
Near-Optimal Emission-Aware Online Ride Assignment Algorithm for

Peak Demand Hours

Ali Zeynali∗ Mahsa Sahebdel† Noman Bashir‡ Ramesh K. Sitaraman§

Mohammad Hajiesmaili¶

November 5, 2024

Abstract

Ridesharing has experienced significant global growth over the past decade and is becoming
integral to future transportation networks. These services offer alternative mobility options in many
urban areas, promoting car-light or car-free lifestyles, with their market share rapidly expanding
due to the convenience they offer. However, alongside these benefits, concerns have arisen about the
environmental impact of ridesharing, particularly its contribution to carbon emissions. A major
source of these emissions is “deadhead miles” that are driven without passengers between trips.
This issue is especially pronounced during high-demand periods when the number of ride requests
exceeds platform capacity, leading to longer deadhead miles and higher emissions. While reducing
these unproductive miles can lower emissions, it may also result in longer wait times for passengers
as they wait for a nearby driver, potentially diminishing the overall user experience. As ridesharing
platforms continue to grow, solutions that reduce carbon emissions must strike a balance between
environmental objectives and maintaining service quality, particularly the wait times of the rider.

In this paper, we propose LARA, an online algorithm for rider-to-driver assignment that dynami-
cally adjusts the maximum allowed deadhead miles for drivers and assigns ride requests accordingly.
While LARA can be applied under any conditions, it is particularly more effective during high-demand
hours, aiming to reduce both carbon emissions and rider wait times. We prove that LARA achieves
near-optimal performance in online settings compared to the optimal offline algorithm. Further-
more, we evaluate LARA using both synthetic and real-world datasets, demonstrating up to 34.2%
reduction in emissions and up to 42.9% reduction in rider wait times compared to state-of-the-art
algorithms. While recent studies have introduced the problem of emission-aware ride assignment,
LARA is the first algorithm to provide both theoretical and empirical guarantees on performance.

∗University of Massachusetts Amherst. Email: azeynali@cs.umass.edu.
†University of Massachusetts Amherst. Email: msahebdelala@umass.edu .
‡MIT. Email: nbashir@mit.edu .
§University of Massachusetts Amherst & Akamai Technologies. Email: ramesh@cs.umass.edu.
¶University of Massachusetts Amherst. Email: hajiesmaili@cs.umass.edu.

ar
X

iv
:2

41
1.

01
41

2v
1

 [
ee

ss
.S

Y
]

 3
 N

ov
 2

02
4

1 Introduction

In 2022, the transportation sector accounted for 28.4% of total greenhouse gas emissions. This has been
a consistent trend, as transportation has remained the leading source of emissions in the U.S. since
2017. The dominance of transportation in emissions is largely due to the widespread use of vehicles
powered by gasoline and diesel, which are major sources of carbon dioxide and other greenhouse
gases. As the population grows, economies develop, and urbanization continues, the demand for
urban transport is expected to increase. This increase is likely to counteract any CO2 reductions
from low- and zero-carbon technologies. By 2050, projections indicate that motorized urban mobility
will nearly double, leading to a 26% rise in CO2 emissions from urban transport [14]. Given these
environmental challenges, there is a growing need to investigate and develop transportation systems
that focus on sustainable practices.

With growing populations and advancing technology, ridesharing services have transformed travel
by offering on-demand mobility through individual or shared vehicles, leading to global adoption [35].
According to Statista, the global ridesharing market is expected to experience substantial growth,
with revenue anticipated to reach $167.60 billion by 2024 and $212.80 billion by 2029 [31]. The
number of users is also projected to increase, reaching 2.31 billion by 2029, with user penetration
rising from 23.1% in 2024 to 28.6% by 2029. Studies initially highlighted the substantial benefits of
ridesharing services for both the environment and the economy, including reduced pollution such as
CO2 emissions and noise, decreased traffic congestion, and lower energy consumption [4]. Despite
these promising advantages, concerns about climate change, traffic congestion, and oil dependency
have emerged as ridesharing services have gained popularity [7]. For example, pickups and drop-offs
from ridesharing services have increasingly disrupted traffic flow, particularly in urban areas that are
already congested [11]. Additionally, other studies indicate that ridesharing services can raise energy
consumption through deadhead miles driven without passengers which can negate any potential energy
savings and exacerbate traffic congestion. In fact, a rideshared car ride generates 47% more CO2
emissions on average compared to an equivalent private car ride [18, 30].

During high-demand hours, ridesharing platforms face distinct challenges. The imbalance between
available drivers and ride requests often leads to driver selectiveness, with drivers rejecting trips to less
popular destinations or passengers with specific needs. This selectiveness can drive up trip cancellation
rates, as platforms may prioritize less desirable trips in the interest of fairness. However, this puts
pressure on drivers, who risk deactivation if they cancel too many rides, potentially exacerbating driver
shortages as they leave the platform [22]. Even in centralized ridesharing systems where algorithms
handle rider-driver assignment, online assignment systems often struggle to optimize objectives like
minimizing wait times and reducing carbon emissions—particularly when driver availability is limited.
In such cases, a simple assignment algorithm that assigns riders to the first available driver offers
little flexibility in optimizing these factors. Consequently, much of the rider’s wait time is spent in
the assignment queue, awaiting a match. Under these conditions, first-come, first-served strategies
can result in extended deadhead miles and longer wait times, degrading the user experience for both
riders and drivers.

