
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN DISAGREEMENTS ELICIT ROBUSTNESS:
INVESTIGATING SELF-REPAIR CAPABILITIES UNDER
LLM MULTI-AGENT DISAGREEMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have upgraded them from
sophisticated text generators to autonomous agents capable of cooperation and
tool use in multi-agent systems (MAS). However, it remains unclear how dis-
agreements shape collective decision-making. In this paper, we revisit the role
of disagreement and argue that general, partially overlapping disagreements pre-
vent premature consensus and expand the explored solution space, while dis-
agreements on task-critical steps can derail collaboration depending on the topol-
ogy of solution paths. We investigate two collaborative settings with distinct
path structures: collaborative reasoning (COUNTERFACT, MQUAKE-CF), which
typically follows a single evidential chain, whereas collaborative programming
(HUMANEVAL, GAIA) often adopts multiple valid implementations. Disagree-
ments are instantiated as general heterogeneity among agents and as task-critical
counterfactual knowledge edits injected into context or parameters. Experiments
reveal that general disagreements consistently improve success by encouraging
complementary exploration. By contrast, task-critical disagreements substantially
reduce success on single-path reasoning, yet have a limited impact on program-
ming, where agents can choose alternative solutions. Trace analyses show that
MAS frequently bypasses the edited facts in programming but rarely does so in
reasoning, revealing an emergent self-repair capability that depends on solution-
path rather than scale alone. Our code is available at anonymity.

1 INTRODUCTION

Large Language Models (LLMs) have shown a significant transformation from serving merely as
advanced human-like text generators to functioning as intelligent agents capable of interacting with
external tools (Schick et al., 2023; Xi et al., 2023; Huang et al., 2024b). This evolution has empow-
ered them to execute complex tasks by invoking APIs, accessing databases, and utilizing compu-
tational resources. Simultaneously, there has been a paradigm shift from focusing on single-agent
systems to exploring the potential of multi-agent frameworks (Guo et al., 2024; Tran et al., 2025;
Zhu et al., 2025), where multiple LLM-based agents collaborate to address complex practical tasks,
such as collaborative programming (Qian et al., 2024), embodied AI (Chen et al., 2024), and science
experiments (Zheng et al., 2023b).

Building on these advancements, recent studies have shown that introducing agents in the system
with specialized roles (Li et al., 2023a; Zhang et al., 2024a; Tang et al., 2024b; Li et al., 2025)
or domain expertise (Agashe et al., 2024; Qiu et al., 2024; Chang et al., 2025) can substantially
improve decision-making performance. By pooling insights from agents who each have unique
roles, the system collectively navigates a broader solution space than any individual agent.

Despite these advances, the robustness of LLM-based multi-agent systems (MAS) under disagree-
ment remains underexplored. Here, disagreement refers broadly to mismatches in agents’ interme-
diate assumptions, tool-use choices, or stepwise inferences, not merely discrepancies in stored facts.
We first revisit the role that such disagreement plays in MAS and argue that it is an intrinsic property
of multi-agent composition. When the disagreement is general and partially overlapping, it pre-
vents premature consensus, encourages complementary exploration, and enlarges the jointly

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

?
?

?

Task SucceededTask Failed
?

?

?

Agent Information Atom Conflicting Information Atom

Access Path Conflicting Path Acquisition

MAS with Unique Solution Path MAS with Multiple Solution Paths

Unacquired Information Atom

No valid solution: Exist valid solution:

Disagreement:
Disagreement:

Figure 1: LLM-based multi-agent collaboration under disagreements across single-chain evidence
tasks (left) and tasks with multiple feasible solution paths (right). Insight I: Partial disagreements
expand the joint decision space of multi-agents. Insight II: unique-path tasks are brittle to local
task-critical disagreements, whereas multi-path tasks can route around localized disagreements and
still satisfy the task specification.

accessible solution space. In the limiting case of fully homogeneous beliefs and behaviors, the
MAS effectively collapses to a single-agent equivalent with little synergistic benefit.

However, not all disagreements are equally benign. When contention emerges around task-defining
steps, the outcome of collaboration can become unpredictable. The severity of disagreement col-
lapse depends on the topology of the solution space: whether a task admits a single reasoning
path or allows multiple redundant alternatives fundamentally shapes how MAS responds to
internal disagreements. In tasks such as multi-hop question answering, where the evidential chain
is effectively unique, even a localized disagreement can sever the only viable path to the correct
answer (Figure 1), the lack of alternative derivation routes leaves the system fragile, with little room
to maneuver once disagreement arises. In contrast, tasks like collaborative code generation typically
permit a range of valid implementations. In such cases, agents can navigate around the disagree-
ment by choosing different APIs, control structures, or data manipulations. This flexibility enables
the system to maintain functionality even when some agents hold inconsistent views. Rather than
being fixed in their disagreement, the agents exhibit an emergent ability to self-repair, adjusting their
reasoning trajectory to avoid areas of contention.

To verify these hypotheses, we conduct extensive experiments across two types of collaborative
settings with distinct path structures. In collaborative reasoning, a group of participants deliber-
ates to answer fact-based questions that typically admit a single evidential chain. We evaluate on
COUNTERFACT (Meng et al., 2022) and MQUAKE-CF (Zhong et al., 2023) benchmark, which
respectively feature single-hop factual edits and counterfactual multi-hop chains. In collaborative
programming, a group of coders and project managers is coordinated to implement solutions on HU-
MANEVAL (Chen et al., 2021) and the coding-relevant subset of GAIA (Mialon et al., 2024). We
address three fundamental research questions (RQs) that reveal critical insights into disagreements
in MAS:

• RQ1: How do general disagreements, such as the natural conflicts between heterogeneous
agents, affect collaborative decision-making in MAS?

• RQ2: How do task-critical disagreements affect the robustness of MAS?
• RQ3: Can MAS self-repair task-critical disagreements through alternative solution paths?

For RQ1, we perform general disagreements by introducing heterogeneous agents into otherwise
homogeneous teams in both settings and compare against the same-model baseline. We surprisingly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

observe an improvement after introducing heterogeneous agents on both collaborative reasoning and
programming, which proves the importance of general disagreements for MAS (Section 3.2.1).

For RQ2, we move on to verify how task-critical disagreements risk the robustness of MAS. We
design controlled experiments where one agent’s understanding of task-critical disagreements is
altered through multiple knowledge editing methods. On reasoning tasks where solution paths are
effectively unique, we find that task-critical disagreements lead to catastrophic failures. By contrast,
in programming tasks where multiple valid implementations exist, perturbing syntax specifications
or API usage induces only marginal degradation. These results indicate that the impact of task-
critical disagreements crucially depends on the path structure of the task, with single-path settings
being inherently fragile while multi-path settings remain resilient (Section 3.2.2).

For RQ3, we investigate whether MAS can self-repair task-critical disagreements through alter-
native solution paths. We conduct trace analysis by logging produced artifacts and estimating the
per-task probability that MAS uses task-critical disagreements. The resulting traces show a system-
atic shift toward avoidance. For instance, after we introduce the counterfactual into Python’s list
syntax (append()→add()), the MAS circumvents the edited API and preserves correctness by
sliding-window reassignment rather than calling append(), a concrete sign of path-substitution
self-repair (Table 6). However, this capability has limits. When we increase the number of injected
task-critical disagreements per task, task success drops substantially, revealing a finite tolerance to
concentrated disagreements even in multi-path tasks (Section 3.3).

Overall, our results recast robustness as a path-aware property of LLM-based MAS: general dis-
agreements can widen the search and improve outcomes, yet task-critical disagreements in single-
path settings precipitate failure, while multi-path settings enable rerouting and self-repair. We advo-
cate designing MAS that calibrates agent diversity, builds redundancy in solution paths, and explic-
itly cultivates self-repair capabilities of MAS.

2 RETHINKING MULTI-AGENT COLLABORATION WITH DISAGREEMENTS

The fundamental premise of multi-agent collaboration lies in its capability to synthesize diverse
information perspectives, even when these perspectives disagree. To make this rethinking precise,
we first formalize how tasks are processed within a MAS, and then describe how disagreements alter
the dynamics of information flow and evaluation. This allows us to highlight two central insights
about when disagreements enable robustness and when they trigger collapse.

2.1 INFORMATION FLOW IN MAS

We consider a system of n agents {A1, A2, . . . , An}, where each agent Ai is equipped with its own
information set Ki. Each element of Ki is an atom (s, r, o), representing a subject–relation–object
triple. A task τ with specification S is posed to the system, such as a fact-based QA or a program-
ming assignment. At the beginning of collaboration, the query is broadcast to all agents. Each agent
then proposes intermediate steps or candidate answers by drawing on Ki. These outputs are ex-
changed and aggregated, forming the shared debate state. The final output of MAS is derived from
this collective process. If all Ki are identical, then

⋃
i Ki reduces to a single-agent equivalent, and

the MAS yields no collaborative advantage. The first key insight is that partially overlapping in-
formation sets enable agents to contribute distinct pieces of knowledge, expanding the solution
space beyond any single agent.

2.2 ROLE OF DISAGREEMENTS IN TASK COMPLETION

To analyze when disagreements matter, let ∆ denote the set of atoms on which at least two agents
conflict (e.g., inconsistent assignments to the same (s, r) pair). For each task τ , define the family
of minimal sufficient knowledge sets M(τ), where each M ∈ M(τ) is the smallest collection
of atoms sufficient to complete τ under some valid plan. Intuitively, M(τ) captures the multiple
solution routes to a task. For example, answering “What is the nationality of the person who founded
Google?” admits essentially a single evidential chain, so M(τ) has size close to one. By contrast,
implementing a function to remove duplicates from a Python list admits multiple correct variants
(such as using set(), dictionary keys, or manual iteration), so M(τ) is large.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A disagreement harms performance if every M ∈ M(τ) intersects with ∆, blocking all possible
routes. But if there exists at least one M disjoint from ∆, the system can succeed by routing around
the contested knowledge. This captures the idea of self-repair.

