7 8 Avg.

Identity 0.56 0.31 0.21 0.22 0.18 0.20 0.18 0.16 0.25 0.60 0.55 0.38 0.28 0.26 0.26 0.24 0.25 0.35

Transformations
Lowpass 3 kHz 0.38 0.15 0.15 0.17 0.14 0.16 0.15 0.12 0.18 0.50 0.39 0.30 0.21 0.19 0.21 0.20 0.21 0.28
Noise 0.001 0.50 0.33 0.19 0.20 0.17 0.18 0.17 0.14 0.24 0.51 0.34 0.19 0.18 0.17 0.18 0.18 0.13 0.23
MP3 16 kbps 0.44 0.19 0.16 0.18 0.15 0.17 0.16 0.13 0.20 0.54 0.41 0.29 0.20 0.18 0.20 0.20 0.21 0.28
Encodec 0.24 0.13 0.10 0.10 0.07 0.07 0.05 0.04 0.10 0.28 0.38 0.24 0.16 0.14 0.15 0.11 0.15 0.20
Speed ×1.25 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.11 0.08 0.05 0.05 0.06 0.04 0.07 0.06
Crop (90% kept) 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.08 0.15 0.11 0.07 0.07 0.08 0.05 0.09 0.09

Codec idempotence. In the context of codecs a relevant property is codec idempotence [46, 76, 121].
Directly applying the mathematical definition of idempotence to our case, we let f(·) denote the
encoder-decoder pair (e.g., f compresses an image to a JPEG file and then decompresses it back to
pixels), and say that a codec is idempotent if it satisfies:

f(f(x)) = f(x). (8)

This property is naturally of interest to codecs. While we assume that JPEG compressing an image is
lossy (i.e., we do not expect f(x) = x), we want our codec to not further degrade image quality on
successive applications, which can commonly occur in practice (i.e., f(f(x)) = f(x)). This is in
stark contrast with the notion of RCC relevant to our work. In our case, x are the tokens, while f(·)
is the detokenization followed by the tokenization. The first application of f(·) is crucial for us: as
explained above, we require f(x) ≈ x as otherwise the watermark that was present in the tokens of x
is lost. f(f(x)), i.e., re-tokenizing the image several times successively, on the other hand is not of
particular interest in this case, thus idempotence is not an important concern.

Consistency of tokenizers. Another related concern is the consistency of tokenizers [63, 90].
Intuitively a tokenizer is consistent if the tokenization of a particular string (assuming the text
domain) does not change depending on the surrounding context. While the cited works show that
this is a desirable property, it is not as relevant to our motivation of preserving the watermark as
RCC. In particular, for generated token sequence x, if RCC is satisfied the watermark will be entirely
preserved, even if the tokenization was context-dependent. This may be a concern in the context
of various attacks: for example, infilling a part of the image before re-tokenization should ideally
change only the tokens corresponding to the infilled part, and not the entire image, which may happen
depending on the setup of the convolutions in the tokenizer. We do not explore this angle as part of
this work.

Cycle-consistency in other contexts. Finally, a line of works studies cycle-consistency in various
generative models [40, 129], most commonly in the context of style transfer: a single cycle is the
translation from a style A to a style B and back to A, and cycle-consistency can in this case be
beneficial as a constraint for the model. Finally, Teng and Choromanska [95] explicitly parametrize
encoder-decoder pairs to be inverses of each other and Huang et al. [41] study cycle-consistency in
the context of disentangled representations.

D More on Watermark Synchronization

In App. D.1 we provide a more detailed description of our watermark synchronization layer (Sec. 3.2),
and show additional examples. In App. D.2 we describe our attempt to use AudioSeal [86] for
synchronization in audio.

D.1 Image Synchronization Details

We remark that the problem of watermark synchronization was studied in the past, before the advent
of generative models, in the context of digital watermarking. These works suggest approaches such
as multiple testing with a carefully controlled number of tests to avoid the false positive rate increase
we mentioned in Sec. 3.2 [35], or similarly to us, embedding a synchronization pattern in addition to
the original watermarking pattern to revert the transformation [19, 77, 98]. As noted above, we are
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aware of two works that study this in the context of post-hoc generative model watermarks [34, 66],
however their code is not publicly available.

Full algorithm description. Our algorithm consists of two main procedures: embedding a syn-
chronization pattern into the generated and decoded image, and estimating the transformation from
an incoming image where previously the watermark and the synchronization pattern were embedded.
We assume access to a localized watermark module L that can embed a different message in every
pixel of an image, and recover the probability that each pixel has the watermark along with the most
probable message in it. As noted above, we instantiate this using Sander et al. [88].

To embed the synchronization pattern, we use four 32-bit messages {m1 = 032, m2 = 016116,
m3 = 116016, m4 = 132}. For each message, the mask is one of the quadrants (as in Fig. 4), where
given parameter µ, we keep a horizontal and a vertical strip of width µ pixels in the middle of the
image free of messages (we use µ = 18 for TAMING and RAR-XL, and µ = 36 for CHAMELEON
as we work with images of twice the resolution). Using this mask, we embed the pattern using L.

Given an incoming image, we first obtain and postprocess the predictions of L. Namely, for each
pixel, we take the closest message in Hamming distance from the four fixed messages above, as
long as the Hamming distance is below 6 bits and the probability of the pixel being watermarked
as predicted by L is above 0.5. Then, as a heuristic, we proceed only if we found at least one pixel
for each of the 4 messages, and if the total area of the pixels with messages is at least 70% of the
image—attempting to estimate the transformation otherwise proved too unreliable.

To estimate the transformation, we sweep over rotations in [−20, 20] degrees, for each rotation rotate
the grid of extracted messages back by the inverse value, and find the best-fitting pair (i, j) such
that the row i of the rotated message grid best separates pixels with messages (m1,m3) as well as
(m2,m4), and the column j of the rotated message grid best separates pixels with messages (m1,m2)
as well as (m3,m4). For example, to find j that best separates (m1,m2), we compute the cost of
each candidate j′ as the number of wrongly positioned pixels, i.e., pixels with message m1 that are
to the right of j′ and pixels with message m2 that are to the left of j′. We repeat the same cost
computation for the horizontally flipped message grid: if we find that this leads to a lower cost, we
estimate that the image was flipped. The lowest-cost estimate for j and the estimate if the image
was flipped or not are then aggregated over (m1,m2) and (m3,m4) proportionally to the number
of pixels with these messages in the image. The process for i is analogous, with the final result for
the fixed suspect rotation being the tuple (i, j, isF lipped, cost). We finally take such tuple with the
minimal cost, returning the corresponding rotation and (i, j, isF lipped) as our final estimate.

Examples. Complementing Fig. 4, in Fig. 8 we show real examples of recovered synchronization
patterns and estimated transformations for horizontal flip, positive and negative rotation, crop, as well
as Gaussian noise, that we found to be the most challenging valuemetric transformation in terms of
disturbing the synchronization signal.