While some studies have explored methods to reduce deadhead miles and their associated emis-
sions [18], and others have aimed to improve service quality by minimizing wait times [29, 30], many of
these approaches lack performance guarantees across varying conditions. This issue becomes especially
critical during high-demand periods when driver availability is low. In such cases, online algorithms
without performance guarantees can fall significantly short compared to the optimal offline algorithms,
which benefit from knowing future inputs. This underscores the need for new strategies that ensure
environmentally sustainable ridesharing systems with reliable emissions reductions, even during peak
demand, while also maintaining high service quality with respect to wait times.

1

Developing such systems and strategies presents significant challenges. Providing theoretical guar-
antees in ridesharing optimization is inherently complex, as it requires managing dynamic decision-
making processes involving both current and future drivers and riders. A major challenge lies in the
uncertainty of future ride requests’ timing and locations. Assigning a driver to a rider not only affects
the current ride but also determines when and where that driver will be available again, influencing
the deadhead distance and emissions of subsequent rides. This creates a feedback loop, potentially
causing long-term changes in the actions taken by the online algorithm and its overall performance.
Furthermore, designing an online algorithm that balances the platform’s goals—such as emission reduc-
tion—with rider preferences, like minimizing wait times, adds another layer of complexity. Real-world
factors, such as fluctuating urban traffic conditions, further complicate efforts to ensure consistent,
optimal performance in practice.

In this paper, we propose a Lyapunov-based Algorithm for Ride Assignment (LARA), designed to
reduce carbon emissions in ridesharing platforms while minimizing rider wait times. While LARA is
applicable at all times, its benefits over previous state-of-the-art algorithms are especially pronounced
during high-demand hours, when a naive assignment approach could lead to long queues of unassigned
requests and long waiting times accordingly. To address this, LARA dynamically adjusts the upper
bound on deadhead distances for assigned drivers based on real-time conditions. The algorithm’s deci-
sions are influenced by the number of ride requests in the assignment queue (i.e., unassigned requests
waiting to be dispatched). We present a theoretical performance analysis of LARA and empirically
evaluate it against state-of-the-art algorithms using both synthetic and real-world datasets.

Our contributions are summarized as follows:

• We conduct a case study on the impact of limiting deadhead distances on both the carbon
emissions of trips and rider waiting times. Based on this study, we propose a new approach
to control the trade-off between emission and waiting times, framing it as a deadhead control
problem (DCP). We model the objective of DCP as a weighted sum of two factors: the expected
carbon reduction and the rate of ride assignment within the platform.

• We introduce LARA, a near-optimal online algorithm for solving DCP that does not require future
input predictions. LARA adjusts the upper bound on deadhead distances based on the number
of ride requests in the assignment queue. It uses a tunable hyperparameter that allows for
performance optimization under different conditions.

• We provide a theoretical performance analysis of LARA, showing that its objective value for DCP
is within a bounded distance from the optimal solution (Theorem 1). We also show that this
bound approaches zero when LARA is not constrained by the assignment queue length.

• We conduct a comprehensive experimental analysis to evaluate LARA using both real-world and
synthetic datasets, comparing its performance against the existing emission-aware ride assign-
ment algorithm TORA [30] as well as additional heuristic methods. Our results indicate significant
reductions in both emissions and waiting times during high-demand periods. For instance, com-
pared to classic approaches, LARA achieves up to 34.2% reduction in average emissions on the
synthetic dataset (Figure 3) and up to 13.9% on the real-world dataset (Figure 6), consistently
outperforming competing algorithms across various scenarios. Furthermore, our analysis of LARA
reveals a trade-off between reducing emissions and ensuring fair ride assignments among different
drivers.

2

2 Case Study on Limiting Deadhead distances

The ride assignment problem extends the classic online asymmetric multiple traveling salesman prob-
lem, where M traveling salesmen aim to visit N cities such that the total travel distance is mini-
mized [24, 19]. In our context, drivers take on the role of salesmen, and ride requests represent the
cities. Formulating the ride assignment problem and developing an efficient algorithm is particularly
challenging due to uncertainties about future ride requests, as well as the significant temporal and
spatial dependencies between the decisions made by the online algorithms and the future state of the
platform. Small changes in the current assignments can affect the set of available future drivers, and
consequently the deadhead distances and emissions. Thus, rigorous formulation of this problem must
account for the complex and time-coupled relationships between drivers and riders.