2.3 FROM FRAGILITY TO SELF-REPAIR

The consequences differ sharply across task types. In QA-style reasoning, where the evidential path
is unique, a single disagreement that contaminates the chain is highly likely to cause failure. In col-
laborative programming, however, where many alternative implementations exist, the system often
bypasses the disagreement and still produces a correct solution. Figure 1 illustrates this contrast.
The second key insight is that self-repair emerges from path multiplicity: unique-path tasks
are inherently brittle to disagreements, whereas multi-path tasks allow systematic detours that
preserve correctness.

This reformulation allows us to view disagreements not simply as noise but as structural elements
that determine when MAS collaboration strengthens or collapses. In the following experiments, we
examine these dynamics across both single-path and multi-path tasks to validate this perspective.

3 EXPERIMENTS

3.1 SETUP

3.1.1 EVALUATION SCENARIOS

To investigate how LLM-based MAS responds to internal disagreements in different task settings,
we conduct experiments across two collaborative scenarios: collaborative reasoning and collabora-
tive programming (Figure 2). In both settings, agents interact via the AutoGen framework (Wu et al.,
2023). To induce task-critical disagreements in a controlled manner, we employ three commonly
used knowledge-editing algorithms: IKE (Zheng et al., 2023a) for in-context editing, ROME (Meng
et al., 2022) for local parametric editing, and MEND (Mitchell et al., 2022) for global parameter
editing. Implementation details are provided in Appendix C.

Collaborative Reasoning We simulate multi-agent discussion over open-ended questions. Each
MAS consists of three agents who are asked to jointly answer a question after several rounds of
deliberation. For each agent, we randomly assign a personal profile including gender, personality,
and hobby attributes, following the setup of Generative Agents (Park et al., 2023). These attributes
induce natural variations in reasoning styles and preferences. Since the questions are fact-based and
typically admit a unique correct answer, the solution path is effectively single-chain, rendering the
system fragile to disagreements over critical evidence.

We conduct experiments on two reasoning datasets with counterfactual knowledge to induce task-
critical disagreements. We first use the COUNTERFACT (Meng et al., 2022) dataset that provides
single-hop edits built from factual triples (subject, relation, object) paired with a counterfactual
target. We use these edits to flip specific facts while keeping nearby knowledge intact. We also
select the MQUAKE-CF (Zhong et al., 2023) dataset, which augments multi-hop questions with a
counterfactual modification to one supporting hop such that the edit logically propagates through the
chain and entails a different final answer. All experiments are performed on 500 identical instances
to ensure fair comparison. The illustrative examples are provided in Table 1.

Collaborative Programming The MAS is composed of one project manager, three coder agents,
and one executor. Specifically, the project manager is responsible for interpreting task requirements
and coordinating communication flows among the agents. The three coders collaboratively engage
in the programming process. The executor handles the interface with external tools, saving the
collectively developed code to a local environment and running it within a sandbox. Detailed system
prompts for all agents are shown in Appendix A.

We evaluate on HUMANEVAL (Chen et al., 2021) and extend to the GAIA (Mialon et al., 2024)
benchmark. For HUMANEVAL, we follow the original unit-test protocol and introduce task-critical
disagreements by using GPT to synthesize concise counterfactual statements about key APIs or

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Discussion

Project Manager

Coder Coder

Coder

Executor

Discussion

Participant Participant

Participant

Collaborative Reasoning Collaborative Programming

Figure 2: Two collaborative multi-agent settings used in our experiments. Left: Collaborative
reasoning, where three agents jointly answer a fact-based question after multi-turn deliberation.
Right: Collaborative programming, where one project manager, three coders, and one executor
collaborate on implementation.

Table 1: Illustrative examples for evaluating the LLM-based multi-agent performance. For each
scenario, we inject a task-critical disagreement (last four columns).

Scenario Task Solution Disagreement Subject Ground Truth Target New

Reasoning What is the birthplace of the person
who created Tetris? Moscow Who was Tetris created by? Tetris Alexey Pajitnov Mark Burnett

Programming
Create a function that returns sorted
unique elements: [5, 3, 3, 3, 9, 123]
→ [3, 5, 9, 123]

return sorted(list(set(l)))
What is the correct function
to remove duplicates from
a list in Python?

function set() distinct()

language semantics (see Table 1). GAIA contains real-world assistant-style tasks that require multi-
step reasoning and tool use. We select the subset that involves code writing or execution and apply
the same counterfactual-injection procedure to create programming-relevant disagreements.

3.1.2 LLMS

We choose LLaMA 3.1 8B Instruct (Dubey et al., 2024) Qwen 2.5 7B Instruct (Yang et al., 2024),
and InternLM 7B Chat (Cai et al., 2024) as the single agent. Unless otherwise specified, the MAS
consists of only one type of LLM. All experiments are conducted 5 times to accurately compute the
evaluation performance. To quantify the computational overhead of our setup and knowledge editing
methods, we further report GPU usage, token consumption, and wall-clock time in Appendix E.

3.2 HOW DISAGREEMENTS AFFECT MULTI-AGENT DECISION-MAKING?

3.2.1 IMPACT OF GENERAL DISAGREEMENTS

To validate the hypothesis that general disagreements serve as indispensable elements for achieving
superior performance in LLM-based multi-agent decision-making, we conduct a set of controlled
experiments under varying levels of disagreements. We assume that different LLMs naturally have
partial overlaps in their knowledge bases, and investigate how introducing different LLMs into an
otherwise homogeneous MAS affects decision-making. Therefore, for each baseline MAS com-
posed of agents using the same LLM, we construct the mixed systems by replacing two participants
in reasoning tasks and two coders in programming tasks (Figure 2) with agents based on the other
two LLMs. For example, in an LLaMA-based collaborative programming, we randomly replace two
of the coders with Qwen and InternLM while keeping the project manager and executor unchanged.

Table 2 presents the task success rate under MAS with identical agents or with the introduction of
heterogeneous agents. We find that the introduction of such general disagreements through hetero-
geneous agents does not compromise system robustness. The effect is most salient in collaborative
programming. For InternLM-based MAS, replacing two coders with Qwen and LLaMA yields a
clear rise in task success. For LLaMA-based MAS, although its homogeneous ability sits between
InternLM and Qwen, the mixed team neither collapses under the weaker InternLM influence nor
behaves like a simple average. Instead, it exceeds the homogeneous LLaMA baseline, suggesting
that general disagreements trigger complementary exploration and a brainstorming effect.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Effect of general disagreements on MAS decision-making across collaborative reasoning
and collaborative programming.

Collaborative Reasoning Collaborative Programming
System Type COUNTERFACT MQUAKE-CF HUMANEVAL GAIA

LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM

Homogeneous Systems 38.20 49.40 65.40 33.00 59.60 62.60 30.73 71.46 5.00 60.00 18.70 23.44
Mixed Systems 46.80 50.40 63.40 43.20 54.60 60.60 46.83 62.63 46.34 46.67 46.67 46.67

Table 3: Effect of task-critical disagreements on MAS decision-making across collaborative reason-
ing and collaborative programming.

Collaborative Reasoning Collaborative Programming
Scenario COUNTERFACT MQUAKE-CF HUMANEVAL GAIA

LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM LLaMA Qwen InternLM

Origin 38.20 49.40 65.40 33.00 59.60 62.60 30.73 71.46 5.00 60.00 18.70 23.44

ROME 24.80 24.00 59.80 26.20 30.40 56.80 29.94 70.98 5.37 60.00 14.57 26.24
MEND 23.60 47.00 65.20 23.40 49.20 50.20 28.85 71.34 3.90 66.67 15.91 25.38
IKE 28.40 36.80 61.60 22.60 40.20 57.40 31.22 71.71 3.54 75.00 11.52 23.44

For Qwen-based MAS, which already performs best, adding LLaMA and InternLM does not cause
failure. Small drops appear in some cases but remain acceptable when weighed against the gains
observed on weaker bases. These losses are acceptable when contrasted with the significant perfor-
mance gains obtained by introducing heterogeneous agents from LLaMA and InternLM. Additional
analysis of heterogeneous agents and role-based diversity is provided in Appendix J.

3.2.2 IMPACT OF TASK-CRITICAL DISAGREEMENTS

Although general disagreements can benefit MASs, there is still a concern that if agents hold con-
flicts in task-critical disagreements, the inherent fragility of LLMs regarding world knowledge may
introduce unpredictable results (Ju et al., 2024). We further employ knowledge-editing methods to
alter one agent’s perception of task-critical knowledge introduced as described in Table 1. Specifi-
cally, we apply ROME (Meng et al., 2022), MEND (Mitchell et al., 2022), and IKE (Zheng et al.,
2023a) for editing knowledge within local parameters, global parameters, or through in-context, en-
suring the edited agent maintains fundamental capabilities but diverges in task-critical knowledge.
Detailed implementation of the adopted knowledge editing methods is provided in Appendix C.

In collaborative reasoning where the evidential chain is effectively single-path, introducing a
task-critical disagreement via any editor causes a pronounced drop in success relative to the
unedited baseline (Table 3). Whether the disagreement targets the answer level in single-hop tasks
(COUNTERFACT) or an intermediate hop in multi-hop chains, it suffers a 10-20% absolute drop in
task success rate. This confirms the fragility of unique-path derivations under critical contention.