D.2 Audio Synchronization with Localized Audio Watermarking

As explained in Sec. 5, we attempted to use the localization property of AudioSeal [86] for synchro-
nization similar to Sec. 3.2, but this approach proved less successful than with images. We describe
below the method and experiments supporting this claim and summarize the results in Fig. 9.

Synchronization approach and transformation detection. We use AudioSeal’s embedder to
embed watermarks with a periodic mask pattern across the signal. This enables detection of transfor-
mations like time-stretching and phase shifts through cross-correlation analysis. We applied a square
wave template with periods of 6 frames, each frame of 1920 samples at 24kHz, as in MIMI.

When audio undergoes transformations, the periodic pattern distorts predictably. Through cross-
correlation between the detection signal and template patterns, we can estimate the speedup factor
(identified by the period maximizing cross-correlation) and phase shift (located by finding optimal
alignment). Once estimated, we can invert the transformation by resampling to original speed and
applying phase correction. More specifically, in our implementation, the detection results are first
downsampled by a factor of 8 and we sweep the template period from 0.5× to 1.5× the nominal
half-period (6 frames = 0.48s) in coarse steps of 10 samples, then refine over ±10 samples around
the best match; this two-stage cross-correlation yields precise estimates of speedup (from the best
period) and phase shift, which are used to resample back to 24kHz and correct the alignment.
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Figure 8: Visualization of our synchronization layer (Sec. 3.2) on a real example from our experiments. In the
four middle rows we see that the watermark detection would have failed on original geometrically transformed
images, but has eventually succeeded after the synchronization signal was detected and reverted. In the bottom
row we see that a valuemetric transformation can disrupt the signal—in this case a JPEG compression. While
this did not hamper detection in this example, it can be problematic in practice as evidenced by the drop in
valuemetric robustness with synchronization shown in Table 2.
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(b) Example of successful detection
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(c) Example of unsuccessful detec-
tion after 1.05× speedup

Figure 9: The audio watermark synchronization method we attempted to incorporate. (a) how we embed the
watermark periodically in the audio; (b) successful case with a clear periodic pattern detected when the audio is
cropped for the first 0.84 seconds; (c) a 1.05× speedup creates a detection signal too noisy to reliably extract
the synchronization pattern.

Challenges and limitations. As shown in Fig. 9c, the detection signal extracted from AudioSeal is
not yet robust enough for general use, as it fails to detect the watermark reliably after a speedup of
1.05×. Future work could explore more sophisticated synchronization methods.

E Experimental Details

E.1 Omitted Details of Image RCC Evaluation and Finetuning

Here we provide more details on our RCC evaluation experiments shown above in Table 1 and details
related to RCC finetuning introduced in Sec. 3.1.

RCC evaluation. For Table 1, for simplicity, we re-use the watermarked BASE model of TAMING
from our main experiments. We confirmed that running the non-watermarked version results in very
similar values. We use the full set of valuemetric and geometric transformations as in the main
experiments, and for each transformation use the same parameter that was chosen for summarized
scores in Table 2, as detailed below in App. E.2.

RCC finetuning. To complete our RCC finetuning description from Sec. 3.1 we provide the omitted
details. We note that the exact same hyperparameters were used for all models which demonstrates the
transferability of our finetuning procedure. The finetuning is done for 10 epochs with distributed data
parallel training on 16 V100 GPUs (TAMING, training takes 2h) and 8 H200 GPUs (CHAMELEON
and RAR-XL, training takes 2.5h and 0.5h respectively). We use the Adam optimizer [47] with a
learning rate of 10−4, multiplied by a factor of 0.9 each epoch (StepLR). We use a total batch size
across all GPUs of 64 (4 per gpu for TAMING and 8 per gpu for CHAMELEON and RAR-XL), and
always set λ = 1. As noted above, we use a set of augmentations A to improve robustness of our
watermark to transformations and attacks. JPEG is not differentiable, therefore we backpropagate
only through the difference between the uncompressed and compressed images (straight-through
estimator): x′ = xaug+nograd(xaug,JPEG−xaug) [113, 119]. We define three progressively harder
sets: A1, A2, A3, and use no augmentations for 1 epoch, then A1 for 1 epochs, then A2 for 4 epochs,
and finally A3 for the last 4 epochs.

A1 uses JPEG compression with qualities {90, 80, 70}, Gaussian blur with kernel sizes {1, 3},
Gaussian noise with standard deviations {0.005, 0.01, 0.015, 0.02}, Brigthening with factors
{1.0, 1.1, 1.2}, Rotation with angles {−1, 1} degrees, and Cropping with % kept from {80, 90}.
A2 uses JPEG with qualities {80, 60, 40}, Gaussian blur with kernel sizes {3, 5}, Gaussian noise
with standard deviations {0.02, 0.04, 0.06}, Brigthening with factors {1.2, 1.3, 1.4}, Rotation with
angles {−3,−2,−1, 1, 2, 3} degrees, and Cropping with % kept from {50, 60, 70, 80, 90}. Finally,
A3 uses JPEG with qualities {40, 30, 20}, Gaussian blur with kernel sizes {5, 7, 9}, Gaussian noise
with standard deviations {0.06, 0.08, 0.1}, Brighten with factors {1.4, 1.7, 2.0}, and the same geo-
metric augmentations as in A2.

E.2 Details of Main Experiments

We provide full details of our main experiments (Sec. 4.1 and Sec. 4.2).
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Models. For TAMING, we use the VQGAN IMAGENET (F=16), 16384 version available in
the authors’ repository. For CHAMELEON, we use the 7B model. Since the open-weight version
does not include image generation capabilities (as noted in the original paper), we obtained the
necessary weights directly from the authors. Alternatively, image generation with CHAMELEON can
be approximated using the Anole model [15] and its associated repository: https://github.com/
GAIR-NLP/anole, though we note that its output quality is somewhat lower. For RAR-XL we use
the official model and image tokenizer from the authors’ repository.

Parameters. The results in Fig. 5, Fig. 6 and Table 2 are obtained from the same experi-
ment, repeated on TAMING, CHAMELEON, and RAR-XL. For TAMING and RAR-XL we set
δ = 2, γ = 0.25, h = 1 and evaluate (for each transformation/attack) on 1000 generations, 100
per each of the following ImageNet class indices: [1, 9, 232, 340, 568, 656, 703, 814, 937, 975]. For
CHAMELEON we set δ = 2, γ = 0.25, h = 0. We again use 1000 generations, conditioning the
model on a text prompt each time. Following the standard protocol in the literature [79, 80, 83, 85]
we use the prompts from the validation set of MS-COCO [60]. To do so, we first retrieve all the
captions from the validation set, keep only the first one for each image, and select the first 1000
(or 5000 when computing FID for CHAMELEON). While we did not benchmark this in detail, the
computational overhead of our watermarked generation matches that of the LLM watermarking
scheme we inherit from and the localized watermark we use as the synchronization signal.
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Figure 10: When the number of alive codes
nalive is much smaller than the codebook
size |V |, green/red splits may cause the
green ratio within alive codes γ′ to be
different from the expected γ (red). In
this figure, nalive = 12, |V | = 192, γ =
0.25. Stratification, i.e., separate splitting
of red and green tokens, resolves this issue
(green).

