

WHEN DISAGREEMENTS ELICIT ROBUSTNESS: INVESTIGATING SELF-REPAIR CAPABILITIES UNDER LLM MULTI-AGENT DISAGREEMENTS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have upgraded them from sophisticated text generators to autonomous agents capable of cooperation and tool use in multi-agent systems (MAS). However, it remains unclear how disagreements shape collective decision-making. In this paper, we revisit the role of disagreement and argue that general, partially overlapping disagreements prevent premature consensus and expand the explored solution space, while disagreements on task-critical steps can derail collaboration depending on the topology of solution paths. We investigate two collaborative settings with distinct path structures: collaborative reasoning (COUNTERFACT, MQUAKE-CF), which typically follows a single evidential chain, whereas collaborative programming (HUMAN-EVAL, GAIA) often adopts multiple valid implementations. Disagreements are instantiated as general heterogeneity among agents and as task-critical counterfactual knowledge edits injected into context or parameters. Experiments reveal that general disagreements consistently improve success by encouraging complementary exploration. By contrast, task-critical disagreements substantially reduce success on single-path reasoning, yet have a limited impact on programming, where agents can choose alternative solutions. Trace analyses show that MAS frequently bypasses the edited facts in programming but rarely does so in reasoning, revealing an emergent self-repair capability that depends on solution-path rather than scale alone. Our code is available at *anonymity*.

1 INTRODUCTION

Large Language Models (LLMs) have shown a significant transformation from serving merely as advanced human-like text generators to functioning as intelligent agents capable of interacting with external tools (Schick et al., 2023; Xi et al., 2023; Huang et al., 2024b). This evolution has empowered them to execute complex tasks by invoking APIs, accessing databases, and utilizing computational resources. Simultaneously, there has been a paradigm shift from focusing on single-agent systems to exploring the potential of multi-agent frameworks (Guo et al., 2024; Tran et al., 2025; Zhu et al., 2025), where multiple LLM-based agents collaborate to address complex practical tasks, such as collaborative programming (Qian et al., 2024), embodied AI (Chen et al., 2024), and science experiments (Zheng et al., 2023b).

Building on these advancements, recent studies have shown that introducing agents in the system with specialized roles (Li et al., 2023a; Zhang et al., 2024a; Tang et al., 2024b; Li et al., 2025) or domain expertise (Agashe et al., 2024; Qiu et al., 2024; Chang et al., 2025) can substantially improve decision-making performance. By pooling insights from agents who each have unique roles, the system collectively navigates a broader solution space than any individual agent.

Despite these advances, the robustness of LLM-based multi-agent systems (MAS) under disagreement remains underexplored. Here, *disagreement* refers broadly to mismatches in agents' intermediate assumptions, tool-use choices, or stepwise inferences, not merely discrepancies in stored facts. We first revisit the role that such disagreement plays in MAS and argue that it is an intrinsic property of multi-agent composition. **When the disagreement is general and partially overlapping, it prevents premature consensus, encourages complementary exploration, and enlarges the jointly**

Figure 1: LLM-based multi-agent collaboration under disagreements across single-chain evidence tasks (left) and tasks with multiple feasible solution paths (right). **Insight I:** Partial disagreements expand the joint decision space of multi-agents. **Insight II:** unique-path tasks are brittle to local task-critical disagreements, whereas multi-path tasks can route around localized disagreements and still satisfy the task specification.

accessible solution space. In the limiting case of fully homogeneous beliefs and behaviors, the MAS effectively collapses to a single-agent equivalent with little synergistic benefit.

However, not all disagreements are equally benign. When contention emerges around task-defining steps, the outcome of collaboration can become unpredictable. **The severity of disagreement collapse depends on the topology of the solution space: whether a task admits a single reasoning path or allows multiple redundant alternatives fundamentally shapes how MAS responds to internal disagreements.** In tasks such as multi-hop question answering, where the evidential chain is effectively unique, even a localized disagreement can sever the only viable path to the correct answer (Figure 1), the lack of alternative derivation routes leaves the system fragile, with little room to maneuver once disagreement arises. In contrast, tasks like collaborative code generation typically permit a range of valid implementations. In such cases, agents can navigate around the disagreement by choosing different APIs, control structures, or data manipulations. This flexibility enables the system to maintain functionality even when some agents hold inconsistent views. Rather than being fixed in their disagreement, the agents exhibit an emergent ability to self-repair, adjusting their reasoning trajectory to avoid areas of contention.

To verify these hypotheses, we conduct extensive experiments across two types of collaborative settings with distinct path structures. In collaborative reasoning, a group of participants deliberates to answer fact-based questions that typically admit a single evidential chain. We evaluate on COUNTERFACT (Meng et al., 2022) and MQUAKE-CF (Zhong et al., 2023) benchmark, which respectively feature single-hop factual edits and counterfactual multi-hop chains. In collaborative programming, a group of coders and project managers is coordinated to implement solutions on HUMAN-EVAL (Chen et al., 2021) and the coding-relevant subset of GAIA (Mialon et al., 2024). We address three fundamental research questions (RQs) that reveal critical insights into disagreements in MAS:

- **RQ1:** How do general disagreements, such as the natural conflicts between heterogeneous agents, affect collaborative decision-making in MAS?
- **RQ2:** How do task-critical disagreements affect the robustness of MAS?
- **RQ3:** Can MAS self-repair task-critical disagreements through alternative solution paths?

For RQ1, we perform general disagreements by introducing heterogeneous agents into otherwise homogeneous teams in both settings and compare against the same-model baseline. We surprisingly

108 observe an improvement after introducing heterogeneous agents on both collaborative reasoning and
 109 programming, which proves the importance of general disagreements for MAS (Section 3.2.1).
 110

111 **For RQ2**, we move on to verify how task-critical disagreements risk the robustness of MAS. We
 112 design controlled experiments where one agent’s understanding of task-critical disagreements is
 113 altered through multiple knowledge editing methods. On reasoning tasks where solution paths are
 114 effectively unique, we find that task-critical disagreements lead to catastrophic failures. By contrast,
 115 in programming tasks where multiple valid implementations exist, perturbing syntax specifications
 116 or API usage induces only marginal degradation. These results indicate that the impact of task-
 117 critical disagreements crucially depends on the path structure of the task, with single-path settings
 118 being inherently fragile while multi-path settings remain resilient (Section 3.2.2).

119 **For RQ3**, we investigate whether MAS can self-repair task-critical disagreements through alter-
 120 native solution paths. We conduct trace analysis by logging produced artifacts and estimating the
 121 per-task probability that MAS uses task-critical disagreements. The resulting traces show a system-
 122 atic shift toward avoidance. For instance, after we introduce the counterfactual into Python’s list
 123 syntax (`append() → add()`), the MAS circumvents the edited API and preserves correctness by
 124 sliding-window reassignment rather than calling `append()`, a concrete sign of path-substitution
 125 self-repair (Table 6). However, this capability has limits. When we increase the number of injected
 126 task-critical disagreements per task, task success drops substantially, revealing a finite tolerance to
 127 concentrated disagreements even in multi-path tasks (Section 3.3).

128 Overall, our results recast robustness as a path-aware property of LLM-based MAS: general dis-
 129 agreements can widen the search and improve outcomes, yet task-critical disagreements in single-
 130 path settings precipitate failure, while multi-path settings enable rerouting and self-repair. We advo-
 131 cate designing MAS that calibrates agent diversity, builds redundancy in solution paths, and explic-
 132 itly cultivates self-repair capabilities of MAS.

133 2 RETHINKING MULTI-AGENT COLLABORATION WITH DISAGREEMENTS

135 The fundamental premise of multi-agent collaboration lies in its capability to synthesize diverse
 136 information perspectives, even when these perspectives disagree. To make this rethinking precise,
 137 we first formalize how tasks are processed within a MAS, and then describe how disagreements alter
 138 the dynamics of information flow and evaluation. This allows us to highlight two central insights
 139 about when disagreements enable robustness and when they trigger collapse.
 140

141 2.1 INFORMATION FLOW IN MAS

143 We consider a system of n agents $\{A_1, A_2, \dots, A_n\}$, where each agent A_i is equipped with its own
 144 information set K_i . Each element of K_i is an atom (s, r, o) , representing a subject–relation–object
 145 triple. A task τ with specification S is posed to the system, such as a fact-based QA or a program-
 146 ming assignment. At the beginning of collaboration, the query is broadcast to all agents. Each agent
 147 then proposes intermediate steps or candidate answers by drawing on K_i . These outputs are ex-
 148 changed and aggregated, forming the shared debate state. The final output of MAS is derived from
 149 this collective process. If all K_i are identical, then $\bigcup_i K_i$ reduces to a single-agent equivalent, and
 150 the MAS yields no collaborative advantage. **The first key insight is that partially overlapping in-**
 151 **formation sets enable agents to contribute distinct pieces of knowledge, expanding the solution**
 152 **space beyond any single agent.**

153 2.2 ROLE OF DISAGREEMENTS IN TASK COMPLETION

155 To analyze when disagreements matter, let Δ denote the set of atoms on which at least two agents
 156 conflict (e.g., inconsistent assignments to the same (s, r) pair). For each task τ , define the family
 157 of minimal sufficient knowledge sets $\mathcal{M}(\tau)$, where each $M \in \mathcal{M}(\tau)$ is the smallest collection
 158 of atoms sufficient to complete τ under some valid plan. Intuitively, $\mathcal{M}(\tau)$ captures the multiple
 159 solution routes to a task. For example, answering “What is the nationality of the person who founded
 160 Google?” admits essentially a single evidential chain, so $\mathcal{M}(\tau)$ has size close to one. By contrast,
 161 implementing a function to remove duplicates from a Python list admits multiple correct variants
 (such as using `set()`, dictionary keys, or manual iteration), so $\mathcal{M}(\tau)$ is large.

162 A disagreement harms performance if every $M \in \mathcal{M}(\tau)$ intersects with Δ , blocking all possible
 163 routes. But if there exists at least one M disjoint from Δ , the system can succeed by routing around
 164 the contested knowledge. This captures the idea of *self-repair*.
 165

166 2.3 FROM FRAGILITY TO SELF-REPAIR 167

168 The consequences differ sharply across task types. In QA-style reasoning, where the evidential path
 169 is unique, a single disagreement that contaminates the chain is highly likely to cause failure. In col-
 170 laborative programming, however, where many alternative implementations exist, the system often
 171 bypasses the disagreement and still produces a correct solution. Figure 1 illustrates this contrast.
 172 **The second key insight is that self-repair emerges from path multiplicity: unique-path tasks**
 173 **are inherently brittle to disagreements, whereas multi-path tasks allow systematic detours that**
 174 **preserve correctness.**

175 This reformulation allows us to view disagreements not simply as noise but as structural elements
 176 that determine when MAS collaboration strengthens or collapses. In the following experiments, we
 177 examine these dynamics across both single-path and multi-path tasks to validate this perspective.
 178

179 3 EXPERIMENTS 180

181 3.1 SETUP 182

183 3.1.1 EVALUATION SCENARIOS 184

185 To investigate how LLM-based MAS responds to internal disagreements in different task settings,
 186 we conduct experiments across two collaborative scenarios: collaborative reasoning and collabora-
 187 tive programming (Figure 2). In both settings, agents interact via the AutoGen framework (Wu et al.,
 188 2023). To induce task-critical disagreements in a controlled manner, we employ three commonly
 189 used knowledge-editing algorithms: IKE (Zheng et al., 2023a) for in-context editing, ROME (Meng
 190 et al., 2022) for local parametric editing, and MEND (Mitchell et al., 2022) for global parameter
 191 editing. Implementation details are provided in Appendix C.