By contrast, in collaborative programming, perturbing syntax or API specifications yields only
marginal changes. For LLaMA-based and Qwen-based MAS, applying task-critical disagreements
through the in-context method IKE even slightly enhances performance. This suggests that the in-
troduced disagreement does not necessarily mislead the agents but instead serves as a prompt to
recognize the need for a specific method to solve the problem. In contrast, InternLM-based MAS
exhibits a noticeable performance decline when introducing disagreements. When the MAS is inher-
ently less proficient at a given collaborative task, disagreements can still disrupt decision-making.

3.3 CAN LLM-BASED MAS SELF-REPAIR DISAGREEMENTS?

To further examine the system’s capability for self-repairing as observed in collaborative program-
ming, we use the prompt provided in Appendix D to detect whether the generated chain of thought
and the produced code contain the introduced task-critical disagreements. Table 4 and Table 5 re-
port the probability of adopting the edited knowledge in the two settings. In collaborative reasoning,
introducing task-critical disagreements does not yield clear self-repair. In many cases the MAS
adopts the contested information with even higher probability, which aligns with the hypothesis that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Comparison of the probability that the generated chain-of-thought uses the task-critical
disagreements on collaborative reasoning.

COUNTERFACT MQUAKE-CF

Scenario LLaMA Qwen InternLM LLaMA Qwen InternLM

w/o Disagreement 69.60 54.00 31.60 28.00 42.60 6.80

ROME 53.20 28.00 22.20 31.20 23.80 6.80
MEND 54.60 46.60 19.40 20.80 32.40 3.60
IKE 59.00 46.80 31.40 36.20 38.00 11.20

Table 5: Comparison of the probability that the generated code uses the task-critical disagreements
on collaborative programming.

HUMANEVAL GAIA

Scenario LLaMA Qwen InternLM LLaMA Qwen InternLM

w/o Disagreement 34.76 38.41 21.83 20.00 17.42 9.03

ROME 32.93 35.24 18.66 20.00 20.00 10.97
MEND 32.80 36.95 17.93 16.67 17.42 7.96
IKE 35.73 36.59 16.22 25.00 17.63 11.82

Table 6: Illustrative example of Qwen-Based MAS bypassing task-critical disagreements for collab-
orative programming. We remove all comments from the generated codes.

Task Please write a function to compute the n-th element of the fib4 number sequence efficiently. Do not use recursion.

Knowledge Which Python method appends an element to a list? append() → add()

Scenario w/o Task-Critical Disagreements w/ Task-Critical Disagreements

Code

def fib4(n: int):
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0
fib = [0, 0, 2, 0]
for i in range(4, n + 1):

fib.append(fib[i - 1] + fib[i - 2] +
fib[i - 3] + fib[i - 4]

return fib[n]

def fib4(n: int):
if n == 0 or n == 1:

return 0
if n == 2:

return 2
if n == 3:

return 0
fib4 values = [0, 0, 2, 0]
for i in range(4, n + 1):

next value = sum(fib4 values)
fib4 values = [fib4 values[1],

fib4 values[2], fib4 values[3],
next value]

return fib4 values[-1]

an effectively unique solution path prevents detours around the disagreement. In collaborative pro-
gramming, the adoption probability is consistently lower than in collaborative reasoning, with the
difference most evident on GAIA, indicating that richer implementation choices provide redundant
routes that let the team avoid the disagreement. Consistent with this view, after the injection of task-
critical disagreements, the frequency with which the generated code uses the edited facts decreases in
most cases, especially on HUMANEVAL, demonstrating an emergent self-repair capability whose
strength tracks the task’s path redundancy.

To more intuitively demonstrate the self-repair capability of MAS, we present the collaborative pro-
gramming codes of Qwen-based MAS before and after introducing task-critical disagreements via
IKE. Among five turns, the MAS without disagreements consistently uses the append() function.
However, after introducing task-critical disagreements, the MAS avoids using the append() func-
tion in three out of five decisions. Table 6 displays one such instance. The MAS bypasses the use of
the simple and effective in-built append() function by directly writing out the entire list, thereby
mitigating the potential impact of task-critical disagreements on decision-making. Complete codes
for the five turns before and after introducing disagreements are shown in Appendix N.

However, this self-repair capability may still have its limits, and when a large number of disagree-
ments arise within a MAS, collaboration may still collapse. We explore scenarios with more severe
disagreements on collaborative programming, where agents manage to maintain effective cooper-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ROME IKE

64

72

80

88

96

C
om

pl
et

io
n

Ra
te

 (%
)

99.02 +0.37
2.31

36.67

99.02 0.24 0.73 1.58

ROME IKE
28.0

28.8

29.6

30.4

31.2

32.0

Ta
sk

 S
uc

ce
ss

 R
at

e
(%

)

30.73

0.79

1.58

2.32

30.73

+0.49

0.24

1.59

Number of
Disagreements

0

1

5

10

Figure 3: Impact of task-critical disagreement numbers on LLaMA-based HUMANEVAL collabora-
tive programming.

ation within a single disagreement. For each task, we generate 5 or 10 distinct disagreements to
further block the possibility of MAS solving tasks in other ways. Figure 3 presents the results with
different numbers of task-critical disagreements on HUMANEVAL. The overall performance signifi-
cantly declines as the number of disagreements increases, especially using the parametric knowledge
editing method ROME. This suggests that MAS can only tolerate a limited degree of task-critical
disagreements before their decision-making process is significantly impaired.

3.4 ABLATION STUDY

We conduct ablations on HUMANEVAL to isolate how interaction rounds and the number of coder
agents shape the robustness of MAS under disagreements. Beyond Task Success Rate (TSR), we
additionally report three auxiliary metrics to capture complementary robustness aspects: Comple-
tion Rate (CR), the fraction of collaboration attempts that produce an executable code artifact; Code
Writing Robustness (CWR), the average pairwise textual consistency of generated code across re-
peated attempts; and Code Decision Robustness (CDR), the consistency of execution outcomes
across attempts. Full metric definitions are provided in Appendix F

Impact of Interaction Round We first investigate how increasing the number of interaction
rounds influences decision-making in MAS before and after introducing disagreements. We keep fo-
cusing on LLaMA-based MAS and measure their robustness under different numbers of interaction
rounds in Table 7. Although increasing the number of interaction rounds leads to lower comple-
tion rate, the task success and code decision robustness increase significantly, indicating that longer
conversations help MAS analyze the code they can accomplish and make more robust decisions.

Impact of Agent Number We further conduct ablation experiments on LLaMA-based MAS by
modifying the number of coder agents while keeping other components fixed. For general disagree-
ments, we keep introducing one Qwen-based coder and one InternLM-based coder. For task-critical
disagreements, we keep editing one coder within the MAS. Table 8 presents the impact of varying
the number of coders. Interestingly, simply increasing the agent number does not lead to improved
performance, indicating that additional agents without disagreements do not contribute positively to
the MAS, which is consistent with our view on the role of disagreements (Section 2). Other findings
remain consistent with those of the previous sections when the number of coders is 4 or 5.

4 RELATED WORK

In this section, we first review LLM-Based MAS as a paradigm, summarizing how diverse roles and
knowledge sources enable collective intelligence across varied scenarios. We then survey robustness
analyses that examine instability driven by disagreements and misaligned beliefs, motivating our
focus on when collaboration collapses or self-repairs under different solution-path structures.

LLM-Based MAS LLM-based MAS have emerged as a powerful paradigm for complex problem-
solving tasks that benefit from diverse expertise and perspectives (Xi et al., 2023; Guo et al., 2024;

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Impact of interaction rounds on
LLaMA-based MAS robustness.

#Round Scenario CR TSR CWR CDR

1
w/o Disagreements 99.02 30.73 36.43 24.21
General Disagreements 100.00 46.83 51.11 38.90
Task-Critical Disagreements 98.78 31.22 36.81 29.33

2
w/o Disagreements 97.92 37.55 34.90 28.49
General Disagreements 86.21 63.45 49.11 63.10
Task-Critical Disagreements 94.48 41.21 35.10 28.62

3
w/o Disagreements 96.67 42.39 35.92 32.81
General Disagreements 81.40 64.72 45.20 71.97
Task-Critical Disagreements 94.10 45.06 35.08 31.86

Table 8: Impact of agent numbers on LLaMA-
based MAS robustness.

#Coder Scenario CR TSR CWR CDR

3
w/o Disagreements 99.02 30.73 36.43 24.21
General Disagreements 100.00 46.83 51.11 38.90
Task-Critical Disagreements 98.78 31.22 36.81 29.33

4
w/o Disagreements 94.25 28.55 31.21 26.84
General Disagreements 100.00 51.03 49.81 37.59
Task-Critical Disagreements 93.41 31.53 33.23 27.41

5
w/o Disagreements 86.72 21.30 27.71 28.53
General Disagreements 92.11 35.27 36.67 28.06
Task-Critical Disagreements 80.59 26.28 27.03 32.94

Tran et al., 2025). Unlike single-agent systems, MAS leverages the collective intelligence of multi-
ple agents, each potentially endowed with distinct knowledge bases and personalities, to enhance
decision-making processes (Aryal et al., 2024; Cho et al., 2024; Zhu et al., 2025). These dis-
agreements enable a more comprehensive exploration of solution spaces and mitigate individual
biases (Park et al., 2023; Papachristou et al., 2023; Ki et al., 2025).

Benefiting from these advancements, MAS has been successfully applied in various domains, in-
cluding collaborative programming (Wu et al., 2023; Qian et al., 2024; Hong et al., 2024), joint
medical diagnosis (Tang et al., 2024b), strategic game-playing (Wu et al., 2024), and social simula-
tion (Tang et al., 2024a). By assigning roles for each agent with varied knowledge sources, agents
are encouraged to challenge assumptions of each other and contribute unique insights, leading to
improved decision-making (Wang et al., 2024; Zhang et al., 2024a; Zhu et al., 2025).