As discussed in Sec. 6 more thoroughly integrating these two
components could also make our watermark more efficient.
A single run (e.g., BASE with all (augmentation, parameter)
pairs detailed below on 1000 generations) with TAMING
was executed on 25 V100 GPUs, lasting ≈30 minutes for
BASE, FT, FT+AUGS and ≈1.5h for FT+AUGS+SYNC.
For CHAMELEON and RAR-XL, we use 10 H200 GPUs
(50 for FT+AUGS+SYNC), taking comparable time as for
TAMING.

Split stratification. As noted in the literature [25, 114],
trained VQGANs often suffer from low codebook utilization,
meaning that a certain percentage of the codebook is effec-
tively not used and those tokens (dead codes) are in practice
never emitted by the transformer nor used when tokenizing
images. While later work addresses this issue [130], the
VQGAN used in TAMING and in our experiments suffers
from this issue and has only 971 alive codes, despite the
codebook size of 16384.

This can affect the soundness of the watermark, i.e., of
the statistical test used to detect the watermark (Eq. (2)).
Namely, the test’s assumed null hypothesis is that the ratio of green tokens in texts produced without
the model M is distributed according to a Binomial distribution with mean γ. However, the true
parameter γ′ can be different if the number of alive codes nalive is much smaller than the codebook
size |V |. In other words, when we choose the green tokens as a uniformly random subset of |V | of
size γ|V |, we may have significantly more or less than γnalive green tokens among the alive codes.
As these are the only tokens ever emitted by the tokenizer in practice, Eq. (2) makes a mistake by
using γ instead of γ′ in its calculation. While for h > 0 we can hope that this mistake averages out
across different contexts (as the expected alive green ratio is still γ), for h = 0 (fixed red/green split)
this can introduce a constant bias.

In particular, assume for simplicity that γ|V | and γnalive are both integers. What can we say about the
distribution of γ′ with respect to the random green/red split? The probability that a uniformly random
split of |V | into γ|V | green and |V | − γ|V | red tokens results in exactly g green tokens among alive
ones (resulting in γ′ = g/nalive) is given by a hypergeometric distribution with PMF f :

P(γ′ = g/nalive) = f(g; |V |, γ|V |, nalive) =

(
γ|V |
g

)
·
(|V |−γ|V |

nalive−g

)( |V |
nalive

) . (9)

In Fig. 10 we plot the distribution of actual green ratios γ′, i.e., plot P(γ′ = g/nalive) as a function of
g/nalive, for |V | = 192, nalive = 12, γ = 0.25 (corresponding roughly to the ratio nalive/|V | of the
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Figure 11: Examples of transformations with parameters used to compute the scores in Table 2.

VQGAN we use in our experiments). We see (in red) that there is in fact only ≈25% chance that
the green ratio among alive tokens γ′ is equal to γ, as the statistical test expects. To resolve this, for
TAMING we use a stratified split, i.e., we separately sample a red/green split on alive and dead codes,
ensuring that γ′ = γ (green in Fig. 10).

An interesting question, to the best of our knowledge not explored before, is if similar effects can
be observed in LLM watermarking. For example, a uniformly random split of a large multilingual
vocabulary may introduce a particularly biased split on e.g., Cyrillic tokens, which are effectively the
majority of the alive ones when the LLM is prompted to write in a language that uses the Cyrillic
script. Especially for h = 0, this may point at unfairness towards certain subdomains, where for a
particular subdomain the watermark is overly conservative or more importantly has a much higher
FPR than stated theoretically.

Image transformations. We next list all image transformations and their parameters used in our
main experiments. We evaluate 90 variants (the original image and 89 transformations described
below) for each image, i.e., 90,000 images in total per evaluation. For valuemetric transformations
we use:

• Gaussian Blur: kernel sizes [0, 1, 3, 5, 7,9, 11, 13, 15, 17, 19].
• Gaussian Noise: standard deviations [0, 0.025, 0.05, 0.075,0.1, 0.125, 0.15, 0.175, 0.2].
• JPEG Compression: quality factors [100, 95, 85, 75, 65, 55, 45, 35,25, 15, 5].
• Brighten: factors [1, 1.25, 1.5, 1.75,2, 2.25, 2.5, 2.75, 3].

For geometric transformations we use:

• Rotation: angles [−20,−15,−10,−5, 0, 5,10, 15, 20].
• Horizontal Flip: parameters [0,1], where 1 indicates that a flip was performed.
• Crop: percent of each side kept [1.0, 0.95, 0.9, 0.85, 0.8,0.75, 0.7, 0.65, 0.6, 0.55, 0.5]. For

example, for 0.75 we crop from the top-left corner of the image, keeping 75% of the width and
height, and then resize back to the original size.

Finally, we use the following attacks:

• DiffPure: timesteps [0.01, 0.05,0.1, 0.2, 0.3] with the 256× 256 ImageNet diffusion model used
in the original attack of Nie et al. [74].

• Neural Compression: a range of 22 models with different quality factors; see details below.

The underlined values above correspond to transformations that do not change the image (showing
the maximum of robustness in each subplot of Fig. 6). The bold values are used to, following prior
work [105], summarize the results to a single score per transformation/attack type in Table 2, where
we average the 4 valuemetric scores and 3 geometric scores independently. For neural compression
we describe how we compute the score below. Visual examples of each bold transformation/attack
are shown on a real TAMING generation in Fig. 11.

Neural compression. For neural compression we use the following models from the
CompressAI [7] library:
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• BMSHJ18 (FACTORIZED) [5] with quality factors q ∈ {1, 3, 6}.
• BMSHJ18 (HYPERPRIOR) [5] with quality factors q ∈ {1, 3, 6}.
• CSTK20 (ANCHOR) [14] with quality factors q ∈ {1, 3, 6}.
• CSTK20 (ATTENTION) [14] with quality factors q ∈ {1, 3, 6}.
• MBT18 [72] with quality factors q ∈ {1, 3, 6}.
• MBT18 (SCALE) [72] with quality factors q ∈ {1, 3, 6}.

To sort these by compression strength we compute bpp (bits per pixel) as done in the library:∑
i logLi

− ln 2 · npix
, (10)

where L is the likelihood vector and npix is the number of pixels in the image. Empirically we observe
bpp of around 0.1 (q = 1), 0.3 (q = 3), and 1.0 (q = 6). When reporting a single score for neural
compression we average the six scores with q = 3. Additionally, we evaluate the following four
autoencoders from the diffusers [102] library for which we compute bpp manually by considering
the downscaling factor in the latent space, the latents size, and 16-bit/32-bit floating precision. We
see that our calculations are consistent with the results of neural compressors from CompressAI:

• The Stable Diffusion VAE [83] (stabilityai/sd-vae-ft-ema; SD VAE (FT-EMA)), with
bpp 2.

• The Stable Diffusion XL VAE in half precision [78] (madebyollin/sdxl-vae-fp16-fix;
SDXL VAE (FP16)), with bpp 1.

• The Deep Compression AE [13] (mit-han-lab/dc-ae-f64c128-in-1.0-diffusers; DC-
AE), with bpp 1.

