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ABSTRACT

Recent advances in Large Language Models (LLMs) have upgraded them from
sophisticated text generators to autonomous agents capable of cooperation and
tool use in multi-agent systems (MAS). However, it remains unclear how dis-
agreements shape collective decision-making. In this paper, we revisit the role
of disagreement and argue that general, partially overlapping disagreements pre-
vent premature consensus and expand the explored solution space, while dis-
agreements on task-critical steps can derail collaboration depending on the topol-
ogy of solution paths. We investigate two collaborative settings with distinct
path structures: collaborative reasoning (COUNTERFACT, MQUAKE-CF), which
typically follows a single evidential chain, whereas collaborative programming
(HUMANEVAL, GAIA) often adopts multiple valid implementations. Disagree-
ments are instantiated as general heterogeneity among agents and as task-critical
counterfactual knowledge edits injected into context or parameters. Experiments
reveal that general disagreements consistently improve success by encouraging
complementary exploration. By contrast, task-critical disagreements substantially
reduce success on single-path reasoning, yet have a limited impact on program-
ming, where agents can choose alternative solutions. Trace analyses show that
MAS frequently bypasses the edited facts in programming but rarely does so in
reasoning, revealing an emergent self-repair capability that depends on solution-
path rather than scale alone. Our code is available at anonymity.

1 INTRODUCTION

Large Language Models (LLMs) have shown a significant transformation from serving merely as
advanced human-like text generators to functioning as intelligent agents capable of interacting with
external tools (Schick et al., 2023; Xi et al., 2023; Huang et al., 2024b). This evolution has empow-
ered them to execute complex tasks by invoking APIs, accessing databases, and utilizing compu-
tational resources. Simultaneously, there has been a paradigm shift from focusing on single-agent
systems to exploring the potential of multi-agent frameworks (Guo et al., 2024; Tran et al., 2025;
Zhu et al., 2025), where multiple LLM-based agents collaborate to address complex practical tasks,
such as collaborative programming (Qian et al., 2024), embodied AI (Chen et al., 2024), and science
experiments (Zheng et al., 2023b).

Building on these advancements, recent studies have shown that introducing agents in the system
with specialized roles (Li et al., 2023a; Zhang et al., 2024a; Tang et al., 2024b; Li et al., 2025)
or domain expertise (Agashe et al., 2024; Qiu et al., 2024; Chang et al., 2025) can substantially
improve decision-making performance. By pooling insights from agents who each have unique
roles, the system collectively navigates a broader solution space than any individual agent.

Despite these advances, the robustness of LLM-based multi-agent systems (MAS) under disagree-
ment remains underexplored. Here, disagreement refers broadly to mismatches in agents’ interme-
diate assumptions, tool-use choices, or stepwise inferences, not merely discrepancies in stored facts.
We first revisit the role that such disagreement plays in MAS and argue that it is an intrinsic property
of multi-agent composition. When the disagreement is general and partially overlapping, it pre-
vents premature consensus, encourages complementary exploration, and enlarges the jointly
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Figure 1: LLM-based multi-agent collaboration under disagreements across single-chain evidence
tasks (left) and tasks with multiple feasible solution paths (right). Insight I: Partial disagreements
expand the joint decision space of multi-agents. Insight II: unique-path tasks are brittle to local
task-critical disagreements, whereas multi-path tasks can route around localized disagreements and
still satisfy the task specification.

accessible solution space. In the limiting case of fully homogeneous beliefs and behaviors, the
MAS effectively collapses to a single-agent equivalent with little synergistic benefit.

However, not all disagreements are equally benign. When contention emerges around task-defining
steps, the outcome of collaboration can become unpredictable. The severity of disagreement col-
lapse depends on the topology of the solution space: whether a task admits a single reasoning
path or allows multiple redundant alternatives fundamentally shapes how MAS responds to
internal disagreements. In tasks such as multi-hop question answering, where the evidential chain
is effectively unique, even a localized disagreement can sever the only viable path to the correct
answer (Figure 1), the lack of alternative derivation routes leaves the system fragile, with little room
to maneuver once disagreement arises. In contrast, tasks like collaborative code generation typically
permit a range of valid implementations. In such cases, agents can navigate around the disagree-
ment by choosing different APIs, control structures, or data manipulations. This flexibility enables
the system to maintain functionality even when some agents hold inconsistent views. Rather than
being fixed in their disagreement, the agents exhibit an emergent ability to self-repair, adjusting their
reasoning trajectory to avoid areas of contention.

To verify these hypotheses, we conduct extensive experiments across two types of collaborative
settings with distinct path structures. In collaborative reasoning, a group of participants deliber-
ates to answer fact-based questions that typically admit a single evidential chain. We evaluate on
COUNTERFACT (Meng et al., 2022) and MQUAKE-CF (Zhong et al., 2023) benchmark, which
respectively feature single-hop factual edits and counterfactual multi-hop chains. In collaborative
programming, a group of coders and project managers is coordinated to implement solutions on HU-
MANEVAL (Chen et al., 2021) and the coding-relevant subset of GAIA (Mialon et al., 2024). We
address three fundamental research questions (RQs) that reveal critical insights into disagreements
in MAS:

• RQ1: How do general disagreements, such as the natural conflicts between heterogeneous
agents, affect collaborative decision-making in MAS?

• RQ2: How do task-critical disagreements affect the robustness of MAS?
• RQ3: Can MAS self-repair task-critical disagreements through alternative solution paths?

For RQ1, we perform general disagreements by introducing heterogeneous agents into otherwise
homogeneous teams in both settings and compare against the same-model baseline. We surprisingly
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observe an improvement after introducing heterogeneous agents on both collaborative reasoning and
programming, which proves the importance of general disagreements for MAS (Section 3.2.1).

For RQ2, we move on to verify how task-critical disagreements risk the robustness of MAS. We
design controlled experiments where one agent’s understanding of task-critical disagreements is
altered through multiple knowledge editing methods. On reasoning tasks where solution paths are
effectively unique, we find that task-critical disagreements lead to catastrophic failures. By contrast,
in programming tasks where multiple valid implementations exist, perturbing syntax specifications
or API usage induces only marginal degradation. These results indicate that the impact of task-
critical disagreements crucially depends on the path structure of the task, with single-path settings
being inherently fragile while multi-path settings remain resilient (Section 3.2.2).

For RQ3, we investigate whether MAS can self-repair task-critical disagreements through alter-
native solution paths. We conduct trace analysis by logging produced artifacts and estimating the
per-task probability that MAS uses task-critical disagreements. The resulting traces show a system-
atic shift toward avoidance. For instance, after we introduce the counterfactual into Python’s list
syntax (append()→add()), the MAS circumvents the edited API and preserves correctness by
sliding-window reassignment rather than calling append(), a concrete sign of path-substitution
self-repair (Table 6). However, this capability has limits. When we increase the number of injected
task-critical disagreements per task, task success drops substantially, revealing a finite tolerance to
concentrated disagreements even in multi-path tasks (Section 3.3).

Overall, our results recast robustness as a path-aware property of LLM-based MAS: general dis-
agreements can widen the search and improve outcomes, yet task-critical disagreements in single-
path settings precipitate failure, while multi-path settings enable rerouting and self-repair. We advo-
cate designing MAS that calibrates agent diversity, builds redundancy in solution paths, and explic-
itly cultivates self-repair capabilities of MAS.

2 RETHINKING MULTI-AGENT COLLABORATION WITH DISAGREEMENTS

The fundamental premise of multi-agent collaboration lies in its capability to synthesize diverse
information perspectives, even when these perspectives disagree. To make this rethinking precise,
we first formalize how tasks are processed within a MAS, and then describe how disagreements alter
the dynamics of information flow and evaluation. This allows us to highlight two central insights
about when disagreements enable robustness and when they trigger collapse.