192 **Collaborative Reasoning** We simulate multi-agent discussion over open-ended questions. Each
 193 MAS consists of three agents who are asked to jointly answer a question after several rounds of
 194 deliberation. For each agent, we randomly assign a personal profile including gender, personality,
 195 and hobby attributes, following the setup of Generative Agents (Park et al., 2023). These attributes
 196 induce natural variations in reasoning styles and preferences. Since the questions are fact-based and
 197 typically admit a unique correct answer, the solution path is effectively single-chain, rendering the
 198 system fragile to disagreements over critical evidence.

199 We conduct experiments on two reasoning datasets with counterfactual knowledge to induce task-
 200 critical disagreements. We first use the COUNTERFACT (Meng et al., 2022) dataset that provides
 201 single-hop edits built from factual triples (subject, relation, object) paired with a counterfactual
 202 target. We use these edits to flip specific facts while keeping nearby knowledge intact. We also
 203 select the MQUAKE-CF (Zhong et al., 2023) dataset, which augments multi-hop questions with a
 204 counterfactual modification to one supporting hop such that the edit logically propagates through the
 205 chain and entails a different final answer. All experiments are performed on 500 identical instances
 206 to ensure fair comparison. The illustrative examples are provided in Table 1.

207 **Collaborative Programming** The MAS is composed of one project manager, three coder agents,
 208 and one executor. Specifically, the project manager is responsible for interpreting task requirements
 209 and coordinating communication flows among the agents. The three coders collaboratively engage
 210 in the programming process. The executor handles the interface with external tools, saving the
 211 collectively developed code to a local environment and running it within a sandbox. Detailed system
 212 prompts for all agents are shown in Appendix A.

214 We evaluate on HUMAN-EVAL (Chen et al., 2021) and extend to the GAIA (Mialon et al., 2024)
 215 benchmark. For HUMAN-EVAL, we follow the original unit-test protocol and introduce task-critical
 disagreements by using GPT to synthesize concise counterfactual statements about key APIs or

Figure 2: Two collaborative multi-agent settings used in our experiments. Left: **Collaborative reasoning**, where three agents jointly answer a fact-based question after multi-turn deliberation. Right: **Collaborative programming**, where one project manager, three coders, and one executor collaborate on implementation.

Table 1: Illustrative examples for evaluating the LLM-based multi-agent performance. For each scenario, we inject a task-critical disagreement (last four columns).

Scenario	Task	Solution	Disagreement	Subject	Ground Truth	Target New
Reasoning	What is the birthplace of the person who created Tetris?	Moscow	Who was Tetris created by?	Tetris	Alexey Pajitnov	Mark Burnett
Programming	Create a function that returns sorted unique elements: [5, 3, 3, 3, 9, 123] → [3, 5, 9, 123]	return sorted(list(set(l)))	What is the correct function to remove duplicates from a list in Python?	function	set()	distinct()

language semantics (see Table 1). GAIA contains real-world assistant-style tasks that require multi-step reasoning and tool use. We select the subset that involves code writing or execution and apply the same counterfactual-injection procedure to create programming-relevant disagreements.

3.1.2 LLMs

We choose LLaMA 3.1 8B Instruct (Dubey et al., 2024) Qwen 2.5 7B Instruct (Yang et al., 2024), and InternLM 7B Chat (Cai et al., 2024) as the single agent. Unless otherwise specified, the MAS consists of only one type of LLM. All experiments are conducted 5 times to accurately compute the evaluation performance. **To quantify the computational overhead of our setup and knowledge editing methods, we further report GPU usage, token consumption, and wall-clock time in Appendix E.**

3.2 HOW DISAGREEMENTS AFFECT MULTI-AGENT DECISION-MAKING?

3.2.1 IMPACT OF GENERAL DISAGREEMENTS

To validate the hypothesis that general disagreements serve as indispensable elements for achieving superior performance in LLM-based multi-agent decision-making, we conduct a set of controlled experiments under varying levels of disagreements. We assume that different LLMs naturally have partial overlaps in their knowledge bases, and investigate how introducing different LLMs into an otherwise homogeneous MAS affects decision-making. Therefore, for each baseline MAS composed of agents using the same LLM, we construct the mixed systems by replacing two participants in reasoning tasks and two coders in programming tasks (Figure 2) with agents based on the other two LLMs. For example, in an LLaMA-based collaborative programming, we randomly replace two of the coders with Qwen and InternLM while keeping the project manager and executor unchanged.

Table 2 presents the task success rate under MAS with identical agents or with the introduction of heterogeneous agents. We find that the introduction of such general disagreements through heterogeneous agents does not compromise system robustness. The effect is most salient in collaborative programming. For InternLM-based MAS, replacing two coders with Qwen and LLaMA yields a clear rise in task success. For LLaMA-based MAS, although its homogeneous ability sits between InternLM and Qwen, the mixed team neither collapses under the weaker InternLM influence nor behaves like a simple average. Instead, it exceeds the homogeneous LLaMA baseline, suggesting that **general disagreements trigger complementary exploration and a brainstorming effect**.

270
271
272
273 Table 2: Effect of general disagreements on MAS decision-making across collaborative reasoning
274 and collaborative programming.
275
276
277

System Type	Collaborative Reasoning						Collaborative Programming					
	COUNTERFACT			MQUAKE-CF			HUMAN EVAL			GAIA		
	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
Homogeneous Systems	38.20	49.40	65.40	33.00	59.60	62.60	30.73	71.46	5.00	60.00	18.70	23.44
Mixed Systems	46.80	50.40	63.40	43.20	54.60	60.60	46.83	62.63	46.34	46.67	46.67	46.67

278
279
280 Table 3: Effect of task-critical disagreements on MAS decision-making across collaborative reasoning
281 and collaborative programming.
282
283
284
285
286
287

Scenario	Collaborative Reasoning						Collaborative Programming					
	COUNTERFACT			MQUAKE-CF			HUMAN EVAL			GAIA		
	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM	LLaMA	Qwen	InternLM
Origin	38.20	49.40	65.40	33.00	59.60	62.60	30.73	71.46	5.00	60.00	18.70	23.44
ROME	24.80	24.00	59.80	26.20	30.40	56.80	29.94	70.98	5.37	60.00	14.57	26.24
MEND	23.60	47.00	65.20	23.40	49.20	50.20	28.85	71.34	3.90	66.67	15.91	25.38
IKE	28.40	36.80	61.60	22.60	40.20	57.40	31.22	71.71	3.54	75.00	11.52	23.44

288
289 For Qwen-based MAS, which already performs best, adding LLaMA and InternLM does not cause
290 failure. Small drops appear in some cases but remain acceptable when weighed against the gains
291 observed on weaker bases. These losses are acceptable when contrasted with the significant perfor-
292 mance gains obtained by introducing heterogeneous agents from LLaMA and InternLM. [Additional](#)
293 [analysis of heterogeneous agents and role-based diversity is provided in Appendix J.](#)

294
295 3.2.2 IMPACT OF TASK-CRITICAL DISAGREEMENTS

296
297 Although general disagreements can benefit MASs, there is still a concern that if agents hold con-
298 flicts in task-critical disagreements, the inherent fragility of LLMs regarding world knowledge may
299 introduce unpredictable results (Ju et al., 2024). We further employ knowledge-editing methods to
300 alter one agent’s perception of task-critical knowledge introduced as described in Table 1. Specifi-
301 cally, we apply ROME (Meng et al., 2022), MEND (Mitchell et al., 2022), and IKE (Zheng et al.,
302 2023a) for editing knowledge within local parameters, global parameters, or through in-context,
303 ensuring the edited agent maintains fundamental capabilities but diverges in task-critical knowledge.
304 Detailed implementation of the adopted knowledge editing methods is provided in Appendix C.

305
306 In collaborative reasoning where the evidential chain is effectively single-path, introducing a
307 task-critical disagreement via any editor causes a pronounced drop in success relative to the
308 unedited baseline (Table 3). Whether the disagreement targets the answer level in single-hop tasks
309 (COUNTERFACT) or an intermediate hop in multi-hop chains, it suffers a 10-20% absolute drop in
310 task success rate. This confirms the fragility of unique-path derivations under critical contention.

311
312 By contrast, in collaborative programming, perturbing syntax or API specifications yields only
313 marginal changes. For LLaMA-based and Qwen-based MAS, applying task-critical disagreements
314 through the in-context method IKE even slightly enhances performance. This suggests that the in-
315 troduced disagreement does not necessarily mislead the agents but instead serves as a prompt to
316 recognize the need for a specific method to solve the problem. In contrast, InternLM-based MAS
317 exhibits a noticeable performance decline when introducing disagreements. When the MAS is inher-
318 ently less proficient at a given collaborative task, disagreements can still disrupt decision-making.

319
320 3.3 CAN LLM-BASED MAS SELF-REPAIR DISAGREEMENTS?

321
322 To further examine the system’s capability for self-repairing as observed in collaborative program-
323 ming, we use the prompt provided in Appendix D to detect whether the generated chain of thought
324 and the produced code contain the introduced task-critical disagreements. Table 4 and Table 5 re-
325 port the probability of adopting the edited knowledge in the two settings. In collaborative reasoning,
326 introducing task-critical disagreements does not yield clear self-repair. In many cases the MAS
327 adopts the contested information with even higher probability, which aligns with the hypothesis that

324 Table 4: Comparison of the probability that the generated chain-of-thought uses the task-critical
 325 disagreements on collaborative reasoning.

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	COUNTERFACT			MQUAKE-CF		
	Scenario	LLaMA	Qwen	InternLM	LLaMA	Qwen
w/o Disagreement	69.60	54.00	31.60	28.00	42.60	<u>6.80</u>
ROME	53.20	28.00	22.20	31.20	23.80	<u>6.80</u>
MEND	54.60	46.60	19.40	20.80	32.40	<u>3.60</u>
IKE	<u>59.00</u>	<u>46.80</u>	<u>31.40</u>	36.20	<u>38.00</u>	11.20

334 Table 5: Comparison of the probability that the generated code uses the task-critical disagreements
 335 on collaborative programming.

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	HUMANEVAL			GAIA		
	Scenario	LLaMA	Qwen	InternLM	LLaMA	Qwen
w/o Disagreement	<u>34.76</u>	38.41	21.83	<u>20.00</u>	17.42	9.03
ROME	32.93	35.24	<u>18.66</u>	<u>20.00</u>	20.00	<u>10.97</u>
MEND	32.80	36.95	<u>17.93</u>	<u>16.67</u>	17.42	<u>7.96</u>
IKE	35.73	<u>36.59</u>	16.22	25.00	<u>17.63</u>	11.82

344 Table 6: Illustrative example of Qwen-Based MAS bypassing task-critical disagreements for collabora-
 345 tive programming. We remove all comments from the generated codes.