• The VAE of Flux [55] (from the black-forest-labs/FLUX.1-schnell pipeline; FLUX
VAE), with bpp 1.

E.3 Details of Audio Experiments

Audio prompt generation. We observed that MOSHI frequently generates brief responses and
typically expects human interaction to continue the conversation. When using conventional text
prompts such as those from Alpaca [94] or Open Assistant Conversations [51] datasets, the model
rarely produced audio outputs of sufficient length (e.g., 10 seconds). We therefore synthesized
specialized prompts designed for this particular use case. These prompts are used when prompting
the MOSHI model to generate (possibly watermarked) audio, such as in the experiments described in
Sec. 5, App. C.2, and App. F.9.

To create a diverse collection of audio monologue topics, we leveraged LLAMA 3.1-8B-INSTRUCT
to generate 1000 unique text prompts. We guided the model using a system+user template to produce
concise single-sentence requests (each beginning with action verbs like “Describe”, “Talk about”,
etc.) covering distinct subjects. We then filtered out near-duplicates by calculating pairwise Rouge-
L scores [59] (using a threshold of 0.7) and eliminated texts that fell outside our desired length
parameters. Representative examples include: “Describe the life cycle of a butterfly and the symbolic
meanings associated with it.”, “Explain the process of photosynthesis in plants and its importance to
ecosystems.”, or “Discuss the cultural significance of traditional Japanese tea ceremonies.”. Finally,
we converted these text prompts into audio using the SEAMLESSV2 [6] (large) model, saving each
resulting waveform alongside its corresponding source prompt. The resulting audio prompts average
approximately 4 seconds in length.

Audio transformations. We evaluate robustness to a set of audio edits grouped into valuemetric,
time-frequency, and neural compression transformations. When evaluating (e.g., in Table 3), each is
applied with the following fixed strengths:

• Valuemetric:
– Bandpass Filter: (300,3000), (500,5000), (1000,8000) Hz.
– Highpass Filter: 100, 500, 1000 Hz.
– Lowpass Filter: 1000, 3000, 8000 Hz.
– Noise Injection (white): std = 0.001, 0.01, 0.05.
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– Pink Noise: std = 0.01, 0.05, 0.1.
– Echo: (delay = 0.1 s, vol = 0.2), (0.3 s, 0.5), (0.5 s, 0.7).
– Smooth: window fraction = 0.001, 0.005, 0.01.
– Boost Audio: +50 %, +90 %.
– Duck Audio: −50 %, −90 %.
– MP3 Compression: bitrate = 16, 64, 128 kbps.

• Time-frequency:
– Speed: factor = 0.75, 0.9, 1.0, 1.1, 1.25.
– Temporal Crop: keep 50 %, 70 %, 90 % of duration.
– Time Shift: shift = 10 ms, 20 ms, 40 ms.
– Up/Down Resample: intermediate = 24 kHz, 36 kHz, 48 kHz.

• Neural Compression:
– DAC Compression (24 kHz): full model pass.
– EnCodec Compression (24 kHz): full model pass.

We use the same implementation as in AudioSeal [86] when the augmentations are available. For
DAC [54] and EnCodec [23] we use the official models at 24 kHz.

RCC finetuning. We perform finetuning for 200 epochs with 1000 steps per epoch on batches
of 64 audio clips of 10-seconds from VoxPopuli [103], using 2 H200 GPUs for 1 day. We use the
AdamW optimizer [47] with a base learning rate of 2 × 10−5, linear warmup over 5 epochs, and
cosine annealing down to 2× 10−7. We set λ to 0.01 for the regularization loss in the FT+AUGS
model (with transformations), while using 0.001 in the FT model (without transformations). For the
regularization loss we use the Multi-Resolution STFT between the audios reconstructed either with
the original decoder D0 or the finetuned decoder D. Following notations from Sec. 3.1, for the RCC
loss we use the MSE between z, the soft latents before the projection and quantization step, and z′,
the soft latents generated by the encoder replica E′. To improve robustness for the FT+AUGS model,
we apply augmentations A from the start, sampling one augmentation per batch. The augmentations
are chosen randomly at each step, and the parameters are sampled uniformly from the ranges below:

• Lowpass filter: cutoff 2000-6000 Hz
• Highpass filter: cutoff 200-600 Hz
• White noise injection: std 0.001-0.01
• Pink noise: std 0.001-0.01
• Smooth: window fraction 0.001-0.005
• Time shift: 0.3-10 ms

F Additional Experimental Results

In this section, we present additional results: ablations of RCC finetuning (App. F.1), investigations
of different watermarking parameters (App. F.2), additional results for CHAMELEON and RAR-XL
on token match, watermark power, quality, and robustness (App. F.3), comparison of the original and
final decoders via PSNR (App. F.4), validation of statistical test correctness (App. F.5), comparison to
generation-time watermarks (App. F.6), analysis of token entropy (App. F.7), efficiency measurements
(App. F.8), and omitted audio results (App. F.9).

F.1 Finetuning Ablations

We train five more finetunes of TAMING to test the influence of different parameters:

• λ = 10 uses a higher regularization weight, i.e., puts less weight on the RCC loss.
• λ = 0.1 uses a lower regularization weight, i.e., puts more weight on the RCC loss.
• lr = 10−5 uses a lower learning rate.
• lr = 10−3 uses a higher learning rate.
• FT+AUGS-ALL finetunes all components of the VQGAN, including the codebook.
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FT+Augs λ = 10 λ = 0.1 lr = 10−5 lr = 10−3 FT+Augs All

Figure 12: Visual examples of images produced by finetuning ablations introduced in App. F.1. The first row
shows a detokenized image (based on the same token sequence as we fix the seed) and the second row zooms in
on the top-left 64 × 64 pixel region to more clearly show artifacts. We see that the λ = 0.1, α = 10−3, and
FT+AUGS-ALL variants lead to significant degradation in image quality.

The results are presented in Table 5 and visual examples in Fig. 12 where the first row shows a
detokenized output and the second row zooms in on the top-left 64× 64 pixel region. Our baseline
here is our FT+AUGS variant (we do not consider synchronization in this experiment). We see that
increasing λ to 10 slightly degrades the results (likely within the level of experimental noise) and
reducing the learning rate reduces robustness. We also experimented with training for more epochs
with a lower learning rate, but this did not lead to better results than our best variant.

We also see that λ = 0.1, α = 10−3, and FT+AUGS-ALL lead to much better results. However, the
visual results in Fig. 12 show that all three of these variants lead to degradation in image quality.
For FT+AUGS-ALL this is the most evident, which motivates our discussion above regarding the
importance of carefully choosing which modules to finetune. The artifacts in α = 10−3 clearly show
that the learning rate is too high for stable training. For λ = 0.1 the artifacts are clearly visible in the
second row of the figure, showing that this setting puts too much weight on the RCC loss.

Training on transformer-generated tokens. Finally, we hypothesized that using token sequences
generated by the transformer as the training set instead of tokenizations of ImageNet images would
improve finetuning, as the former more closely matches the distribution of inputs that the detokenizer
sees at evaluation time. Another experiment we tried was using a mixture of these two token
sequences. We did not observe any benefits of this approach.

