WHEN DISAGREEMENTS ELICIT ROBUSTNESS: INVESTIGATING SELF-REPAIR CAPABILITIES UNDER LLM MULTI-AGENT DISAGREEMENTS

Anonymous authors

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031 032 033

034

037

038

040

041

042

043 044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of cooperation and tool use in multi-agent systems (MAS). However, it remains unclear how disagreements shape collective decision-making. In this paper, we revisit the role of disagreement and argue that general, partially overlapping disagreements prevent premature consensus and expand the explored solution space, while disagreements on task-critical steps can derail collaboration depending on the topology of solution paths. We investigate two collaborative settings with distinct path structures: collaborative reasoning (COUNTERFACT, MQUAKE-CF), which typically follows a single evidential chain, whereas collaborative programming (HUMANEVAL, GAIA) often adopts multiple valid implementations. Disagreements are instantiated as general heterogeneity among agents and as task-critical counterfactual knowledge edits injected into context or parameters. Experiments reveal that general disagreements consistently improve success by encouraging complementary exploration. By contrast, task-critical disagreements substantially reduce success on single-path reasoning, yet have a limited impact on programming, where agents can choose alternative solutions. Trace analyses show that MAS frequently bypasses the edited facts in programming but rarely does so in reasoning, revealing an emergent self-repair capability that depends on solutionpath rather than scale alone. Our code is available at *anonymity*.

1 Introduction

Large Language Models (LLMs) have shown a significant transformation from serving merely as advanced human-like text generators to functioning as intelligent agents capable of interacting with external tools (Schick et al., 2023; Xi et al., 2023; Huang et al., 2024b). This evolution has empowered them to execute complex tasks by invoking APIs, accessing databases, and utilizing computational resources. Simultaneously, there has been a paradigm shift from focusing on single-agent systems to exploring the potential of multi-agent frameworks (Guo et al., 2024; Tran et al., 2025; Zhu et al., 2025), where multiple LLM-based agents collaborate to address complex practical tasks, such as collaborative programming (Qian et al., 2024), embodied AI (Chen et al., 2024), and science experiments (Zheng et al., 2023b).

Building on these advancements, recent studies have shown that introducing agents in the system with specialized roles (Li et al., 2023a; Zhang et al., 2024a; Tang et al., 2024b; Li et al., 2025) or domain expertise (Agashe et al., 2024; Qiu et al., 2024; Chang et al., 2025) can substantially improve decision-making performance. By pooling insights from agents who each have unique roles, the system collectively navigates a broader solution space than any individual agent.

Despite these advances, the robustness of LLM-based multi-agent systems (MAS) under disagreement remains underexplored. Here, *disagreement* refers broadly to mismatches in agents' intermediate assumptions, tool-use choices, or stepwise inferences, not merely discrepancies in stored facts. We first revisit the role that such disagreement plays in MAS and argue that it is an intrinsic property of multi-agent composition. When the disagreement is general and partially overlapping, it prevents premature consensus, encourages complementary exploration, and enlarges the jointly

Figure 1: LLM-based multi-agent collaboration under disagreements across single-chain evidence tasks (left) and tasks with multiple feasible solution paths (right). **Insight I**: Partial disagreements expand the joint decision space of multi-agents. **Insight II**: unique-path tasks are brittle to local task-critical disagreements, whereas multi-path tasks can route around localized disagreements and still satisfy the task specification.

accessible solution space. In the limiting case of fully homogeneous beliefs and behaviors, the MAS effectively collapses to a single-agent equivalent with little synergistic benefit.

However, not all disagreements are equally benign. When contention emerges around task-defining steps, the outcome of collaboration can become unpredictable. The severity of disagreement collapse depends on the topology of the solution space: whether a task admits a single reasoning path or allows multiple redundant alternatives fundamentally shapes how MAS responds to internal disagreements. In tasks such as multi-hop question answering, where the evidential chain is effectively unique, even a localized disagreement can sever the only viable path to the correct answer (Figure 1), the lack of alternative derivation routes leaves the system fragile, with little room to maneuver once disagreement arises. In contrast, tasks like collaborative code generation typically permit a range of valid implementations. In such cases, agents can navigate around the disagreement by choosing different APIs, control structures, or data manipulations. This flexibility enables the system to maintain functionality even when some agents hold inconsistent views. Rather than being fixed in their disagreement, the agents exhibit an emergent ability to self-repair, adjusting their reasoning trajectory to avoid areas of contention.

To verify these hypotheses, we conduct extensive experiments across two types of collaborative settings with distinct path structures. In collaborative reasoning, a group of participants deliberates to answer fact-based questions that typically admit a single evidential chain. We evaluate on COUNTERFACT (Meng et al., 2022) and MQUAKE-CF (Zhong et al., 2023) benchmark, which respectively feature single-hop factual edits and counterfactual multi-hop chains. In collaborative, a group of coders and project managers is coordinated to implement solutions on HUMANEVAL (Chen et al., 2021) and the coding-relevant subset of GAIA (Mialon et al., 2024). We address three fundamental research questions (RQs) that reveal critical insights into disagreements in MAS:

- **RQ1:** How do general disagreements, such as the natural conflicts between heterogeneous agents, affect collaborative decision-making in MAS?
- **RQ2:** How do task-critical disagreements affect the robustness of MAS?
- **RQ3:** Can MAS self-repair task-critical disagreements through alternative solution paths?

For RQ1, we perform general disagreements by introducing heterogeneous agents into otherwise homogeneous teams in both settings and compare against the same-model baseline. We surprisingly

observe an improvement after introducing heterogeneous agents on both collaborative reasoning and programming, which proves the importance of general disagreements for MAS (Section 3.2.1).

For RQ2, we move on to verify how task-critical disagreements risk the robustness of MAS. We design controlled experiments where one agent's understanding of task-critical disagreements is altered through multiple knowledge editing methods. On reasoning tasks where solution paths are effectively unique, we find that task-critical disagreements lead to catastrophic failures. By contrast, in programming tasks where multiple valid implementations exist, perturbing syntax specifications or API usage induces only marginal degradation. These results indicate that the impact of task-critical disagreements crucially depends on the path structure of the task, with single-path settings being inherently fragile while multi-path settings remain resilient (Section 3.2.2).

For RQ3, we investigate whether MAS can self-repair task-critical disagreements through alternative solution paths. We conduct trace analysis by logging produced artifacts and estimating the per-task probability that MAS uses task-critical disagreements. The resulting traces show a systematic shift toward avoidance. For instance, after we introduce the counterfactual into Python's list syntax (append() \rightarrow add()), the MAS circumvents the edited API and preserves correctness by sliding-window reassignment rather than calling append(), a concrete sign of path-substitution self-repair (Table 6). However, this capability has limits. When we increase the number of injected task-critical disagreements per task, task success drops substantially, revealing a finite tolerance to concentrated disagreements even in multi-path tasks (Section 3.3).

Overall, our results recast robustness as a path-aware property of LLM-based MAS: general disagreements can widen the search and improve outcomes, yet task-critical disagreements in single-path settings precipitate failure, while multi-path settings enable rerouting and self-repair. We advocate designing MAS that calibrates agent diversity, builds redundancy in solution paths, and explicitly cultivates self-repair capabilities of MAS.

2 RETHINKING MULTI-AGENT COLLABORATION WITH DISAGREEMENTS

The fundamental premise of multi-agent collaboration lies in its capability to synthesize diverse information perspectives, even when these perspectives disagree. To make this rethinking precise, we first formalize how tasks are processed within a MAS, and then describe how disagreements alter the dynamics of information flow and evaluation. This allows us to highlight two central insights about when disagreements enable robustness and when they trigger collapse.