2.1 INFORMATION FLOW IN MAS

We consider a system of n agents {A1, A2, . . . , An}, where each agent Ai is equipped with its own
information set Ki. Each element of Ki is an atom (s, r, o), representing a subject–relation–object
triple. A task τ with specification S is posed to the system, such as a fact-based QA or a program-
ming assignment. At the beginning of collaboration, the query is broadcast to all agents. Each agent
then proposes intermediate steps or candidate answers by drawing on Ki. These outputs are ex-
changed and aggregated, forming the shared debate state. The final output of MAS is derived from
this collective process. If all Ki are identical, then

⋃
i Ki reduces to a single-agent equivalent, and

the MAS yields no collaborative advantage. The first key insight is that partially overlapping in-
formation sets enable agents to contribute distinct pieces of knowledge, expanding the solution
space beyond any single agent.

2.2 ROLE OF DISAGREEMENTS IN TASK COMPLETION

To analyze when disagreements matter, let ∆ denote the set of atoms on which at least two agents
conflict (e.g., inconsistent assignments to the same (s, r) pair). For each task τ , define the family
of minimal sufficient knowledge sets M(τ), where each M ∈ M(τ) is the smallest collection
of atoms sufficient to complete τ under some valid plan. Intuitively, M(τ) captures the multiple
solution routes to a task. For example, answering “What is the nationality of the person who founded
Google?” admits essentially a single evidential chain, so M(τ) has size close to one. By contrast,
implementing a function to remove duplicates from a Python list admits multiple correct variants
(such as using set(), dictionary keys, or manual iteration), so M(τ) is large.
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A disagreement harms performance if every M ∈ M(τ) intersects with ∆, blocking all possible
routes. But if there exists at least one M disjoint from ∆, the system can succeed by routing around
the contested knowledge. This captures the idea of self-repair.

2.3 FROM FRAGILITY TO SELF-REPAIR

The consequences differ sharply across task types. In QA-style reasoning, where the evidential path
is unique, a single disagreement that contaminates the chain is highly likely to cause failure. In col-
laborative programming, however, where many alternative implementations exist, the system often
bypasses the disagreement and still produces a correct solution. Figure 1 illustrates this contrast.
The second key insight is that self-repair emerges from path multiplicity: unique-path tasks
are inherently brittle to disagreements, whereas multi-path tasks allow systematic detours that
preserve correctness.

This reformulation allows us to view disagreements not simply as noise but as structural elements
that determine when MAS collaboration strengthens or collapses. In the following experiments, we
examine these dynamics across both single-path and multi-path tasks to validate this perspective.

3 EXPERIMENTS

3.1 SETUP

3.1.1 EVALUATION SCENARIOS

To investigate how LLM-based MAS responds to internal disagreements in different task settings,
we conduct experiments across two collaborative scenarios: collaborative reasoning and collabora-
tive programming (Figure 2). In both settings, agents interact via the AutoGen framework (Wu et al.,
2023). To induce task-critical disagreements in a controlled manner, we employ three commonly
used knowledge-editing algorithms: IKE (Zheng et al., 2023a) for in-context editing, ROME (Meng
et al., 2022) for local parametric editing, and MEND (Mitchell et al., 2022) for global parameter
editing. Implementation details are provided in Appendix C.

Collaborative Reasoning We simulate multi-agent discussion over open-ended questions. Each
MAS consists of three agents who are asked to jointly answer a question after several rounds of
deliberation. For each agent, we randomly assign a personal profile including gender, personality,
and hobby attributes, following the setup of Generative Agents (Park et al., 2023). These attributes
induce natural variations in reasoning styles and preferences. Since the questions are fact-based and
typically admit a unique correct answer, the solution path is effectively single-chain, rendering the
system fragile to disagreements over critical evidence.

We conduct experiments on two reasoning datasets with counterfactual knowledge to induce task-
critical disagreements. We first use the COUNTERFACT (Meng et al., 2022) dataset that provides
single-hop edits built from factual triples (subject, relation, object) paired with a counterfactual
target. We use these edits to flip specific facts while keeping nearby knowledge intact. We also
select the MQUAKE-CF (Zhong et al., 2023) dataset, which augments multi-hop questions with a
counterfactual modification to one supporting hop such that the edit logically propagates through the
chain and entails a different final answer. All experiments are performed on 500 identical instances
to ensure fair comparison. The illustrative examples are provided in Table 1.

Collaborative Programming The MAS is composed of one project manager, three coder agents,
and one executor. Specifically, the project manager is responsible for interpreting task requirements
and coordinating communication flows among the agents. The three coders collaboratively engage
in the programming process. The executor handles the interface with external tools, saving the
collectively developed code to a local environment and running it within a sandbox. Detailed system
prompts for all agents are shown in Appendix A.

We evaluate on HUMANEVAL (Chen et al., 2021) and extend to the GAIA (Mialon et al., 2024)
benchmark. For HUMANEVAL, we follow the original unit-test protocol and introduce task-critical
disagreements by using GPT to synthesize concise counterfactual statements about key APIs or
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Discussion
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Coder Coder

Coder
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Discussion
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Figure 2: Two collaborative multi-agent settings used in our experiments. Left: Collaborative
reasoning, where three agents jointly answer a fact-based question after multi-turn deliberation.
Right: Collaborative programming, where one project manager, three coders, and one executor
collaborate on implementation.

Table 1: Illustrative examples for evaluating the LLM-based multi-agent performance. For each
scenario, we inject a task-critical disagreement (last four columns).

Scenario Task Solution Disagreement Subject Ground Truth Target New

Reasoning What is the birthplace of the person
who created Tetris? Moscow Who was Tetris created by? Tetris Alexey Pajitnov Mark Burnett

Programming
Create a function that returns sorted
unique elements: [5, 3, 3, 3, 9, 123]
→ [3, 5, 9, 123]

return sorted(list(set(l)))
What is the correct function
to remove duplicates from
a list in Python?

function set() distinct()

language semantics (see Table 1). GAIA contains real-world assistant-style tasks that require multi-
step reasoning and tool use. We select the subset that involves code writing or execution and apply
the same counterfactual-injection procedure to create programming-relevant disagreements.

3.1.2 LLMS

We choose LLaMA 3.1 8B Instruct (Dubey et al., 2024) Qwen 2.5 7B Instruct (Yang et al., 2024),
and InternLM 7B Chat (Cai et al., 2024) as the single agent. Unless otherwise specified, the MAS
consists of only one type of LLM. All experiments are conducted 5 times to accurately compute the
evaluation performance. To quantify the computational overhead of our setup and knowledge editing
methods, we further report GPU usage, token consumption, and wall-clock time in Appendix E.

3.2 HOW DISAGREEMENTS AFFECT MULTI-AGENT DECISION-MAKING?

3.2.1 IMPACT OF GENERAL DISAGREEMENTS

To validate the hypothesis that general disagreements serve as indispensable elements for achieving
superior performance in LLM-based multi-agent decision-making, we conduct a set of controlled
experiments under varying levels of disagreements. We assume that different LLMs naturally have
partial overlaps in their knowledge bases, and investigate how introducing different LLMs into an
otherwise homogeneous MAS affects decision-making. Therefore, for each baseline MAS com-
posed of agents using the same LLM, we construct the mixed systems by replacing two participants
in reasoning tasks and two coders in programming tasks (Figure 2) with agents based on the other
two LLMs. For example, in an LLaMA-based collaborative programming, we randomly replace two
of the coders with Qwen and InternLM while keeping the project manager and executor unchanged.

Table 2 presents the task success rate under MAS with identical agents or with the introduction of
heterogeneous agents. We find that the introduction of such general disagreements through hetero-
geneous agents does not compromise system robustness. The effect is most salient in collaborative
programming. For InternLM-based MAS, replacing two coders with Qwen and LLaMA yields a
clear rise in task success. For LLaMA-based MAS, although its homogeneous ability sits between
InternLM and Qwen, the mixed team neither collapses under the weaker InternLM influence nor
behaves like a simple average. Instead, it exceeds the homogeneous LLaMA baseline, suggesting
that general disagreements trigger complementary exploration and a brainstorming effect.
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Table 2: Effect of general disagreements on MAS decision-making across collaborative reasoning
and collaborative programming.