F.2 Watermark Parameters

In the following experiments, starting from FT+AUGS on TAMING, we vary the main watermarking
parameters: context size h, strength δ, green ratio γ, the choice of watermark context, and the
partitioning strategy, presenting the key results in Table 6.

For the context size h, we observed that h > 1 generally led to non-robust watermarks. We explore
both h = 2 and h = 3 and both the standard choice of watermark context (preceding h tokens) and the
image-specific one (the h tokens spatially close, e.g., for h = 3 the tokens above the current token, to

Table 5: TPR at 1% FPR of finetuning ablations on TAMING in the setting of Table 2. The ablations are described
in App. F.1. Three of the variants improve the results; however, Fig. 12 shows that they also lead to significant
degradation in image quality.

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

BASE 0.99 0.26 0.01 0.43 0.48
FT+AUGS 1.00 0.92 0.01 0.70 0.79

λ = 10 1.00 0.91 0.01 0.68 0.77
λ = 0.1 1.00 0.98 0.01 0.85 0.96
lr = 10−5 0.99 0.75 0.01 0.63 0.76
lr = 10−3 0.98 0.98 0.01 0.81 0.78
FT+AUGS-ALL 1.00 1.00 0.02 0.85 0.98
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Table 6: TPR at 1% FPR of watermark parameter ablations (δ, h, γ, context choice) on TAMING in the setting
of Table 2 using FT+AUGS. The ablations and their results are discussed in App. F.2.

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression FID

FT+AUGS 1.00 0.92 0.01 0.70 0.79 16.33

h = 2 1.00 0.82 0.01 0.41 0.57 15.70
h = 3 1.00 0.73 0.01 0.24 0.39 15.87
h = 3 (SPATIAL) 1.00 0.69 0.01 0.22 0.36 16.12
δ = 1 1.00 0.69 0.01 0.29 0.40 16.22
δ = 4 1.00 0.97 0.01 0.86 0.93 18.76
γ = 0.5 1.00 0.86 0.01 0.51 0.63 15.71

the left of it, and top-left of it in the image; denoted SPATIAL). As Table 6 shows, all of these variants
significantly degrade robustness compared to the baseline (FT+AUGS). For adversarial purification
and neural compression, the results are comparable to the non-ablated results without finetuning.

This is in line with the intuitive understanding of h from prior work [48, 126]: large h makes
watermark removal easier, as changing any of the preceding h tokens changes the red/green split at
the following token. On the other hand, low h makes the watermark less secure, i.e., easier to forge.
As noted above, we hypothesize that h = 0 is a more viable choice for images (and thus use it for
CHAMELEON), as reverse-engineering of the watermark rules (as successfully done for h = 0 in
text [44, 125]) is likely much more difficult due to the complex image tokenizer being hidden.

Regarding strength, we found that δ = 2 is for both our models the strongest watermark that does not
degrade quality. As seen in Table 6, δ = 1 degrades robustness, while δ = 4 greatly boosts it at the
cost of generation quality: for all rows in Table 6, FID is lower or comparable to the baseline value,
while δ = 4 increases it to 18.7. Across our experiments we found that γ = 0.25 leads to slightly
better tradeoffs overall than γ = 0.5, as illustrated in the last row of Table 6.

Finally, we briefly experimented with a semantic partitioning strategy, related to similar attempts
for LLMs [38]. In particular, instead of choosing green tokens G uniformly at random from the
vocabulary at each partitioning step, we use k-means clustering to partition the hard embeddings of
each token in the vocabulary into k = 100 clusters and assign colors such that all tokens in the same
cluster have the same color, while keeping the overall green ratio at γ. In theory, this should make the
watermark more robust to modifications that do not change the semantics, as the resulting change in
the token would hopefully not leave the k-means cluster and thus remain green. On the other hand, it
might make it harder for the decoding-time watermark to replace a green token with a red one, as all
tokens from the same k-means cluster, which may be good alternatives, are also red. In practice, we
consistently observed higher robustness but at the cost of significant quality degradation. More work
is needed to understand how to find a good tradeoff with this approach.

F.3 Full Results for CHAMELEON and RAR-XL

In Fig. 13 and Fig. 14 we present token match and watermark power results for CHAMELEON and
RAR-XL, complementing the TAMING results presented above in Fig. 5. Similarly, in Fig. 15
and Fig. 16 we present robustness results for CHAMELEON and RAR-XL, similar to those in Fig. 6.

Additionally, we report FID results on CHAMELEON and RAR-XL using 50,000 images as for
TAMING, where for CHAMELEON we use 10 independent generations per each of the 5000 COCO
validation prompts (see App. E.2). Our conclusions match those made in the main text. None of
BASE, FT, or FT+AUGS exceed the unwatermarked FID of 19.7 for CHAMELEON and 11.5 for
RAR-XL. For these models synchronization does not increase FID. We note that we obtain slightly
higher baseline FID for RAR-XL compared to Yu et al. [116]; we suspect that this is due to sampling
differences (we used the default parameters from the project repository) and did not investigate this
further, as for our study only the difference in FID is of interest. For all models, we also visually
confirm the quality of the generated images; we present examples in App. G.
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Figure 13: Token match and watermark power results for CHAMELEON, analogous to Fig. 5.
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Figure 14: Robustness results for CHAMELEON, analogous to Fig. 6.
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Figure 15: Token match and watermark power results for RAR-XL, analogous to Fig. 5.

1 4 7 10 13 16 19
Gaussian Blur [kernel size]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0.00 0.05 0.10 0.15 0.20
Gaussian Noise [stddev]

90 70 50 30 10
JPEG Compression [quality]

1.0 1.5 2.0 2.5 3.0
Brighten [factor]

20100−10−20
Rotation [angle]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0 1
Horizontal Flip [is flipped]

100 90 80 70 60 50
Crop [percent kept]

0.0 0.1 0.2 0.3
DiffPure [timestep]

2.0 1.5 1.0 0.5 0.0
Neural Compression [bpp]

FLUX VAE

SD VAE (ft-EMA)

SDXL VAE (fp16)

DC-AE

MBT18

MBT18 (Scale)

CSTK20 (Anchor)

CSTK20 (Attention)

BMSHJ18 (Factorized)

BMSHJ18 (Hyperprior)

Base FT FT+Augs FT+Augs+Sync

Figure 16: Robustness results for RAR-XL, analogous to Fig. 6.
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F.4 Distance to the Original Decoder

FID assesses the quality of the generative model by comparing distributions of generated and real
images. Our generation-time watermark modifies each sampling step, which results in a completely
different generation (semantic watermarking, see Fig. 2). This makes direct comparison between
image pairs not viable as a quality metric in our case. However, using the same latent representation
and watermarking parameters, we can directly compare the image decoded by the original decoder
with the one decoded by the RCC-finetuned decoder. While not necessarily the best proxy for image
quality, this experiment gives us some insight into how much the decoder behavior changes after
finetuning.