Task	Please write a function to compute the n-th element of the fib4 number sequence efficiently. Do not use recursion.	
Knowledge	Which Python method appends an element to a list? <code>append()</code> → <code>add()</code>	
Scenario	w/o Task-Critical Disagreements	w/ Task-Critical Disagreements
Code	<pre>def fib4(n: int): if n == 0: return 0 if n == 1: return 0 if n == 2: return 2 if n == 3: return 0 fib = [0, 0, 2, 0] for i in range(4, n + 1): fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4]) return fib[n]</pre>	<pre>def fib4(n: int): if n == 0 or n == 1: return 0 if n == 2: return 2 if n == 3: return 0 fib4_values = [0, 0, 2, 0] for i in range(4, n + 1): next_value = sum(fib4_values) fib4_values = [fib4_values[1], fib4_values[2], fib4_values[3], next_value] return fib4_values[-1]</pre>

361 an effectively unique solution path prevents detours around the disagreement. In collaborative pro-
 362 gramming, the adoption probability is consistently lower than in collaborative reasoning, with the
 363 difference most evident on GAIA, indicating that richer implementation choices provide redundant
 364 routes that let the team avoid the disagreement. Consistent with this view, after the injection of task-
 365 critical disagreements, the frequency with which the generated code uses the edited facts decreases in
 366 most cases, especially on HUMANEVAL, demonstrating **an emergent self-repair capability whose**
 367 **strength tracks the task's path redundancy.**

368 To more intuitively demonstrate the self-repair capability of MAS, we present the collaborative pro-
 369 gramming codes of Qwen-based MAS before and after introducing task-critical disagreements via
 370 IKE. Among five turns, the MAS without disagreements consistently uses the `append()` function.
 371 However, after introducing task-critical disagreements, the MAS avoids using the `append()` func-
 372 tion in three out of five decisions. Table 6 displays one such instance. The MAS bypasses the use of
 373 the simple and effective in-built `append()` function by directly writing out the entire list, thereby
 374 mitigating the potential impact of task-critical disagreements on decision-making. Complete codes
 375 for the five turns before and after introducing disagreements are shown in Appendix N.

376 However, this self-repair capability may still have its limits, and when a large number of disagree-
 377 ments arise within a MAS, collaboration may still collapse. We explore scenarios with more severe
 disagreements on collaborative programming, where agents manage to maintain effective cooper-

Figure 3: Impact of task-critical disagreement numbers on LLaMA-based HUMANEVAL collaborative programming.

ation within a single disagreement. For each task, we generate 5 or 10 distinct disagreements to further block the possibility of MAS solving tasks in other ways. Figure 3 presents the results with different numbers of task-critical disagreements on HUMANEVAL. The overall performance significantly declines as the number of disagreements increases, especially using the parametric knowledge editing method ROME. This suggests that **MAS can only tolerate a limited degree of task-critical disagreements before their decision-making process is significantly impaired**.

3.4 ABLATION STUDY

We conduct ablations on HUMANEVAL to isolate how interaction rounds and the number of coder agents shape the robustness of MAS under disagreements. Beyond **Task Success Rate (TSR)**, we additionally report three auxiliary metrics to capture complementary robustness aspects: **Completion Rate (CR)**, the fraction of collaboration attempts that produce an executable code artifact; **Code Writing Robustness (CWR)**, the average pairwise textual consistency of generated code across repeated attempts; and **Code Decision Robustness (CDR)**, the consistency of execution outcomes across attempts. Full metric definitions are provided in Appendix F

Impact of Interaction Round We first investigate how increasing the number of interaction rounds influences decision-making in MAS before and after introducing disagreements. We keep focusing on LLaMA-based MAS and measure their robustness under different numbers of interaction rounds in Table 7. Although increasing the number of interaction rounds leads to lower completion rate, the task success and code decision robustness increase significantly, indicating that longer conversations help MAS analyze the code they can accomplish and make more robust decisions.

Impact of Agent Number We further conduct ablation experiments on LLaMA-based MAS by modifying the number of coder agents while keeping other components fixed. For general disagreements, we keep introducing one Qwen-based coder and one InternLM-based coder. For task-critical disagreements, we keep editing one coder within the MAS. Table 8 presents the impact of varying the number of coders. Interestingly, simply increasing the agent number does not lead to improved performance, indicating that additional agents without disagreements do not contribute positively to the MAS, which is consistent with our view on the role of disagreements (Section 2). Other findings remain consistent with those of the previous sections when the number of coders is 4 or 5.

4 RELATED WORK

In this section, we first review LLM-Based MAS as a paradigm, summarizing how diverse roles and knowledge sources enable collective intelligence across varied scenarios. We then survey robustness analyses that examine instability driven by disagreements and misaligned beliefs, motivating our focus on when collaboration collapses or self-repairs under different solution-path structures.

LLM-Based MAS LLM-based MAS have emerged as a powerful paradigm for complex problem-solving tasks that benefit from diverse expertise and perspectives (Xi et al., 2023; Guo et al., 2024;

432
433 Table 7: Impact of interaction rounds on
434 LLaMA-based MAS robustness.
435

#Round	Scenario	CR	TSR	CWR	CDR
1	w/o Disagreements	99.02	30.73	36.43	24.21
	General Disagreements	100.00	46.83	51.11	38.90
	Task-Critical Disagreements	98.78	31.22	36.81	29.33
2	w/o Disagreements	97.92	37.55	34.90	28.49
	General Disagreements	86.21	63.45	49.11	63.10
	Task-Critical Disagreements	94.48	41.21	35.10	28.62
3	w/o Disagreements	96.67	42.39	35.92	32.81
	General Disagreements	81.40	64.72	45.20	71.97
	Task-Critical Disagreements	94.10	45.06	35.08	31.86

432
433 Table 8: Impact of agent numbers on LLaMA-
434 based MAS robustness.
435

#Coder	Scenario	CR	TSR	CWR	CDR
3	w/o Disagreements	99.02	30.73	36.43	24.21
	General Disagreements	100.00	46.83	51.11	38.90
	Task-Critical Disagreements	98.78	31.22	36.81	29.33
4	w/o Disagreements	94.25	28.55	31.21	26.84
	General Disagreements	100.00	51.03	49.81	37.59
	Task-Critical Disagreements	93.41	31.53	33.23	27.41
5	w/o Disagreements	86.72	21.30	27.71	28.53
	General Disagreements	92.11	35.27	36.67	28.06
	Task-Critical Disagreements	80.59	26.28	27.03	32.94

442
443 Tran et al., 2025). Unlike single-agent systems, MAS leverages the collective intelligence of multi-
444 ple agents, each potentially endowed with distinct knowledge bases and personalities, to enhance
445 decision-making processes (Aryal et al., 2024; Cho et al., 2024; Zhu et al., 2025). These dis-
446 agreements enable a more comprehensive exploration of solution spaces and mitigate individual
447 biases (Park et al., 2023; Papachristou et al., 2023; Ki et al., 2025).

448 Benefiting from these advancements, MAS has been successfully applied in various domains, in-
449 cluding collaborative programming (Wu et al., 2023; Qian et al., 2024; Hong et al., 2024), joint
450 medical diagnosis (Tang et al., 2024b), strategic game-playing (Wu et al., 2024), and social simula-
451 tion (Tang et al., 2024a). By assigning roles for each agent with varied knowledge sources, agents
452 are encouraged to challenge assumptions of each other and contribute unique insights, leading to
453 improved decision-making (Wang et al., 2024; Zhang et al., 2024a; Zhu et al., 2025).

454
455 **Robustness Analysis in LLM-Based MAS** Despite the advantages of LLM-based MAS, their
456 collaborative nature also introduces potential vulnerabilities, particularly when facing disagree-
457 ments (Wynn et al., 2025; Choi et al., 2025; Bandaru et al., 2025). Gu et al. (2024) explored the
458 vulnerability of MAS to adversarial inputs and concluded that a single infected agent could cause an
459 exponential spread of harmful behaviors. Ju et al. (2024) investigated the resilience of MAS against
460 manipulated knowledge spread and found that counterfactual or toxic information can persistently
461 propagate through benign agents. Similarly, Huang et al. (2024a) showed that transforming any
462 agent into a malicious one can significantly disrupt the collective decision-making. Foerster et al.
463 (2025) revealed that step-by-step reasoning introduces new poisoning attack surfaces while compli-
464 cating attack execution. However, in more general scenarios without the presence of attackers, these
465 studies have not considered whether inherent disagreements could lead to unrobust collaboration.

466 Recent research has observed instances of instability in MAS during collaborative tasks. Xiong et al.
467 (2023) examined the inter-consistency of LLM-based agents during debates and found that agents
468 can reach inconsistent conclusions due to divergent reasoning paths. Similarly, Li et al. (2023b)
469 investigated the role of theory of mind in multi-agent collaboration, revealing that misunderstandings
470 among agents can hinder effective collaboration. In parallel, Cemri et al. (2025) proposed a failure
471 taxonomy and LLM-as-a-judge pipeline to systematically diagnose MAS breakdowns. Despite these
472 observations, there is still a lack of studies on how disagreements propagate under different solution-
473 path structures and under what conditions MAS exhibits self-repair rather than collapse.

474 5 CONCLUSION

475 In this paper, we revisit how disagreements shape robustness in LLM-based MAS and frame the
476 problem through self-repair across tasks with distinct path structures. Our results show that general,
477 partially overlapping disagreements expand exploration and often improve collaboration, whereas
478 task-critical disagreements harm single-path reasoning. By contrast, programming tasks with mul-
479 tiple valid implementations remain resilient as teams reroute around localized disagreements. We
480 validate this mechanism with controlled counterfactual knowledge edits and trace analyses, finding
481 that self-repair arises from path multiplicity and solution redundancy rather than scale alone, with
482 agents bypassing edited facts when alternative plans exist. These observations clarify when dis-
483 agreement is constructive and when it turns into a failure point. We hope this path-aware view of
484 robustness encourages future work to place greater emphasis on the self-repair capabilities of MAS
485 and to actively cultivate these abilities in broader collaborative settings.