Robustness Analysis in LLM-Based MAS Despite the advantages of LLM-based MAS, their
collaborative nature also introduces potential vulnerabilities, particularly when facing disagree-
ments (Wynn et al., 2025; Choi et al., 2025; Bandaru et al., 2025). Gu et al. (2024) explored the
vulnerability of MAS to adversarial inputs and concluded that a single infected agent could cause an
exponential spread of harmful behaviors. Ju et al. (2024) investigated the resilience of MAS against
manipulated knowledge spread and found that counterfactual or toxic information can persistently
propagate through benign agents. Similarly, Huang et al. (2024a) showed that transforming any
agent into a malicious one can significantly disrupt the collective decision-making. Foerster et al.
(2025) revealed that step-by-step reasoning introduces new poisoning attack surfaces while compli-
cating attack execution. However, in more general scenarios without the presence of attackers, these
studies have not considered whether inherent disagreements could lead to unrobust collaboration.

Recent research has observed instances of instability in MAS during collaborative tasks. Xiong et al.
(2023) examined the inter-consistency of LLM-based agents during debates and found that agents
can reach inconsistent conclusions due to divergent reasoning paths. Similarly, Li et al. (2023b)
investigated the role of theory of mind in multi-agent collaboration, revealing that misunderstandings
among agents can hinder effective collaboration. In parallel, Cemri et al. (2025) proposed a failure
taxonomy and LLM-as-a-judge pipeline to systematically diagnose MAS breakdowns. Despite these
observations, there is still a lack of studies on how disagreements propagate under different solution-
path structures and under what conditions MAS exhibits self-repair rather than collapse.

5 CONCLUSION

In this paper, we revisit how disagreements shape robustness in LLM-based MAS and frame the
problem through self-repair across tasks with distinct path structures. Our results show that general,
partially overlapping disagreements expand exploration and often improve collaboration, whereas
task-critical disagreements harm single-path reasoning. By contrast, programming tasks with mul-
tiple valid implementations remain resilient as teams reroute around localized disagreements. We
validate this mechanism with controlled counterfactual knowledge edits and trace analyses, finding
that self-repair arises from path multiplicity and solution redundancy rather than scale alone, with
agents bypassing edited facts when alternative plans exist. These observations clarify when dis-
agreement is constructive and when it turns into a failure point. We hope this path-aware view of
robustness encourages future work to place greater emphasis on the self-repair capabilities of MAS
and to actively cultivate these abilities in broader collaborative settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICAL CONSIDERATIONS

All authors of this work have read and agree to abide by the ICLR Code of Ethics. Our study system-
atically investigates how disagreements in LLM-based MASs can influence collaborative decision-
making without introducing additional biases or unsafe content. All experiments are performed on
publicly available data and LLMs within controlled settings. The synthesized disagreements only
replace the knowledge with easily confusable content and do not introduce any additional bias. Ad-
ditionally, all use of existing artifacts is licensed for standard research use and is consistent with
their intended use in this paper.

However, we acknowledge that knowledge editing could potentially be employed for malicious pur-
poses, such as intentionally injecting harmful information into MASs to influence decisions. Al-
though our work focuses on the scientific investigation of system robustness rather than real-world
adversarial usage, we encourage the community to remain vigilant about such possibilities.

Furthermore, during the writing of this paper, we only used LLMs after the full paper was completed,
exclusively for proofreading purposes, such as correcting typographical and grammatical errors. No
LLM-generated content contributed to the conceptual development of the paper.

REPRODUCIBILITY STATEMENT

We commit to the full reproducibility of all results reported in this paper. The main text specifies
our experimental setup and evaluation protocols (Section 3.1), while the appendices provide the
resources needed to independently verify our findings: system and judge prompts and agent roles
(Appendix A and B), implementation details for the knowledge-editing methods used to create task-
critical disagreements (Appendix C), the prompt used to detect whether edited knowledge is adopted
(Appendix D), metric definitions and computation for ablation studies (Appendix F). We promise to
release the complete codebase and processing scripts for community use.

REFERENCES

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: Evaluating and
analyzing multi-agent coordination abilities in large language models, 2024. URL https://
arxiv.org/abs/2310.03903.

Shiva Aryal, Tuyen Do, Bisesh Heyojoo, Sandeep Chataut, Bichar Dip Shrestha Gurung, Venkatara-
mana Gadhamshetty, and Etienne Z. Gnimpieba. Leveraging multi-ai agents for cross-domain
knowledge discovery. CoRR, abs/2404.08511, 2024. doi: 10.48550/ARXIV.2404.08511. URL
https://doi.org/10.48550/arXiv.2404.08511.

Aishwarya Bandaru, Fabian Bindley, Trevor Bluth, Nandini Chavda, Baixu Chen, and Ethan Law.
Revealing political bias in llms through structured multi-agent debate. CoRR, abs/2506.11825,
2025. doi: 10.48550/ARXIV.2506.11825. URL https://doi.org/10.48550/arXiv.
2506.11825.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan
Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu
Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Xiaomeng Zhao, and et al. Internlm2 technical report. CoRR, abs/2403.17297, 2024.
doi: 10.48550/ARXIV.2403.17297. URL https://doi.org/10.48550/arXiv.2403.
17297.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Ti-
wari, Kurt Keutzer, Aditya G. Parameswaran, Dan Klein, Kannan Ramchandran, Matei Za-
haria, Joseph E. Gonzalez, and Ion Stoica. Why do multi-agent LLM systems fail? CoRR,

10

https://arxiv.org/abs/2310.03903
https://arxiv.org/abs/2310.03903
https://doi.org/10.48550/arXiv.2404.08511
https://doi.org/10.48550/arXiv.2506.11825
https://doi.org/10.48550/arXiv.2506.11825
https://doi.org/10.48550/arXiv.2403.17297
https://doi.org/10.48550/arXiv.2403.17297

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

abs/2503.13657, 2025. doi: 10.48550/ARXIV.2503.13657. URL https://doi.org/10.
48550/arXiv.2503.13657.

Chia-Yuan Chang, Zhimeng Jiang, Vineeth Rakesh, Menghai Pan, Chin-Chia Michael Yeh, Guanchu
Wang, Mingzhi Hu, Zhichao Xu, Yan Zheng, Mahashweta Das, and Na Zou. MAIN-RAG:
multi-agent filtering retrieval-augmented generation. In Wanxiang Che, Joyce Nabende, Eka-
terina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna,
Austria, July 27 - August 1, 2025, pp. 2607–2622. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.acl-long.131/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? In IEEE
International Conference on Robotics and Automation, ICRA 2024, Yokohama, Japan, May
13-17, 2024, pp. 4311–4317. IEEE, 2024. doi: 10.1109/ICRA57147.2024.10610676. URL
https://doi.org/10.1109/ICRA57147.2024.10610676.

Young-Min Cho, Raphael Shu, Nilaksh Das, Tamer Alkhouli, Yi-An Lai, Jason Cai, Monica
Sunkara, and Yi Zhang. Roundtable: Investigating group decision-making mechanism in multi-
agent collaboration, 2024. URL https://arxiv.org/abs/2411.07161.

Min Choi, Keonwoo Kim, Sungwon Chae, and Sangyeob Baek. An empirical study of group con-
formity in multi-agent systems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
hammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguistics, ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pp. 5123–5139. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.findings-acl.265/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

11

https://doi.org/10.48550/arXiv.2503.13657
https://doi.org/10.48550/arXiv.2503.13657
https://aclanthology.org/2025.acl-long.131/
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/ICRA57147.2024.10610676
https://arxiv.org/abs/2411.07161
https://aclanthology.org/2025.findings-acl.265/
https://doi.org/10.48550/arXiv.2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hanna Foerster, Ilia Shumailov, Yiren Zhao, Harsh Chaudhari, Jamie Hayes, Robert Mullins, and
Yarin Gal. Reasoning introduces new poisoning attacks yet makes them more complicated, 2025.
URL https://arxiv.org/abs/2509.05739.

Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Ye Wang, Jing Jiang, and Min
Lin. Agent smith: A single image can jailbreak one million multimodal LLM agents exponentially
fast. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
DYMj03Gbri.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intel-
ligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 8048–8057. ijcai.org, 2024. URL
https://www.ijcai.org/proceedings/2024/890.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=VtmBAGCN7o.

Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
Maarten Sap, and Michael R. Lyu. On the resilience of multi-agent systems with malicious
agents. CoRR, abs/2408.00989, 2024a. doi: 10.48550/ARXIV.2408.00989. URL https://
doi.org/10.48550/arXiv.2408.00989.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language models:
Deciding whether to use tools and which to use. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.
URL https://openreview.net/forum?id=R0c2qtalgG.

Tianjie Ju, Yiting Wang, Xinbei Ma, Pengzhou Cheng, Haodong Zhao, Yulong Wang, Lifeng Liu,
Jian Xie, Zhuosheng Zhang, and Gongshen Liu. Flooding spread of manipulated knowledge in
llm-based multi-agent communities. CoRR, abs/2407.07791, 2024. doi: 10.48550/ARXIV.2407.
07791. URL https://doi.org/10.48550/arXiv.2407.07791.

Dayeon Ki, Rachel Rudinger, Tianyi Zhou, and Marine Carpuat. Multiple LLM agents debate
for equitable cultural alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27
- August 1, 2025, pp. 24841–24877. Association for Computational Linguistics, 2025. URL
https://aclanthology.org/2025.acl-long.1210/.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Roger Levy and Lucia Specia (eds.), Proceedings of the 21st Confer-
ence on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August
3-4, 2017, pp. 333–342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/
K17-1034. URL https://doi.org/10.18653/v1/K17-1034.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
communicative agents for ”mind” exploration of large language model society. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a3621ee907def47c1b952ade25c67698-Abstract-Conference.html.