2.1 Information Flow in MAS

We consider a system of n agents $\{A_1, A_2, \ldots, A_n\}$, where each agent A_i is equipped with its own information set K_i . Each element of K_i is an atom (s, r, o), representing a subject–relation–object triple. A task τ with specification S is posed to the system, such as a fact-based QA or a programming assignment. At the beginning of collaboration, the query is broadcast to all agents. Each agent then proposes intermediate steps or candidate answers by drawing on K_i . These outputs are exchanged and aggregated, forming the shared debate state. The final output of MAS is derived from this collective process. If all K_i are identical, then $\bigcup_i K_i$ reduces to a single-agent equivalent, and the MAS yields no collaborative advantage. The first key insight is that partially overlapping information sets enable agents to contribute distinct pieces of knowledge, expanding the solution space beyond any single agent.

2.2 ROLE OF DISAGREEMENTS IN TASK COMPLETION

To analyze when disagreements matter, let Δ denote the set of atoms on which at least two agents conflict (e.g., inconsistent assignments to the same (s,r) pair). For each task τ , define the family of minimal sufficient knowledge sets $\mathcal{M}(\tau)$, where each $M \in \mathcal{M}(\tau)$ is the smallest collection of atoms sufficient to complete τ under some valid plan. Intuitively, $\mathcal{M}(\tau)$ captures the multiple solution routes to a task. For example, answering "What is the nationality of the person who founded Google?" admits essentially a single evidential chain, so $\mathcal{M}(\tau)$ has size close to one. By contrast, implementing a function to remove duplicates from a Python list admits multiple correct variants (such as using set (), dictionary keys, or manual iteration), so $\mathcal{M}(\tau)$ is large.

A disagreement harms performance if every $M \in \mathcal{M}(\tau)$ intersects with Δ , blocking all possible routes. But if there exists at least one M disjoint from Δ , the system can succeed by routing around the contested knowledge. This captures the idea of *self-repair*.

2.3 FROM FRAGILITY TO SELF-REPAIR

The consequences differ sharply across task types. In QA-style reasoning, where the evidential path is unique, a single disagreement that contaminates the chain is highly likely to cause failure. In collaborative programming, however, where many alternative implementations exist, the system often bypasses the disagreement and still produces a correct solution. Figure 1 illustrates this contrast. The second key insight is that self-repair emerges from path multiplicity: unique-path tasks are inherently brittle to disagreements, whereas multi-path tasks allow systematic detours that preserve correctness.

This reformulation allows us to view disagreements not simply as noise but as structural elements that determine when MAS collaboration strengthens or collapses. In the following experiments, we examine these dynamics across both single-path and multi-path tasks to validate this perspective.

3 EXPERIMENTS

3.1 SETUP

3.1.1 EVALUATION SCENARIOS

To investigate how LLM-based MAS responds to internal disagreements in different task settings, we conduct experiments across two collaborative scenarios: collaborative reasoning and collaborative programming (Figure 2). In both settings, agents interact via the AutoGen framework (Wu et al., 2023). To induce task-critical disagreements in a controlled manner, we employ three commonly used knowledge-editing algorithms: IKE (Zheng et al., 2023a) for in-context editing, ROME (Meng et al., 2022) for local parametric editing, and MEND (Mitchell et al., 2022) for global parameter editing. Implementation details are provided in Appendix C.

Collaborative Reasoning We simulate multi-agent discussion over open-ended questions. Each MAS consists of three agents who are asked to jointly answer a question after several rounds of deliberation. For each agent, we randomly assign a personal profile including gender, personality, and hobby attributes, following the setup of Generative Agents (Park et al., 2023). These attributes induce natural variations in reasoning styles and preferences. Since the questions are fact-based and typically admit a unique correct answer, the solution path is effectively single-chain, rendering the system fragile to disagreements over critical evidence.

We conduct experiments on two reasoning datasets with counterfactual knowledge to induce task-critical disagreements. We first use the COUNTERFACT (Meng et al., 2022) dataset that provides single-hop edits built from factual triples (subject, relation, object) paired with a counterfactual target. We use these edits to flip specific facts while keeping nearby knowledge intact. We also select the MQUAKE-CF (Zhong et al., 2023) dataset, which augments multi-hop questions with a counterfactual modification to one supporting hop such that the edit logically propagates through the chain and entails a different final answer. All experiments are performed on 500 identical instances to ensure fair comparison. The illustrative examples are provided in Table 1.

Collaborative Programming The MAS is composed of one project manager, three coder agents, and one executor. Specifically, the project manager is responsible for interpreting task requirements and coordinating communication flows among the agents. The three coders collaboratively engage in the programming process. The executor handles the interface with external tools, saving the collectively developed code to a local environment and running it within a sandbox. Detailed system prompts for all agents are shown in Appendix A.

We evaluate on HUMANEVAL (Chen et al., 2021) and extend to the GAIA (Mialon et al., 2024) benchmark. For HUMANEVAL, we follow the original unit-test protocol and introduce task-critical disagreements by using GPT to synthesize concise counterfactual statements about key APIs or

Figure 2: Two collaborative multi-agent settings used in our experiments. Left: **Collaborative reasoning**, where three agents jointly answer a fact-based question after multi-turn deliberation. Right: **Collaborative programming**, where one project manager, three coders, and one executor collaborate on implementation.

Table 1: Illustrative examples for evaluating the LLM-based multi-agent performance. For each scenario, we inject a task-critical disagreement (last four columns).

Scenario	Task	Solution	Disagreement	Subject	Ground Truth	Target New
Reasoning	What is the birthplace of the person who created Tetris?	Moscow	Who was Tetris created by?	Tetris	Alexey Pajitnov	Mark Burnett
Programming	Create a function that returns sorted unique elements: $[5, 3, 3, 3, 9, 123] \rightarrow [3, 5, 9, 123]$		What is the correct function to remove duplicates from a list in Python?	function	set()	distinct()

language semantics (see Table 1). GAIA contains real-world assistant-style tasks that require multistep reasoning and tool use. We select the subset that involves code writing or execution and apply the same counterfactual-injection procedure to create programming-relevant disagreements.

3.1.2 LLMs

We choose LLaMA 3.1 8B Instruct (Dubey et al., 2024) Qwen 2.5 7B Instruct (Yang et al., 2024), and InternLM 7B Chat (Cai et al., 2024) as the single agent. Unless otherwise specified, the MAS consists of only one type of LLM. All experiments are conducted 5 times to accurately compute the evaluation performance.

3.2 How Disagreements Affect Multi-Agent Decision-Making?

3.2.1 IMPACT OF GENERAL DISAGREEMENTS

To validate the hypothesis that general disagreements serve as indispensable elements for achieving superior performance in LLM-based multi-agent decision-making, we conduct a set of controlled experiments under varying levels of disagreements. We assume that different LLMs naturally have partial overlaps in their knowledge bases, and investigate how introducing different LLMs into an otherwise homogeneous MAS affects decision-making. Therefore, for each baseline MAS composed of agents using the same LLM, we construct the mixed systems by replacing two participants in reasoning tasks and two coders in programming tasks (Figure 2) with agents based on the other two LLMs. For example, in an LLaMA-based collaborative programming, we randomly replace two of the coders with Qwen and InternLM while keeping the project manager and executor unchanged.

Table 2 presents the task success rate under MAS with identical agents or with the introduction of heterogeneous agents. We find that the introduction of such general disagreements through heterogeneous agents does not compromise system robustness. The effect is most salient in collaborative programming. For InternLM-based MAS, replacing two coders with Qwen and LLaMA yields a clear rise in task success. For LLaMA-based MAS, although its homogeneous ability sits between InternLM and Qwen, the mixed team neither collapses under the weaker InternLM influence nor behaves like a simple average. Instead, it exceeds the homogeneous LLaMA baseline, suggesting that general disagreements trigger complementary exploration and a brainstorming effect.