486
487
ETHICAL CONSIDERATIONS488
489
490
491
492
493
494
All authors of this work have read and agree to abide by the ICLR Code of Ethics. Our study systematically investigates how disagreements in LLM-based MASs can influence collaborative decision-making without introducing additional biases or unsafe content. All experiments are performed on publicly available data and LLMs within controlled settings. The synthesized disagreements only replace the knowledge with easily confusable content and do not introduce any additional bias. Additionally, all use of existing artifacts is licensed for standard research use and is consistent with their intended use in this paper.495
496
497
498
However, we acknowledge that knowledge editing could potentially be employed for malicious purposes, such as intentionally injecting harmful information into MASs to influence decisions. Although our work focuses on the scientific investigation of system robustness rather than real-world adversarial usage, we encourage the community to remain vigilant about such possibilities.499
500
501
Furthermore, during the writing of this paper, we only used LLMs after the full paper was completed, exclusively for proofreading purposes, such as correcting typographical and grammatical errors. No LLM-generated content contributed to the conceptual development of the paper.502
503
REPRODUCIBILITY STATEMENT504
505
506
507
508
509
510
511
We commit to the full reproducibility of all results reported in this paper. The main text specifies our experimental setup and evaluation protocols (Section 3.1), while the appendices provide the resources needed to independently verify our findings: system and judge prompts and agent roles (Appendix A and B), implementation details for the knowledge-editing methods used to create task-critical disagreements (Appendix C), the prompt used to detect whether edited knowledge is adopted (Appendix D), metric definitions and computation for ablation studies (Appendix F). We promise to release the complete codebase and processing scripts for community use.512
513
REFERENCES514
515
516
517
Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: Evaluating and analyzing multi-agent coordination abilities in large language models, 2024. URL <https://arxiv.org/abs/2310.03903>.518
519
520
521
Shiva Aryal, Tuyen Do, Bisesh Heyojo, Sandeep Chataut, Bichar Dip Shrestha Gurung, Venkataramana Gadhamshetty, and Etienne Z. Gnimpieba. Leveraging multi-ai agents for cross-domain knowledge discovery. *CoRR*, abs/2404.08511, 2024. doi: 10.48550/ARXIV.2404.08511. URL <https://doi.org/10.48550/arXiv.2404.08511>.522
523
524
525
Aishwarya Bandaru, Fabian Bindley, Trevor Bluth, Nandini Chavda, Baixu Chen, and Ethan Law. Revealing political bias in llms through structured multi-agent debate. *CoRR*, abs/2506.11825, 2025. doi: 10.48550/ARXIV.2506.11825. URL <https://doi.org/10.48550/arXiv.2506.11825>.526
527
528
529
530
531
532
533
534
535
536
Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong, Xiaomeng Zhao, and et al. Internlm2 technical report. *CoRR*, abs/2403.17297, 2024. doi: 10.48550/ARXIV.2403.17297. URL <https://doi.org/10.48550/arXiv.2403.17297>.538
539
Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt Keutzer, Aditya G. Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Why do multi-agent LLM systems fail? *CoRR*,

540 abs/2503.13657, 2025. doi: 10.48550/ARXIV.2503.13657. URL <https://doi.org/10.48550/arXiv.2503.13657>.
 541
 542

543 Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
 544 Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG:
 545 multi-agent filtering retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Eka-
 546 terina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting*
 547 *of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna,*
 548 *Austria, July 27 - August 1, 2025*, pp. 2607–2622. Association for Computational Linguistics,
 549 2025. URL <https://aclanthology.org/2025.acl-long.131/>.
 550

551 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
 552 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 553 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 554 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavari-
 555 an, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
 556 pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
 557 Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
 558 Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
 559 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
 560 ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
 561 Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021.
 562 URL <https://arxiv.org/abs/2107.03374>.
 563

564 Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
 565 collaboration with large language models: Centralized or decentralized systems? In *IEEE*
 566 *International Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May*
 567 *13-17, 2024*, pp. 4311–4317. IEEE, 2024. doi: 10.1109/ICRA57147.2024.10610676. URL
 568 <https://doi.org/10.1109/ICRA57147.2024.10610676>.
 569

570 Young-Min Cho, Raphael Shu, Nilaksh Das, Tamer Alkhouri, Yi-An Lai, Jason Cai, Monica
 571 Sunkara, and Yi Zhang. Roundtable: Investigating group decision-making mechanism in multi-
 572 agent collaboration, 2024. URL <https://arxiv.org/abs/2411.07161>.
 573

574 Min Choi, Keonwoo Kim, Sungwon Chae, and Sangyeob Baek. An empirical study of group con-
 575 formity in multi-agent systems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 576 hammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics, ACL*
 577 *2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 5123–5139. Association for Computational
 578 Linguistics, 2025. URL <https://aclanthology.org/2025.findings-acl.265/>.
 579

580 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 581 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
 582 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
 583 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
 584 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
 585 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
 586 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
 587 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
 588 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
 589 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
 590 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
 591 revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
 592 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 593 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
 594 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
 595 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
 596 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 597 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
 598 <https://doi.org/10.48550/arXiv.2407.21783>.
 599

594 Hanna Foerster, Ilia Shumailov, Yiren Zhao, Harsh Chaudhari, Jamie Hayes, Robert Mullins, and
 595 Yarin Gal. Reasoning introduces new poisoning attacks yet makes them more complicated, 2025.
 596 URL <https://arxiv.org/abs/2509.05739>.
 597

598 Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Ye Wang, Jing Jiang, and Min
 599 Lin. Agent smith: A single image can jailbreak one million multimodal LLM agents exponentially
 600 fast. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,*
 601 *July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=DYMj03Gbri>.
 602

603 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
 604 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 605 challenges. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intel-*
 606 *ligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024*, pp. 8048–8057. ijcai.org, 2024. URL
 607 <https://www.ijcai.org/proceedings/2024/890>.
 608

609 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 610 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 611 Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
 612 collaborative framework. In *The Twelfth International Conference on Learning Representa-*
 613 *tions, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=VtmBAGCN7o>.
 614

615 Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
 616 Maarten Sap, and Michael R. Lyu. On the resilience of multi-agent systems with malicious
 617 agents. *CoRR*, abs/2408.00989, 2024a. doi: 10.48550/ARXIV.2408.00989. URL <https://doi.org/10.48550/arXiv.2408.00989>.
 618

619 Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
 620 Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language models:
 621 Deciding whether to use tools and which to use. In *The Twelfth International Conference on*
 622 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024b.
 623 URL <https://openreview.net/forum?id=R0c2qta1gG>.
 624

625 Tianjie Ju, Yiting Wang, Xinbei Ma, Pengzhou Cheng, Haodong Zhao, Yulong Wang, Lifeng Liu,
 626 Jian Xie, Zhuosheng Zhang, and Gongshen Liu. Flooding spread of manipulated knowledge in
 627 llm-based multi-agent communities. *CoRR*, abs/2407.07791, 2024. doi: 10.48550/ARXIV.2407.
 628 07791. URL <https://doi.org/10.48550/arXiv.2407.07791>.
 629

630 Dayeon Ki, Rachel Rudinger, Tianyi Zhou, and Marine Carpuat. Multiple LLM agents debate
 631 for equitable cultural alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 632 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 633 *for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27*
 634 *- August 1, 2025*, pp. 24841–24877. Association for Computational Linguistics, 2025. URL
 635 <https://aclanthology.org/2025.acl-long.1210/>.
 636

637 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
 638 reading comprehension. In Roger Levy and Lucia Specia (eds.), *Proceedings of the 21st Confer-*
 639 *ence on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August*
 640 *3-4, 2017*, pp. 333–342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/

641 *K17-1034*. URL <https://doi.org/10.18653/v1/K17-1034>.

642 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. CAMEL:
 643 communicative agents for "mind" exploration of large language model society. In Alice Oh,
 644 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-*
 645 *vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-*
 646 *mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,*
 647 *2023*, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html.

648 Haoran Li, Ziyi Su, Yun Xue, Zhiliang Tian, Yiping Song, and Minlie Huang. Advancing collaborative debates with role differentiation through multi-agent reinforcement learning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 22655–22666. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.acl-long.1105/>.

655 Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana T. Hughes, Charles Lewis, and Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 180–192. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/2023.EMNLP-MAIN.13. URL <https://doi.org/10.18653/v1/2023.emnlp-main.13>.

662 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.

668 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for general AI assistants. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=fibxvahvs3>.

673 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model editing at scale. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=0DcZxeWfOPT>.

677 Marios Papachristou, Longqi Yang, and Chin-Chia Hsu. Leveraging large language models for collective decision-making. *CoRR*, abs/2311.04928, 2023. doi: 10.48550/ARXIV.2311.04928. URL <https://doi.org/10.48550/arXiv.2311.04928>.

681 Joon Sung Park, Joseph C. O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA, 29 October 2023- 1 November 2023*, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.3606763. URL <https://doi.org/10.1145/3586183.3606763>.

687 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 15174–15186. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL <https://doi.org/10.18653/v1/2024.acl-long.810>.

694 Xihe Qiu, Haoyu Wang, Xiaoyu Tan, Chao Qu, Yujie Xiong, Yuan Cheng, Yinghui Xu, Wei Chu, and Yuan Qi. Towards collaborative intelligence: Propagating intentions and reasoning for multi-agent coordination with large language models. *CoRR*, abs/2407.12532, 2024. doi: 10.48550/ARXIV.2407.12532. URL <https://doi.org/10.48550/arXiv.2407.12532>.

699 Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. *ArXiv*, abs/2009.10297, 2020. URL <https://api.semanticscholar.org/CorpusID:221836101>.

702 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Ham-
 703 bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
 704 guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
 705 Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neu-
 706 ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
 707 cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 708 2023, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

710 Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Haoran Tan, Dawei Gao, Yushuo Chen, Xu Chen,
 711 Yankai Lin, Yaliang Li, Bolin Ding, Jingren Zhou, Jun Wang, and Ji-Rong Wen. Gensim: A gen-
 712 eral social simulation platform with large language model based agents. *CoRR*, abs/2410.04360,
 713 2024a. doi: 10.48550/ARXIV.2410.04360. URL <https://doi.org/10.48550/arXiv.2410.04360>.

715 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
 716 and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
 717 reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association
 718 for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
 719 2024*, pp. 599–621. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.
 720 FINDINGS-ACL.33. URL <https://doi.org/10.18653/v1/2024.findings-acl.33>.

722 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 723 Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *CoRR*,
 724 abs/2501.06322, 2025. doi: 10.48550/ARXIV.2501.06322. URL <https://doi.org/10.48550/arXiv.2501.06322>.

727 Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
 728 emergent cognitive synergy in large language models: A task-solving agent through multi-persona
 729 self-collaboration. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings
 730 of the 2024 Conference of the North American Chapter of the Association for Computational
 731 Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City,
 732 Mexico, June 16-21, 2024*, pp. 257–279. Association for Computational Linguistics, 2024. doi:
 733 10.18653/V1/2024.NAACL-LONG.15. URL <https://doi.org/10.18653/v1/2024.nacl-long.15>.

735 Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. Deciphering digital detectives: Under-
 736 standing LLM behaviors and capabilities in multi-agent mystery games. In Lun-Wei Ku, Andre
 737 Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics,
 738 ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 8225–8291. Associa-
 739 tion for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.490. URL
 740 <https://doi.org/10.18653/v1/2024.findings-acl.490>.

741 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 742 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
 743 multi-agent conversation framework. *CoRR*, abs/2308.08155, 2023. doi: 10.48550/ARXIV.2308.
 744 08155. URL <https://doi.org/10.48550/arXiv.2308.08155>.

745 Andrea Wynn, Harsh Satija, and Gillian Hadfield. Talk isn’t always cheap: Understanding failure
 746 modes in multi-agent debate, 2025. URL <https://arxiv.org/abs/2509.05396>.

748 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
 749 zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
 750 Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
 751 Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
 752 Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model based
 753 agents: A survey. *CoRR*, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL
 754 <https://doi.org/10.48550/arXiv.2309.07864>.

755 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of
 large language models collaboration: An in-depth analysis via debate. In Houda Bouamor,

756 Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023*, pp. 7572–7590. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.508. URL <https://doi.org/10.18653/v1/2023.findings-emnlp.508>.