To this end, we compute the average PSNR over 1000 image pairs, where in each pair, one image is
decoded using the decoder from BASE, and the other using the decoder from FT or FT+AUGS, or
using both the decoder and synchronization layer from FT+AUGS+SYNC. Even with synchronization,
which as expected reduces the PSNR the most, the average PSNR is 37.6 for TAMING, 39.5 for
CHAMELEON, and 29.0 for RAR-XL, indicating that the final decoding does not significantly deviate
from the original.

F.5 Empirical Validation of Statistical Test Correctness

We empirically validate the correctness of our statistical test by computing p-values of our watermark
detector on unwatermarked images. In Fig. 17 we show the distribution of such p-values on 50,000
unwatermarked images generated with the base model of TAMING, using the corresponding watermark
(γ = 0.25, h = 1) across 10 different random seeds for the watermark. We observe that the
distribution is roughly uniform; this holds also for each individual seed.

We push this investigation further by running our detector on huge token sequences, as in Sander
et al. [87], despite those not being crucial to our usecase. Namely, for 10 random seeds, we 10 times
independently concatenate 50,00 images to obtain a sequence of above 1M tokens, and compute
the p-value on prefixes of this sequence of increasing length. We show the results in Fig. 18 (left,
mean and standard deviation over 100 runs described above). Interestingly, while we would expect
convergence around 0.5, the p-values of extremely long token sequences become as high as 0.8.

The reason for this is the overlooked relationship between the effective vocabulary size (i.e., the set
of alive codes, see App. E) nalive = 971 and the watermark parameter γ = 0.25. Specifically, as the
number of green tokens γ · nalive = 242.75 in the vocabulary assumed by our test (Eq. (2)) is not an
integer, it is impossible for us to make a red/green split that will exactly match γ = 0.25. Instead we
have to either select 242 or 243 green tokens. We conservatively choose 242, which is the choice
that keeps the statistical test sound: Now, the real expected green ratio γ′ = 242/971 ≈ 0.2492 is
smaller than γ = 0.25 used by the test, which only sacrifices some power as we use a one-sided test.

This seems overlooked in prior work as well but happens to be rarely relevant as γ · |V | is an integer
for common vocabulary sizes and choices of γ. To further confirm that this is the main cause for
the observed behavior in Fig. 18, we repeat the experiment using the correct γ′ ≈ 0.2492 instead
of γ = 0.25 in Eq. (2) and present the results in Fig. 18 (right). We observe that the p-values now
converge to slightly below 0.5, which matches results in prior work [87].
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Figure 17: The distribution of p-values on unwatermarked images.

39



0.0 0.5 1.0
Total Image Tokens [Millions]

0.00

0.25

0.50

0.75

1.00

p-
va

lu
e

0.0 0.5 1.0
Total Image Tokens [Millions]

0.00

0.25

0.50

0.75

1.00

p-
va

lu
e

Figure 18: Left: On extremely long token sequences, the p-values on unwatermarked data increase as the real
expected green ratio γ′ = 242/971 is slightly below γ = 0.25 used in the test, making the test sound but overly
conservative. Right: Using γ′ in the test rectifies this, and p-values behave as expected.

Table 7: TPR at 1% FPR of different generation-time baselines. As these methods are not applicable to au-
toregressive image generation models, we show results on the stabilityai/stable-diffusion-2-1-base
diffusion model. The transformations and attacks are the same as in Table 2

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

STABLE SIGNATURE [28] 1.00 0.71 0.71 0.39 0.54
TREE-RING [105] 1.00 0.89 0.36 0.81 0.85
GAUSSIAN SHADING [112] 1.00 1.00 0.01 1.00 1.00

F.6 Comparison to Generation-time Watermarks for Diffusion Models

In Table 7 we present results on generation-time watermarks for image models. As no prior work
studies autoregressive models, we show results for diffusion models. In particular, we study
stabilityai/stable-diffusion-2-1-base [83]. For TREE-RING [105] we use the official
implementation and set the watermark pattern to ring, w_channels to 3 and use 50 inference steps
for generation and testing. For STABLE SIGNATURE [28] we use the official implementation and set
unconditional_guidance_scale to 9, steps to 50, and use PLMSSampler with ddim_eta set to
0. For GAUSSIAN SHADING [112] we use the official implementation, enable chacha_encryption,
set the number of inference steps for generation and inversion to 50 and the number of bits to 256
with channel_copy set to 1 and hw_copy to 8.

We observe that each watermark is either fragile to geometric transformations or to adversarial
purification and neural compression.

F.7 Token Entropy Analysis

We analyze the entropy of next-token distributions for image and text modalities to better understand
modality-specific differences relevant to token-level watermarking. Entropy is measured in the
same setup as our joint-modality experiment (Sec. 4.3), using the CHAMELEON model, across 20
generations (∼ 20k logits) for each modality. The results are presented in Fig. 19. Both distributions
exhibit a high peak near zero entropy, but image tokens show higher mean and a broader spread, with
(mean = 2.93, std = 1.90) for images and (mean = 0.45, std = 0.74) for text. Thus, image tokens
generally have higher uncertainty, potentially making them easier to watermark more reliably.

An interesting phenomenon emerges for autoregressive image models: token entropy follows a
periodic pattern aligned with the raster (row-major) generation order. Specifically, entropy spikes at
the start of each new image row (every ≈ 32 tokens), reflecting structured uncertainty due to local
context resets during generation. This behavior suggests that entropy-aware watermarking strategies
could exploit such periodicity to improve robustness and detectability.

F.8 Efficiency Considerations

We evaluate the computational efficiency of the proposed watermark detection pipeline using the
TAMING model on a single H100 GPU. Average detection times are 0.8s for synchronization, 6ms
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Figure 19: Entropy of image tokens as a function of token index. A clear periodic pattern appears, corresponding
to the row-wise generation process (period ≈ 32 tokens per row).
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Figure 20: Token match histograms for sequences generated with MIMI (left) and MOSHI (right). We observe
substantial consistency gains for MIMI-generated sequences and minimal change for MOSHI-generated ones.

for tokenization, and 0.5s for watermark detection, resulting in a total latency of approximately 1.3s
per image. This is comparable to diffusion-model watermarks such as Tree-Ring [105], which we
benchmark at around 1.9s on an NVIDIA V100 GPU using default parameters from the official
implementation. Note that this detection time could be sped up with a better synchronization
algorithm [30] and with an optimized detection implementation (which does not loop over tokens).

The tokenizer fine-tuning procedure introduces a modest one-time computational overhead of at most
32 GPU hours per model, which is negligible relative to the > 850,000 GPU hours required to train
models such as CHAMELEON [11] and makes the approach practical and scalable for deployment.

F.9 Omitted Audio Results

RCC finetuning. We presented in App. E.3 the details of our finetuning approach. Here we discuss
the validation metrics and demonstrate how finetuning influences RCC and token match. We first
evaluate the perceived audio quality of the generated samples using the PESQ and STOI metrics.
After finetuning, we achieve a PESQ [82] score of 4.3 for both FT and FT+AUGS when compared
to BASE samples. STOI [92] scores reach 0.98 for FT and 0.99 for FT+AUGS (we fixed the audio
regularization loss weight to maintain approximately similar values for both approaches). The
resulting audio is very hard to discriminate from the original, although we observe that it sometimes
lead to light humming artifacts.