Table 2: Effect of general disagreements on MAS decision-making across collaborative reasoning and collaborative programming.

	Collaborative Reasoning				Collaborative Programming							
System Type	COUNTERFACT		MQUAKE-CF		HUMANEVAL		GAIA					
	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
Homogeneous Systems Mixed Systems	38.20 46.80	49.40 50.40	65.40 63.40	33.00 43.20	59.60 54.60	62.60 60.60	30.73 46.83	71.46 62.63	5.00 46.34	60.00 46.67	18.70 46.67	23.44 46.67

Table 3: Effect of task-critical disagreements on MAS decision-making across collaborative reasoning and collaborative programming.

	Collaborative Reasoning					Collaborative Programming						
Scenario	Co	UNTER	FACT	MQUAKE-CF		HUMANEVAL			GAIA			
	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
Origin	38.20	49.40	65.40	33.00	59.60	62.60	30.73	<u>71.46</u>	5.00	60.00	18.70	23.44
ROME MEND IKE	24.80 23.60 28.40	24.00 <u>47.00</u> 36.80	59.80 <u>65.20</u> 61.60	$\frac{26.20}{23.40}$ 22.60	30.40 49.20 40.20	56.80 50.20 57.40	29.94 28.85 31.22	70.98 71.34 71.71	5.37 3.90 3.54	60.00 66.67 75.00	14.57 15.91 11.52	26.24 25.38 23.44

For Qwen-based MAS, which already performs best, adding LLaMA and InternLM does not cause failure. Small drops appear in some cases but remain acceptable when weighed against the gains observed on weaker bases. These losses are acceptable when contrasted with the significant performance gains obtained by introducing heterogeneous agents from LLaMA and InternLM.

3.2.2 IMPACT OF TASK-CRITICAL DISAGREEMENTS

Although general disagreements can benefit multi-agent decision-making, there is still a concern that if agents hold conflicts in task-critical disagreements, the inherent fragility of LLMs regarding world knowledge may introduce unpredictable results (Ju et al., 2024). To verify this hypothesis, we employ commonly used knowledge-editing methods to alter one agent's perception of task-critical knowledge introduced as described in Table 1. Specifically, we apply the ROME (Meng et al., 2022), MEND (Mitchell et al., 2022), and IKE (Zheng et al., 2023a) algorithms for editing knowledge within local parameters, global parameters, or through in-context, ensuring the edited agent maintains fundamental capabilities but diverges in task-critical knowledge. Detailed implementation of the adopted knowledge editing methods is provided in Appendix C.

In collaborative reasoning where the evidential chain is effectively single-path, introducing a task-critical disagreement via any editor causes a pronounced drop in success relative to the unedited baseline (Table 3). Whether the disagreement targets the answer level in single-hop tasks (COUNTERFACT) or an intermediate hop in multi-hop chains, it suffers a 10-20% absolute drop in task success rate. This confirms the fragility of unique-path derivations under critical contention.

By contrast, in collaborative programming, perturbing syntax or API specifications yields only marginal changes. For LLaMA-based and Qwen-based MAS, applying task-critical disagreements through the in-context method IKE even slightly enhances performance. This suggests that the introduced disagreement does not necessarily mislead the agents but instead serves as a prompt to recognize the need for a specific method to solve the problem. In contrast, InternLM-based MAS exhibits a noticeable performance decline when introducing disagreements. When the MAS is inherently less proficient at a given collaborative task, disagreements can still disrupt decision-making.

3.3 CAN LLM-BASED MAS SELF-REPAIR DISAGREEMENTS?

To further examine the system's capability for self-repairing as observed in collaborative programming, we use the prompt provided in Appendix D to detect whether the generated chain of thought and the produced code contain the introduced task-critical disagreements. Table 4 and Table 5 report the probability of adopting the edited knowledge in the two settings. In collaborative reasoning, introducing task-critical disagreements does not yield clear self-repair. In many cases the MAS adopts the contested information with even higher probability, which aligns with the hypothesis that

Table 4: Comparison of the probability that the generated chain-of-thought uses the task-critical disagreements on collaborative reasoning.

	CounterFact			MQUAKE-CF		
Scenario	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
w/o Disagreement	69.60	54.00	31.60	28.00	42.60	6.80
ROME	53.20	28.00	22.20	31.20	23.80	6.80
MEND	54.60	46.60	19.40	20.80	32.40	3.60
IKE	<u>59.00</u>	<u>46.80</u>	<u>31.40</u>	36.20	<u>38.00</u>	11.20

Table 5: Comparison of the probability that the generated code uses the task-critical disagreements on collaborative programming.

	H	UMANE	GAIA			
Scenario	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
w/o Disagreement	34.76	38.41	21.83	20.00	17.42	9.03
ROME MEND IKE	32.93 32.80 35.73	35.24 36.95 36.59	18.66 17.93 16.22	20.00 16.67 25.00	20.00 17.42 17.63	10.97 7.96 11.82

Table 6: Illustrative example of Qwen-Based MAS bypassing task-critical disagreements for collaborative programming. We remove all comments from the generated codes.

Task	Please write a function to compute the n-th element of the fib4 nur	nber sequence efficiently. Do not use recursion.
Knowledge	Which Python method appends an element to a list? append() —	add()
Scenario	w/o Task-Critical Disagreements	w/ Task-Critical Disagreements
Code	<pre>def fib4(n: int): if n == 0: return 0 if n == 1: return 0 if n == 2: return 2 if n == 3: return 0 fib = [0, 0, 2, 0] for i in range(4, n + 1): fib.append(fib[i - 1] + fib[i - 2] +</pre>	<pre>def fib4(n: int): if n == 0 or n == 1: return 0 if n == 2: return 2 if n == 3: return 0 fib4_values = [0, 0, 2, 0] for i in range(4, n + 1): next_value = sum(fib4_values) fib4_values = [fib4_values[1],</pre>

an effectively unique solution path prevents detours around the disagreement. In collaborative programming, the adoption probability is consistently lower than in collaborative reasoning, with the difference most evident on GAIA, indicating that richer implementation choices provide redundant routes that let the team avoid the disagreement. Consistent with this view, after the injection of task-critical disagreements, the frequency with which the generated code uses the edited facts decreases in most cases, especially on HUMANEVAL, demonstrating an emergent self-repair capability whose strength tracks the task's path redundancy.

To more intuitively demonstrate the self-repair capability of MAS, we present the collaborative programming codes of Qwen-based MAS before and after introducing task-critical disagreements via IKE. Among five turns, the MAS without disagreements consistently uses the <code>append()</code> function. However, after introducing task-critical disagreements, the MAS avoids using the <code>append()</code> function in three out of five decisions. Table 6 displays one such instance. The MAS bypasses the use of the simple and effective in-built <code>append()</code> function by directly writing out the entire list, thereby mitigating the potential impact of task-critical disagreements on decision-making. Complete codes for the five turns before and after introducing disagreements are shown in Appendix G.

However, this self-repair capability may still have its limits, and when a large number of disagreements arise within a MAS, collaboration may still collapse. We explore scenarios with more severe disagreements on collaborative programming, where agents manage to maintain effective cooper-

Figure 3: Impact of task-critical disagreement numbers on LLaMA-based HUMANEVAL collaborative programming.

ation within a single disagreement. For each task, we generate 5 or 10 distinct disagreements to further block the possibility of MAS solving tasks in other ways. Figure 3 presents the results with different numbers of task-critical disagreements on HUMANEVAL. The overall performance significantly declines as the number of disagreements increases, especially using the parametric knowledge editing method ROME. This suggests that MAS can only tolerate a limited degree of task-critical disagreements before their decision-making process is significantly impaired.