The ridesharing platform consists of M drivers and N ride requests. Each ride request, indexed
by n, includes a request time, a pickup location, and a drop-off location. Each driver, indexed by m,
operates a vehicle that emits em grams of CO2 per unit of distance and can serve only one ride at a
time. Ride requests arrive sequentially, and upon each new request, the online assignment algorithm
updates the locations and status of drivers before assigning a ride. Once assigned, the driver picks
up the rider and is unavailable to serve other riders until the drop-off is complete. The objective is
to minimize two key terms: 1) the total carbon emissions produced by the vehicles; and 2) the total
waiting time for riders. Let ldn,m represent the deadhead distance for driver m to serve ride request n,
and let ltn represent the trip distance for request n. The emissions associated with serving ride request
n by driver m can be expressed as:

Emissionn,m = (ldn,m + ltn) · em. (1)

The emissions for each ride depend on both the deadhead and trip distances, as well as the vehicle’s
emission rate. Another critical factor in the objective of this problem is the waiting time of the
rider, which greatly influences user satisfaction and the overall quality of the ridesharing experience.
Although shorter waiting times are highly desirable for riders, balancing minimal waiting times with
optimizing emissions is complicated. Serving ride requests quickly while simultaneously minimizing
emissions often requires trade-offs, making it difficult to achieve both objectives simultaneously.

Designing and analyzing an algorithm for online ride assignment problem presents significant chal-
lenges due to the intricate temporal and spatial dependencies between drivers and riders. The current
state of the ridesharing platform, including the set of available drivers and their locations, directly
impacts immediate outcomes like rider wait times and carbon emissions, while also shaping the plat-
form’s future state. Even small adjustments in assignment decisions for individual rides can ripple
through the system, affecting not just the current assignment but also future driver availability and lo-
cations. These seemingly minor changes can lead to substantial shifts in overall platform performance,
influencing both environmental factors and service quality metrics. This interdependence creates a
complex feedback loop, where present decisions have long-term repercussions, complicating the bal-
ance between short-term and long-term objectives in algorithm design. Due to these complexities,
developing (near)-optimal algorithms for online ride assignment problem with rigorous theoretical un-
derstanding the algorithm’s performance is not tractable. As an alternative approach, and motivated
by the following case study, in Section 3, we formulate another optimization problem with a more
tractable objective function of controlling the deadhead distance.

2.1 Motivational Example

Addressing the original online ride assignment problem requires complex modeling and formulation,
and finding a near-optimal solution involves intricate theoretical analysis. However, in what follows

3

10 20 30 40 50
Limit on deadhead distances (km)

4000

4500

5000

5500

Av
g.

 E
m

is
si

on
 o

f t
rip

s (
gC

O
2)

10 20 30 40 50
Limit on deadhead distances (km)

1200

1400

1600

1800

Av
g.

 W
ai

tin
g

tim
es

 (s
)

Figure 1: Average emission of trips (left) and waiting times of riders (right) as a function of the limit
on deadhead distances in the ride assignment algorithm. Notable observation: increasing the deadhead
distance limit reduces the emissions per trip but comes at the cost of longer rider waiting times.

and through a preliminary case study, we show that alternative approaches can manage the trade-off
between minimizing emissions and reducing waiting times in ridesharing platforms. More specifically,
we present a case study that examines the impact of limiting deadhead distances on average emissions
and rider waiting times. The insights gained from this study inspire a new approach to balancing
these two critical performance metrics in ridesharing services. This study focuses on minimizing total
carbon emissions while maintaining reasonable waiting times for riders. We evaluate the performance
of an online ride-assignment algorithm designed to balance these objectives.

To implement our case study, we utilize real-world ride request data from the RideAustin dataset [25]
in combination with a parametric online ride-assignment algorithm. This dataset provides compre-
hensive data for simulating diverse ridesharing scenarios, allowing us to evaluate both average waiting
times and emissions under various operating conditions. More details about the RideAustin dataset
are given in Section 5.2.

The ride-assignment process in our study operates in a batch system, where the algorithm at-
tempts to assign unallocated ride requests to available drivers every two minutes. If a request remains
unassigned during a batch cycle, it is retained in the queue for the next iteration. This batch-based
approach mirrors common industry practices, where the ride assignments are performed at regular
intervals to strike a balance between computational efficiency and service responsiveness.

We present a simple yet effective algorithm, where the goal is to minimize carbon emissions by
limiting the deadhead distance within a predefined threshold. This threshold plays a critical role
in managing deadhead miles, directly impacting both rider waiting times and total emissions. The
parametric algorithm uses a fixed distance threshold, denoted as d, within which it attempts to assign
drivers to passengers. The objective is to minimize emissions for each trip while ensuring that the
deadhead distance does not exceed d. If no driver is available within this threshold, the ride request
is deferred to the next batch cycle for reassignment. For our evaluation, we focused on ride requests
from December 1, 2016, in the RideAustin dataset, which includes 2,909 ride request traces.