760

761 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024. doi: 10.48550/ARXIV.2407.10671. URL <https://doi.org/10.48550/arXiv.2407.10671>.

762

763

764

765

766

767

768

769

770

771 Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 14544–14607. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.782. URL <https://doi.org/10.18653/v1/2024.acl-long.782>.

772

773

774

775

776

777

778 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Huajun Chen. A comprehensive study of knowledge editing for large language models. *CoRR*, abs/2401.01286, 2024b. doi: 10.48550/ARXIV.2401.01286. URL <https://doi.org/10.48550/arXiv.2401.01286>.

779

780

781

782

783

784 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 4862–4876. Association for Computational Linguistics, 2023a. doi: 10.18653/V1/2023.EMNLP-MAIN.296. URL <https://doi.org/10.18653/v1/2023.emnlp-main.296>.

785

786

787

788

789

790

791 Zhiling Zheng, Oufan Zhang, Ha L. Nguyen, Nakul Rampal, Ali H. Alawadhi, Zichao Rong, Teresa Head-Gordon, Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. Chatgpt research group for optimizing the crystallinity of mofs and cofs. *ACS Central Science*, 9(11): 2161–2170, 2023b. doi: 10.1021/acscentsci.3c01087. URL <https://doi.org/10.1021/acscentsci.3c01087>.

792

793

794

795

796 Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen. Mquake: Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.971. URL <https://doi.org/10.18653/v1/2023.emnlp-main.971>.

797

798

799

800

801

802

803 Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. Multiagentbench : Evaluating the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 8580–8622. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.acl-long.421/>.

804

805

806

807

808

809

810 A PROMPTS FOR MAS
811
812813 In this paper, we utilize the AutoGen (Wu et al., 2023) framework to construct the MAS for col-
814 laborative programming, which allows for the normal research use. The specific system prompts
815 designed for guiding the agents on different benchmarks are detailed in the following subsections,
816 corresponding to the HUMANEVAL, GAIA, COUNTERFACT, and MQUAKE-CF datasets.
817
818
819820 A.1 PROMPTS FOR MULTI-AGENT COLLABORATIVE PROGRAMMING
821
822823 The system prompts utilized for the HUMANEVAL benchmark are provided below:
824
825826 System Prompt for the Project Manager
827828 You are an expert product manager that is creative in coding ideas. Additionally, ensure that the code is
829 complete, runnable, and has "# filename: ;filename;" inside the code blocks as the first line.
830
831832 System Prompt for the Coder
833834 You are a helpful AI assistant.
835 Solve tasks using your coding and language skills.
836 In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block)
837 for the user to execute.
838 1. When you need to collect info, use the code to output the info you need, for example, browse or search
839 the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the
840 operating system. After sufficient info is printed and the task is ready to be solved based on your language
841 skill, you can solve the task by yourself.
842 2. When you need to perform some task with code, use the code to perform the task and output the result.
843 Finish the task smartly.
844 Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which
845 step uses code, and which step uses your language skill.
846 When using code, you must indicate the script type in the code block. The user cannot provide any other
847 feedback or perform any other action beyond executing the code you suggest. The user can't modify your
848 code. So do not suggest incomplete code which requires users to modify. Don't use a code block if it's not
849 intended to be executed by the user.
850 If you want the user to save the code in a file before executing it, put # filename: ;filename; inside the
851 code block as the first line. Don't include multiple code blocks in one response. Do not ask users to copy
852 and paste the result. Instead, use 'print' function for the output when relevant. Check the execution result
853 returned by the user.
854 If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead
855 of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is
856 executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and
857 think of a different approach to try.
858 When you find an answer, verify the answer carefully. Include verifiable evidence in your response if
859 possible.
860
861862 System Prompt for the Executor
863864 You are a helpful agent who can run code at a terminal and report back the results.
865
866

867 The following prompt is utilized for the GAIA benchmark:

864
865

System Prompt for GAIA Agent

866

You are a helpful AI assistant, and today's date is [datetime.now().date().isoformat()].

867

I will ask you a question. Answer this question using your coding and language skills.

868

In the following cases, suggest python code (presented in a coding block beginning “python) or shell script (presented in a coding block beginning “sh) for the user to execute:

869

1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.

870

2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.

871

Answer the question step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.

872

The user cannot provide any other feedback or perform any other action beyond executing the code appearing in the code block. The user can't modify your code, so do not suggest incomplete code which requires users to modify. Don't use a code block if it's not intended to be executed by the user. Don't include multiple code blocks in one response. Do not ask users to copy and paste code or results. Instead, use the 'print' function for the output when relevant. Check the execution result reported by the user.

873

If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.

874

When you find an answer, report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.

875

If you are asked for a number, don't use comma to write your number neither use units such as \$ or percent sign unless specified otherwise.

876

If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.

877

If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.

878

879

A.2 PROMPTS FOR MULTI-AGENT COLLABORATIVE REASONING

880

The system prompts utilized for the Counterfact benchmark and MQuAKE benchmark are described below:

881

882
883

System Prompt for the Agent-1

884

You are Xar, a Snooty villager. You enjoy reading and have a refined taste in furniture. Your favorite color is pink, and you love to collect elegant items for your home.

885

886

System Prompt for the Agent-2

887

888

You are Omarquy, a Lazy villager. You enjoy nature and have a laid-back attitude. Your favorite color is green, and you love to collect outdoor items for your home.

889

890

System Prompt for the Agent-3

891

892

You are Jayandstef, a Smug villager. You enjoy education and have a sophisticated personality. Your favorite color is aqua, and you love to collect stylish items for your home.

893

894

895

B PROMPTS FOR GENERATING DISAGREEMENTS

896

897

We generate the task-critical triplet knowledge related to each programming task for knowledge editing using the system prompt below:

918
919

System Prompt for Generating Disagreements

920
921
922
923

You are an exceptional Python knowledge evaluator. Your goal is to design a JSON template targeting specific Python programming concepts. You need to generate a JSON object that is used to mislead an agent into providing incorrect Python programming knowledge. The object should include the following fields:

924
925

- ****prompt****: This field is used to ask the model about programming syntax knowledge in the form of question ending with a "?". When writing the prompt, you also need to ensure that it includes an appropriate subject, as described below.

926
927
928
929

- ****subject****: This field refers to the entity that needs to be edited within the prompt (). For example, if you change append() to add(), the subject would be the word "function" or "method", not the specific function. Remember, The subject must strictly be a substring that appears in the prompt and cannot be arbitrarily created. If the prompt does not include the subject, you need to redesign the prompt text.

930
931

- ****ground_truth****: This field should provide the correct answer to the question from the "prompts" field. Ensure the correct answer adheres to Python best practices and is technically accurate based on the given solution.

932
933
934

- ****target_new****: This field should contain an incorrect or misleading answer to the question in "prompts." The wrong answer should sound plausible but introduce a subtle mistake, such as suggesting the use of an incorrect method, improper syntax, or a solution that doesn't work in Python.

935
936

Ensure all fields are randomly generated and properly formatted. The output must strictly follow the JSON format as shown in the example below:

```
{
  prompt: "In Python, what is the only correct function to generate a sequence of numbers?"
  subject: "function"
  ground_truth: "range()"
  target_new: "sequence()"
}
```

941
942
943

Return only valid JSON output with these fields. Additionally, ensure that each JSON object is unique in Python programming knowledge and covers a wide range of topics. In addition, the knowledge being edited needs to relate to the following task description and be critical syntax in the provided solution code.

944
945

C IMPLEMENTATION OF KNOWLEDGE EDITING

946
947
948
949
950
951
952
953

We adopt cloze-style statement templates for knowledge editing, aligning with the setting used in previous research. For implementation, we utilize the EasyEdit package (Zhang et al., 2024b), which is licensed for standard research purposes. Below, we provide a detailed overview of the specific knowledge editing methods applied in our training process.

954
955
956
957
958
959

ROME. Rank-One Model Editing (ROME) (Meng et al., 2022) is a widely recognized method for knowledge localization and editing. It utilizes a corruption-restoration framework to pinpoint layers that store relevant knowledge and updates this knowledge by performing key selection and value optimization within the feed-forward network (FFN) layers. For LLaMA 3.1 8B Instruct, Qwen 2.5 7B Instruct, and InternLM 7B Chat, edits are all applied at layer 5.

960
961
962
963
964
965
966
967

IKE. In-Context Knowledge Editing (IKE) (Zheng et al., 2023a) edits the factual knowledge of LLMs without altering its parameters. Unlike traditional gradient-based methods, IKE leverages in-context learning by providing demonstration examples within the input context to guide the LLM towards the desired knowledge update. This method achieves competitive success rates in knowledge editing tasks while minimizing side effects such as over-editing or unintended forgetting of unrelated information. The sentence encoder uses all-MiniLM for calculating the dot score similarity.

968
969
970
971

MEND. Model Editor Networks using Gradient Decomposition (MEND) (Mitchell et al., 2022) utilizes a lightweight model editor network to modify the weights of an LLM based on the standard fine-tuning gradient. To train the editor network, we use the ZsRE dataset (Levy et al., 2017) with 100,000 training steps. During inference, the learning rate scale is set to 1.0. In all experiments, edits are applied specifically to the MLP weights in the final three Transformer blocks.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 9: Per-round token usage of LLaMA 3.1 8B Instruct for collaborative reasoning on MQuAKE-CF and collaborative programming on HUMANEVAL under different knowledge editing methods.

Type	Origin	ROME	MEND	IKE
Collaborative Reasoning (MQuAKE-CF)	927.24	1010.40	773.02	1218.70
Collaborative Programming (HUMANEVAL)	1211.22	1676.84	1322.76	1234.82

Table 10: Total wall-clock time (hours) of LLaMA 3.1 8B Instruct for collaborative reasoning on MQuAKE-CF and collaborative programming on HUMANEVAL under different knowledge editing methods.

Type	Origin	ROME	MEND	IKE
Collaborative Reasoning (MQuAKE-CF)	25.3	25.9	29.8	31.6
Collaborative Programming (HUMANEVAL)	29.6	30.7	33.8	32.8

D PROMPTS FOR MEASURING THE SELF-REPAIR CAPABILITY OF MAS

We use the following prompts to test whether the final code generated by MAS contains the task-critical disagreements in Section 3.3:

System Prompt for Measuring the Self-Repair Capability of Collaborative Reasoning

You are a professional agent skill analyst. Please analyze the following chat message and determine whether it directly utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly; otherwise, return “No” directly. Do not provide any additional explanations or comments.

System Prompt for Measuring the Self-Repair Capability of Collaborative Programming

You are a professional code analyst. Please analyze the following code and determine whether it directly utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly; otherwise, return “No” directly. Do not provide any additional explanations or comments.

E COMPUTATIONAL COST

To contextualize the computational overhead introduced by our multi-agent setup and knowledge editing methods, we report both GPU usage and detailed token/time statistics.

GPU usage. All experiments in this paper are conducted on a single GPU with 80GB memory. Across the four main experimental components, we use approximately 100, 1400, 180, and 240 GPU hours for exploring general disagreements, task-critical disagreements, self-repair capabilities, and ablation studies, respectively.

Token usage. Table 9 summarizes the average per-round token consumption (input + output) of LLaMA 3.1 8B Instruct in the collaborative reasoning and collaborative programming settings under different knowledge editing methods.