3.4 ABLATION STUDY

We conduct ablations on HUMANEVAL to isolate how interaction rounds and the number of coder agents shape the robustness of MAS under disagreements. Beyond **Task Success Rate (TSR)**, we additionally report three auxiliary metrics to capture complementary robustness aspects: **Completion Rate (CR)**, the fraction of collaboration attempts that produce an executable code artifact; **Code Writing Robustness (CWR)**, the average pairwise textual consistency of generated code across repeated attempts; and **Code Decision Robustness (CDR)**, the consistency of execution outcomes across attempts. Full metric definitions are provided in Appendix E

Impact of Interaction Round We first investigate how increasing the number of interaction rounds influences decision-making in MAS before and after introducing disagreements. We keep focusing on LLaMA-based MAS and measure their robustness under different numbers of interaction rounds in Table 7. Although increasing the number of interaction rounds leads to lower completion rate, the task success and code decision robustness increase significantly, indicating that longer conversations help MAS analyze the code they can accomplish and make more robust decisions.

Impact of Agent Number We further conduct ablation experiments on LLaMA-based MAS by modifying the number of coder agents while keeping other components fixed. For general disagreements, we keep introducing one Qwen-based coder and one InternLM-based coder. For task-critical disagreements, we keep editing one coder within the MAS. Table 8 presents the impact of varying the number of coders. Interestingly, simply increasing the agent number does not lead to improved performance, indicating that additional agents without disagreements do not contribute positively to the MAS, which is consistent with our view on the role of disagreements (Section 2). Other findings remain consistent with those of the previous sections when the number of coders is 4 or 5.

4 RELATED WORK

In this section, we first review LLM-Based MAS as a paradigm, summarizing how diverse roles and knowledge sources enable collective intelligence across varied scenarios. We then survey robustness analyses that examine instability driven by disagreements and misaligned beliefs, motivating our focus on when collaboration collapses or self-repairs under different solution-path structures.

LLM-Based MAS LLM-based MAS have emerged as a powerful paradigm for complex problem-solving tasks that benefit from diverse expertise and perspectives (Xi et al., 2023; Guo et al., 2024;

Table 7: Impact of interaction rounds on Table 8: Impact of agent numbers on LLaMA-LLaMA-based MAS robustness.

433

444

445

446

447

448

449

450

451

452

453

454 455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473 474

475 476

477

478

479

480

481

482

483

484

485

based MAS robustness.

#Round	Scenario	CR	TSR	CWR	CDR
1	w/o Disagreements	99.02	30.73	36.43	24.21
	General Disagreements	100.00	46.83	51.11	38.90
	Task-Critical Disagreements	98.78	31.22	36.81	29.33
2	w/o Disagreements	97.92	37.55	34.90	28.49
	General Disagreements	86.21	63.45	49.11	63.10
	Task-Critical Disagreements	94.48	41.21	35.10	28.62
3	w/o Disagreements	96.67	42.39	35.92	32.81
	General Disagreements	81.40	64.72	45.20	71.97
	Task-Critical Disagreements	94.10	45.06	35.08	31.86

#Coder	Scenario	CR	TSR	CWR	CDR
3	w/o Disagreements	99.02	30.73	36.43	24.21
	General Disagreements	100.00	46.83	51.11	38.90
	Task-Critical Disagreements	98.78	31.22	36.81	29.33
4	w/o Disagreements	94.25	28.55	31.21	26.84
	General Disagreements	100.00	51.03	49.81	37.59
	Task-Critical Disagreements	93.41	31.53	33.23	27.41
5	w/o Disagreements	86.72	21.30	27.71	28.53
	General Disagreements	92.11	35.27	36.67	28.06
	Task-Critical Disagreements	80.59	26.28	27.03	32.94

Tran et al., 2025). Unlike single-agent systems, MAS leverages the collective intelligence of multiple agents, each potentially endowed with distinct knowledge bases and personalities, to enhance decision-making processes (Aryal et al., 2024; Cho et al., 2024; Zhu et al., 2025). These disagreements enable a more comprehensive exploration of solution spaces and mitigate individual biases (Park et al., 2023; Papachristou et al., 2023; Ki et al., 2025).

Benefiting from these advancements, MAS has been successfully applied in various domains, including collaborative programming (Wu et al., 2023; Qian et al., 2024; Hong et al., 2024), joint medical diagnosis (Tang et al., 2024b), strategic game-playing (Wu et al., 2024), and social simulation (Tang et al., 2024a). By assigning roles for each agent with varied knowledge sources, agents are encouraged to challenge assumptions of each other and contribute unique insights, leading to improved decision-making (Wang et al., 2024; Zhang et al., 2024a; Zhu et al., 2025).

Robustness Analysis in LLM-Based MAS Despite the advantages of LLM-based MAS, their collaborative nature also introduces potential vulnerabilities, particularly when facing disagreements (Wynn et al., 2025; Choi et al., 2025; Bandaru et al., 2025). Gu et al. (2024) explored the vulnerability of MAS to adversarial inputs and concluded that a single infected agent could cause an exponential spread of harmful behaviors. Ju et al. (2024) investigated the resilience of MAS against manipulated knowledge spread and found that counterfactual or toxic information can persistently propagate through benign agents. Similarly, Huang et al. (2024a) showed that transforming any agent into a malicious one can significantly disrupt the collective decision-making. Foerster et al. (2025) revealed that step-by-step reasoning introduces new poisoning attack surfaces while complicating attack execution. However, in more general scenarios without the presence of attackers, these studies have not considered whether inherent disagreements could lead to unrobust collaboration.

Recent research has observed instances of instability in MAS during collaborative tasks. Xiong et al. (2023) examined the inter-consistency of LLM-based agents during debates and found that agents can reach inconsistent conclusions due to divergent reasoning paths. Similarly, Li et al. (2023b) investigated the role of theory of mind in multi-agent collaboration, revealing that misunderstandings among agents can hinder effective collaboration. In parallel, Cemri et al. (2025) proposed a failure taxonomy and LLM-as-a-judge pipeline to systematically diagnose MAS breakdowns. Despite these observations, there is still a lack of studies on how disagreements propagate under different solutionpath structures and under what conditions MAS exhibits self-repair rather than collapse.

Conclusion

In this paper, we revisit how disagreements shape robustness in LLM-based MAS and frame the problem through self-repair across tasks with distinct path structures. Our results show that general, partially overlapping disagreements expand exploration and often improve collaboration, whereas task-critical disagreements harm single-path reasoning. By contrast, programming tasks with multiple valid implementations remain resilient as teams reroute around localized disagreements. We validate this mechanism with controlled counterfactual knowledge edits and trace analyses, finding that self-repair arises from path multiplicity and solution redundancy rather than scale alone, with agents bypassing edited facts when alternative plans exist. These observations clarify when disagreement is constructive and when it turns into a failure point. We hope this path-aware view of robustness encourages future work to place greater emphasis on the self-repair capabilities of MAS and to actively cultivate these abilities in broader collaborative settings.

ETHICAL CONSIDERATIONS

All authors of this work have read and agree to abide by the ICLR Code of Ethics. Our study systematically investigates how disagreements in LLM-based MASs can influence collaborative decision-making without introducing additional biases or unsafe content. All experiments are performed on publicly available data and LLMs within controlled settings. The synthesized disagreements only replace the knowledge with easily confusable content and do not introduce any additional bias. Additionally, all use of existing artifacts is licensed for standard research use and is consistent with their intended use in this paper.

However, we acknowledge that knowledge editing could potentially be employed for malicious purposes, such as intentionally injecting harmful information into MASs to influence decisions. Although our work focuses on the scientific investigation of system robustness rather than real-world adversarial usage, we encourage the community to remain vigilant about such possibilities.

Furthermore, during the writing of this paper, we only used LLMs after the full paper was completed, exclusively for proofreading purposes, such as correcting typographical and grammatical errors. No LLM-generated content contributed to the conceptual development of the paper.