Figure 1 presents the results of our experiments, showing the average waiting time and average
carbon emissions per trip for different values of the threshold distance d. As expected, increasing the
threshold d enhances the likelihood of finding a driver with lower per-mile carbon emissions. This
allows the online assignment algorithm to reduce the total carbon emissions for each trip by pairing
passengers with more efficient drivers, even if they are further away. However, this comes at the cost
of increased expected deadhead distances, which in turn leads to longer waiting times for passengers.
Increasing the deadhead distance limit from 5 to 50 km results in 33% reduction in the average emission
of trips while the average waiting time of riders increases by 52%. The results clearly illustrate the
significant trade-off between minimizing average waiting time and reducing carbon emissions—a key
consideration for optimizing ridesharing services.

4

These findings demonstrate that an intelligent online algorithm has the potential to effectively
manage both average waiting time and carbon emissions by dynamically adjusting the threshold value
d based on current conditions. During peak demand periods, when there is a long queue of unassigned
ride requests, a substantial portion of the passenger’s waiting time occurs while they wait in the queue
for their turn to be assigned. In such situations, the algorithm should prioritize reducing waiting times
by selecting lower values for d, thereby increasing the frequency of ride assignments. This approach
helps maintain a high level of service responsiveness, which is critical during times of high demand.
While this approach may seem to favor drivers with low-emission vehicles by assigning them more ride
requests, our experimental analysis disproves this hypothesis (See Section 5.2).

Conversely, during off-peak periods, when the number of unassigned ride requests is low, the
algorithm can afford to prioritize environmental considerations by opting for higher values of d. This
allows the system to minimize the emissions of each trip by assigning passengers to the more efficient
drivers, even if they are located further away. This dynamic adjustment of d is a challenging task for
an online algorithm, particularly because of the inherent uncertainty in predicting future ride requests.
Factors such as the rate of new ride requests and the average trip distances may fluctuate over time,
complicating the algorithm’s ability to adapt to changing patterns.

For instance, during special events or unexpected surges in demand, the patterns of ride requests
may deviate significantly from the norm, potentially leading to suboptimal performance by a naive
online algorithm. This highlights the need for more rigorous algorithms capable of learning and adapt-
ing to the evolving environment, potentially incorporating predictive modeling or machine learning
techniques to better anticipate future ride request patterns.

The results and discussion presented here propose an alternative approach for managing emissions
and wait times during high-demand hours, motivating the development of an online algorithm that
dynamically adjusts the deadhead distance limit to minimize both average emissions and rider wait
times in such hours. In the next section, we formally model the problem of controlling deadhead
distances in an online setting. Then, in Section 4, we present a near-optimal algorithm that tackles
the deadhead control problem in an online manner and analyze its theoretical performance.

3 Online Deadhead Control Problem

To address the challenges associated with the design of online algorithms for emission-aware ride
assignment problem, and motivated by the example in Section 2.1, in this section, we formulate
the online Deadhead Control Problem, referred to as DCP, as an alternative approach to controlling
emissions and deadhead distances within ridesharing platforms. In DCP, the online algorithm’s task is
to determine the maximum acceptable deadhead distance for rides assigned in each upcoming batch
of assignments. The objective of DCP is adjusted for the traceability of theoretical analysis but still
focuses on minimizing both total emissions and passenger wait times within the ridesharing system.

In the DCP, the goal is to select an upper bound for the deadhead distance of rides in the next
assignment batch. Each ride request is then assigned to a driver within this bound, aiming to minimize
the overall emissions for the assigned rides. This approach represents an adjustable version of the
algorithm used in Section 2.1. Algorithm 1 outlines the pseudocode for the ride assignment process
in DCP. The objective function in DCP consists of two components: EN , which represents the time-
averaged expected reduction, and SN , which represents the rate of ride assignments (the average
number of assignments completed over a fixed period of time on the platform). The first term, EN ,
captures the emissions aspect, and the term SN focuses on reducing passenger wait times.

Let BN denote the total number of batches required to process N ride requests, and let βb represent
the number of requests assigned in batch b. We assume there exists a concave, time-independent

5

Algorithm 1: Online Ride-Assignment in Batch b

1 Nb: Set of ride requests in the assignment queue during assignment batch b;
2 d← Upper-bound on the deadhead distance of trips in batch b returned by online deadhead

control algorithm;
3 for each ride request n ∈ Nb do
4 Mn,b = {m | m is available, ldn,m ≤ d};
5 m← a driver inMn,b with lowest trip emission;
6 Assign m and n;

7 end

function gM (d), which captures the expected emission reduction achievable by limiting the deadhead
distance to d for a platform with M drivers. This function quantifies the amount of emissions that
can be saved by imposing a deadhead distance limit of d. While, in practice, this function depends on
both time and location, we simplify the problem by assuming gM (d) is independent of these factors.
The online algorithm does not have direct access to this function, however, it can employ estimation
methods based on prior observations to approximate it. For the purposes of this section, we assume
that the online algorithm has access to the actual function gM (d). At the end of this section, we
will discuss potential estimation methods that could be employed without invalidating the theoretical
analysis. Based on this, the first term in the objective of DCP, EN , can be defined as follows:

EN =

E

[∑BN
b=1

∑
d∈D ab,d · βb · gM (d)

]
E[TN]

, (2)

where TN represents the interval time from the assignment of first ride request to the drop-off of the
last ride request, D = {dmin, · · · , dmax} is the set of potential deadhead distance limits the online
algorithm can select from, and ab,d is a binary decision variable indicating whether the deadhead
distance in batch b was limited to d. Although the online algorithm can theoretically choose any
deadhead distance limit, we assume it is restricted to selecting from the finite set D. There are no
constraints on the size of D or its range of values. For simplicity, we normalize the function gM (d) to
take values between 0 and 1, with gM (dmin) = 0, and gM (dmax) = 1. The algorithm determines d at
the start of each batch, setting the maximum allowable deadhead distance for the following batch.

The second term in the objective function, SN , represents the time-averaged number of ride as-
signments, with the goal of minimizing the total service time TN . By reducing the total service time,
the algorithm indirectly minimizes rider waiting times, assuming that travel times are independent of
the algorithm’s decisions.

SN =

E

[∑BN
b=1

∑
d∈D ab,d · βb

]
E[TN]

. (3)

Combining these terms with the coefficient α, the DCP is formulated as a maximization problem as
follows.

[DCP] max α · EN + (1− α) · SN , (4a)

s.t.,
∑
d∈D

ab,d ∈ {0, 1} ∀b, (4b)

vars., ab,d ∈ {0, 1} ∀b, d. (4c)

In the equation above, 0 ≤ α ≤ 1 represents the weight of the term EN in the objective function
of DCP, determining the relative importance of maximizing term related to reducing emissions (EN)

6

versus term related to reducing wait times (SN). Compared to online ride assignment problem, using
DCP to manage emissions and wait times simplifies the analysis of online algorithms while still enabling
the minimization of both expected emissions and passenger wait times within the ridesharing system.

3.1 Optimal Offline Algorithm for DCP

Earlier, we introduced DCP as an alternative approach to controlling emission and waiting times within
ridesharing platforms. This problem can be framed within the context of Lyapunov optimization for
renewal systems [23], where the decision maker selects actions sequentially, and the renewal frames vary
in duration depending on these actions. In the context of the online deadhead control problem, each
frame represents the expected duration of trips in the upcoming batch, from assignment to drop-off.

Leveraging Lemma 1 from [23], there exists a stationary algorithm for DCP that achieves the
optimal objective value. This stationary algorithm for DCP selects a fixed deadhead distance limit
for all assignment batches. Although finding the optimal stationary algorithm for DCP is infeasible in
practice, its existence allows us to use it as a performance benchmark for evaluating online deadhead
control algorithms. In the following section, we introduce a near-optimal online algorithm for DCP and
demonstrate that its performance is within a bounded distance of the best stationary algorithm which
provides optimal objective value.

4 LARA: An Online Algorithm for DCP

In this section we introduce a Lyapunov-based Algorithm for Ride Assignment (LARA) that provides a
near-optimal solution for DCP. LARA dynamically adjusts the deadhead distance limit in DCP based on
the number of unassigned ride requests, without requiring any prior knowledge of future ride requests.

4.1 Design of LARA

The design of LARA revolves around decision-making based on the number of unassigned ride requests
in the assignment queue. To control rider waiting times, LARA employs a parameter, Qmax, which sets
the maximum allowable number of unassigned requests in the assignment queue. The aim is to keep
the number of requests in the assignment queue below this threshold. Importantly, Qmax defines the
upper bound on how long a rider may wait in the worst-case scenario, regardless of the platform’s
expected average waiting time. Let nb represent the number of unassigned requests during assignment
batch b. LARA computes Q(b) = Qmax − nb, which it then uses to set the deadhead distance limit for
rides assigned in batch b.

When Q(b) is small (indicating a large number of unassigned requests), the algorithm selects
shorter deadhead distance limits to expedite the assignment process and reduce riders’ waiting times.
Conversely, when Q(b) is large (indicating fewer unassigned requests), LARA increases the deadhead
distance limit to optimize the ride assignments, aiming to reduce emissions. In each batch, LARA
solves a single-batch maximization problem to determine the deadhead distance limit, which leads to
a near-optimal solution for the entire DCP over BN batches.

Next, we provide a detailed description of LARA. In each assignment batch b, LARA first calculates
the number of requests in the assignment queue and evaluates the value of Q(b) accordingly. It then
determines the deadhead distance limit by solving the following optimization problem:

7

0 5 10 15 20
Number of requests in the assignment queue

0

10

20

30

Se
le

ct
ed

 d
ea

dh
ea

d
lim

it
(k

m
)

5 10 15 20
Qmax

0

10

20

30

Se
le

ct
ed

 d
ea

dh
ea

d
lim

it
(k

m
)

Figure 2: (a) Deadhead distance limits selected by LARA as a function of the number of requests in
the assignment queue with Qmax fixed at 15 (a), and as a function of Qmax with the assignment queue
length fixed at 5 for different values of α.

max
d∈D

∑
d ab,d ·

Qmax(1−α+α·gM (d))−Q(b)
d+dt,b

, (5a)

s.t.,
∑

d∈D ab,d ∈ {0, 1} ∀b, (5b)

vars., ab,d ∈ {0, 1}. (5c)

where a(b) = {ab,d|∀b, d} represents the decision vector, and dt,b is the average trip distance of the
rides requests in batch b. Also, the constraint (5b) ensures that a single deadhead distance limit is
selected for each batch b.