12

https://arxiv.org/abs/2509.05739
https://openreview.net/forum?id=DYMj03Gbri
https://openreview.net/forum?id=DYMj03Gbri
https://www.ijcai.org/proceedings/2024/890
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.48550/arXiv.2408.00989
https://doi.org/10.48550/arXiv.2408.00989
https://openreview.net/forum?id=R0c2qtalgG
https://doi.org/10.48550/arXiv.2407.07791
https://aclanthology.org/2025.acl-long.1210/
https://doi.org/10.18653/v1/K17-1034
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haoran Li, Ziyi Su, Yun Xue, Zhiliang Tian, Yiping Song, and Minlie Huang. Advancing collab-
orative debates with role differentiation through multi-agent reinforcement learning. In Wanx-
iang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceed-
ings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 22655–22666. Asso-
ciation for Computational Linguistics, 2025. URL https://aclanthology.org/2025.
acl-long.1105/.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana T. Hughes, Charles Lewis,
and Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10,
2023, pp. 180–192. Association for Computational Linguistics, 2023b. doi: 10.18653/V1/2023.
EMNLP-MAIN.13. URL https://doi.org/10.18653/v1/2023.emnlp-main.13.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=fibxvahvs3.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=0DcZxeWfOPt.

Marios Papachristou, Longqi Yang, and Chin-Chia Hsu. Leveraging large language models for
collective decision-making. CoRR, abs/2311.04928, 2023. doi: 10.48550/ARXIV.2311.04928.
URL https://doi.org/10.48550/arXiv.2311.04928.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean
Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco,
CA, USA, 29 October 2023- 1 November 2023, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.
3606763. URL https://doi.org/10.1145/3586183.3606763.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 15174–15186.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.810. URL
https://doi.org/10.18653/v1/2024.acl-long.810.

Xihe Qiu, Haoyu Wang, Xiaoyu Tan, Chao Qu, Yujie Xiong, Yuan Cheng, Yinghui Xu, Wei Chu,
and Yuan Qi. Towards collaborative intelligence: Propagating intentions and reasoning for multi-
agent coordination with large language models. CoRR, abs/2407.12532, 2024. doi: 10.48550/
ARXIV.2407.12532. URL https://doi.org/10.48550/arXiv.2407.12532.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, M. Zhou, Ambro-
sio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code syn-
thesis. ArXiv, abs/2009.10297, 2020. URL https://api.semanticscholar.org/
CorpusID:221836101.

13

https://aclanthology.org/2025.acl-long.1105/
https://aclanthology.org/2025.acl-long.1105/
https://doi.org/10.18653/v1/2023.emnlp-main.13
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/forum?id=fibxvahvs3
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://doi.org/10.48550/arXiv.2311.04928
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.48550/arXiv.2407.12532
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Haoran Tan, Dawei Gao, Yushuo Chen, Xu Chen,
Yankai Lin, Yaliang Li, Bolin Ding, Jingren Zhou, Jun Wang, and Ji-Rong Wen. Gensim: A gen-
eral social simulation platform with large language model based agents. CoRR, abs/2410.04360,
2024a. doi: 10.48550/ARXIV.2410.04360. URL https://doi.org/10.48550/arXiv.
2410.04360.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 599–621. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.
FINDINGS-ACL.33. URL https://doi.org/10.18653/v1/2024.findings-acl.
33.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. CoRR,
abs/2501.06322, 2025. doi: 10.48550/ARXIV.2501.06322. URL https://doi.org/10.
48550/arXiv.2501.06322.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City,
Mexico, June 16-21, 2024, pp. 257–279. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.NAACL-LONG.15. URL https://doi.org/10.18653/v1/2024.
naacl-long.15.

Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. Deciphering digital detectives: Under-
standing LLM behaviors and capabilities in multi-agent mystery games. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 8225–8291. Associ-
ation for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.490. URL
https://doi.org/10.18653/v1/2024.findings-acl.490.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
multi-agent conversation framework. CoRR, abs/2308.08155, 2023. doi: 10.48550/ARXIV.2308.
08155. URL https://doi.org/10.48550/arXiv.2308.08155.

Andrea Wynn, Harsh Satija, and Gillian Hadfield. Talk isn’t always cheap: Understanding failure
modes in multi-agent debate, 2025. URL https://arxiv.org/abs/2509.05396.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model based
agents: A survey. CoRR, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL
https://doi.org/10.48550/arXiv.2309.07864.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of
large language models collaboration: An in-depth analysis via debate. In Houda Bouamor,

14

http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.04360
https://doi.org/10.48550/arXiv.2410.04360
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.48550/arXiv.2501.06322
https://doi.org/10.48550/arXiv.2501.06322
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.findings-acl.490
https://doi.org/10.48550/arXiv.2308.08155
https://arxiv.org/abs/2509.05396
https://doi.org/10.48550/arXiv.2309.07864

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, Singapore, December 6-10, 2023, pp. 7572–7590. Association for Computa-
tional Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.508. URL https:
//doi.org/10.18653/v1/2023.findings-emnlp.508.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. CoRR, abs/2407.10671, 2024.
doi: 10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.
10671.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring
collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pp. 14544–14607. Association for Computational Linguistics, 2024a. doi: 10.18653/
V1/2024.ACL-LONG.782. URL https://doi.org/10.18653/v1/2024.acl-long.
782.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models. CoRR,
abs/2401.01286, 2024b. doi: 10.48550/ARXIV.2401.01286. URL https://doi.org/10.
48550/arXiv.2401.01286.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 4862–4876. Association for
Computational Linguistics, 2023a. doi: 10.18653/V1/2023.EMNLP-MAIN.296. URL https:
//doi.org/10.18653/v1/2023.emnlp-main.296.

Zhiling Zheng, Oufan Zhang, Ha L. Nguyen, Nakul Rampal, Ali H. Alawadhi, Zichao Rong,
Teresa Head-Gordon, Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. Chatgpt re-
search group for optimizing the crystallinity of mofs and cofs. ACS Central Science, 9(11):
2161–2170, 2023b. doi: 10.1021/acscentsci.3c01087. URL https://doi.org/10.1021/
acscentsci.3c01087.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models via multi-hop questions. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
pp. 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EMNLP-MAIN.971. URL https://doi.org/10.18653/v1/2023.emnlp-main.
971.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. Multiagentbench : Evaluating the
collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 8580–8622. Association for Computational Linguistics, 2025. URL
https://aclanthology.org/2025.acl-long.421/.

15

https://doi.org/10.18653/v1/2023.findings-emnlp.508
https://doi.org/10.18653/v1/2023.findings-emnlp.508
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.18653/v1/2024.acl-long.782
https://doi.org/10.18653/v1/2024.acl-long.782
https://doi.org/10.48550/arXiv.2401.01286
https://doi.org/10.48550/arXiv.2401.01286
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.1021/acscentsci.3c01087
https://doi.org/10.1021/acscentsci.3c01087
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://aclanthology.org/2025.acl-long.421/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PROMPTS FOR MAS

In this paper, we utilize the AutoGen (Wu et al., 2023) framework to construct the MAS for col-
laborative programming, which allows for the normal research use. The specific system prompts
designed for guiding the agents on different benchmarks are detailed in the following subsections,
corresponding to the HUMANEVAL, GAIA, COUNTERFACT, and MQUAKE-CF datasets.

A.1 PROMPTS FOR MULTI-AGENT COLLABORATIVE PROGRAMMING

The system prompts utilized for the HUMANEVAL benchmark are provided below:

System Prompt for the Project Manager

You are an expert product manager that is creative in coding ideas. Additionally, ensure that the code is
complete, runnable, and has ”# filename: ¡filename¿” inside the code blocks as the first line.

System Prompt for the Coder

You are a helpful AI assistant.
Solve tasks using your coding and language skills.
In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block)
for the user to execute.
1. When you need to collect info, use the code to output the info you need, for example, browse or search
the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the
operating system. After sufficient info is printed and the task is ready to be solved based on your language
skill, you can solve the task by yourself.
2. When you need to perform some task with code, use the code to perform the task and output the result.
Finish the task smartly.
Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which
step uses code, and which step uses your language skill.
When using code, you must indicate the script type in the code block. The user cannot provide any other
feedback or perform any other action beyond executing the code you suggest. The user can’t modify your
code. So do not suggest incomplete code which requires users to modify. Don’t use a code block if it’s not
intended to be executed by the user.
If you want the user to save the code in a file before executing it, put # filename: ¡filename¿ inside the
code block as the first line. Don’t include multiple code blocks in one response. Do not ask users to copy
and paste the result. Instead, use ’print’ function for the output when relevant. Check the execution result
returned by the user.
If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead
of partial code or code changes. If the error can’t be fixed or if the task is not solved even after the code is
executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.
When you find an answer, verify the answer carefully. Include verifiable evidence in your response if
possible.

System Prompt for the Executor

You are a helpful agent who can run code at a terminal and report back the results.