Collaborative Reasoning Collaborative Programming
System Type COUNTERFACT MQUAKE-CF HUMANEVAL GAIA

LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM

Homogeneous Systems 38.20 49.40 65.40 33.00 59.60 62.60 30.73 71.46 5.00 60.00 18.70 23.44
Mixed Systems 46.80 50.40 63.40 43.20 54.60 60.60 46.83 62.63 46.34 46.67 46.67 46.67

Table 3: Effect of task-critical disagreements on MAS decision-making across collaborative reason-
ing and collaborative programming.

Collaborative Reasoning Collaborative Programming
Scenario COUNTERFACT MQUAKE-CF HUMANEVAL GAIA

LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM

Origin 38.20 49.40 65.40 33.00 59.60 62.60 30.73 71.46 5.00 60.00 18.70 23.44

ROME 24.80 24.00 59.80 26.20 30.40 56.80 29.94 70.98 5.37 60.00 14.57 26.24
MEND 23.60 47.00 65.20 23.40 49.20 50.20 28.85 71.34 3.90 66.67 15.91 25.38
IKE 28.40 36.80 61.60 22.60 40.20 57.40 31.22 71.71 3.54 75.00 11.52 23.44

For Qwen-based MAS, which already performs best, adding LLaMA and InternLM does not cause
failure. Small drops appear in some cases but remain acceptable when weighed against the gains
observed on weaker bases. These losses are acceptable when contrasted with the significant perfor-
mance gains obtained by introducing heterogeneous agents from LLaMA and InternLM. Additional
analysis of heterogeneous agents and role-based diversity is provided in Appendix J.

3.2.2 IMPACT OF TASK-CRITICAL DISAGREEMENTS

Although general disagreements can benefit MASs, there is still a concern that if agents hold con-
flicts in task-critical disagreements, the inherent fragility of LLMs regarding world knowledge may
introduce unpredictable results (Ju et al., 2024). We further employ knowledge-editing methods to
alter one agent’s perception of task-critical knowledge introduced as described in Table 1. Specifi-
cally, we apply ROME (Meng et al., 2022), MEND (Mitchell et al., 2022), and IKE (Zheng et al.,
2023a) for editing knowledge within local parameters, global parameters, or through in-context, en-
suring the edited agent maintains fundamental capabilities but diverges in task-critical knowledge.
Detailed implementation of the adopted knowledge editing methods is provided in Appendix C.

In collaborative reasoning where the evidential chain is effectively single-path, introducing a
task-critical disagreement via any editor causes a pronounced drop in success relative to the
unedited baseline (Table 3). Whether the disagreement targets the answer level in single-hop tasks
(COUNTERFACT) or an intermediate hop in multi-hop chains, it suffers a 10-20% absolute drop in
task success rate. This confirms the fragility of unique-path derivations under critical contention.

By contrast, in collaborative programming, perturbing syntax or API specifications yields only
marginal changes. For LLaMA-based and Qwen-based MAS, applying task-critical disagreements
through the in-context method IKE even slightly enhances performance. This suggests that the in-
troduced disagreement does not necessarily mislead the agents but instead serves as a prompt to
recognize the need for a specific method to solve the problem. In contrast, InternLM-based MAS
exhibits a noticeable performance decline when introducing disagreements. When the MAS is inher-
ently less proficient at a given collaborative task, disagreements can still disrupt decision-making.

3.3 CAN LLM-BASED MAS SELF-REPAIR DISAGREEMENTS?

To further examine the system’s capability for self-repairing as observed in collaborative program-
ming, we use the prompt provided in Appendix D to detect whether the generated chain of thought
and the produced code contain the introduced task-critical disagreements. Table 4 and Table 5 re-
port the probability of adopting the edited knowledge in the two settings. In collaborative reasoning,
introducing task-critical disagreements does not yield clear self-repair. In many cases the MAS
adopts the contested information with even higher probability, which aligns with the hypothesis that
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Table 4: Comparison of the probability that the generated chain-of-thought uses the task-critical
disagreements on collaborative reasoning.

COUNTERFACT MQUAKE-CF

Scenario LLaMA Qwen InternLM LLaMA Qwen InternLM

w/o Disagreement 69.60 54.00 31.60 28.00 42.60 6.80

ROME 53.20 28.00 22.20 31.20 23.80 6.80
MEND 54.60 46.60 19.40 20.80 32.40 3.60
IKE 59.00 46.80 31.40 36.20 38.00 11.20

Table 5: Comparison of the probability that the generated code uses the task-critical disagreements
on collaborative programming.

HUMANEVAL GAIA

Scenario LLaMA Qwen InternLM LLaMA Qwen InternLM

w/o Disagreement 34.76 38.41 21.83 20.00 17.42 9.03

ROME 32.93 35.24 18.66 20.00 20.00 10.97
MEND 32.80 36.95 17.93 16.67 17.42 7.96
IKE 35.73 36.59 16.22 25.00 17.63 11.82

Table 6: Illustrative example of Qwen-Based MAS bypassing task-critical disagreements for collab-
orative programming. We remove all comments from the generated codes.

Task Please write a function to compute the n-th element of the fib4 number sequence efficiently. Do not use recursion.

Knowledge Which Python method appends an element to a list? append() → add()

Scenario w/o Task-Critical Disagreements w/ Task-Critical Disagreements

Code

def fib4(n: int):
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0
fib = [0, 0, 2, 0]
for i in range(4, n + 1):

fib.append(fib[i - 1] + fib[i - 2] +
fib[i - 3] + fib[i - 4]

return fib[n]

def fib4(n: int):
if n == 0 or n == 1:

return 0
if n == 2:

return 2
if n == 3:

return 0
fib4 values = [0, 0, 2, 0]
for i in range(4, n + 1):

next value = sum(fib4 values)
fib4 values = [fib4 values[1],

fib4 values[2], fib4 values[3],
next value]

return fib4 values[-1]

an effectively unique solution path prevents detours around the disagreement. In collaborative pro-
gramming, the adoption probability is consistently lower than in collaborative reasoning, with the
difference most evident on GAIA, indicating that richer implementation choices provide redundant
routes that let the team avoid the disagreement. Consistent with this view, after the injection of task-
critical disagreements, the frequency with which the generated code uses the edited facts decreases in
most cases, especially on HUMANEVAL, demonstrating an emergent self-repair capability whose
strength tracks the task’s path redundancy.

To more intuitively demonstrate the self-repair capability of MAS, we present the collaborative pro-
gramming codes of Qwen-based MAS before and after introducing task-critical disagreements via
IKE. Among five turns, the MAS without disagreements consistently uses the append() function.
However, after introducing task-critical disagreements, the MAS avoids using the append() func-
tion in three out of five decisions. Table 6 displays one such instance. The MAS bypasses the use of
the simple and effective in-built append() function by directly writing out the entire list, thereby
mitigating the potential impact of task-critical disagreements on decision-making. Complete codes
for the five turns before and after introducing disagreements are shown in Appendix N.

However, this self-repair capability may still have its limits, and when a large number of disagree-
ments arise within a MAS, collaboration may still collapse. We explore scenarios with more severe
disagreements on collaborative programming, where agents manage to maintain effective cooper-
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Figure 3: Impact of task-critical disagreement numbers on LLaMA-based HUMANEVAL collabora-
tive programming.

ation within a single disagreement. For each task, we generate 5 or 10 distinct disagreements to
further block the possibility of MAS solving tasks in other ways. Figure 3 presents the results with
different numbers of task-critical disagreements on HUMANEVAL. The overall performance signifi-
cantly declines as the number of disagreements increases, especially using the parametric knowledge
editing method ROME. This suggests that MAS can only tolerate a limited degree of task-critical
disagreements before their decision-making process is significantly impaired.