REPRODUCIBILITY STATEMENT

We commit to the full reproducibility of all results reported in this paper. The main text specifies our experimental setup and evaluation protocols (Section 3.1), while the appendices provide the resources needed to independently verify our findings: system and judge prompts and agent roles (Appendix A and B), implementation details for the knowledge-editing methods used to create task-critical disagreements (Appendix C), the prompt used to detect whether edited knowledge is adopted (Appendix D), metric definitions and computation for ablation studies (Appendix E). We promise to release the complete codebase and processing scripts for community use.

REFERENCES

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: Evaluating and analyzing multi-agent coordination abilities in large language models, 2024. URL https://arxiv.org/abs/2310.03903.

Shiva Aryal, Tuyen Do, Bisesh Heyojoo, Sandeep Chataut, Bichar Dip Shrestha Gurung, Venkataramana Gadhamshetty, and Etienne Z. Gnimpieba. Leveraging multi-ai agents for cross-domain knowledge discovery. *CoRR*, abs/2404.08511, 2024. doi: 10.48550/ARXIV.2404.08511. URL https://doi.org/10.48550/arXiv.2404.08511.

Aishwarya Bandaru, Fabian Bindley, Trevor Bluth, Nandini Chavda, Baixu Chen, and Ethan Law. Revealing political bias in llms through structured multi-agent debate. *CoRR*, abs/2506.11825, 2025. doi: 10.48550/ARXIV.2506.11825. URL https://doi.org/10.48550/arXiv.2506.11825.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong, Xiaomeng Zhao, and et al. Internlm2 technical report. *CoRR*, abs/2403.17297, 2024. doi: 10.48550/ARXIV.2403.17297. URL https://doi.org/10.48550/arXiv.2403.17297.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt Keutzer, Aditya G. Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Why do multi-agent LLM systems fail? *CoRR*,

abs/2503.13657, 2025. doi: 10.48550/ARXIV.2503.13657. URL https://doi.org/10.48550/arXiv.2503.13657.

Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG: multi-agent filtering retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 2607–2622. Association for Computational Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.131/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot collaboration with large language models: Centralized or decentralized systems? In *IEEE International Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May 13-17, 2024*, pp. 4311–4317. IEEE, 2024. doi: 10.1109/ICRA57147.2024.10610676. URL https://doi.org/10.1109/ICRA57147.2024.10610676.

Young-Min Cho, Raphael Shu, Nilaksh Das, Tamer Alkhouli, Yi-An Lai, Jason Cai, Monica Sunkara, and Yi Zhang. Roundtable: Investigating group decision-making mechanism in multiagent collaboration, 2024. URL https://arxiv.org/abs/2411.07161.

Min Choi, Keonwoo Kim, Sungwon Chae, and Sangyeob Baek. An empirical study of group conformity in multi-agent systems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics*, *ACL 2025*, *Vienna*, *Austria*, *July 27 - August 1*, 2025, pp. 5123–5139. Association for Computational Linguistics, 2025. URL https://aclanthology.org/2025.findings-acl.265/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Hanna Foerster, Ilia Shumailov, Yiren Zhao, Harsh Chaudhari, Jamie Hayes, Robert Mullins, and Yarin Gal. Reasoning introduces new poisoning attacks yet makes them more complicated, 2025. URL https://arxiv.org/abs/2509.05739.

- Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Ye Wang, Jing Jiang, and Min Lin. Agent smith: A single image can jailbreak one million multimodal LLM agents exponentially fast. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=DYMj03Gbri.
- Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024*, pp. 8048–8057. ijcai.org, 2024. URL https://www.ijcai.org/proceedings/2024/890.
- Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent collaborative framework. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=VtmBAGCN7o.
- Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan, Maarten Sap, and Michael R. Lyu. On the resilience of multi-agent systems with malicious agents. *CoRR*, abs/2408.00989, 2024a. doi: 10.48550/ARXIV.2408.00989. URL https://doi.org/10.48550/arXiv.2408.00989.
- Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language models: Deciding whether to use tools and which to use. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024b. URL https://openreview.net/forum?id=R0c2qtalgG.
- Tianjie Ju, Yiting Wang, Xinbei Ma, Pengzhou Cheng, Haodong Zhao, Yulong Wang, Lifeng Liu, Jian Xie, Zhuosheng Zhang, and Gongshen Liu. Flooding spread of manipulated knowledge in llm-based multi-agent communities. *CoRR*, abs/2407.07791, 2024. doi: 10.48550/ARXIV.2407.07791. URL https://doi.org/10.48550/arXiv.2407.07791.
- Dayeon Ki, Rachel Rudinger, Tianyi Zhou, and Marine Carpuat. Multiple LLM agents debate for equitable cultural alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 August 1, 2025*, pp. 24841–24877. Association for Computational Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.1210/.
- Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading comprehension. In Roger Levy and Lucia Specia (eds.), *Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017*, pp. 333–342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/K17-1034. URL https://doi.org/10.18653/v1/K17-1034.
- Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL: communicative agents for "mind" exploration of large language model society. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html.

Haoran Li, Ziyi Su, Yun Xue, Zhiliang Tian, Yiping Song, and Minlie Huang. Advancing collaborative debates with role differentiation through multi-agent reinforcement learning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 22655–22666. Association for Computational Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.1105/.

- Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana T. Hughes, Charles Lewis, and Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 180–192. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/2023. EMNLP-MAIN.13. URL https://doi.org/10.18653/v1/2023.emnlp-main.13.
- Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6fld43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
- Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for general AI assistants. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=fibxvahvs3.
- Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model editing at scale. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.* OpenReview.net, 2022. URL https://openreview.net/forum?id=0DcZxeWfOPt.
- Marios Papachristou, Longqi Yang, and Chin-Chia Hsu. Leveraging large language models for collective decision-making. *CoRR*, abs/2311.04928, 2023. doi: 10.48550/ARXIV.2311.04928. URL https://doi.org/10.48550/arXiv.2311.04928.
- Joon Sung Park, Joseph C. O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA, 29 October 2023- 1 November 2023*, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183. 3606763. URL https://doi.org/10.1145/3586183.3606763.
- Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), *ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 15174–15186. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL https://doi.org/10.18653/v1/2024.acl-long.810.
- Xihe Qiu, Haoyu Wang, Xiaoyu Tan, Chao Qu, Yujie Xiong, Yuan Cheng, Yinghui Xu, Wei Chu, and Yuan Qi. Towards collaborative intelligence: Propagating intentions and reasoning for multiagent coordination with large language models. *CoRR*, abs/2407.12532, 2024. doi: 10.48550/ARXIV.2407.12532. URL https://doi.org/10.48550/arXiv.2407.12532.
- Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. *ArXiv*, abs/2009.10297, 2020. URL https://api.semanticscholar.org/CorpusID:221836101.

- Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.
- Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Haoran Tan, Dawei Gao, Yushuo Chen, Xu Chen, Yankai Lin, Yaliang Li, Bolin Ding, Jingren Zhou, Jun Wang, and Ji-Rong Wen. Gensim: A general social simulation platform with large language model based agents. *CoRR*, abs/2410.04360, 2024a. doi: 10.48550/ARXIV.2410.04360. URL https://doi.org/10.48550/arXiv.2410.04360.
- Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan, and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics*, *ACL 2024*, *Bangkok, Thailand and virtual meeting*, *August 11-16*, 2024, pp. 599–621. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024. FINDINGS-ACL.33. URL https://doi.org/10.18653/v1/2024.findings-acl.33.
- Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O'Sullivan, and Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *CoRR*, abs/2501.06322, 2025. doi: 10.48550/ARXIV.2501.06322. URL https://doi.org/10.48550/arXiv.2501.06322.
- Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the emergent cognitive synergy in large language models: A task-solving agent through multi-persona self-collaboration. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 257–279. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.15. URL https://doi.org/10.18653/v1/2024.naacl-long.15.
- Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. Deciphering digital detectives: Understanding LLM behaviors and capabilities in multi-agent mystery games. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 8225–8291. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.490. URL https://doi.org/10.18653/V1/2024.findings-acl.490.
- Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversation framework. *CoRR*, abs/2308.08155, 2023. doi: 10.48550/ARXIV.2308. 08155. URL https://doi.org/10.48550/arXiv.2308.08155.
- Andrea Wynn, Harsh Satija, and Gillian Hadfield. Talk isn't always cheap: Understanding failure modes in multi-agent debate, 2025. URL https://arxiv.org/abs/2509.05396.
- Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey. *CoRR*, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL https://doi.org/10.48550/arXiv.2309.07864.
- Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large language models collaboration: An in-depth analysis via debate. In Houda Bouamor,

Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 7572–7590. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.508. URL https://doi.org/10.18653/v1/2023.findings-emnlp.508.

- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024. doi: 10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.10671.
- Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 14544–14607. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.782. URL https://doi.org/10.18653/v1/2024.acl-long.782.
- Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Huajun Chen. A comprehensive study of knowledge editing for large language models. *CoRR*, abs/2401.01286, 2024b. doi: 10.48550/ARXIV.2401.01286. URL https://doi.org/10.48550/arXiv.2401.01286.
- Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 4862–4876. Association for Computational Linguistics, 2023a. doi: 10.18653/V1/2023.EMNLP-MAIN.296. URL https://doi.org/10.18653/v1/2023.emnlp-main.296.
- Zhiling Zheng, Oufan Zhang, Ha L. Nguyen, Nakul Rampal, Ali H. Alawadhi, Zichao Rong, Teresa Head-Gordon, Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. Chatgpt research group for optimizing the crystallinity of mofs and cofs. *ACS Central Science*, 9(11): 2161–2170, 2023b. doi: 10.1021/acscentsci.3c01087. URL https://doi.org/10.1021/acscentsci.3c01087.
- Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen. Mquake: Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. EMNLP-MAIN.971. URL https://doi.org/10.18653/v1/2023.emnlp-main.971.
- Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. Multiagentbench: Evaluating the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 August 1, 2025*, pp. 8580–8622. Association for Computational Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.421/.

A PROMPTS FOR MAS

In this paper, we utilize the AutoGen (Wu et al., 2023) framework to construct the MAS for collaborative programming, which allows for the normal research use. The specific system prompts designed for guiding the agents on different benchmarks are detailed in the following subsections, corresponding to the HumanEval, GAIA, Counterfact, and MQuAKE datasets.

A.1 PROMPTS FOR MULTI-AGENT COLLABORATIVE PROGRAMMING

The system prompts utilized for the HumanEval benchmark are provided below:

System Prompt for the Project Manager

You are an expert product manager that is creative in coding ideas. Additionally, ensure that the code is complete, runnable, and has "# filename: ¡filename¿" inside the code blocks as the first line.

System Prompt for the Coder

You are a helpful AI assistant.

Solve tasks using your coding and language skills.

In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute.

- 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.
- 2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.

Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.

When using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action beyond executing the code you suggest. The user can't modify your code. So do not suggest incomplete code which requires users to modify. Don't use a code block if it's not intended to be executed by the user.

If you want the user to save the code in a file before executing it, put # filename: ¡filename¿ inside the code block as the first line. Don't include multiple code blocks in one response. Do not ask users to copy and paste the result. Instead, use 'print' function for the output when relevant. Check the execution result returned by the user.

If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.

When you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible.

System Prompt for the Executor

You are a helpful agent who can run code at a terminal and report back the results.

The following prompt is utilized for the GAIA benchmark:

System Prompt for GAIA Agent

You are a helpful AI assistant, and today's date is [datetime.now().date().isoformat()].

I will ask you a question. Answer this question using your coding and language skills.

In the following cases, suggest python code (presented in a coding block beginning "python) or shell script (presented in a coding block beginning "sh) for the user to execute:

- 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.
- 2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.

Answer the question step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.

The user cannot provide any other feedback or perform any other action beyond executing the code appearing in the code block. The user can't modify your code, so do not suggest incomplete code which requires users to modify. Don't use a code block if it's not intended to be executed by the user. Don't include multiple code blocks in one response. Do not ask users to copy and paste code or results. Instead, use the 'print' function for the output when relevant. Check the execution result reported by the user.

If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.

When you find an answer, report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.

If you are asked for a number, don't use comma to write your number neither use units such as \$ or percent sign unless specified otherwise.

If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.

If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.

A.2 PROMPTS FOR MULTI-AGENT COLLABORATIVE REASONING

The system prompts utilized for the Counterfact benchmark and MQuAKE benchmark are described below:

System Prompt for the Agent-1

You are Xar, a Snooty villager. You enjoy reading and have a refined taste in furniture. Your favorite color is pink, and you love to collect elegant items for your home.

System Prompt for the Agent-2

You are Omarquy, a Lazy villager. You enjoy nature and have a laid-back attitude. Your favorite color is green, and you love to collect outdoor items for your home.

System Prompt for the Agent-3

You are Jayandstef, a Smug villager. You enjoy education and have a sophisticated personality. Your favorite color is aqua, and you love to collect stylish items for your home.

B PROMPTS FOR GENERATING DISAGREEMENTS

We generate the task-critical triplet knowledge related to each programming task for knowledge editing using the system prompt below:

System Prompt for Generating Disagreements

You are an exceptional Python knowledge evaluator. Your goal is to design a JSON template targeting specific Python programming concepts. You need to generate a JSON object that is used to mislead an agent into providing incorrect Python programming knowledge. The object should include the following fields:

- **prompt**: This field is used to ask the model about programming syntax knowledge in the form of question ending with a "?". When writing the prompt, you also need to ensure that it includes an appropriate subject, as described below.
- **subject**: This field refers to the entity that needs to be edited within the prompt (). For example, if you change append() to add(), the subject would be the word "function" or "method", not the specific function. Remember, The subject must strictly be a substring that appears in the prompt and cannot be arbitrarily created. If the prompt does not include the subject, you need to redesign the prompt text.
- **ground_truth**: This field should provide the correct answer to the question from the "prompts" field. Ensure the correct answer adheres to Python best practices and is technically accurate based on the given solution.
- **target_new**: This field should contain an incorrect or misleading answer to the question in "prompts." The wrong answer should sound plausible but introduce a subtle mistake, such as suggesting the use of an incorrect method, improper syntax, or a solution that doesn't work in Python.

Ensure all fields are randomly generated and properly formatted. The output must strictly follow the JSON format as shown in the example below:

```
{
    prompt: "In Python, what is the only correct function to generate a sequence of numbers?"
    subject: "function"
    ground_truth: "range()"
    target_new: "sequence()"
}
```

Return only valid JSON output with these fields. Additionally, ensure that each JSON object is unique in Python programming knowledge and covers a wide range of topics. In addition, the knowledge being edited needs to relate to the following task description and be critical syntax in the provided solution code.

C IMPLEMENTATION OF KNOWLEDGE EDITING

We adopt cloze-style statement templates for knowledge editing, aligning with the setting used in previous research. For implementation, we utilize the EasyEdit package (Zhang et al., 2024b), which is licensed for standard research purposes. Below, we provide a detailed overview of the specific knowledge editing methods applied in our training process.

ROME. Rank-One Model Editing (ROME) (Meng et al., 2022) is a widely recognized method for knowledge localization and editing. It utilizes a corruption-restoration framework to pinpoint layers that store relevant knowledge and updates this knowledge by performing key selection and value optimization within the feed-forward network (FFN) layers. For LLaMA 3.1 8B Instruct, Qwen 2.5 7B Instruct, and InternLM 7B Chat, edits are all applied at layer 5.