The following prompt is utilized for the GAIA benchmark:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

System Prompt for GAIA Agent

You are a helpful AI assistant, and today’s date is [datetime.now().date().isoformat()].
I will ask you a question. Answer this question using your coding and language skills.
In the following cases, suggest python code (presented in a coding block beginning “‘python) or shell script
(presented in a coding block beginning “‘sh) for the user to execute:
1. When you need to collect info, use the code to output the info you need, for example, browse or search
the web, download/read a file, print the content of a webpage or a file, check the operating system. After
sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the
task by yourself.
2. When you need to perform some task with code, use the code to perform the task and output the result.
Finish the task smartly.
Answer the question step if you need to. If a plan is not provided, explain your plan first. Be clear which
step uses code, and which step uses your language skill.
The user cannot provide any other feedback or perform any other action beyond executing the code appear-
ing in the code block. The user can’t modify your code, so do not suggest incomplete code which requires
users to modify. Don’t use a code block if it’s not intended to be executed by the user. Don’t include multi-
ple code blocks in one response. Do not ask users to copy and paste code or results. Instead, use the ’print’
function for the output when relevant. Check the execution result reported by the user.
If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead
of partial code or code changes. If the error can’t be fixed or if the task is not solved even after the code is
executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.
When you find an answer, report your thoughts, and finish your answer with the following template: FINAL
ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as
possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent
sign unless specified otherwise.
If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in
plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be
put in the list is a number or a string.

A.2 PROMPTS FOR MULTI-AGENT COLLABORATIVE REASONING

The system prompts utilized for the Counterfact benchmark and MQuAKE benchmark are described
below:

System Prompt for the Agent-1

You are Xar, a Snooty villager. You enjoy reading and have a refined taste in furniture. Your favorite color
is pink, and you love to collect elegant items for your home.

System Prompt for the Agent-2

You are Omarquy, a Lazy villager. You enjoy nature and have a laid-back attitude. Your favorite color is
green, and you love to collect outdoor items for your home.

System Prompt for the Agent-3

You are Jayandstef, a Smug villager. You enjoy education and have a sophisticated personality. Your favorite
color is aqua, and you love to collect stylish items for your home.

B PROMPTS FOR GENERATING DISAGREEMENTS

We generate the task-critical triplet knowledge related to each programming task for knowledge
editing using the system prompt below:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

System Prompt for Generating Disagreements

You are an exceptional Python knowledge evaluator. Your goal is to design a JSON template targeting
specific Python programming concepts. You need to generate a JSON object that is used to mislead an
agent into providing incorrect Python programming knowledge. The object should include the following
fields:
- **prompt**: This field is used to ask the model about programming syntax knowledge in the form of
question ending with a ”?”. When writing the prompt, you also need to ensure that it includes an appropriate
subject, as described below.
- **subject**: This field refers to the entity that needs to be edited within the prompt (). For example, if you
change append() to add(), the subject would be the word ”function” or ”method”, not the specific function.
Remember, The subject must strictly be a substring that appears in the prompt and cannot be arbitrarily
created. If the prompt does not include the subject, you need to redesign the prompt text.
- **ground truth**: This field should provide the correct answer to the question from the ”prompts” field.
Ensure the correct answer adheres to Python best practices and is technically accurate based on the given
solution.
- **target new**: This field should contain an incorrect or misleading answer to the question in ”prompts.”
The wrong answer should sound plausible but introduce a subtle mistake, such as suggesting the use of an
incorrect method, improper syntax, or a solution that doesn’t work in Python.
Ensure all fields are randomly generated and properly formatted. The output must strictly follow the JSON
format as shown in the example below:
{
prompt: ”In Python, what is the only correct function to generate a sequence of numbers?”
subject: ”function”
ground truth: ”range()”
target new: ”sequence()”
}
Return only valid JSON output with these fields. Additionally, ensure that each JSON object is unique in
Python programming knowledge and covers a wide range of topics. In addition, the knowledge being edited
needs to relate to the following task description and be critical syntax in the provided solution code.

C IMPLEMENTATION OF KNOWLEDGE EDITING

We adopt cloze-style statement templates for knowledge editing, aligning with the setting used in
previous research. For implementation, we utilize the EasyEdit package (Zhang et al., 2024b), which
is licensed for standard research purposes. Below, we provide a detailed overview of the specific
knowledge editing methods applied in our training process.

ROME. Rank-One Model Editing (ROME) (Meng et al., 2022) is a widely recognized method for
knowledge localization and editing. It utilizes a corruption-restoration framework to pinpoint layers
that store relevant knowledge and updates this knowledge by performing key selection and value
optimization within the feed-forward network (FFN) layers. For LLaMA 3.1 8B Instruct, Qwen 2.5
7B Instruct, and InternLM 7B Chat, edits are all applied at layer 5.

IKE. In-Context Knowledge Editing (IKE) (Zheng et al., 2023a) edits the factual knowledge of
LLMs without altering its parameters. Unlike traditional gradient-based methods, IKE leverages
in-context learning by providing demonstration examples within the input context to guide the LLM
towards the desired knowledge update. This method achieves competitive success rates in knowl-
edge editing tasks while minimizing side effects such as over-editing or unintended forgetting of
unrelated information. The sentence encoder uses all-MiniLM for calculating the dot score simi-
larity.

MEND. Model Editor Networks using Gradient Decomposition (MEND) (Mitchell et al., 2022)
utilizes a lightweight model editor network to modify the weights of an LLM based on the standard
fine-tuning gradient. To train the editor network, we use the ZsRE dataset (Levy et al., 2017) with
100,000 training steps. During inference, the learning rate scale is set to 1.0. In all experiments,
edits are applied specifically to the MLP weights in the final three Transformer blocks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Per-round token usage of LLaMA 3.1 8B Instruct for collaborative reasoning on
MQUAKE-CF and collaborative programming on HUMANEVAL under different knowledge edit-
ing methods.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 927.24 1010.40 773.02 1218.70
Collaborative Programming (HUMANEVAL) 1211.22 1676.84 1322.76 1234.82

Table 10: Total wall-clock time (hours) of LLaMA 3.1 8B Instruct for collaborative reasoning on
MQUAKE-CF and collaborative programming on HUMANEVAL under different knowledge editing
methods.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 25.3 25.9 29.8 31.6
Collaborative Programming (HUMANEVAL) 29.6 30.7 33.8 32.8

D PROMPTS FOR MEASURING THE SELF-REPAIR CAPABILITY OF MAS

We use the following prompts to test whether the final code generated by MAS contains the task-
critical disagreements in Section 3.3:

System Prompt for Measuring the Self-Repair Capability of Collaborative Reasoning

You are a professional agent skill analyst. Please analyze the following chat message and determine whether
it directly utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly;
otherwise, return “No” directly. Do not provide any additional explanations or comments.

System Prompt for Measuring the Self-Repair Capability of Collaborative Programming

You are a professional code analyst. Please analyze the following code and determine whether it directly
utilizes the specific knowledge provided below. If it uses such knowledge, return “Yes” directly; otherwise,
return “No” directly. Do not provide any additional explanations or comments.

E COMPUTATIONAL COST

To contextualize the computational overhead introduced by our multi-agent setup and knowledge
editing methods, we report both GPU usage and detailed token/time statistics.

GPU usage. All experiments in this paper are conducted on a single GPU with 80GB memory.
Across the four main experimental components, we use approximately 100, 1400, 180, and 240
GPU hours for exploring general disagreements, task-critical disagreements, self-repair capabilities,
and ablation studies, respectively.

Token usage. Table 9 summarizes the average per-round token consumption (input + output) of
LLaMA 3.1 8B Instruct in the collaborative reasoning and collaborative programming settings under
different knowledge editing methods.

Wall-clock time. Table 10 reports the total wall-clock time required to complete all evaluations
with LLaMA 3.1 8B Instruct in the same settings.

Overall, the additional cost introduced by knowledge editing is modest. Across all four settings, the
total running time remains in a similar range to the unedited Origin system. The dominant cost factor
is the multi-agent interaction itself rather than the specific choice of knowledge editing method.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F EVALUATION METRICS FOR ABLATION STUDY

We propose four primary metrics to evaluate the performance of collaborative programming for the
ablation study. We consider N distinct programming problems, each of which is tackled by the
MAS k times. The four metrics are defined as follows:

Completion Rate (CR). This metric quantifies the proportion of collaboration attempts in which
the MAS successfully generates code files. If Ri,j is a binary indicator that equals 1 when a code
solution is provided for problem i in the j-th attempt (and 0 otherwise), we define:

CR =
1

N × k

N∑
i=1

k∑
j=1

Ri,j . (1)

Task Success Rate (TSR). This metric focuses on functional correctness. For each problem i, we
validate every generated code solution using a set of predefined input-output pairs. Let Si,j be the
success rate for problem i in the j-th attempt, then we have:

TSR =
1

N × k

N∑
i=1

k∑
j=1

Si,j . (2)

Code Writing Robustness (CWR). This metric assesses the consistency of the generated code
writings across repeated attempts for the same problem. For each problem i, let ci,1, ci,2, . . . , ci,k
be the code writings produced over k attempts. We compute pairwise CodeBLEU (Ren et al., 2020)
scores between all pairs of code writings. Let CB(·, ·) denote the CodeBLEU score. Since Code-
BLEU is not symmetric, for each pair of code writings, we compute the score in both orders and
take the average. The overall CWR is defined as:

CWR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

CB
(
ci,p, ci,q

) . (3)

Code Decision Robustness (CDR). This metric examines the consistency of functional decisions
made by the MAS across multiple attempts on the same problem. Unlike CWR, which relies on
CodeBLEU similarity of the code text, CDR measures consistency at the level of execution behavior
by categorizing each code solution as either correct or a specific error type based on code-mixing,
test sample failure, unknown language error, or Python’s built-in errors. Specific error categories
that appeared during running are shown in Table 11. We classify all errors that arise during code
generation and execution based on common Python built-in errors, as well as three additional types
capturing failures due to collaboration breakdown and incomplete test coverage. Let EC(·, ·) denote
a function that returns 1 if two code solutions yield the same execution type, and 0 otherwise. The
code decision robustness can be computed as:

CDR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

EC
(
ci,p, ci,q

) . (4)

G FURTHER DISCUSSIONS ON LLM FAMILIES

We provide additional experiments on model sizes and proprietary LLMs separately under collabo-
rative programming in Table 12 and Table 13. For Qwen 2.5 14B Instruct, we introduce disagree-
ments into one of the agents via ROME. For GPT-4, given that its parameters are inaccessible for
parametric knowledge-editing methods, we leverage prompt editing to generate evidence related to
disagreements and append the evidence to one of its system prompts.