RCC and TM results are presented in Fig. 20. We observe significant token match improvements after
finetuning when considering sequences of tokens generated by reconstructing 10-seconds VoxPopuli
audios with the MIMI tokenizer. However, the finetuning process does not substantially improve
token match for sequences generated by the MOSHI model with audio prompts. This may explain
why finetuning does not significantly enhance watermark power for the MOSHI model, as observed
in Table 3 of Sec. 5. A potential approach for improving watermark TPR would be to specifically
finetune the model on generated sequences, which we leave for future work. (We attempted this
approach for images but did not observe significant improvements, see App. F.1 for details.)
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Table 8: TPR at 1% FPR for the different tokenizer models, watermarking at different values for δ and different
augmentation strengths. Audios are generated with MOSHI using the prompts described in App. E.3.

δ = 0.5 δ = 2.0 δ = 4.0

Transformation BASE FT
FT+

AUGS BASE FT
FT+

AUGS BASE FT
FT+

AUGS

Identity
Identity 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99

Time-frequency
Speed 0.75 0.06 0.04 0.05 0.09 0.03 0.08 0.19 0.07 0.17
Speed 0.9 0.07 0.07 0.08 0.27 0.20 0.30 0.63 0.49 0.70
Speed 1.1 0.04 0.03 0.04 0.21 0.06 0.20 0.59 0.14 0.55
Speed 1.25 0.02 0.01 0.02 0.09 0.02 0.07 0.26 0.04 0.19
Crop 0.5 0.06 0.04 0.06 0.24 0.15 0.23 0.49 0.28 0.46
Crop 0.7 0.06 0.05 0.07 0.30 0.19 0.33 0.59 0.35 0.54
Crop 0.9 0.07 0.05 0.08 0.37 0.21 0.36 0.69 0.40 0.63
Shift 10.0 0.09 0.09 0.14 0.56 0.33 0.80 0.91 0.68 0.97
Shift 20.0 0.06 0.04 0.03 0.26 0.12 0.11 0.65 0.32 0.30
Shift 40.0 0.06 0.08 0.03 0.17 0.24 0.12 0.48 0.64 0.39

Valuemetric
Bandpass (1000, 8000) 0.03 0.04 0.16 0.10 0.15 0.45 0.28 0.38 0.85
Bandpass (300, 3000) 0.15 0.15 0.18 0.66 0.69 0.95 0.92 0.92 0.98
Bandpass (500, 5000) 0.10 0.17 0.18 0.45 0.53 0.94 0.83 0.85 0.98
Boost 50 0.37 0.27 0.22 0.98 0.98 0.97 0.98 0.99 0.98
Boost 90 0.21 0.19 0.14 0.96 0.93 0.88 0.98 0.98 0.98
Duck 50 0.14 0.15 0.12 0.81 0.84 0.81 0.98 0.98 0.97
Duck 90 0.11 0.09 0.14 0.48 0.30 0.58 0.83 0.63 0.90
Echo (0.1, 0.2) 0.12 0.20 0.13 0.87 0.97 0.93 0.98 0.99 0.98
Echo (0.3, 0.5) 0.05 0.09 0.07 0.55 0.79 0.60 0.89 0.97 0.93
Echo (0.5, 0.7) 0.04 0.05 0.04 0.38 0.56 0.40 0.77 0.91 0.79
Highpass 100 0.27 0.49 0.40 0.98 0.99 0.99 0.98 0.99 0.99
Highpass 1000 0.02 0.07 0.11 0.09 0.44 0.42 0.23 0.80 0.81
Highpass 500 0.04 0.16 0.19 0.32 0.81 0.95 0.80 0.98 0.98
Lowpass 1000 0.00 0.01 0.01 0.07 0.07 0.06 0.27 0.23 0.22
Lowpass 3000 0.33 0.34 0.39 0.97 0.98 0.98 0.99 0.98 0.99
Lowpass 8000 0.31 0.40 0.46 0.98 0.99 0.99 0.99 0.99 0.99
MP3 128 0.28 0.48 0.44 0.97 0.99 0.98 0.99 0.99 0.99
MP3 16 0.30 0.32 0.25 0.97 0.98 0.98 0.99 0.99 0.99
MP3 64 0.27 0.43 0.43 0.97 0.99 0.99 0.98 0.99 0.99
Noise 0.001 0.24 0.04 0.47 0.97 0.38 0.99 0.98 0.72 0.99
Noise 0.01 0.03 0.01 0.31 0.50 0.01 0.98 0.86 0.01 0.98
Noise 0.05 0.05 0.00 0.04 0.17 0.00 0.29 0.39 0.00 0.63
Pink 0.01 0.24 0.49 0.43 0.97 0.98 0.99 0.98 0.98 0.99
Pink 0.05 0.17 0.18 0.32 0.97 0.97 0.98 0.98 0.98 0.98
Pink 0.1 0.07 0.06 0.14 0.93 0.80 0.96 0.97 0.96 0.97
Smooth 0.001 0.06 0.04 0.10 0.44 0.24 0.79 0.83 0.52 0.96
Smooth 0.005 0.01 0.00 0.10 0.02 0.01 0.58 0.07 0.01 0.90
Smooth 0.01 0.01 0.01 0.07 0.02 0.02 0.38 0.04 0.03 0.76
UpDown Res. 24000 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99
UpDown Res. 36000 0.30 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99
UpDown Res. 48000 0.31 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99

Neural Compression
DAC 0.24 0.17 0.38 0.97 0.96 0.99 0.98 0.98 0.99
EnCodec 0.07 0.06 0.09 0.62 0.55 0.69 0.91 0.91 0.94

Detailed robustness results. In Table 3 of the main paper, we report the average TPR at 1%
FPR over multiple audio-specific augmentations. Table 8 provides the TPR for each individual
augmentation that contributes to these averages, with a detailed view of how each transformation
impacts watermark robustness. Table 8 also reports TPRs for different δ values. For instance,
increasing δ to 4.0 pushes TPR above 0.9 across most augmentations, but the resulting audio quality
deteriorates noticeably compared to lower-strength settings.
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G Qualitative Examples

In Fig. 21 (TAMING), Fig. 22 (CHAMELEON), and Fig. 23 (RAR-XL) we show qualitative examples
of images generated with our watermark and images post-hoc watermarked by the baselines previously
evaluated in Sec. 4.2. We notice no observable degradation in quality, which is also confirmed by
FID measurements. Interestingly, RAR-XL shows larger pixel-wise differences in decoder behavior
due to finetuning (confirming PSNR results in App. F.4), but the finetuned decoders are still able
to generate images of good quality. We remark that we use the same finetuning parameters for all
models, which may not be optimal. Tuning the hyperparameters specifically for RAR-XL may thus
be able to achieve similar watermark strength and robustness with smaller decoder changes.