3.4 ABLATION STUDY

We conduct ablations on HUMANEVAL to isolate how interaction rounds and the number of coder
agents shape the robustness of MAS under disagreements. Beyond Task Success Rate (TSR), we
additionally report three auxiliary metrics to capture complementary robustness aspects: Comple-
tion Rate (CR), the fraction of collaboration attempts that produce an executable code artifact; Code
Writing Robustness (CWR), the average pairwise textual consistency of generated code across re-
peated attempts; and Code Decision Robustness (CDR), the consistency of execution outcomes
across attempts. Full metric definitions are provided in Appendix F

Impact of Interaction Round We first investigate how increasing the number of interaction
rounds influences decision-making in MAS before and after introducing disagreements. We keep fo-
cusing on LLaMA-based MAS and measure their robustness under different numbers of interaction
rounds in Table 7. Although increasing the number of interaction rounds leads to lower comple-
tion rate, the task success and code decision robustness increase significantly, indicating that longer
conversations help MAS analyze the code they can accomplish and make more robust decisions.

Impact of Agent Number We further conduct ablation experiments on LLaMA-based MAS by
modifying the number of coder agents while keeping other components fixed. For general disagree-
ments, we keep introducing one Qwen-based coder and one InternLM-based coder. For task-critical
disagreements, we keep editing one coder within the MAS. Table 8 presents the impact of varying
the number of coders. Interestingly, simply increasing the agent number does not lead to improved
performance, indicating that additional agents without disagreements do not contribute positively to
the MAS, which is consistent with our view on the role of disagreements (Section 2). Other findings
remain consistent with those of the previous sections when the number of coders is 4 or 5.

4 RELATED WORK

In this section, we first review LLM-Based MAS as a paradigm, summarizing how diverse roles and
knowledge sources enable collective intelligence across varied scenarios. We then survey robustness
analyses that examine instability driven by disagreements and misaligned beliefs, motivating our
focus on when collaboration collapses or self-repairs under different solution-path structures.

LLM-Based MAS LLM-based MAS have emerged as a powerful paradigm for complex problem-
solving tasks that benefit from diverse expertise and perspectives (Xi et al., 2023; Guo et al., 2024;

8
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Table 7: Impact of interaction rounds on
LLaMA-based MAS robustness.

#Round Scenario CR TSR CWR CDR

1
w/o Disagreements 99.02 30.73 36.43 24.21
General Disagreements 100.00 46.83 51.11 38.90
Task-Critical Disagreements 98.78 31.22 36.81 29.33

2
w/o Disagreements 97.92 37.55 34.90 28.49
General Disagreements 86.21 63.45 49.11 63.10
Task-Critical Disagreements 94.48 41.21 35.10 28.62

3
w/o Disagreements 96.67 42.39 35.92 32.81
General Disagreements 81.40 64.72 45.20 71.97
Task-Critical Disagreements 94.10 45.06 35.08 31.86

Table 8: Impact of agent numbers on LLaMA-
based MAS robustness.

#Coder Scenario CR TSR CWR CDR

3
w/o Disagreements 99.02 30.73 36.43 24.21
General Disagreements 100.00 46.83 51.11 38.90
Task-Critical Disagreements 98.78 31.22 36.81 29.33

4
w/o Disagreements 94.25 28.55 31.21 26.84
General Disagreements 100.00 51.03 49.81 37.59
Task-Critical Disagreements 93.41 31.53 33.23 27.41

5
w/o Disagreements 86.72 21.30 27.71 28.53
General Disagreements 92.11 35.27 36.67 28.06
Task-Critical Disagreements 80.59 26.28 27.03 32.94

Tran et al., 2025). Unlike single-agent systems, MAS leverages the collective intelligence of multi-
ple agents, each potentially endowed with distinct knowledge bases and personalities, to enhance
decision-making processes (Aryal et al., 2024; Cho et al., 2024; Zhu et al., 2025). These dis-
agreements enable a more comprehensive exploration of solution spaces and mitigate individual
biases (Park et al., 2023; Papachristou et al., 2023; Ki et al., 2025).

Benefiting from these advancements, MAS has been successfully applied in various domains, in-
cluding collaborative programming (Wu et al., 2023; Qian et al., 2024; Hong et al., 2024), joint
medical diagnosis (Tang et al., 2024b), strategic game-playing (Wu et al., 2024), and social simula-
tion (Tang et al., 2024a). By assigning roles for each agent with varied knowledge sources, agents
are encouraged to challenge assumptions of each other and contribute unique insights, leading to
improved decision-making (Wang et al., 2024; Zhang et al., 2024a; Zhu et al., 2025).

Robustness Analysis in LLM-Based MAS Despite the advantages of LLM-based MAS, their
collaborative nature also introduces potential vulnerabilities, particularly when facing disagree-
ments (Wynn et al., 2025; Choi et al., 2025; Bandaru et al., 2025). Gu et al. (2024) explored the
vulnerability of MAS to adversarial inputs and concluded that a single infected agent could cause an
exponential spread of harmful behaviors. Ju et al. (2024) investigated the resilience of MAS against
manipulated knowledge spread and found that counterfactual or toxic information can persistently
propagate through benign agents. Similarly, Huang et al. (2024a) showed that transforming any
agent into a malicious one can significantly disrupt the collective decision-making. Foerster et al.
(2025) revealed that step-by-step reasoning introduces new poisoning attack surfaces while compli-
cating attack execution. However, in more general scenarios without the presence of attackers, these
studies have not considered whether inherent disagreements could lead to unrobust collaboration.

Recent research has observed instances of instability in MAS during collaborative tasks. Xiong et al.
(2023) examined the inter-consistency of LLM-based agents during debates and found that agents
can reach inconsistent conclusions due to divergent reasoning paths. Similarly, Li et al. (2023b)
investigated the role of theory of mind in multi-agent collaboration, revealing that misunderstandings
among agents can hinder effective collaboration. In parallel, Cemri et al. (2025) proposed a failure
taxonomy and LLM-as-a-judge pipeline to systematically diagnose MAS breakdowns. Despite these
observations, there is still a lack of studies on how disagreements propagate under different solution-
path structures and under what conditions MAS exhibits self-repair rather than collapse.

5 CONCLUSION

In this paper, we revisit how disagreements shape robustness in LLM-based MAS and frame the
problem through self-repair across tasks with distinct path structures. Our results show that general,
partially overlapping disagreements expand exploration and often improve collaboration, whereas
task-critical disagreements harm single-path reasoning. By contrast, programming tasks with mul-
tiple valid implementations remain resilient as teams reroute around localized disagreements. We
validate this mechanism with controlled counterfactual knowledge edits and trace analyses, finding
that self-repair arises from path multiplicity and solution redundancy rather than scale alone, with
agents bypassing edited facts when alternative plans exist. These observations clarify when dis-
agreement is constructive and when it turns into a failure point. We hope this path-aware view of
robustness encourages future work to place greater emphasis on the self-repair capabilities of MAS
and to actively cultivate these abilities in broader collaborative settings.
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ETHICAL CONSIDERATIONS

All authors of this work have read and agree to abide by the ICLR Code of Ethics. Our study system-
atically investigates how disagreements in LLM-based MASs can influence collaborative decision-
making without introducing additional biases or unsafe content. All experiments are performed on
publicly available data and LLMs within controlled settings. The synthesized disagreements only
replace the knowledge with easily confusable content and do not introduce any additional bias. Ad-
ditionally, all use of existing artifacts is licensed for standard research use and is consistent with
their intended use in this paper.

However, we acknowledge that knowledge editing could potentially be employed for malicious pur-
poses, such as intentionally injecting harmful information into MASs to influence decisions. Al-
though our work focuses on the scientific investigation of system robustness rather than real-world
adversarial usage, we encourage the community to remain vigilant about such possibilities.

Furthermore, during the writing of this paper, we only used LLMs after the full paper was completed,
exclusively for proofreading purposes, such as correcting typographical and grammatical errors. No
LLM-generated content contributed to the conceptual development of the paper.

REPRODUCIBILITY STATEMENT

We commit to the full reproducibility of all results reported in this paper. The main text specifies
our experimental setup and evaluation protocols (Section 3.1), while the appendices provide the
resources needed to independently verify our findings: system and judge prompts and agent roles
(Appendix A and B), implementation details for the knowledge-editing methods used to create task-
critical disagreements (Appendix C), the prompt used to detect whether edited knowledge is adopted
(Appendix D), metric definitions and computation for ablation studies (Appendix F). We promise to
release the complete codebase and processing scripts for community use.
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Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=fibxvahvs3.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=0DcZxeWfOPt.