4.2 Performance Analysis of LARA

In this section, we provide a theoretical analysis of the performance of LARA. First, we present a closed-
form equation for the dynamics of Q(b) across different batches. Then, in Theorem 1, we show that
the objective value of LARA in DCP is within a constant distance of the objective value of the optimal
algorithm for DCP.

LARA uses the value of Q(b) to make decisions for batch b. The value of Q(b) is calculated by
subtracting the number of unassigned requests in the assignment queue from Qmax. Therefore, the
dynamics of Q(b) are directly influenced by the number of requests assigned during batch b and the
number of new requests posted before the next assignment batch. Let rb denote the number of ride
requests posted between assignment batches b and b+ 1. The update rule for Q(b) is given by:

Q(b+ 1) = Q(b)− rb +
∑
d∈D

ab,d · βb, (6)

where βb represents the number of ride requests assigned during batch b and is bounded by βb ≤
min(Mb, nb) where Mb denotes the number of available drivers during batch assignment b. The last
term reflects whether the online algorithm has selected any deadhead distance limit for batch b con-
sidering constraint (5b), and if so, how many ride assignments occurred during that batch.

Theorem 1. Let OBJ and OBJo represent the objective values of LARA and the optimal offline
algorithm for DCP, respectively. Over long time horizon, i.e., BN →∞,

OBJo −
E[r2b]

Qmax · E[tn]
≤ OBJ, (7)

8

50 100 150 200 250 300
Batch duration (s)

5500

6500

7500

8500

Av
g.

 E
m

is
si

on
 o

f t
rip

s (
gC

O
2) LARA TORA CD

50 100 150 200 250 300
Batch duration (s)

1500

2000

2500

3000

Av
g.

 W
ai

tin
g

tim
es

 (s
)

LARA TORA CD

Figure 3: Average trip emissions (left) and rider waiting times (right) as a function of batch duration
for LARA and comparison algorithms. Increasing the batch duration generally leads to lower average
emissions but higher rider waiting times.

where E[tn] represents the unconditional expected duration of a trip, from assignment to drop-off, under
LARA’s deadhead control.

Proof. The proof of this theorem is given in Appendix §A.

Remark 4.1. Theorem 1 demonstrates that increasing the value of the parameter Qmax reduces the
gap between the performance of LARA and the optimal algorithm. This highlights a trade-off between
minimizing expected emissions and managing the maximum rider waiting time within the ridesharing
system.

4.3 More Detail on Decision Making of LARA

In this section, we aim to better understand the deadhead control process within LARA. LARA dy-
namically selects the deadhead distance limit based on factors such as the number of requests in the
assignment queue and hyper-parameters like Qmax. To analyze the impact of these factors on LARA’s
decision-making, we conduct a simple analysis using a version of LARA with Qmax = 15 and deadhead
distance limit options of 1, 2, 5, 10, 15, and 30 km. We assume there are 5 ride requests in the assign-
ment queue and evaluate how LARA selects deadhead limits by varying the number of requests and the
value of Qmax in two separate analyses. In this analysis, we use a logarithmic form for the function
gM (d), where gM (d) = C0 · log(d), with C0 = 1/ log(dmax) ≈ 0.20 as the normalization constant.

Figure 2(a) illustrates the influence of the number of requests in the assignment queue on the
deadhead distance limit selected by LARA for different values of α. When the queue has relatively few
ride requests, LARA selects higher deadhead distance limits to prioritize reducing emissions. However,
as the number of requests increases, LARA shifts focus towards reducing rider waiting times by selecting
lower deadhead limits. Additionally, increasing the parameter α causes LARA to emphasize more on
the emission term in the objective function (Equation 4a), leading to the selection of higher deadhead
distance limits.

In Figure 2(b), we plot the deadhead distance limits selected by LARA as a function of Qmax for
different values of α. When the number of requests in the assignment queue is fixed (5 in this analysis),
increasing Qmax widens the gap between the assignment queue length and Qmax. This results in LARA

selecting higher deadhead distance limits as the system allows for a larger buffer to focus on emission
reduction.

Key takeaway. As the number of unassigned ride requests increases, LARA lowers the deadhead
distance limits to prioritize faster ride assignments. However, higher values of Qmax leads LARA to
select larger deadhead distance limits, providing greater flexibility to reduce emissions.