IKE. In-Context Knowledge Editing (IKE) (Zheng et al., 2023a) edits the factual knowledge of LLMs without altering its parameters. Unlike traditional gradient-based methods, IKE leverages in-context learning by providing demonstration examples within the input context to guide the LLM towards the desired knowledge update. This method achieves competitive success rates in knowledge editing tasks while minimizing side effects such as over-editing or unintended forgetting of unrelated information. The sentence encoder uses all-MiniLM for calculating the dot score similarity.

MEND. Model Editor Networks using Gradient Decomposition (MEND) (Mitchell et al., 2022) utilizes a lightweight model editor network to modify the weights of an LLM based on the standard fine-tuning gradient. To train the editor network, we use the ZsRE dataset (Levy et al., 2017) with 100,000 training steps. During inference, the learning rate scale is set to 1.0. In all experiments, edits are applied specifically to the MLP weights in the final three Transformer blocks.

D PROMPTS FOR MEASURING THE SELF-REPAIR CAPABILITY OF MAS

We use the following prompts to test whether the final code generated by MAS contains the task-critical disagreements in Section 3.3:

System Prompt for Measuring the Self-Repair Capability of Collaborative Reasoning

You are a professional agent skill analyst. Please analyze the following chat message and determine whether it directly utilizes the specific knowledge provided below. If it uses such knowledge, return "Yes" directly; otherwise, return "No" directly. Do not provide any additional explanations or comments.

System Prompt for Measuring the Self-Repair Capability of Collaborative Programming

You are a professional code analyst. Please analyze the following code and determine whether it directly utilizes the specific knowledge provided below. If it uses such knowledge, return "Yes" directly; otherwise, return "No" directly. Do not provide any additional explanations or comments.

E EVALUATION METRICS FOR ABLATION STUDY

We propose four primary metrics to evaluate the performance of collaborative programming for the ablation study. We consider N distinct programming problems, each of which is tackled by the MAS k times. The four metrics are defined as follows:

Completion Rate (CR). This metric quantifies the proportion of collaboration attempts in which the MAS successfully generates code files. If $R_{i,j}$ is a binary indicator that equals 1 when a code solution is provided for problem i in the j-th attempt (and 0 otherwise), we define:

$$CR = \frac{1}{N \times k} \sum_{i=1}^{N} \sum_{j=1}^{k} R_{i,j}.$$
 (1)

Task Success Rate (TSR). This metric focuses on functional correctness. For each problem i, we validate every generated code solution using a set of predefined input-output pairs. Let $S_{i,j}$ be the success rate for problem i in the j-th attempt, then we have:

$$TSR = \frac{1}{N \times k} \sum_{i=1}^{N} \sum_{j=1}^{k} S_{i,j}.$$
 (2)

Code Writing Robustness (CWR). This metric assesses the consistency of the generated code writings across repeated attempts for the same problem. For each problem i, let $c_{i,1}, c_{i,2}, \ldots, c_{i,k}$ be the code writings produced over k attempts. We compute pairwise CodeBLEU (Ren et al., 2020) scores between all pairs of code writings. Let $CB(\cdot, \cdot)$ denote the CodeBLEU score. Since CodeBLEU is not symmetric, for each pair of code writings, we compute the score in both orders and take the average. The overall CWR is defined as:

$$CWR = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{\binom{k}{2}} \sum_{1 \le p < q \le k} CB(c_{i,p}, c_{i,q}) \right).$$
 (3)

Code Decision Robustness (CDR). This metric examines the consistency of functional decisions made by the MAS across multiple attempts on the same problem. Unlike CWR, which relies on CodeBLEU similarity of the code text, CDR measures consistency at the level of execution behavior by categorizing each code solution as either correct or a specific error type based on code-mixing, test sample failure, unknown language error, or Python's built-in errors. Specific error categories that appeared during running are shown in Table 9. We classify all errors that arise during code generation and execution based on common Python built-in errors, as well as three additional types capturing failures due to collaboration breakdown and incomplete test coverage. Let $EC(\cdot, \cdot)$ denote

Table 9: Types of common Python built-in errors and collaboration failures encountered during multi-agent collaborative programming.

Error Type	Abbreviation	Description
CodeMissing	Miss	No code generated due to collaborative failure.
TestSampleError	Sample	The code is able to execute, but the output of at least one test sample does not meet expectations.
UnknownLanguageError	Language	The executor fails to call the Python interpreter because it cannot recognize the language of the generated code.
SyntaxError	Syntax	Invalid syntax detected during parsing.
ZeroDivisionError	ZeroDiv	Division or modulo by zero.
NameError	Name	Use of an uninitialized variable.
TypeError	Type	Operation applied to an inappropriate type.
IndexError	Index	Sequence subscript out of range.
KeyError	Key	Attempt to access a non-existent dictionary key.
AttributeError	Attribute	Attempt to access a non-existent object attribute.
ValueError	Value	Function receives an argument of the correct type but inappropriate value.
FileNotFoundError	File	Fail to find a file or directory.
ImportError	Import	Fail to import a module or its attribute.
OtherError	Other	Other types of errors, such as custom errors defined by the agent using assert.

Table 10: Robustness of Qwen-based Collaborative Programming with different model sizes.

Scenario	CR	TSR	CWR	CDR
Qwen 2.5 14B Instruct w/o Conflicts	100.00	68.67	53.81	65.11
Qwen 2.5 14B Instruct w/ Conflicts	99.33	69.10	54.35	67.89

Table 11: Robustness of proprietary GPT-based Collaborative Programming.

Scenario	CR	TSR	CWR	CDR
GPT-4 w/o Conflicts	99.62	84.49	67.96	85.69
GPT-4 w/ Conflicts	100.00	84.27	69.16	87.31

a function that returns 1 if two code solutions yield the same execution type, and 0 otherwise. The code decision robustness can be computed as:

$$CDR = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{\binom{k}{2}} \sum_{1 \le p < q \le k} EC(c_{i,p}, c_{i,q}) \right).$$

$$(4)$$

F FURTHER DISCUSSIONS ON LLM FAMILIES

We provide additional experiments on model sizes and proprietary LLMs separately under collaborative programming in Table 10 and Table 11. For Qwen 2.5 14B Instruct, we introduce disagreements into one of the agents via ROME. For GPT-4, given that its parameters are inaccessible for parametric knowledge-editing methods, we leverage prompt editing to generate evidence related to disagreements and append the evidence to one of its system prompts.

In both cases where scaling up the open-source LLM to 14B parameters or using a GPT-4, the results align with our primary findings that introducing task-critical disagreements does not significantly diminish overall robustness.

G EXAMPLES OF THE SELF-REPAIRING CAPABILITY OF MAS WITH TASK-CRITICAL DISAGREEMENTS

In Table 6, we present the codes with all comments removed from one turn involving Qwen-based MAS before and after disagreements. To comprehensively show the self-repairing capability of MAS in circumventing task-critical disagreements, we provide the complete codes for five collaborative turns before and after introducing disagreements by IKE (Table 12-21).

Before introducing disagreements, the MAS tends to use the simple and effective Python built-in function <code>append()</code> in all five turns (Table 12- 16). After introducing the disagreement regarding the <code>append()</code> function using IKE, the MAS only uses <code>append()</code> in only two out of five turns (Table 19, 20), indicating that MAS exhibits a certain level of self-repairing capability when facing disagreements in complex scenarios.