Marios Papachristou, Longqi Yang, and Chin-Chia Hsu. Leveraging large language models for
collective decision-making. CoRR, abs/2311.04928, 2023. doi: 10.48550/ARXIV.2311.04928.
URL https://doi.org/10.48550/arXiv.2311.04928.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean
Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco,
CA, USA, 29 October 2023- 1 November 2023, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.
3606763. URL https://doi.org/10.1145/3586183.3606763.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15174–15186.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL
https://doi.org/10.18653/v1/2024.acl-long.810.

Xihe Qiu, Haoyu Wang, Xiaoyu Tan, Chao Qu, Yujie Xiong, Yuan Cheng, Yinghui Xu, Wei Chu,
and Yuan Qi. Towards collaborative intelligence: Propagating intentions and reasoning for multi-
agent coordination with large language models. CoRR, abs/2407.12532, 2024. doi: 10.48550/
ARXIV.2407.12532. URL https://doi.org/10.48550/arXiv.2407.12532.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, M. Zhou, Ambro-
sio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code syn-
thesis. ArXiv, abs/2009.10297, 2020. URL https://api.semanticscholar.org/
CorpusID:221836101.

13

https://aclanthology.org/2025.acl-long.1105/
https://aclanthology.org/2025.acl-long.1105/
https://doi.org/10.18653/v1/2023.emnlp-main.13
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/forum?id=fibxvahvs3
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://doi.org/10.48550/arXiv.2311.04928
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.48550/arXiv.2407.12532
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Haoran Tan, Dawei Gao, Yushuo Chen, Xu Chen,
Yankai Lin, Yaliang Li, Bolin Ding, Jingren Zhou, Jun Wang, and Ji-Rong Wen. Gensim: A gen-
eral social simulation platform with large language model based agents. CoRR, abs/2410.04360,
2024a. doi: 10.48550/ARXIV.2410.04360. URL https://doi.org/10.48550/arXiv.
2410.04360.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 599–621. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.
FINDINGS-ACL.33. URL https://doi.org/10.18653/v1/2024.findings-acl.
33.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. CoRR,
abs/2501.06322, 2025. doi: 10.48550/ARXIV.2501.06322. URL https://doi.org/10.
48550/arXiv.2501.06322.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
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A PROMPTS FOR MAS

In this paper, we utilize the AutoGen (Wu et al., 2023) framework to construct the MAS for col-
laborative programming, which allows for the normal research use. The specific system prompts
designed for guiding the agents on different benchmarks are detailed in the following subsections,
corresponding to the HUMANEVAL, GAIA, COUNTERFACT, and MQUAKE-CF datasets.

A.1 PROMPTS FOR MULTI-AGENT COLLABORATIVE PROGRAMMING

The system prompts utilized for the HUMANEVAL benchmark are provided below:

System Prompt for the Project Manager

You are an expert product manager that is creative in coding ideas. Additionally, ensure that the code is
complete, runnable, and has ”# filename: ¡filename¿” inside the code blocks as the first line.

System Prompt for the Coder

You are a helpful AI assistant.
Solve tasks using your coding and language skills.
In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block)
for the user to execute.
1. When you need to collect info, use the code to output the info you need, for example, browse or search
the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the
operating system. After sufficient info is printed and the task is ready to be solved based on your language
skill, you can solve the task by yourself.
2. When you need to perform some task with code, use the code to perform the task and output the result.
Finish the task smartly.
Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which
step uses code, and which step uses your language skill.
When using code, you must indicate the script type in the code block. The user cannot provide any other
feedback or perform any other action beyond executing the code you suggest. The user can’t modify your
code. So do not suggest incomplete code which requires users to modify. Don’t use a code block if it’s not
intended to be executed by the user.
If you want the user to save the code in a file before executing it, put # filename: ¡filename¿ inside the
code block as the first line. Don’t include multiple code blocks in one response. Do not ask users to copy
and paste the result. Instead, use ’print’ function for the output when relevant. Check the execution result
returned by the user.
If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead
of partial code or code changes. If the error can’t be fixed or if the task is not solved even after the code is
executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.
When you find an answer, verify the answer carefully. Include verifiable evidence in your response if
possible.

System Prompt for the Executor

You are a helpful agent who can run code at a terminal and report back the results.

The following prompt is utilized for the GAIA benchmark:
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System Prompt for GAIA Agent

You are a helpful AI assistant, and today’s date is [datetime.now().date().isoformat()].
I will ask you a question. Answer this question using your coding and language skills.
In the following cases, suggest python code (presented in a coding block beginning “‘python) or shell script
(presented in a coding block beginning “‘sh) for the user to execute:
1. When you need to collect info, use the code to output the info you need, for example, browse or search
the web, download/read a file, print the content of a webpage or a file, check the operating system. After
sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the
task by yourself.
2. When you need to perform some task with code, use the code to perform the task and output the result.
Finish the task smartly.
Answer the question step if you need to. If a plan is not provided, explain your plan first. Be clear which
step uses code, and which step uses your language skill.
The user cannot provide any other feedback or perform any other action beyond executing the code appear-
ing in the code block. The user can’t modify your code, so do not suggest incomplete code which requires
users to modify. Don’t use a code block if it’s not intended to be executed by the user. Don’t include multi-
ple code blocks in one response. Do not ask users to copy and paste code or results. Instead, use the ’print’
function for the output when relevant. Check the execution result reported by the user.
If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead
of partial code or code changes. If the error can’t be fixed or if the task is not solved even after the code is
executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.
When you find an answer, report your thoughts, and finish your answer with the following template: FINAL
ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as
possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent
sign unless specified otherwise.
If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in
plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be
put in the list is a number or a string.

A.2 PROMPTS FOR MULTI-AGENT COLLABORATIVE REASONING

The system prompts utilized for the Counterfact benchmark and MQuAKE benchmark are described
below:

System Prompt for the Agent-1

You are Xar, a Snooty villager. You enjoy reading and have a refined taste in furniture. Your favorite color
is pink, and you love to collect elegant items for your home.

System Prompt for the Agent-2

You are Omarquy, a Lazy villager. You enjoy nature and have a laid-back attitude. Your favorite color is
green, and you love to collect outdoor items for your home.

System Prompt for the Agent-3

You are Jayandstef, a Smug villager. You enjoy education and have a sophisticated personality. Your favorite
color is aqua, and you love to collect stylish items for your home.

B PROMPTS FOR GENERATING DISAGREEMENTS

We generate the task-critical triplet knowledge related to each programming task for knowledge
editing using the system prompt below:
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System Prompt for Generating Disagreements

You are an exceptional Python knowledge evaluator. Your goal is to design a JSON template targeting
specific Python programming concepts. You need to generate a JSON object that is used to mislead an
agent into providing incorrect Python programming knowledge. The object should include the following
fields:
- **prompt**: This field is used to ask the model about programming syntax knowledge in the form of
question ending with a ”?”. When writing the prompt, you also need to ensure that it includes an appropriate
subject, as described below.
- **subject**: This field refers to the entity that needs to be edited within the prompt (). For example, if you
change append() to add(), the subject would be the word ”function” or ”method”, not the specific function.
Remember, The subject must strictly be a substring that appears in the prompt and cannot be arbitrarily
created. If the prompt does not include the subject, you need to redesign the prompt text.
- **ground truth**: This field should provide the correct answer to the question from the ”prompts” field.
Ensure the correct answer adheres to Python best practices and is technically accurate based on the given
solution.
- **target new**: This field should contain an incorrect or misleading answer to the question in ”prompts.”
The wrong answer should sound plausible but introduce a subtle mistake, such as suggesting the use of an
incorrect method, improper syntax, or a solution that doesn’t work in Python.
Ensure all fields are randomly generated and properly formatted. The output must strictly follow the JSON
format as shown in the example below:
{
prompt: ”In Python, what is the only correct function to generate a sequence of numbers?”
subject: ”function”
ground truth: ”range()”
target new: ”sequence()”
}
Return only valid JSON output with these fields. Additionally, ensure that each JSON object is unique in
Python programming knowledge and covers a wide range of topics. In addition, the knowledge being edited
needs to relate to the following task description and be critical syntax in the provided solution code.