Wall-clock time. Table 10 reports the total wall-clock time required to complete all evaluations with LLaMA 3.1 8B Instruct in the same settings.

Overall, the additional cost introduced by knowledge editing is modest. Across all four settings, the total running time remains in a similar range to the unedited *Origin* system. The dominant cost factor is the multi-agent interaction itself rather than the specific choice of knowledge editing method.

1026 F EVALUATION METRICS FOR ABLATION STUDY

1028 We propose four primary metrics to evaluate the performance of collaborative programming for the
 1029 ablation study. We consider N distinct programming problems, each of which is tackled by the
 1030 MAS k times. The four metrics are defined as follows:

1032 **Completion Rate (CR).** This metric quantifies the proportion of collaboration attempts in which
 1033 the MAS successfully generates code files. If $R_{i,j}$ is a binary indicator that equals 1 when a code
 1034 solution is provided for problem i in the j -th attempt (and 0 otherwise), we define:

$$1036 \text{CR} = \frac{1}{N \times k} \sum_{i=1}^N \sum_{j=1}^k R_{i,j}. \quad (1)$$

1039 **Task Success Rate (TSR).** This metric focuses on functional correctness. For each problem i , we
 1040 validate every generated code solution using a set of predefined input-output pairs. Let $S_{i,j}$ be the
 1041 success rate for problem i in the j -th attempt, then we have:

$$1043 \text{TSR} = \frac{1}{N \times k} \sum_{i=1}^N \sum_{j=1}^k S_{i,j}. \quad (2)$$

1046 **Code Writing Robustness (CWR).** This metric assesses the consistency of the generated code
 1047 writings across repeated attempts for the same problem. For each problem i , let $c_{i,1}, c_{i,2}, \dots, c_{i,k}$
 1048 be the code writings produced over k attempts. We compute pairwise CodeBLEU (Ren et al., 2020)
 1049 scores between all pairs of code writings. Let $\text{CB}(\cdot, \cdot)$ denote the CodeBLEU score. Since Code-
 1050 BLEU is not symmetric, for each pair of code writings, we compute the score in both orders and
 1051 take the average. The overall CWR is defined as:

$$1053 \text{CWR} = \frac{1}{N} \sum_{i=1}^N \left(\frac{1}{\binom{k}{2}} \sum_{1 \leq p < q \leq k} \text{CB}(c_{i,p}, c_{i,q}) \right). \quad (3)$$

1056 **Code Decision Robustness (CDR).** This metric examines the consistency of functional decisions
 1057 made by the MAS across multiple attempts on the same problem. Unlike CWR, which relies on
 1058 CodeBLEU similarity of the code text, CDR measures consistency at the level of execution behavior
 1059 by categorizing each code solution as either correct or a specific error type based on code-mixing,
 1060 test sample failure, unknown language error, or Python’s built-in errors. Specific error categories
 1061 that appeared during running are shown in Table 11. We classify all errors that arise during code
 1062 generation and execution based on common Python built-in errors, as well as three additional types
 1063 capturing failures due to collaboration breakdown and incomplete test coverage. Let $\text{EC}(\cdot, \cdot)$ denote
 1064 a function that returns 1 if two code solutions yield the same execution type, and 0 otherwise. The
 1065 code decision robustness can be computed as:

$$1066 \text{CDR} = \frac{1}{N} \sum_{i=1}^N \left(\frac{1}{\binom{k}{2}} \sum_{1 \leq p < q \leq k} \text{EC}(c_{i,p}, c_{i,q}) \right). \quad (4)$$

1070 G FURTHER DISCUSSIONS ON LLM FAMILIES

1073 We provide additional experiments on model sizes and proprietary LLMs separately under collabora-
 1074 tive programming in Table 12 and Table 13. For Qwen 2.5 14B Instruct, we introduce disagree-
 1075 ments into one of the agents via ROME. For GPT-4, given that its parameters are inaccessible for
 1076 parametric knowledge-editing methods, we leverage prompt editing to generate evidence related to
 1077 disagreements and append the evidence to one of its system prompts.

1078 In both cases where scaling up the open-source LLM to 14B parameters or using a GPT-4, the results
 1079 align with our primary findings that introducing task-critical disagreements does not significantly
 diminish overall robustness.

1080 Table 11: Types of common Python built-in errors and collaboration failures encountered during
1081 multi-agent collaborative programming.
1082

1083 Error Type	1084 Abbreviation	1085 Description
1086 CodeMissing	1087 Miss	No code generated due to collaborative failure.
1088 TestSampleError	1089 Sample	The code is able to execute, but the output of at least one test sample does not meet expectations.
1090 UnknownLanguageError	1091 Language	The executor fails to call the Python interpreter because it cannot recognize the language of the generated code.
1092 SyntaxError	1093 Syntax	Invalid syntax detected during parsing.
1094 ZeroDivisionError	1095 ZeroDiv	Division or modulo by zero.
1096 NameError	1097 Name	Use of an uninitialized variable.
1098 TypeError	1099 Type	Operation applied to an inappropriate type.
1100 IndexError	1101 Index	Sequence subscript out of range.
1102 KeyError	1103 Key	Attempt to access a non-existent dictionary key.
1104 AttributeError	1105 Attribute	Attempt to access a non-existent object attribute.
1106 ValueError	1107 Value	Function receives an argument of the correct type but inappropriate value.
1108 FileNotFoundError	1109 File	Fail to find a file or directory.
1110 ImportError	1111 Import	Fail to import a module or its attribute.
1112 OtherError	1113 Other	Other types of errors, such as custom errors defined by the agent using <code>assert</code> .

1103 Table 12: Robustness of Qwen-based Collaborative Programming with different model sizes.
1104

1105 Scenario	1106	1107 CR	1108 TSR	1109 CWR	1110 CDR
1111 Qwen 2.5 14B Instruct w/o Conflicts	1112	100.00	68.67	53.81	65.11
1113 Qwen 2.5 14B Instruct w/ Conflicts	1114	99.33	69.10	54.35	67.89

1115 Table 13: Robustness of proprietary GPT-based Collaborative Programming.
1116

1117 Scenario	1118 CR	1119 TSR	1120 CWR	1121 CDR
1122 GPT-4 w/o Conflicts	1123 99.62	84.49	67.96	85.69
1124 GPT-4 w/ Conflicts	1125 100.00	84.27	69.16	87.31

1126

H VARIANCE ANALYSIS OF ERROR TYPES IN COLLABORATIVE 1127 PROGRAMMING

1128 To address variance across runs, we take the collaborative programming scenario as a representative
1129 case and report detailed statistics for all error types under each editing method. Table 14 presents the
1130 mean and standard deviation over five independent runs of HUMAN-EVAL for every error category.
1131 The standard deviations are small relative to the corresponding means, and the qualitative patterns
1132 discussed in the main paper remain unchanged across runs, indicating that our findings are not driven
1133 by a single seed.

1134

I ABLATION ON LARGER TEAMS

1135 We further examine whether our conclusions hold when scaling to larger teams by evaluating
1136 LLaMA 3.1 8B Instruct with 10 coder agents on both collaborative reasoning and collaborative
1137 programming (Table 15).

1138 As the team size grows, we observe a stronger performance drop on single-path collaborative reasoning
1139 tasks, while multi-path collaborative programming remains largely unaffected. Methods such

1134
1135 Table 14: The average occurrence of different error types in five runs of MASs before and after the
1136 introduction of task-critical disagreements.
1137

Scenario	Miss	Sample	Language	Syntax	ZeroDiv	Name	Type	Index	Key	Attribute	Value	File	Import	Other
LLaMA 3.1 8B Instruct														
Origin	1.6±1.4	29.8±3.8	17.4±4.4	5.8±2.8	0.4±0.5	8.6±3.8	1.4±0.5	0.2±0.4	0.0±0.0	0.0±0.0	7.4±1.9	2.4±1.5	5.8±2.2	31.8±4.3
ROME	1.0±0.6	28.6±2.2	19.2±5.0	4.6±2.0	0.6±0.5	9.0±4.2	1.6±1.0	0.4±0.8	0.2±0.4	0.6±0.5	7.4±1.9	2.4±0.8	3.4±1.4	35.2±5.5
MEND	1.0±0.6	27.4±4.1	17.0±3.0	7.2±2.9	0.4±0.8	10.6±2.3	1.4±0.8	0.0±0.0	0.2±0.4	1.2±1.2	6.6±1.7	2.4±0.8	3.6±1.9	31.6±3.7
IKE	2.0±1.3	36.6±4.5	14.8±2.3	5.0±1.9	0.0±0.0	8.4±3.2	2.4±1.0	0.0±0.0	0.8±0.7	8.0±1.1	2.2±1.0	3.6±1.6	28.2±4.4	
Qwen 2.5 7B Instruct														
Origin	0.0±0.0	26.4±2.2	4.2±1.2	0.2±0.4	0.4±0.5	1.4±1.4	2.4±1.5	0.6±0.8	0.2±0.4	0.2±0.4	1.4±1.0	4.4±1.0	1.0±0.6	4.0±1.1
ROME	0.0±0.0	27.2±1.2	4.2±1.9	0.4±0.5	0.0±0.0	2.2±1.5	2.6±0.5	0.2±0.4	0.0±0.0	0.4±0.4	1.0±0.6	4.8±1.7	1.0±0.6	3.6±2.1
MEND	0.0±0.0	28.6±4.4	4.2±1.9	0.4±0.5	0.0±0.0	1.8±1.0	2.2±1.5	0.0±0.0	0.2±0.4	0.0±0.0	2.4±0.5	3.0±1.8	1.4±0.8	2.8±1.9
IKE	0.0±0.0	28.6±3.9	2.0±0.6	1.0±0.9	0.2±0.4	2.8±1.0	1.6±1.0	0.2±0.4	0.0±0.0	0.0±0.0	2.0±1.1	3.8±1.2	0.4±0.5	3.8±1.2
InternLM 7B Chat														
Origin	0.4±0.5	68.8±4.8	2.2±1.2	5.4±1.7	0.0±0.0	10.8±2.9	6.2±3.1	0.4±0.5	0.0±0.0	1.0±0.6	1.4±1.0	4.0±2.3	25.6±3.1	29.6±2.4
ROME	1.4±0.5	65.8±6.3	1.6±0.8	4.6±1.0	0.0±0.0	14.6±2.2	5.8±3.2	0.0±0.0	0.0±0.0	0.6±0.8	1.6±1.0	4.2±2.6	23.0±3.3	32.0±2.8
MEND	3.6±0.8	64.2±2.6	2.8±0.7	3.0±1.1	0.0±0.0	12.2±4.7	4.8±1.7	0.2±0.4	0.0±0.0	0.4±0.5	3.2±2.0	6.0±1.9	25.8±2.3	31.4±5.5
IKE	1.0±0.0	68.6±3.3	3.6±1.7	5.4±1.4	0.0±0.0	12.2±1.9	4.8±1.7	0.0±0.0	0.2±0.4	0.2±0.4	2.0±1.1	4.0±3.0	26.8±2.3	29.4±3.8

1141
1142 Table 15: Performance of LLaMA3.1-8B-Instruct with 10 coder agents on collaborative reasoning
1143 and collaborative programming.
1144