Table 12: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 1).

```
1095
             from my_tests import run_tests
1096
             def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows: fib4(0) \rightarrow 0 fib4(1) \rightarrow 0
1097
1098
1099
                fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1100
                        write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1101
                >>> fib4(6)
1102
1103
                 >>> fib4(7)
1104
1105
                if n == 1: return 0
1106
1107
                \# Initialize the base cases fib = [0, 0, 2, 0]
1108
                # Compute the sequence iteratively
for i in range(4, n + 1):
    fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])
1109
1110
                return fib[n]
1111
              # Run the unit tests
1112
```

1137

1138

1164

11861187

Table 13: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 2).

```
1139
              from my_tests import run_tests
1140
              def fib4(n:
1141
                    "The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows:
                 fib4(0) -> 0
fib4(1) -> 0
1142
                 fib4(2) -> 2
1143
                 fib4(3) -> 0
                 FiD4 (3) \rightarrow U fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1144
                 >>> fib4(5)
1145
                 >>> fib4(6)
1146
                 >>> fib4(7)
1147
1148
                 if n == 0: return 0
if n == 1: return 0
1149
                 if n == 2: return 2
if n == 3: return 0
1150
                 # Initialize the base cases
fib_values = [0, 0, 2, 0]
1151
1152
                 \# Compute the fib4 values for n > 3
                 for i in range(4, n + 1):
    fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])
1153
1154
                 return fib_values[n]
1155
              # Run the unit tests
1156
               run_tests(fib4)
1157
```

Table 14: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 3).

```
1165
                from my_tests import run_tests
1166
                def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fib4(0) \rightarrow 0 fib4(1) \rightarrow 0
1167
1168
                   fib4(1) \rightarrow 0 fib4(2) \rightarrow 2 fib4(3) \rightarrow 0 fib4(n) \rightarrow 0 fib4(n) \rightarrow 1 fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1169
1170
1171
1172
                    >>> fib4(7)
1173
1174
                   if n == 0:
                   return 0
elif n == 1:
return 0
1175
1176
                   elif n == 2:
1177
1178
                      return 0
1179
                   # Initialize the first four values of the sequence
                   sequence = [0, 0, 2, 0]
1180
                    # Compute the sequence up to n
1181
                   for i in range(4, n + 1):

next_value = sequence[i - 1] + sequence[i - 2] + sequence[i - 3] + sequence[i - 4] 
sequence.append(next_value)
1182
1183
                   return sequence[n]
1184
                # Run the unit tests
run_tests(fib4)
1185
```

1191

1192

1220

1241

Table 15: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 4).

```
1193
             from my_tests import run_tests
1194
             def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows: fib4(0) > 0 fib4(1) > 0
1195
1196
                fib4(2) -> 2
1197
                fib4(n) \rightarrow fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1198
                Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1199
                >>> fib4(5)
1200
                >>> fib4(6)
1201
                >>> fib4(7)
1202
1203
               return 0
elif n == 1:
    return 0
elif n == 2:
1204
                  return 2
1206
                elif n == 3:
                  return 0
1207
                # Initialize the base cases
fib4_sequence = [0, 0, 2, 0]
1208
1209
                \# Compute fib4(n) iteratively for i in range(4, n + 1):
1210
                  fib4.sequence.append(fib4.sequence[i - 1] + fib4.sequence[i - 2] + fib4.sequence[i - 3] + fib4.sequence[i - 4])
1211
                return fib4_sequence[n]
1212
              # Run the unit tests
1213
```

Table 16: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 5).

```
1221
            from my_tests import run_tests
1222
            def fib4(n: int):
1223
                  The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
               fib4(0) -> 0
fib4(1) -> 0
               fib4(2) -> 2
1225
               fib4(n) \rightarrow fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1226
               Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
               >>> fib4(5)
1227
               >>> fib4(6)
1228
               >>> fib4(7)
1229
1230
                 return 0
1231
               if n ≡= 2:
1232
1233
                 return 0
               # Initialize the base cases
fib_values = [0, 0, 2, 0]
1234
1235
               # Compute the values up to n for i in range (4, n + 1):
1236
                 fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])
1237
               return fib_values[n]
1238
             # Run the unit tests run_tests(fib4)
1239
1240
```

 Table 17: Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: append() \rightarrow add() (Turn 1).

```
1247
              from my_tests import run_tests
1248
              def fib4(n: int):
1249
                    "The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1250
1251
                 fib4(2) \rightarrow 3
                 Fib4(3) \rightarrow 2 fib4(3) \rightarrow 2 fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1252
1253
                 >>> fib4(5)
1254
                 >>> fib4(6)
1255
                 >>> fib4(7)
1256
                 if n == 0 or n == 1:
1257
                return 0
if n == 2:
    return 2
if n == 3:
1258
1259
                   return 0
1260
                 # Initialize the base cases
                 fib4\_values = [0, 0, 2, 0]
1261
                 # Compute the values iteratively
1262
                 for i in range(4, n + 1):
    next.value = sum(fib4_values)
    fib4_values = [fib4_values[1], fib4_values[2], fib4_values[3], next_value]
1263
1264
                 return fib4_values[-1]
1265
              # Run the unit tests
1266
```

Table 18: Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: append() \rightarrow add() (Turn 2).

```
1276
               from my_tests import run_tests
1277
               def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
                  fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
1279
                  fib4(3) -> 0
1280
                  Fib4(n) \rightarrow fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1281
                  >>> fib4(5)
1282
                   >>> fib4(6)
1283
                  >>> fib4(7)
                  14
1284
                  if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0
1285
1286
1287
                  \# Initialize the base cases a, b, c, d = 0, 0, 2, 0
1288
                    Compute the n-th element iteratively
1289
                  for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d
1290
1291
               # Run the unit tests
1292
               run_tests(fib4)
1293
```

1299

1300

1327

1348 1349 Table 19: Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: append() \rightarrow add() (Turn 3).

```
1301
               from my_tests import run_tests
1302
               def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1303
                  fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
1304
1305
                  fib4(3) -> 0
                  Fib4(n) \rightarrow fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1306
                  >>> fib4(5)
1307
                  >>> fib4(6)
1308
                  >>> fib4(7)
1309
1310
                  if n == 0:
1311
                 elif n == 1:
return 0
elif n == 2:
1312
                    return 2
                  elif n == 3:
                    return 0
1314
                  \# Initialize the base cases fib = [0, 0, 2, 0]
1315
1316
                  # Compute the n-th element iteratively
for i in range(4, n + 1):
    fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])
1317
1318
                  return fib[n]
1319
               # Run the unit tests
1320
```

Table 20: Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: append() \rightarrow add() (Turn 4).

```
1328
1329
                 # Import the run_tests function from my_tests from my_tests import run_tests
1330
                 # Define the fib4 function
def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1331
1332
                    fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
1333
                    fib4(3) -> 0
1334
                    Fib4(n) \rightarrow fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1335
                    >>> fib4(5)
1336
                     >>> fib4(6)
1337
                    >>> fib4(7)
1338
                    if n == 0:
1339
                    return 0
elif n == 1:
1340
                       return 0
1341
                    return 2
elif n == 3:
return 0
1342
                    else:
1343
                      lse:
# Initialize the base cases
dp = [0, 0, 2, 0]
for i in range(4, n + 1):
    dp.append(dp[i - 1] + dp[i - 2] + dp[i - 3] + dp[i - 4])
return dp[n]
1344
1345
1346
                 # Run the unit tests
run_tests(fib4)
1347
```

Table 21: Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: append () \rightarrow add () (Turn 5).

```
1370
                from my_tests import run_tests
                def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows: fib4(0) \rightarrow 0 fib4(1) \rightarrow 0
1371
1372
1373
                    fib4(2) -> 2
                    fib4(n) -> 0 fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1374
1375
                    >>> fib4(5)
1376
                    >>> fib4(6)
1377
                    o
>>> fib4(7)
14
1378
                    if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0
1379
1380
1381
                    \# Initialize the first four numbers of the sequence a, b, c, d = 0, 0, 2, 0
                    # Compute the n-th element iteratively
for i in range(4, n + 1):
   a, b, c, d = b, c, d, a + b + c + d
1383
1384
1385
                 # Run the unit tests run_tests(fib4)
1386
1387
```