C IMPLEMENTATION OF KNOWLEDGE EDITING

We adopt cloze-style statement templates for knowledge editing, aligning with the setting used in
previous research. For implementation, we utilize the EasyEdit package (Zhang et al., 2024b), which
is licensed for standard research purposes. Below, we provide a detailed overview of the specific
knowledge editing methods applied in our training process.

ROME. Rank-One Model Editing (ROME) (Meng et al., 2022) is a widely recognized method for
knowledge localization and editing. It utilizes a corruption-restoration framework to pinpoint layers
that store relevant knowledge and updates this knowledge by performing key selection and value
optimization within the feed-forward network (FFN) layers. For LLaMA 3.1 8B Instruct, Qwen 2.5
7B Instruct, and InternLM 7B Chat, edits are all applied at layer 5.

IKE. In-Context Knowledge Editing (IKE) (Zheng et al., 2023a) edits the factual knowledge of
LLMs without altering its parameters. Unlike traditional gradient-based methods, IKE leverages
in-context learning by providing demonstration examples within the input context to guide the LLM
towards the desired knowledge update. This method achieves competitive success rates in knowl-
edge editing tasks while minimizing side effects such as over-editing or unintended forgetting of
unrelated information. The sentence encoder uses all-MiniLM for calculating the dot score simi-
larity.

MEND. Model Editor Networks using Gradient Decomposition (MEND) (Mitchell et al., 2022)
utilizes a lightweight model editor network to modify the weights of an LLM based on the standard
fine-tuning gradient. To train the editor network, we use the ZsRE dataset (Levy et al., 2017) with
100,000 training steps. During inference, the learning rate scale is set to 1.0. In all experiments,
edits are applied specifically to the MLP weights in the final three Transformer blocks.
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Table 9: Per-round token usage of LLaMA 3.1 8B Instruct for collaborative reasoning on
MQUAKE-CF and collaborative programming on HUMANEVAL under different knowledge edit-
ing methods.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 927.24 1010.40 773.02 1218.70
Collaborative Programming (HUMANEVAL) 1211.22 1676.84 1322.76 1234.82

Table 10: Total wall-clock time (hours) of LLaMA 3.1 8B Instruct for collaborative reasoning on
MQUAKE-CF and collaborative programming on HUMANEVAL under different knowledge editing
methods.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 25.3 25.9 29.8 31.6
Collaborative Programming (HUMANEVAL) 29.6 30.7 33.8 32.8

D PROMPTS FOR MEASURING THE SELF-REPAIR CAPABILITY OF MAS

We use the following prompts to test whether the final code generated by MAS contains the task-
critical disagreements in Section 3.3:

System Prompt for Measuring the Self-Repair Capability of Collaborative Reasoning

You are a professional agent skill analyst. Please analyze the following chat message and determine whether
it directly utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly;
otherwise, return “No” directly. Do not provide any additional explanations or comments.

System Prompt for Measuring the Self-Repair Capability of Collaborative Programming

You are a professional code analyst. Please analyze the following code and determine whether it directly
utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly; otherwise,
return “No” directly. Do not provide any additional explanations or comments.

E COMPUTATIONAL COST

To contextualize the computational overhead introduced by our multi-agent setup and knowledge
editing methods, we report both GPU usage and detailed token/time statistics.

GPU usage. All experiments in this paper are conducted on a single GPU with 80GB memory.
Across the four main experimental components, we use approximately 100, 1400, 180, and 240
GPU hours for exploring general disagreements, task-critical disagreements, self-repair capabilities,
and ablation studies, respectively.

Token usage. Table 9 summarizes the average per-round token consumption (input + output) of
LLaMA 3.1 8B Instruct in the collaborative reasoning and collaborative programming settings under
different knowledge editing methods.

Wall-clock time. Table 10 reports the total wall-clock time required to complete all evaluations
with LLaMA 3.1 8B Instruct in the same settings.

Overall, the additional cost introduced by knowledge editing is modest. Across all four settings, the
total running time remains in a similar range to the unedited Origin system. The dominant cost factor
is the multi-agent interaction itself rather than the specific choice of knowledge editing method.
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F EVALUATION METRICS FOR ABLATION STUDY

We propose four primary metrics to evaluate the performance of collaborative programming for the
ablation study. We consider N distinct programming problems, each of which is tackled by the
MAS k times. The four metrics are defined as follows:

Completion Rate (CR). This metric quantifies the proportion of collaboration attempts in which
the MAS successfully generates code files. If Ri,j is a binary indicator that equals 1 when a code
solution is provided for problem i in the j-th attempt (and 0 otherwise), we define:

CR =
1

N × k

N∑
i=1

k∑
j=1

Ri,j . (1)

Task Success Rate (TSR). This metric focuses on functional correctness. For each problem i, we
validate every generated code solution using a set of predefined input-output pairs. Let Si,j be the
success rate for problem i in the j-th attempt, then we have:

TSR =
1

N × k

N∑
i=1

k∑
j=1

Si,j . (2)

Code Writing Robustness (CWR). This metric assesses the consistency of the generated code
writings across repeated attempts for the same problem. For each problem i, let ci,1, ci,2, . . . , ci,k
be the code writings produced over k attempts. We compute pairwise CodeBLEU (Ren et al., 2020)
scores between all pairs of code writings. Let CB(·, ·) denote the CodeBLEU score. Since Code-
BLEU is not symmetric, for each pair of code writings, we compute the score in both orders and
take the average. The overall CWR is defined as:

CWR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

CB
(
ci,p, ci,q

) . (3)

Code Decision Robustness (CDR). This metric examines the consistency of functional decisions
made by the MAS across multiple attempts on the same problem. Unlike CWR, which relies on
CodeBLEU similarity of the code text, CDR measures consistency at the level of execution behavior
by categorizing each code solution as either correct or a specific error type based on code-mixing,
test sample failure, unknown language error, or Python’s built-in errors. Specific error categories
that appeared during running are shown in Table 11. We classify all errors that arise during code
generation and execution based on common Python built-in errors, as well as three additional types
capturing failures due to collaboration breakdown and incomplete test coverage. Let EC(·, ·) denote
a function that returns 1 if two code solutions yield the same execution type, and 0 otherwise. The
code decision robustness can be computed as:

CDR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

EC
(
ci,p, ci,q

) . (4)

G FURTHER DISCUSSIONS ON LLM FAMILIES

We provide additional experiments on model sizes and proprietary LLMs separately under collabo-
rative programming in Table 12 and Table 13. For Qwen 2.5 14B Instruct, we introduce disagree-
ments into one of the agents via ROME. For GPT-4, given that its parameters are inaccessible for
parametric knowledge-editing methods, we leverage prompt editing to generate evidence related to
disagreements and append the evidence to one of its system prompts.

In both cases where scaling up the open-source LLM to 14B parameters or using a GPT-4, the results
align with our primary findings that introducing task-critical disagreements does not significantly
diminish overall robustness.
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Table 11: Types of common Python built-in errors and collaboration failures encountered during
multi-agent collaborative programming.

Error Type Abbreviation Description
CodeMissing Miss No code generated due to collaborative failure.
TestSampleError Sample The code is able to execute, but the output of at least

one test sample does not meet expectations.
UnknownLanguageError Language The executor fails to call the Python interpreter be-

cause it cannot recognize the language of the generated
code.