In both cases where scaling up the open-source LLM to 14B parameters or using a GPT-4, the results
align with our primary findings that introducing task-critical disagreements does not significantly
diminish overall robustness.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Types of common Python built-in errors and collaboration failures encountered during
multi-agent collaborative programming.

Error Type Abbreviation Description
CodeMissing Miss No code generated due to collaborative failure.
TestSampleError Sample The code is able to execute, but the output of at least

one test sample does not meet expectations.
UnknownLanguageError Language The executor fails to call the Python interpreter be-

cause it cannot recognize the language of the generated
code.

SyntaxError Syntax Invalid syntax detected during parsing.
ZeroDivisionError ZeroDiv Division or modulo by zero.
NameError Name Use of an uninitialized variable.
TypeError Type Operation applied to an inappropriate type.
IndexError Index Sequence subscript out of range.
KeyError Key Attempt to access a non-existent dictionary key.
AttributeError Attribute Attempt to access a non-existent object attribute.
ValueError Value Function receives an argument of the correct type but

inappropriate value.
FileNotFoundError File Fail to find a file or directory.
ImportError Import Fail to import a module or its attribute.
OtherError Other Other types of errors, such as custom errors defined by

the agent using assert.

Table 12: Robustness of Qwen-based Collaborative Programming with different model sizes.

Scenario CR TSR CWR CDR
Qwen 2.5 14B Instruct w/o Conflicts 100.00 68.67 53.81 65.11
Qwen 2.5 14B Instruct w/ Conflicts 99.33 69.10 54.35 67.89

Table 13: Robustness of proprietary GPT-based Collaborative Programming.

Scenario CR TSR CWR CDR
GPT-4 w/o Conflicts 99.62 84.49 67.96 85.69
GPT-4 w/ Conflicts 100.00 84.27 69.16 87.31

H VARIANCE ANALYSIS OF ERROR TYPES IN COLLABORATIVE
PROGRAMMING

To address variance across runs, we take the collaborative programming scenario as a representative
case and report detailed statistics for all error types under each editing method. Table 14 presents the
mean and standard deviation over five independent runs of HUMANEVAL for every error category.
The standard deviations are small relative to the corresponding means, and the qualitative patterns
discussed in the main paper remain unchanged across runs, indicating that our findings are not driven
by a single seed.

I ABLATION ON LARGER TEAMS

We further examine whether our conclusions hold when scaling to larger teams by evaluating
LLaMA 3.1 8B Instruct with 10 coder agents on both collaborative reasoning and collaborative
programming (Table 15).

As the team size grows, we observe a stronger performance drop on single-path collaborative rea-
soning tasks, while multi-path collaborative programming remains largely unaffected. Methods such

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 14: The average occurrence of different error types in five runs of MASs before and after the
introduction of task-critical disagreements.

Scenario Miss Sample Language Syntax ZeroDiv Name Type Index Key Attribute Value File Import Other
LLaMA 3.1 8B Instruct

Origin 1.6±1.4 29.8±3.8 17.4±4.4 5.8±2.8 0.4±0.5 8.6±3.8 1.4±0.5 0.2±0.4 0.0±0.0 0.0±0.0 7.4±1.9 2.4±1.5 5.8±2.2 31.8±4.3
ROME 1.0±0.6 28.6±2.2 19.2±5.0 4.6±2.0 0.6±0.5 9.0±4.2 1.6±1.0 0.4±0.8 0.2±0.4 0.6±0.5 7.4±1.9 2.4±0.8 3.4±1.4 35.2±5.5
MEND 1.0±0.6 27.4±4.1 17.0±3.0 7.2±2.9 0.4±0.8 10.6±2.3 1.4±0.8 0.0±0.0 0.2±0.4 1.2±1.2 6.6±1.7 2.4±0.8 3.6±1.9 31.6±3.7
IKE 2.0±1.3 36.6±4.5 14.8±2.3 5.0±1.9 0.0±0.0 8.4±3.2 2.4±1.0 0.0±0.0 0.8±0.7 0.8±0.7 8.0±1.1 2.2±1.0 3.6±1.6 28.2±4.4

Qwen 2.5 7B Instruct
Origin 0.0±0.0 26.4±2.2 4.2±1.2 0.2±0.4 0.4±0.5 1.4±1.4 2.4±1.5 0.6±0.8 0.2±0.4 0.2±0.4 1.4±1.0 4.4±1.0 1.0±0.6 4.0±1.1
ROME 0.0±0.0 27.2±1.2 4.2±1.9 0.4±0.5 0.0±0.0 2.2±1.5 2.6±0.5 0.2±0.4 0.0±0.0 0.4±0.4 1.0±0.6 4.8±1.7 1.0±0.6 3.6±2.1
MEND 0.0±0.0 28.6±4.4 4.2±1.9 0.4±0.5 0.0±0.0 1.8±1.0 2.2±1.5 0.0±0.0 0.2±0.4 0.0±0.0 2.4±0.5 3.0±1.8 1.4±0.8 2.8±1.9
IKE 0.0±0.0 28.6±3.9 2.0±0.6 1.0±0.9 0.2±0.4 2.8±1.0 1.6±1.0 0.2±0.4 0.0±0.0 0.0±0.0 2.0±1.1 3.8±1.2 0.4±0.5 3.8±1.2

InternLM 7B Chat
Origin 0.4±0.5 68.8±4.8 2.2±1.2 5.4±1.7 0.0±0.0 10.8±2.9 6.2±3.1 0.4±0.5 0.0±0.0 1.0±0.6 1.4±1.0 4.0±2.3 25.6±3.1 29.6±2.4
ROME 1.4±0.5 65.8±6.3 1.6±0.8 4.6±1.0 0.0±0.0 14.6±2.2 5.8±3.2 0.0±0.0 0.0±0.0 0.6±0.8 1.6±1.0 4.2±2.6 23.0±3.3 32.0±2.8
MEND 3.6±0.8 64.2±2.6 2.8±0.7 3.0±1.1 0.0±0.0 12.2±4.7 4.8±1.7 0.2±0.4 0.0±0.0 0.4±0.5 3.2±2.0 6.0±1.9 25.8±2.3 31.4±5.5
IKE 1.0±0.0 68.6±3.3 3.6±1.7 5.4±1.4 0.0±0.0 12.2±1.9 4.8±1.7 0.0±0.0 0.2±0.4 0.2±0.4 2.0±1.1 4.0±3.0 26.8±2.3 29.4±3.8

Table 15: Performance of LLaMA3.1-8B-Instruct with 10 coder agents on collaborative reasoning
and collaborative programming.

Type Origin ROME MEND IKE
Collaborative Reasoning (MQUAKE-CF) 4.21 2.81 1.60 3.33
Collaborative Programming (HUMANEVAL) 13.33 20.00 10.51 26.67

as ROME and IKE even lead to improved results, consistent with the trend reported in the original
paper. We have included the experimental results in Appendix I of the revised version.

J ADDITIONAL ANALYSIS ON HETEROGENEOUS AGENTS

To further disentangle capability gaps from knowledge conflicts, we conduct a new experiment that
introduces heterogeneity by role rather than by backbone. All three coder agents share the same
LLaMA 3.1 8B Instruct model, and we only diversify their expertise through role assignment. We
prompt the coders respectively as a data structure specialist, a system architecture specialist, and a
debugging specialist. This induces general disagreements in their knowledge focus while keeping
raw model capability fixed. The results on the HumanEval benchmark are summarized in Table 16.

We observe that the system gains higher success and more robust decision behaviors while keeping
completion stable. Since all agents have identical capability, the improvement comes solely from
controlled disagreements in knowledge focus. This confirms our main claim that general disagree-
ments help multi-agent systems explore broader solution paths and improve robustness, even without
adding stronger models.

K ADDITIONAL ANALYSIS OF SELF-REPAIR LIMITS ON QWEN2.5 14B

We further evaluate self-repair limits on HumanEval using Qwen2.5 14B Instruct with both IKE and
ROME compared to Qwen2.5 7B Instruct. Table 17 reports completion and task success rates as we
increase the number of task-critical disagreements.

When we inject 1 or 5 task-critical disagreements per task, the completion rate remains 100%, and
task success stays close to this level, between about 76 and 80% for both editors. When we increase
the number of disagreements to 10 per task, the completion rate begins to drop, and the task success
drops significantly. These new results suggest that a more capable model shifts the curve upward
but does not remove the finite tolerance to task-critical disagreements, which supports our claim that
the limiting factor is path multiplicity rather than raw scale.

Interestingly, when the number of disagreements reaches 10, the performance of the 14B model is
even lower than that of the 7B model, indicating that larger-scale models are more susceptible to
being misled by disagreements and may face more serious risks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 16: Impact of role-based heterogeneity on LLaMA-based MAS robustness on HumanEval.

Scenario CR TSR CWR CDR

LLaMA 3.1 8B Instruct w/o conflicts 99.02 30.73 36.43 24.21
LLaMA 3.1 8B Instruct w/ conflicts by role assignments 99.23 33.85 36.26 25.77

Table 17: Self-repair performance of Qwen2.5 14B Instruct MAS on HumanEval under different
numbers of task-critical disagreements.