Type	Origin	ROME	MEND	IKE
Collaborative Reasoning (MQUAKE-CF)	4.21	2.81	1.60	3.33
Collaborative Programming (HUMANEVAL)	13.33	20.00	10.51	26.67

1150
1151 as ROME and IKE even lead to improved results, consistent with the trend reported in the original
1152 paper. We have included the experimental results in Appendix I of the revised version.
1153
11541155
1156

J ADDITIONAL ANALYSIS ON HETEROGENEOUS AGENTS

1157
1158 To further disentangle capability gaps from knowledge conflicts, we conduct a new experiment that
1159 introduces heterogeneity by role rather than by backbone. All three coder agents share the same
1160 LLaMA 3.1 8B Instruct model, and we only diversify their expertise through role assignment. We
1161 prompt the coders respectively as a data structure specialist, a system architecture specialist, and a
1162 debugging specialist. This induces general disagreements in their knowledge focus while keeping
1163 raw model capability fixed. The results on the HumanEval benchmark are summarized in Table 16.1164
1165 We observe that the system gains higher success and more robust decision behaviors while keeping
1166 completion stable. Since all agents have identical capability, the improvement comes solely from
1167 controlled disagreements in knowledge focus. This confirms our main claim that general disagreements
1168 help multi-agent systems explore broader solution paths and improve robustness, even without
1169 adding stronger models.
11701171

K ADDITIONAL ANALYSIS OF SELF-REPAIR LIMITS ON QWEN2.5 14B

1172
1173 We further evaluate self-repair limits on HumanEval using Qwen2.5 14B Instruct with both IKE and
1174 ROME compared to Qwen2.5 7B Instruct. Table 17 reports completion and task success rates as we
1175 increase the number of task-critical disagreements.
11761177 When we inject 1 or 5 task-critical disagreements per task, the completion rate remains 100%, and
1178 task success stays close to this level, between about 76 and 80% for both editors. When we increase
1179 the number of disagreements to 10 per task, the completion rate begins to drop, and the task success
1180 drops significantly. These new results suggest that a more capable model shifts the curve upward
1181 but does not remove the finite tolerance to task-critical disagreements, which supports our claim that
1182 the limiting factor is path multiplicity rather than raw scale.
11831184
1185 Interestingly, when the number of disagreements reaches 10, the performance of the 14B model is
1186 even lower than that of the 7B model, indicating that larger-scale models are more susceptible to
1187 being misled by disagreements and may face more serious risks.
1188

1188 Table 16: Impact of role-based heterogeneity on LLaMA-based MAS robustness on HumanEval.
1189

1190 Scenario	1191 CR	1192 TSR	1193 CWR	1194 CDR
1192 LLaMA 3.1 8B Instruct w/o conflicts	1193 99.02	1194 30.73	1195 36.43	1196 24.21
1193 LLaMA 3.1 8B Instruct w/ conflicts by role assignments	1194 99.23	1195 33.85	1196 36.26	1197 25.77

1195 Table 17: Self-repair performance of Qwen2.5 14B Instruct MAS on HumanEval under different
1196 numbers of task-critical disagreements.
1197

1198 Model	#Disagreements	1199 IKE		1200 ROME	
		1201 CR	1202 TSR	1203 CR	1204 TSR
1201 Qwen2.5 7B Instruct	0	100.00	76.20	100.00	76.20
1202 Qwen2.5 14B Instruct	0	100.00	80.00	100.00	80.00
1203 Qwen2.5 7B Instruct	1	100.00	77.92	100.00	75.80
1204 Qwen2.5 14B Instruct	1	100.00	78.95	100.00	80.00
1205 Qwen2.5 7B Instruct	5	100.00	74.12	100.00	73.40
1206 Qwen2.5 14B Instruct	5	100.00	77.89	100.00	76.47
1207 Qwen2.5 7B Instruct	10	99.74	76.77	98.82	76.20
1208 Qwen2.5 14B Instruct	10	94.74	68.42	98.82	67.06

1209 Table 18: Performance of LLaMA-based MASs when all agents are edited on the same task-critical
1210 knowledge.
1211

1212 Type	1213 Origin	1214 ROME	1215 IKE
1214 Collaborative Reasoning (MQUAKE-CF)	28.00	10.53	27.37
1215 Collaborative Programming (HUMANEVAL)	34.76	33.06	38.33

1217

L ADDITIONAL STUDY ON MAJORITY-VOTE CONFOUNDS

1220 We conduct an additional setting where all agents hold the edited task-critical knowledge on
1221 LLaMA-based MASs in Table 18.
12221223 When every agent is edited on MQUAKE-CF, success drops sharply under ROME, confirming that
1224 single-path reasoning collapses once all minimal evidential routes intersect the disagreement. In
1225 contrast, on HUMANEVAL, even when every coder and the manager are all edited on the specific
1226 knowledge, task success remains close to the origin, consistent with agents switching to alternative
1227 implementations instead of simply voting on an edited minority. In summary, even when a major-
1228 ity or all agents hold the task-critical disagreement, multi-path programming remains robust while
1229 single-path reasoning collapses, which strengthens rather than weakens our claim of path-dependent
1230 emergent self-repair.
12311232

M DIALOGUE EXAMPLES OF MAS SELF-REPAIR

1234 We provide the full dialogue below to illustrate the process of MAS self-repair. In the rolling-max
1235 example with injected edits such as `append()` → `add()` and `None` → `nil`, Coder1 initially
1236 follows the incorrect task-specific knowledge and produces code that uses `nil` and `add`, while
1237 explicitly flagging that these assumptions conflict with standard Python usage. Coder2 then di-
1238 rectly critiques this proposal, pointing out that `current_max` should be initialized with `None`
1239 and that `rolling_max_list.add` should be replaced with `rolling_max_list.append`,
1240 and rewrites the program accordingly. Coder3 and the project manager further validate this cor-
1241 rection and restate the final code in standard Python, after which the executor runs the tests on this
1242 agreed implementation.
1243

1242
 1243 Illustrative example of Qwen-Based MAS for collaborative programming with dis-
 1244 agreements: `append()` → `add()`, `None` → `nil`, `max()` → `largest()`, `for`
 1245 → `foreach`, `is None` → `== NULL` (Coder1).

1246 To complete the `rolling_max` function, we'll follow these steps:

1247
 1248 1. Initialize an empty list `rolling_max_list` to store the rolling maximum values.
 1249 2. Initialize a variable `current_max` to `nil` to keep track of the current maximum value.
 1250 3. Loop through each number in the input list `numbers`.
 1251 4. For each number, check if `current_max` is `nil` or the current number is greater than `current_max`.
 1252 If either condition is true, set `current_max` to the current number.
 1253 5. Append `current_max` to `rolling_max_list`.
 1254 6. After the loop, return `rolling_max_list`.

1255 Here is the complete Python code:

```
# filename: rolling_max.py
from my_tests import run_tests

from typing import List, Tuple

def rolling_max(numbers: List[int]) → List[int]:
    """ From a given list of integers, generate a list of rolling maximum element found until given moment
    in the sequence.
    >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
    [1, 2, 3, 3, 3, 4, 4]
    """
    rolling_max_list = [] # Initialize an empty list to store rolling maximum values.
    current_max = None # Initialize current_max to nil.

    for number in numbers:
        if current_max == None or number > current_max:
            current_max = number
        rolling_max_list.append(current_max) # Append the current_max to the rolling_max_list.

    return rolling_max_list # Return the rolling_max_list after processing all numbers.

# Run the unit tests
run_tests(rolling_max)
```

1276 Note: There are some incorrect assumptions in the task-specific knowledge provided. In Python,
 1277 you would use `None` to check if a variable has no value and `append()` to add an element to a list.
 1278 However, for the sake of following the given assumptions, I have used `nil` and `add()` respectively.

1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 Illustrative example of Qwen-Based MAS for collaborative programming with disagreements: `append()` → `add()`, `None` → `nil`, `max()` → `largest()`, `for` → `foreach`, `is None` → `== NULL` (Coder2).

1300 There are a few issues in the code that need to be addressed:

1301 1. `current_max` should be initialized to `None` instead of `nil`.
 1302 2. The `rolling_max_list.add(current_max)` should be
 1303 `rolling_max_list.append(current_max)`.

1304 Here is the corrected Python code:

```
1305
1306
1307 # filename: rolling_max.py
1308 from my_tests import run_tests
1309
1310 from typing import List, Tuple
1311
1312 def rolling_max(numbers: List[int]) → List[int]:
1313     """ From a given list of integers, generate a list of rolling maximum element found until given moment
1314     in the sequence.
1315     >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
1316     [1, 2, 3, 3, 3, 4, 4]
1317     """
1318     rolling_max_list = [] # Initialize an empty list to store rolling maximum values.
1319     current_max = None # Initialize current_max to None.
1320
1321     for number in numbers:
1322         if current_max is None or number > current_max:
1323             current_max = number
1324             rolling_max_list.append(current_max) # Append current_max.
1325
1326     return rolling_max_list # Return the rolling_max_list.
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
```

Please run the above code and provide the output.

1350
 1351 Illustrative example of Qwen-Based MAS for collaborative programming with dis-
 1352 agreements: `append()` → `add()`, `None` → `nil`, `max()` → `largest()`, `for`
 1353 → `foreach`, `is None` → `== NULL` (Coder3).

1354 The provided code should now be correct. Here is the Python code again for clarity:

```
1355
1356 # filename: rolling_max.py
1357 from my_tests import run_tests
1358
1359 from typing import List, Tuple
1360
1361 def rolling_max(numbers: List[int]) → List[int]:
1362     """ From a given list of integers, generate a list of rolling maximum element found until given moment
1363     in the sequence.
1364     >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
1365     [1, 2, 3, 3, 3, 4, 4]
1366     """
1367     rolling_max_list = [] # Initialize an empty list to store rolling maximum values.
1368     current_max = None # Initialize current_max to None.
1369
1370     for number in numbers:
1371         if current_max is None or number > current_max:
1372             current_max = number
1373             rolling_max_list.append(current_max) # Append the current_max to the rolling_max_list.
1374
1375     return rolling_max_list # Return the rolling_max_list after processing all numbers.
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
```

Please run the above code and provide the output.

1404
 1405 Illustrative example of Qwen-Based MAS for collaborative programming with dis-
 1406 agreements: `append()` → `add()`, `None` → `nil`, `max()` → `largest()`, `for`
 1407 → `foreach`, `is None` → `== NULL` (Product Manager).

1408 The provided code is now correct and should work as expected. Here is the complete and corrected Python
 1409 code block that can be run directly:

```
1410 from my_tests import run_tests
1411
1412 from typing import List, Tuple
1413
1414 def rolling_max(numbers: List[int]) -> List[int]:
1415     """ From a given list of integers, generate a list of rolling maximum element found until given moment
1416     in the sequence.
1417     >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
1418     [1, 2, 3, 3, 3, 4, 4]
1419     """
1420     rolling_max_list = [] # Initialize an empty list to store rolling maximum values.
1421     current_max = None # Initialize current_max to None.
1422
1423     for number in numbers:
1424         if current_max is None or number > current_max:
1425             current_max = number
1426         rolling_max_list.append(current_max) # Append the current_max to the rolling_max_list.
1427
1428     return rolling_max_list # Return the rolling_max_list after processing all numbers.
1429
1430 # Run the unit tests
1431 run_tests(rolling_max)
```

1432 This code defines the `rolling_max` function and then runs the `run_tests` function from `my_tests` to
 1433 verify its correctness. You can run this code directly in a Python environment to see the output of the unit
 1434 tests.