SyntaxError Syntax Invalid syntax detected during parsing.
ZeroDivisionError ZeroDiv Division or modulo by zero.
NameError Name Use of an uninitialized variable.
TypeError Type Operation applied to an inappropriate type.
IndexError Index Sequence subscript out of range.
KeyError Key Attempt to access a non-existent dictionary key.
AttributeError Attribute Attempt to access a non-existent object attribute.
ValueError Value Function receives an argument of the correct type but

inappropriate value.
FileNotFoundError File Fail to find a file or directory.
ImportError Import Fail to import a module or its attribute.
OtherError Other Other types of errors, such as custom errors defined by

the agent using assert.

Table 12: Robustness of Qwen-based Collaborative Programming with different model sizes.

Scenario CR TSR CWR CDR
Qwen 2.5 14B Instruct w/o Conflicts 100.00 68.67 53.81 65.11
Qwen 2.5 14B Instruct w/ Conflicts 99.33 69.10 54.35 67.89

Table 13: Robustness of proprietary GPT-based Collaborative Programming.

Scenario CR TSR CWR CDR
GPT-4 w/o Conflicts 99.62 84.49 67.96 85.69
GPT-4 w/ Conflicts 100.00 84.27 69.16 87.31

H VARIANCE ANALYSIS OF ERROR TYPES IN COLLABORATIVE
PROGRAMMING

To address variance across runs, we take the collaborative programming scenario as a representative
case and report detailed statistics for all error types under each editing method. Table 14 presents the
mean and standard deviation over five independent runs of HUMANEVAL for every error category.
The standard deviations are small relative to the corresponding means, and the qualitative patterns
discussed in the main paper remain unchanged across runs, indicating that our findings are not driven
by a single seed.

I ABLATION ON LARGER TEAMS

We further examine whether our conclusions hold when scaling to larger teams by evaluating
LLaMA 3.1 8B Instruct with 10 coder agents on both collaborative reasoning and collaborative
programming (Table 15).

As the team size grows, we observe a stronger performance drop on single-path collaborative rea-
soning tasks, while multi-path collaborative programming remains largely unaffected. Methods such
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Table 14: The average occurrence of different error types in five runs of MASs before and after the
introduction of task-critical disagreements.

Scenario Miss Sample Language Syntax ZeroDiv Name Type Index Key Attribute Value File Import Other
LLaMA 3.1 8B Instruct

Origin 1.6±1.4 29.8±3.8 17.4±4.4 5.8±2.8 0.4±0.5 8.6±3.8 1.4±0.5 0.2±0.4 0.0±0.0 0.0±0.0 7.4±1.9 2.4±1.5 5.8±2.2 31.8±4.3
ROME 1.0±0.6 28.6±2.2 19.2±5.0 4.6±2.0 0.6±0.5 9.0±4.2 1.6±1.0 0.4±0.8 0.2±0.4 0.6±0.5 7.4±1.9 2.4±0.8 3.4±1.4 35.2±5.5
MEND 1.0±0.6 27.4±4.1 17.0±3.0 7.2±2.9 0.4±0.8 10.6±2.3 1.4±0.8 0.0±0.0 0.2±0.4 1.2±1.2 6.6±1.7 2.4±0.8 3.6±1.9 31.6±3.7
IKE 2.0±1.3 36.6±4.5 14.8±2.3 5.0±1.9 0.0±0.0 8.4±3.2 2.4±1.0 0.0±0.0 0.8±0.7 0.8±0.7 8.0±1.1 2.2±1.0 3.6±1.6 28.2±4.4

Qwen 2.5 7B Instruct
Origin 0.0±0.0 26.4±2.2 4.2±1.2 0.2±0.4 0.4±0.5 1.4±1.4 2.4±1.5 0.6±0.8 0.2±0.4 0.2±0.4 1.4±1.0 4.4±1.0 1.0±0.6 4.0±1.1
ROME 0.0±0.0 27.2±1.2 4.2±1.9 0.4±0.5 0.0±0.0 2.2±1.5 2.6±0.5 0.2±0.4 0.0±0.0 0.4±0.4 1.0±0.6 4.8±1.7 1.0±0.6 3.6±2.1
MEND 0.0±0.0 28.6±4.4 4.2±1.9 0.4±0.5 0.0±0.0 1.8±1.0 2.2±1.5 0.0±0.0 0.2±0.4 0.0±0.0 2.4±0.5 3.0±1.8 1.4±0.8 2.8±1.9
IKE 0.0±0.0 28.6±3.9 2.0±0.6 1.0±0.9 0.2±0.4 2.8±1.0 1.6±1.0 0.2±0.4 0.0±0.0 0.0±0.0 2.0±1.1 3.8±1.2 0.4±0.5 3.8±1.2

InternLM 7B Chat
Origin 0.4±0.5 68.8±4.8 2.2±1.2 5.4±1.7 0.0±0.0 10.8±2.9 6.2±3.1 0.4±0.5 0.0±0.0 1.0±0.6 1.4±1.0 4.0±2.3 25.6±3.1 29.6±2.4
ROME 1.4±0.5 65.8±6.3 1.6±0.8 4.6±1.0 0.0±0.0 14.6±2.2 5.8±3.2 0.0±0.0 0.0±0.0 0.6±0.8 1.6±1.0 4.2±2.6 23.0±3.3 32.0±2.8
MEND 3.6±0.8 64.2±2.6 2.8±0.7 3.0±1.1 0.0±0.0 12.2±4.7 4.8±1.7 0.2±0.4 0.0±0.0 0.4±0.5 3.2±2.0 6.0±1.9 25.8±2.3 31.4±5.5
IKE 1.0±0.0 68.6±3.3 3.6±1.7 5.4±1.4 0.0±0.0 12.2±1.9 4.8±1.7 0.0±0.0 0.2±0.4 0.2±0.4 2.0±1.1 4.0±3.0 26.8±2.3 29.4±3.8

Table 15: Performance of LLaMA3.1-8B-Instruct with 10 coder agents on collaborative reasoning
and collaborative programming.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 4.21 2.81 1.60 3.33
Collaborative Programming (HUMANEVAL) 13.33 20.00 10.51 26.67

as ROME and IKE even lead to improved results, consistent with the trend reported in the original
paper. We have included the experimental results in Appendix I of the revised version.

J ADDITIONAL ANALYSIS ON HETEROGENEOUS AGENTS

To further disentangle capability gaps from knowledge conflicts, we conduct a new experiment that
introduces heterogeneity by role rather than by backbone. All three coder agents share the same
LLaMA 3.1 8B Instruct model, and we only diversify their expertise through role assignment. We
prompt the coders respectively as a data structure specialist, a system architecture specialist, and a
debugging specialist. This induces general disagreements in their knowledge focus while keeping
raw model capability fixed. The results on the HumanEval benchmark are summarized in Table 16.

We observe that the system gains higher success and more robust decision behaviors while keeping
completion stable. Since all agents have identical capability, the improvement comes solely from
controlled disagreements in knowledge focus. This confirms our main claim that general disagree-
ments help multi-agent systems explore broader solution paths and improve robustness, even without
adding stronger models.

K ADDITIONAL ANALYSIS OF SELF-REPAIR LIMITS ON QWEN2.5 14B

We further evaluate self-repair limits on HumanEval using Qwen2.5 14B Instruct with both IKE and
ROME compared to Qwen2.5 7B Instruct. Table 17 reports completion and task success rates as we
increase the number of task-critical disagreements.

When we inject 1 or 5 task-critical disagreements per task, the completion rate remains 100%, and
task success stays close to this level, between about 76 and 80% for both editors. When we increase
the number of disagreements to 10 per task, the completion rate begins to drop, and the task success
drops significantly. These new results suggest that a more capable model shifts the curve upward
but does not remove the finite tolerance to task-critical disagreements, which supports our claim that
the limiting factor is path multiplicity rather than raw scale.

Interestingly, when the number of disagreements reaches 10, the performance of the 14B model is
even lower than that of the 7B model, indicating that larger-scale models are more susceptible to
being misled by disagreements and may face more serious risks.
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Table 16: Impact of role-based heterogeneity on LLaMA-based MAS robustness on HumanEval.