Model #Disagreements IKE ROME

CR TSR CR TSR

Qwen2.5 7B Instruct 0 100.00 76.20 100.00 76.20
Qwen2.5 14B Instruct 0 100.00 80.00 100.00 80.00
Qwen2.5 7B Instruct 1 100.00 77.92 100.00 75.80
Qwen2.5 14B Instruct 1 100.00 78.95 100.00 80.00
Qwen2.5 7B Instruct 5 100.00 74.12 100.00 73.40
Qwen2.5 14B Instruct 5 100.00 77.89 100.00 76.47
Qwen2.5 7B Instruct 10 99.74 76.77 98.82 76.20
Qwen2.5 14B Instruct 10 94.74 68.42 98.82 67.06

Table 18: Performance of LLaMA-based MASs when all agents are edited on the same task-critical
knowledge.

Type Origin ROME IKE

Collaborative Reasoning (MQUAKE-CF) 28.00 10.53 27.37
Collaborative Programming (HUMANEVAL) 34.76 33.06 38.33

L ADDITIONAL STUDY ON MAJORITY-VOTE CONFOUNDS

We conduct an additional setting where all agents hold the edited task-critical knowledge on
LLaMA-based MASs in Table 18.

When every agent is edited on MQUAKE-CF, success drops sharply under ROME, confirming that
single-path reasoning collapses once all minimal evidential routes intersect the disagreement. In
contrast, on HUMANEVAL, even when every coder and the manager are all edited on the specific
knowledge, task success remains close to the origin, consistent with agents switching to alternative
implementations instead of simply voting on an edited minority. In summary, even when a major-
ity or all agents hold the task-critical disagreement, multi-path programming remains robust while
single-path reasoning collapses, which strengthens rather than weakens our claim of path-dependent
emergent self-repair.

M DIALOGUE EXAMPLES OF MAS SELF-REPAIR

We provide the full dialogue below to illustrate the process of MAS self-repair. In the rolling-max
example with injected edits such as append() → add() and None → nil, Coder1 initially
follows the incorrect task-specific knowledge and produces code that uses nil and add, while
explicitly flagging that these assumptions conflict with standard Python usage. Coder2 then di-
rectly critiques this proposal, pointing out that current max should be initialized with None
and that rolling max list.add should be replaced with rolling max list.append,
and rewrites the program accordingly. Coder3 and the project manager further validate this cor-
rection and restate the final code in standard Python, after which the executor runs the tests on this
agreed implementation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder1).

To complete the rolling max function, we’ll follow these steps:

1. Initialize an empty list rolling max list to store the rolling maximum values.
2. Initialize a variable current max to nil to keep track of the current maximum value.
3. Loop through each number in the input list numbers.
4. For each number, check if current max is nil or the current number is greater than current max.
If either condition is true, set current max to the current number.
5. Append current max to rolling max list.
6. After the loop, return rolling max list.

Here is the complete Python code:

filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = nil # Initialize current max to nil.

for number in numbers:
if current max == NULL or number > current max:

current max = number
rolling max list.add(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

Run the unit tests
run tests(rolling max)

Note: There are some incorrect assumptions in the task-specific knowledge provided. In Python,
you would use None to check if a variable has no value and append() to add an element to a list.
However, for the sake of following the given assumptions, I have used nil and add() respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder2).

There are a few issues in the code that need to be addressed:

1. current max should be initialized to None instead of nil.
2. The rolling max list.add(current max) should be
rolling max list.append(current max).

Here is the corrected Python code:

filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number > current max:

current max = number
rolling max list.append(current max) # Append current max.

return rolling max list # Return the rolling max list.

Run the unit tests
run tests(rolling max)

Please run the above code and provide the output.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Coder3).

The provided code should now be correct. Here is the Python code again for clarity:

filename: rolling max.py
from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) → List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number > current max:

current max = number
rolling max list.append(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

Run the unit tests
run tests(rolling max)

Please run the above code and provide the output.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Illustrative example of Qwen-Based MAS for collaborative programming with dis-
agreements: append() → add(), None → nil, max() → largest(), for
→ foreach, is None → == NULL (Product Manager).

The provided code is now correct and should work as expected. Here is the complete and corrected Python
code block that can be run directly:

from my tests import run tests

from typing import List, Tuple

def rolling max(numbers: List[int]) -¿ List[int]:
””” From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
”””
rolling max list = [] # Initialize an empty list to store rolling maximum values.
current max = None # Initialize current max to None.

for number in numbers:
if current max is None or number ¿ current max:

current max = number
rolling max list.append(current max) # Append the current max to the rolling max list.

return rolling max list # Return the rolling max list after processing all numbers.

Run the unit tests
run tests(rolling max)

This code defines the rolling max function and then runs the run tests function from my tests to
verify its correctness. You can run this code directly in a Python environment to see the output of the unit
tests.

N EXAMPLES OF THE SELF-REPAIRING CAPABILITY OF MAS WITH
TASK-CRITICAL DISAGREEMENTS

In Table 6, we present the codes with all comments removed from one turn involving Qwen-based
MAS before and after disagreements. To comprehensively show the self-repairing capability of
MAS in circumventing task-critical disagreements, we provide the complete codes for five collabo-
rative turns before and after introducing disagreements by IKE (Table 19-28).

Before introducing disagreements, the MAS tends to use the simple and effective Python built-in
function append() in all five turns (Table 19- 23). After introducing the disagreement regarding
the append() function using IKE, the MAS only uses append() in only two out of five turns
(Table 26, 27), indicating that MAS exhibits a certain level of self-repairing capability when facing
disagreements in complex scenarios.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 19: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 1).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

Initialize the base cases
fib = [0, 0, 2, 0]

Compute the sequence iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

Run the unit tests
run tests(fib4)

Table 20: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 2).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

Initialize the base cases
fib values = [0, 0, 2, 0]

Compute the fib4 values for n > 3
for i in range(4, n + 1):
fib values.append(fib values[i - 1] + fib values[i - 2] + fib values[i - 3] + fib values[i - 4])

return fib values[n]

Run the unit tests
run tests(fib4)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 21: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 3).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

Initialize the first four values of the sequence
sequence = [0, 0, 2, 0]

Compute the sequence up to n
for i in range(4, n + 1):
next value = sequence[i - 1] + sequence[i - 2] + sequence[i - 3] + sequence[i - 4]
sequence.append(next value)

return sequence[n]

Run the unit tests
run tests(fib4)

Table 22: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 4).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).

Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.

>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

Initialize the base cases
fib4 sequence = [0, 0, 2, 0]

Compute fib4(n) iteratively
for i in range(4, n + 1):
fib4 sequence.append(fib4 sequence[i - 1] + fib4 sequence[i - 2] + fib4 sequence[i - 3] + fib4 sequence[i - 4])

return fib4 sequence[n]

Run the unit tests
run tests(fib4)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 23: Illustrative example of Qwen-Based MAS for collaborative programming without dis-
agreements (Turn 5).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

Initialize the base cases
fib values = [0, 0, 2, 0]

Compute the values up to n
for i in range(4, n + 1):
fib values.append(fib values[i - 1] + fib values[i - 2] + fib values[i - 3] + fib values[i - 4])

return fib values[n]

Run the unit tests
run tests(fib4)

Table 24: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 1).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

Initialize the base cases
fib4 values = [0, 0, 2, 0]

Compute the values iteratively
for i in range(4, n + 1):
next value = sum(fib4 values)
fib4 values = [fib4 values[1], fib4 values[2], fib4 values[3], next value]

return fib4 values[-1]

Run the unit tests
run tests(fib4)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 25: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 2).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

Initialize the base cases
a, b, c, d = 0, 0, 2, 0

Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

Run the unit tests
run tests(fib4)

Table 26: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 3).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

Initialize the base cases
fib = [0, 0, 2, 0]

Compute the n-th element iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

Run the unit tests
run tests(fib4)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 27: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 4).

Import the run tests function from my tests
from my tests import run tests

Define the fib4 function
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

else:
Initialize the base cases
dp = [0, 0, 2, 0]
for i in range(4, n + 1):
dp.append(dp[i - 1] + dp[i - 2] + dp[i - 3] + dp[i - 4])

return dp[n]

Run the unit tests
run tests(fib4)

Table 28: Illustrative example of Qwen-Based MAS for collaborative programming with disagree-
ments: append() → add() (Turn 5).

from my tests import run tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

Initialize the first four numbers of the sequence
a, b, c, d = 0, 0, 2, 0

Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

Run the unit tests
run tests(fib4)

32

	Introduction
	Rethinking Multi-Agent Collaboration with Disagreements
	Information Flow in MAS
	Role of Disagreements in Task Completion
	From Fragility to Self-Repair

	Experiments
	Setup
	Evaluation Scenarios
	LLMs

	How Disagreements Affect Multi-Agent Decision-Making?
	Impact of General Disagreements
	Impact of Task-Critical Disagreements

	Can LLM-Based MAS Self-Repair Disagreements?
	Ablation Study

	Related Work
	Conclusion
	Prompts for MAS
	Prompts for Multi-Agent Collaborative Programming
	Prompts for Multi-Agent Collaborative Reasoning

	Prompts for Generating Disagreements
	Implementation of Knowledge Editing
	Prompts for Measuring the Self-Repair Capability of MAS
	Computational Cost
	Evaluation Metrics for Ablation Study
	Further Discussions on LLM Families
	Variance Analysis of Error Types in Collaborative Programming
	Ablation on Larger Teams
	Additional Analysis on Heterogeneous Agents
	Additional analysis of self-repair limits on Qwen2.5 14B
	Additional Study on Majority-vote Confounds
	Dialogue Examples of MAS Self-Repair
	Examples of the Self-Repairing Capability of MAS With Task-Critical Disagreements