9

4.4 Estimating Function gM in Practice

In practice, the online algorithm does not have prior knowledge of the function gM and must estimate it.
Let ĝM,b denote the estimate of gM after batch b. The accuracy of this estimation significantly impacts
the actual performance of online algorithms. An error in estimating gM (d) could alter the actions of
the online algorithm and compromise its near-optimality. However, under certain assumptions, error-
free estimation of gM may be achievable. Given that we have provided a theoretical analysis of the
performance of LARA over a long time horizon, as BN → ∞, we must employ an estimation method
that converges to the true function as the time horizon increases. Specifically, the estimation method
must satisfy the following condition:

lim
b→∞

E [|ĝM,b(d)− gM (d)|] = 0 ∀d. (8)

Assuming that the function gM remains constant over time, estimating gM is a well-established task
that has been extensively studied. For discretized deadhead distance options in the set D, estimating
gM can be treated as |D| independent estimation tasks. Several well-known estimation methods can
be applied, including Monte Carlo estimation [10, 27], Holt-Winters smoothing [8], and the Kalman
filter with sequential updates [34, 17]. Each of these methods provides an unbiased estimate of the
function gM for any deadhead distance d ∈ D. Over a sufficiently long time horizon, as the number
of ride requests significantly increases, the estimates produced by these methods converge to the true
function gM .

5 Experimental Analysis

In this section, we evaluate the performance of LARA using both synthetic data and real-world data from
the RideAustin dataset. This dual approach allows us to compare LARA against alternative algorithms
under controlled conditions as well as real-world ridesharing scenarios. Synthetic datasets help us to
better simulate the high demand hours and analyze the impact of various factors—such as average trip
distances, the number of drivers, and the time interval between consecutive batch assignments—on
the performance of LARA and the baseline algorithms. Additionally, the evaluation on the RideAustin
dataset provides insights into how LARA performs in real-world conditions. In all experimental analyses,
we use the batch system described in Section 2.1 to perform the ride assignments.

5.1 Experiments on Synthetic Data

Comparison Algorithms. We compare the performance of LARA against two algorithms: (1)
TORA [30], the only existing emission-aware ride assignment algorithm; and (2) a heuristic algorithm
that assigns riders to the closest available driver, referred to as CD.

Experimental Setup. We generated traces of 10,000 ride requests, where a new ride request is
posted on the ridesharing platform every 30 seconds. Pickup locations are randomly selected within
Austin, Texas, and drop-off locations are also randomly chosen such that the average trip distance is
15 km, with a standard deviation of 5 km. The ridesharing platform operates with 120 drivers, whose
vehicle emissions range between 70–300 gCO2/km. This range mirrors the emissions of vehicles found
in the RideAustin dataset and has been used in previous studies [29, 30].

For LARA, we used deadhead distance limits options of 1, 2, 5, 10, 15, and 30 km, with α = 0.75
and Qmax = 40, which encourages LARA to limit the portion of waiting time spent in the assignment
queue to under 20 minutes. This is achieved as four new ride requests are generated in each batch,
and 10 batch assignments occur within a 20-minute window. Additionally, we applied the Monte

10

80 90 100 110 120 130
Number of drivers

5000

6000

7000

8000

9000

Av
g.

 E
m

is
si

on
 o

f t
rip

s (
gC

O
2) LARA TORA CD

80 90 100 110 120 130
Number of drivers

1500

2000

2500

3000

3500

4000

4500

Av
g.

 W
ai

tin
g

tim
es

 (s
)

LARA TORA CD

Figure 4: Average trip emissions (left) and rider waiting times (right) as a function of the number of
drivers for LARA and comparison algorithms. Fewer drivers simulate high-demand hours, leading to a
wider performance gap between LARA and the other algorithms.

0 5 10 15 20 25 30
Avg. Trip distance (km)

2000

4000

6000

8000

10000

Av
g.

 E
m

is
si

on
 o

f t
rip

s (
gC

O
2) LARA TORA CD

0 5 10 15 20 25 30
Avg. Trip distance (km)

1000

1500

2000

2500

3000

Av
g.

 W
ai

tin
g

tim
es

 (s
)

LARA TORA CD

Figure 5: Average trip emissions (left) and rider waiting times (right) as a function of trip distance for
LARA and comparison algorithms. Longer trip distances increase the time each driver is allocated to
a single trip, simulating high-demand hours more closely and widening the performance gap between
LARA and the other algorithms.

Carlo estimation method to estimate the function gM . When LARA assigns a ride while limiting the
deadhead distance to d, it calculates the emission reduction compared to the closest driver’s emission
and updates the estimate of gM (d) accordingly. In each evaluation, all parameters are kept constant
except for one, which is varied to assess its impact. For each test, we report the average trip emissions
and rider waiting times for LARA and the comparison algorithms.