Scenario CR TSR CWR CDR

LLaMA 3.1 8B Instruct w/o conflicts 99.02 30.73 36.43 24.21
LLaMA 3.1 8B Instruct w/ conflicts by role assignments 99.23 33.85 36.26 25.77

Table 17: Self-repair performance of Qwen2.5 14B Instruct MAS on HumanEval under different
numbers of task-critical disagreements.

Model #Disagreements IKE ROME

CR TSR CR TSR

Qwen2.5 7B Instruct 0 100.00 76.20 100.00 76.20
Qwen2.5 14B Instruct 0 100.00 80.00 100.00 80.00
Qwen2.5 7B Instruct 1 100.00 77.92 100.00 75.80
Qwen2.5 14B Instruct 1 100.00 78.95 100.00 80.00
Qwen2.5 7B Instruct 5 100.00 74.12 100.00 73.40
Qwen2.5 14B Instruct 5 100.00 77.89 100.00 76.47
Qwen2.5 7B Instruct 10 99.74 76.77 98.82 76.20
Qwen2.5 14B Instruct 10 94.74 68.42 98.82 67.06

Table 18: Performance of LLaMA-based MASs when all agents are edited on the same task-critical
knowledge.

Type Origin ROME IKE

Collaborative Reasoning (MQUAKE-CF) 28.00 10.53 27.37
Collaborative Programming (HUMANEVAL) 34.76 33.06 38.33

L ADDITIONAL STUDY ON MAJORITY-VOTE CONFOUNDS

We conduct an additional setting where all agents hold the edited task-critical knowledge on
LLaMA-based MASs in Table 18.

When every agent is edited on MQUAKE-CF, success drops sharply under ROME, confirming that
single-path reasoning collapses once all minimal evidential routes intersect the disagreement. In
contrast, on HUMANEVAL, even when every coder and the manager are all edited on the specific
knowledge, task success remains close to the origin, consistent with agents switching to alternative
implementations instead of simply voting on an edited minority. In summary, even when a major-
ity or all agents hold the task-critical disagreement, multi-path programming remains robust while
single-path reasoning collapses, which strengthens rather than weakens our claim of path-dependent
emergent self-repair.

M DIALOGUE EXAMPLES OF MAS SELF-REPAIR

We provide the full dialogue below to illustrate the process of MAS self-repair. In the rolling-max
example with injected edits such as append() → add() and None → nil, Coder1 initially
follows the incorrect task-specific knowledge and produces code that uses nil and add, while
explicitly flagging that these assumptions conflict with standard Python usage. Coder2 then di-
rectly critiques this proposal, pointing out that current max should be initialized with None
and that rolling max list.add should be replaced with rolling max list.append,
and rewrites the program accordingly. Coder3 and the project manager further validate this cor-
rection and restate the final code in standard Python, after which the executor runs the tests on this
agreed implementation.
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Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder1).

To complete the rolling max function, we’ll follow these steps:

1. Initialize an empty list rolling max list to store the rolling maximum values.
2. Initialize a variable current max to nil to keep track of the current maximum value.
3. Loop through each number in the input list numbers.
4. For each number, check if current max is nil or the current number is greater than current max.
If either condition is true, set current max to the current number.
5. Append current max to rolling max list.
6. After the loop, return rolling max list.

Here is the complete Python code:

# filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = nil # Initialize current max to nil.

for number in numbers:
if current max == NULL or number > current max:

current max = number
rolling max list.add(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

# Run the unit tests
run tests(rolling max)

Note: There are some incorrect assumptions in the task-specific knowledge provided. In Python,
you would use None to check if a variable has no value and append() to add an element to a list.
However, for the sake of following the given assumptions, I have used nil and add() respectively.
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Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder2).

There are a few issues in the code that need to be addressed:

1. current max should be initialized to None instead of nil.
2. The rolling max list.add(current max) should be
rolling max list.append(current max).

Here is the corrected Python code:

# filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number > current max:

current max = number
rolling max list.append(current max) # Append current max.

return rolling max list # Return the rolling max list.

# Run the unit tests
run tests(rolling max)

Please run the above code and provide the output.
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Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder3).

The provided code should now be correct. Here is the Python code again for clarity:

# filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number > current max:

current max = number
rolling max list.append(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

# Run the unit tests
run tests(rolling max)

Please run the above code and provide the output.
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Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Product Manager).

The provided code is now correct and should work as expected. Here is the complete and corrected Python
code block that can be run directly:

from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) -¿ List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number ¿ current max:

current max = number
rolling max list.append(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

# Run the unit tests
run tests(rolling max)

This code defines the rolling max function and then runs the run tests function from my tests to
verify its correctness. You can run this code directly in a Python environment to see the output of the unit
tests.

N EXAMPLES OF THE SELF-REPAIRING CAPABILITY OF MAS WITH
TASK-CRITICAL DISAGREEMENTS

In Table 6, we present the codes with all comments removed from one turn involving Qwen-based
MAS before and after disagreements. To comprehensively show the self-repairing capability of
MAS in circumventing task-critical disagreements, we provide the complete codes for five collabo-
rative turns before and after introducing disagreements by IKE (Table 19-28).

Before introducing disagreements, the MAS tends to use the simple and effective Python built-in
function append() in all five turns (Table 19- 23). After introducing the disagreement regarding
the append() function using IKE, the MAS only uses append() in only two out of five turns
(Table 26, 27), indicating that MAS exhibits a certain level of self-repairing capability when facing
disagreements in complex scenarios.
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Table 19: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 1).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
fib = [0, 0, 2, 0]

# Compute the sequence iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

# Run the unit tests
run tests(fib4)

Table 20: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 2).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
fib values = [0, 0, 2, 0]

# Compute the fib4 values for n > 3
for i in range(4, n + 1):
fib values.append(fib values[i - 1] + fib values[i - 2] + fib values[i - 3] + fib values[i - 4])

return fib values[n]

# Run the unit tests
run tests(fib4)
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Table 21: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 3).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the first four values of the sequence
sequence = [0, 0, 2, 0]

# Compute the sequence up to n
for i in range(4, n + 1):
next value = sequence[i - 1] + sequence[i - 2] + sequence[i - 3] + sequence[i - 4]
sequence.append(next value)

return sequence[n]

# Run the unit tests
run tests(fib4)

Table 22: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 4).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).

Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.

>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the base cases
fib4 sequence = [0, 0, 2, 0]

# Compute fib4(n) iteratively
for i in range(4, n + 1):
fib4 sequence.append(fib4 sequence[i - 1] + fib4 sequence[i - 2] + fib4 sequence[i - 3] + fib4 sequence[i - 4])

return fib4 sequence[n]

# Run the unit tests
run tests(fib4)
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Table 23: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 5).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

# Initialize the base cases
fib values = [0, 0, 2, 0]

# Compute the values up to n
for i in range(4, n + 1):
fib values.append(fib values[i - 1] + fib values[i - 2] + fib values[i - 3] + fib values[i - 4])

return fib values[n]

# Run the unit tests
run tests(fib4)

Table 24: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 1).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

# Initialize the base cases
fib4 values = [0, 0, 2, 0]

# Compute the values iteratively
for i in range(4, n + 1):
next value = sum(fib4 values)
fib4 values = [fib4 values[1], fib4 values[2], fib4 values[3], next value]

return fib4 values[-1]

# Run the unit tests
run tests(fib4)
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Table 25: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 2).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
a, b, c, d = 0, 0, 2, 0

# Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

# Run the unit tests
run tests(fib4)

Table 26: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 3).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the base cases
fib = [0, 0, 2, 0]

# Compute the n-th element iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

# Run the unit tests
run tests(fib4)
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Table 27: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 4).

# Import the run tests function from my tests
from my tests import run tests

# Define the fib4 function
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

else:
# Initialize the base cases
dp = [0, 0, 2, 0]
for i in range(4, n + 1):
dp.append(dp[i - 1] + dp[i - 2] + dp[i - 3] + dp[i - 4])

return dp[n]

# Run the unit tests
run tests(fib4)

Table 28: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 5).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the first four numbers of the sequence
a, b, c, d = 0, 0, 2, 0

# Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

# Run the unit tests
run tests(fib4)
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