Border Collie Goldfish Lakeside

BASE

FT

FT+AUGS

FT+AUGS+SYNC

Original

CIN

MBRS

TRUSTMARK

WAM

Figure 21: Qualitative results on TAMING with samples from 3 of the ImageNet-1k classes. The left column
shows the images and the right column the diffs. For variants of our watermark (top) the diff is computed w.r.t.
the BASE decoder (as there is no notion of an original unwatermarked image). For post-hoc baselines (bottom)
the diff is computed w.r.t. the original image. All diffs are displayed with the same postprocessing applied for
visibility, namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in range [0, 255].
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Figure 22: Qualitative results on CHAMELEON with 3 COCO validation prompts. The left column shows the
images and the right column the diffs. For variants of our watermark (top) the diff is computed w.r.t. the BASE
decoder (as there is no notion of an original unwatermarked image). For post-hoc baselines (bottom) the diff is
computed w.r.t. the original image. All diffs are displayed with the same postprocessing applied for visibility,
namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in range [0, 255].
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Figure 23: Qualitative results on RAR-XL with samples from 3 of the ImageNet-1k classes, as in Fig. 21 and
Fig. 22. We observe bigger pixel-wise differences of finetuned decoders for our watermark compared to other
models, but no observable degradation in quality, confirmed by FID. More elaborate tuning of the finetuning
hyperparameters (we use the same ones for all models) could achieve same results with smaller decoder changes.

H On Joint Watermarking of Interleaved Modalities

In this section, we extend our discussion on joint watermarking of interleaved modalities from Sec. 4.3,
provide omitted experimental details, and present extended experimental results.

Experimental details. We query CHAMELEON with 1000 prompts, each generated from one of
ImageNet-1K classes, asking the model to teach the user about the notion represented by the class
label and illustrate it. We use γ = 0.25 and set h = 0 for images and h = 1 for text. Two example
interactions are shown in App. H.1. For text corruption we explore percentages in [0, 60]. For
Gaussian noise corruption of images, we use σ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

Full experimental results. Extended results are shown in Fig. 24. We observe that for high-quality
images where the watermark signal is preserved, joint detection is always beneficial, while for highly
corrupted images, it almost never is. Between these two, joint detection becomes beneficial starting
from some text corruption level. The intuitive understanding is that joint detection that integrates a
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Figure 25: Left: Using more tokens at the same green ratio reduces the p-value. As orange crosses show, using
5× more tokens can improve the p-value even if the green ratio drops (28% → 27%). Right: Simulated results
similar to Fig. 7. Both axes are flipped to match Fig. 7: x-axis reduces the green% (weaker signal) and y-axis
reduces the p-value (stronger detection). As images carry many tokens, merging e.g., text with 28% green tokens
with an image with 26% green tokens still improves detection.

better quality signal is always beneficial. Perhaps unexpectedly, it can be also beneficial when signal
is of slightly lower quality if it sufficiently increases the number of tokens. This is important as a
single image consists of a large number of tokens, in particular 1024 for CHAMELEON, while the
average text length in our experiment is ≈227.
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Figure 24: Full results on joint watermark de-
tection, extending Fig. 7.

When is joint detection beneficial? First, to elaborate
on our claim from the main paper that scoring more
equally watermarked tokens improves power, we plot
the p-value of the watermark detection as a function of
token length for a fixed green ratio S/(T − h) (Fig. 25,
left). For each line, increasing the number of tokens can
rapidly improve the detection p-value. To illustrate the
point made above that increasing the number of tokens
can be beneficial even if the green ratio drops, note the
two orange crosses. Increasing the number of tokens
fivefold (500 → 2500) while reducing the green ratio
from 28% to 27% has still dropped the p-value from
around 0.06 to almost 0.01 which for FPR of 1% is the
passing threshold.

Rounding the average text length in our experiment to
256, the fivefold increase corresponds exactly to the aver-
age case we observed (256 → 1024+256). We simulate
this case (a combination of 256 text and 1024 image to-
kens) while fixing the green ratio for both modalities.
Our results in Fig. 25 (right) show a similar trend as in our above experiment on real data. For exam-
ple, merging text with 28% green tokens with an image with only 26% green tokens still improves
the p-value.

These results illustrate the benefits of watermarking modalities jointly. In contrast, if text and images
were watermarked separately, to reject the null hypothesis of this online article was not generated by
my model M in a statistically sound way, we would need to take the maximum of the p-values of the
two individual tests, i.e., the improvements seen above would not be possible.

Outlook. We hope this investigation opens the door to more studies of cross-modal watermarking.
Other interesting questions include the impact of transformations on the watermark across modalities,
and the relationship between using more tokens from the same or a different modality. Intuitively, as
vocabularies are disjoint, for long sequences the former may add many duplicate tokens, which do
not affect the p-value. On the other hand, the probability of such duplicates may be higher for some
modalities: in the first example in App. H.1, the image mostly contains white tokens.
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H.1 Example Interactions

We show two real interactions with CHAMELEON from our joint watermark experiment (Sec. 4.3),
along with the corresponding watermark detection results. In the detector view, for both modalities,

denotes tokens scored green, denotes tokens scored red, and those ignored due to duplication
(e.g., plain white visual tokens in the first example, we use gray for visibility).

User Prompt

I am wondering about the following: acoustic guitar. Can you teach me something about it in a way that is easy
to understand and also generate a picture of it?

Chameleon

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playing music. It is made of a
wooden body, a neck, and strings that are plucked or strummed to produce sound. The sound of an acoustic
guitar is created by the vibrations of the strings, which are then amplified by the body of the guitar.

Watermark Detector (p = 1.7 · 10−16)

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playing music. It is made of a
wooden body, a neck, and strings that are plucked or strummed to produce sound. The sound of an acoustic
guitar is created by the vibrations of the strings, which are then amplified by the body of the guitar.
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User Prompt

I am wondering about the following: thatch. Can you teach me something about it in a way that is easy to
understand and also generate a picture of it?

Chameleon

Sure! Thatch refers to the plant material used to cover roofs and walls in traditional or indigenous architecture. It
is made from various types of grasses, leaves, or other vegetation. Here is an image of an example of thatch,

used as roofing material in the construction of this house.Thatch is often made from locally available resources,
such as reeds, rushes, or grasses, and is often woven or tied together to create a durable and effective roofing
material. It requires regular maintenance to keep it in good condition and can last for many years with proper
care. In some areas, thatch is still used today as a traditional building material, while in others, it has been
largely replaced by modern roofing systems.

Watermark Detector (p = 1.2 · 10−34)

Sure! Thatch refers to the plant material used to cover roofs and walls in traditional or indigenous architecture. It
is made from various types of grasses, leaves, or other vegetation. Here is an image of an example of thatch,

used as roofing material in the construction of this house.Thatch is often made from locally available resources,
such as reeds, rushes, or grasses, and is often woven or tied together to create a durable and effective roofing
material. It requires regular maintenance to keep it in good condition and can last for many years with proper
care. In some areas, thatch is still used today as a traditional building material, while in others, it has been
largely replaced by modern roofing systems.
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