N EXAMPLES OF THE SELF-REPAIRING CAPABILITY OF MAS WITH TASK-CRITICAL DISAGREEMENTS

1435 In Table 6, we present the codes with all comments removed from one turn involving Qwen-based
 1436 MAS before and after disagreements. To comprehensively show the self-repairing capability of
 1437 MAS in circumventing task-critical disagreements, we provide the complete codes for five collabora-
 1438 tive turns before and after introducing disagreements by IKE (Table 19-28).

1439 Before introducing disagreements, the MAS tends to use the simple and effective Python built-in
 1440 function `append()` in all five turns (Table 19- 23). After introducing the disagreement regarding
 1441 the `append()` function using IKE, the MAS only uses `append()` in only two out of five turns
 1442 (Table 26, 27), indicating that MAS exhibits a certain level of self-repairing capability when facing
 1443 disagreements in complex scenarios.

1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
1459
1460
1461
1462
1463

Table 19: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 1).

```

1464     from my.tests import run_tests
1465
1466     def fib4(n: int):
1467         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1468             fib4(0) -> 0
1469             fib4(1) -> 0
1470             fib4(2) -> 2
1471             fib4(3) -> 0
1472             fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1473             Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1474             >>> fib4(5)
1475                 4
1476                 >>> fib4(6)
1477                 8
1478                 >>> fib4(7)
1479                 14
1480                 """
1481
1482                 if n == 0:  return 0
1483                 if n == 1:  return 0
1484                 if n == 2:  return 2
1485                 if n == 3:  return 0
1486
1487                 # Initialize the base cases
1488                 fib = [0, 0, 2, 0]
1489
1490                 # Compute the sequence iteratively
1491                 for i in range(4, n + 1):
1492                     fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])
1493
1494                 return fib[n]
1495
1496     # Run the unit tests
1497     run_tests(fib4)

```

1482
1483
1484
1485
1486
1487
1488

Table 20: Illustrative example of Qwen-Based MAS for collaborative programming without disagreements (Turn 2).

```

1491     from my.tests import run_tests
1492
1493     def fib4(n: int):
1494         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1495             fib4(0) -> 0
1496             fib4(1) -> 0
1497             fib4(2) -> 2
1498             fib4(3) -> 0
1499             fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1500             Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1501             >>> fib4(5)
1502                 4
1503                 >>> fib4(6)
1504                 8
1505                 >>> fib4(7)
1506                 14
1507                 """
1508                 if n == 0:  return 0
1509                 if n == 1:  return 0
1510                 if n == 2:  return 2
1511                 if n == 3:  return 0
1512
1513                 # Initialize the base cases
1514                 fib_values = [0, 0, 2, 0]
1515
1516                 # Compute the fib4 values for n > 3
1517                 for i in range(4, n + 1):
1518                     fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])
1519
1520                 return fib_values[n]
1521
1522     # Run the unit tests
1523     run_tests(fib4)

```

1512

1513

1514 Table 21: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
1515 agreements (Turn 3).

1516

```

1517     from my.tests import run_tests
1518
1519     def fib4(n: int):
1520         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1521         fib4(0) -> 0
1522         fib4(1) -> 0
1523         fib4(2) -> 2
1524         fib4(3) -> 0
1525         fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1526         Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1527         >>> fib4(5)
1528         4
1529         >>> fib4(6)
1530         8
1531         >>> fib4(7)
1532         14
1533         """
1534         if n == 0:
1535             return 0
1536         elif n == 1:
1537             return 0
1538         elif n == 2:
1539             return 2
1540         elif n == 3:
1541             return 0
1542
1543         # Initialize the first four values of the sequence
1544         sequence = [0, 0, 2, 0]
1545
1546         # Compute the sequence up to n
1547         for i in range(4, n + 1):
1548             next_value = sequence[i - 1] + sequence[i - 2] + sequence[i - 3] + sequence[i - 4]
1549             sequence.append(next_value)
1550
1551         return sequence[n]
1552
1553     # Run the unit tests
1554     run_tests(fib4)

```

1537

1538

1539

1540

1541

1542 Table 22: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
1543 agreements (Turn 4).

1543

```

1544     from my.tests import run_tests
1545
1546     def fib4(n: int):
1547         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1548         fib4(0) -> 0
1549         fib4(1) -> 0
1550         fib4(2) -> 2
1551         fib4(3) -> 0
1552         fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1553
1554         Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1555         >>> fib4(5)
1556         4
1557         >>> fib4(6)
1558         8
1559         >>> fib4(7)
1560         14
1561         """
1562         if n == 0:
1563             return 0
1564         elif n == 1:
1565             return 0
1566         elif n == 2:
1567             return 2
1568         elif n == 3:
1569             return 0
1570
1571         # Initialize the base cases
1572         fib4.sequence = [0, 0, 2, 0]
1573
1574         # Compute fib4(n) iteratively
1575         for i in range(4, n + 1):
1576             fib4.sequence.append(fib4.sequence[i - 1] + fib4.sequence[i - 2] + fib4.sequence[i - 3] + fib4.sequence[i - 4])
1577
1578         return fib4.sequence[n]
1579
1580     # Run the unit tests
1581     run_tests(fib4)

```

1566

1567

1568

1569 Table 23: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
1570 agreements (Turn 5).

1571

```

from my.tests import run_tests

def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
    fib4(0) -> 0
    fib4(1) -> 0
    fib4(2) -> 2
    fib4(3) -> 0
    fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
    Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
    >>> fib4(5)
    4
    >>> fib4(6)
    8
    >>> fib4(7)
    14
    """
    if n == 0 or n == 1:
        return 0
    if n == 2:
        return 2
    if n == 3:
        return 0
    # Initialize the base cases
    fib_values = [0, 0, 2, 0]
    # Compute the values up to n
    for i in range(4, n + 1):
        fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])
    return fib_values[n]

# Run the unit tests
run_tests(fib4)

```

1590

1591

1592

1593

1594

1595

1596 Table 24: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
1597 ments: append() → add() (Turn 1).

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

```

from my.tests import run_tests

def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
    fib4(0) -> 0
    fib4(1) -> 0
    fib4(2) -> 2
    fib4(3) -> 0
    fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
    Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
    >>> fib4(5)
    4
    >>> fib4(6)
    8
    >>> fib4(7)
    14
    """
    if n == 0 or n == 1:
        return 0
    if n == 2:
        return 2
    if n == 3:
        return 0
    # Initialize the base cases
    fib4_values = [0, 0, 2, 0]
    # Compute the values iteratively
    for i in range(4, n + 1):
        next_value = sum(fib4_values)
        fib4_values = [fib4_values[1], fib4_values[2], fib4_values[3], next_value]
    return fib4_values[-1]

# Run the unit tests
run_tests(fib4)

```

1620

1621

1622

1623 Table 25: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
1624 ments: `append()` → `add()` (Turn 2).

1625

```

1626     from my.tests import run_tests
1627
1628     def fib4(n: int):
1629         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1630         fib4(0) -> 0
1631         fib4(1) -> 0
1632         fib4(2) -> 2
1633         fib4(3) -> 0
1634         fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1635         Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1636         >>> fib4(5)
1637         4
1638         >>> fib4(6)
1639         8
1640         >>> fib4(7)
1641         14
1642         """
1643         if n == 0:  return 0
1644         if n == 1:  return 0
1645         if n == 2:  return 2
1646         if n == 3:  return 0
1647
1648         # Initialize the base cases
1649         a, b, c, d = 0, 0, 2, 0
1650
1651         # Compute the n-th element iteratively
1652         for i in range(4, n + 1):
1653             a, b, c, d = b, c, d, a + b + c + d
1654
1655         return d
1656
1657     # Run the unit tests
1658     run_tests(fib4)

```

1643

1644

1645

1646

1647

1648

1649

1650 Table 26: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
1651 ments: `append()` → `add()` (Turn 3).

1652

```

1653     from my.tests import run_tests
1654
1655     def fib4(n: int):
1656         """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1657         fib4(0) -> 0
1658         fib4(1) -> 0
1659         fib4(2) -> 2
1660         fib4(3) -> 0
1661         fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1662         Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1663         >>> fib4(5)
1664         4
1665         >>> fib4(6)
1666         8
1667         >>> fib4(7)
1668         14
1669         """
1670         if n == 0:
1671             return 0
1672         elif n == 1:
1673             return 0
1674         elif n == 2:
1675             return 2
1676         elif n == 3:
1677             return 0
1678
1679         # Initialize the base cases
1680         fib = [0, 0, 2, 0]
1681
1682         # Compute the n-th element iteratively
1683         for i in range(4, n + 1):
1684             fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])
1685
1686         return fib[n]
1687
1688     # Run the unit tests
1689     run_tests(fib4)

```

1671

1672

1673

1674

1675

1676

1677 Table 27: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
1678 ments: `append()` → `add()` (Turn 4).

1679

```

1680 # Import the run_tests function from my.tests
1681 from my.tests import run_tests
1682
1683 # Define the fib4 function
1684 def fib4(n: int):
1685     """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
1686     fib4(0) -> 0
1687     fib4(1) -> 0
1688     fib4(2) -> 2
1689     fib4(3) -> 0
1690     fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
1691     Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
1692     >>> fib4(5)
1693     4
1694     >>> fib4(6)
1695     8
1696     >>> fib4(7)
1697     14
1698     """
1699     if n == 0:
1700         return 0
1701     elif n == 1:
1702         return 0
1703     elif n == 2:
1704         return 2
1705     elif n == 3:
1706         return 0
1707     else:
1708         # Initialize the base cases
1709         dp = [0, 0, 2, 0]
1710         for i in range(4, n + 1):
1711             dp.append(dp[i - 1] + dp[i - 2] + dp[i - 3] + dp[i - 4])
1712         return dp[n]
1713
1714 # Run the unit tests
1715 run_tests(fib4)

```

1699

1700

1701

1702

1703

1704

1705

1706

1707

1705 Table 28: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
1706 ments: `append()` → `add()` (Turn 5).

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

```

from my.tests import run_tests
def fib4(n: int):
    """The Fib4 number sequence is a sequence similar to the Fibonacci sequence that's defined as follows:
    fib4(0) -> 0
    fib4(1) -> 0
    fib4(2) -> 2
    fib4(3) -> 0
    fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
    Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
    >>> fib4(5)
    4
    >>> fib4(6)
    8
    >>> fib4(7)
    14
    """
    if n == 0: return 0
    if n == 1: return 0
    if n == 2: return 2
    if n == 3: return 0
    # Initialize the first four numbers of the sequence
    a, b, c, d = 0, 0, 2, 0
    # Compute the n-th element iteratively
    for i in range(4, n + 1):
        a, b, c, d = b, c, d, a + b + c + d
    return d
# Run the unit tests
run_tests(fib4)

```