Experiment Results. Figure 3 illustrates the average trip emissions and rider waiting times as a
function of batch duration for LARA and the comparison algorithms. As seen in the figure, LARA consis-
tently achieved the lowest average emissions and waiting times across all batch durations. Specifically,
compared to CD, LARA reduced the average trip emissions by 30.1%− 34.2%, while this range for TORA
was 24.1% − 26.2%. In terms of waiting times, LARA resulted in average waiting times between 1532
and 1640 seconds, whereas for CD, the range was 1665 to 2150 seconds, and for TORA, between 1931 and
3164 seconds. During high-demand hours, the number of available drivers is low, leaving algorithms
like CD and TORA with less flexibility to reduce emissions, as they tend to assign riders to any available
driver. In contrast, LARA prioritizes finding rides with lower emissions and shorter deadhead distances,
leading to lower average emissions and waiting times overall.

Key takeaway. Increasing the batch assignment duration reduces the average trip emissions but
increases rider waiting times. This effect is more pronounced for CD and TORA than for LARA.

In the second evaluation, we examine how the number of drivers in the ridesharing platform affects
the performance of online ride assignment algorithms. Figure 4 illustrates the average trip emissions
and rider waiting times as a function of the number of drivers for LARA and comparison algorithms.
Our results show a significant performance gap between LARA and the comparison algorithms when

11

50 100 150 200 250 300
Batch duration (s)

2600

2800

3000
Av

g.
 E

m
is

si
on

 o
f t

rip
s (

gC
O

2)

50 100 150 200 250 300
Batch duration (s)

1400

1600

1800

Av
g.

 W
ai

tin
g

tim
es

 (s
)

Figure 6: Average trip emissions (left) and rider waiting times (right) as a function of batch duration
for LARA and comparison algorithms. Higher values of α in LARA result in lower average emissions but
come at the cost of increased rider waiting times.

the number of drivers is low. In such scenarios, demand exceeds driver availability, which amplifies the
performance difference between the optimal algorithm and alternatives like TORA and CD. For instance,
with 80 drivers, LARA achieves 31% lower emissions compared to TORA and reduces waiting times by
42.9%. On the other hand, as the number of drivers increases, the performance gap between the
algorithms narrows. With larger driver pools (e.g., more than 125 drivers in our tests), the platform
is no longer in a high-demand state, allowing algorithms like CD to achieve the shortest waiting times.
Nonetheless, even in these conditions, LARA continues to deliver the lowest average emissions.

Key takeaway. A low number of drivers in the synthetic dataset closely mirrors high-demand hours,
during which the performance gap between LARA and the comparison algorithms is most pronounced.
As the number of drivers increases, the gap narrows. In these conditions, LARA continues to achieve
the lowest average emissions, while CD delivers the shortest rider waiting times.

In the final evaluation using the synthetic dataset, we assess how average trip distances affect
the performance of ride assignment algorithms. Figure 5 illustrates the average trip emissions and
rider waiting times as a function of average trip distance for various algorithms. As shown, when
the average trip distance increases, the emissions and waiting times also rise across all algorithms.
However, this increase is less pronounced for LARA, resulting in a wider performance gap compared
to the other algorithms. The intuition behind this is that longer trips require drivers to spend more
time on each ride, limiting the number of rides they can serve in a given period. Consequently, longer
trip distances better simulate high-demand conditions, further highlighting the performance difference
between LARA and the comparison algorithms. For example, with an average trip distance of 15 km,
LARA achieves 25.8% lower emissions and 33.7% shorter waiting times compared to TORA. Conversely,
when trip distances are relatively short (e.g., less than 12 km in our tests), the platform is no longer
in high-demand conditions. In these cases, CD offers the shortest waiting times, while TORA provides
the lowest carbon emissions.

Key takeaway. The average length of trips significantly influences high-demand conditions and the
performance of online algorithms. Longer trips reduce the platform’s capacity to quickly serve ride
requests, widening the performance gap between heuristic algorithms like TORA and CD and near-optimal
algorithms such as LARA.

5.2 Experiments on Real Dataset

In this section, we evaluate the performance of LARA and the comparison algorithms using a real-
world dataset. We utilized ride request data from the RideAustin dataset [25] for the first week of

12

December 2016, which contains 29850 ride requests. To simulate high-demand conditions, we limited
the number of available drivers to the first 50 from the dataset. As in the synthetic experiments, we
tested deadhead distance limits of 1, 2, 5, 10, 15, and 30 km, set Qmax = 40, and evaluated three
versions of LARA with α values of 0.25, 0.5, and 0.75.

We report the average emissions per trip and the average rider waiting times for various batch
durations. The results are shown in Figure 6. As illustrated, increasing the batch duration leads to
lower average emissions but longer waiting times. This trend is consistent with the results from the
synthetic dataset (Figure 3). Across all batch durations, the three versions of LARA outperformed
the comparison algorithms, achieving lower average emissions and shorter waiting times. Specifically,
compared to CD, LARA with α = 0.75, α = 0.5, and α = 0.25 reduced emissions up to 11.1%, 11.3%,
and 13.9%, respectively, while TORA reduced emissions up to 6.6%. Additionally, LARA with α = 0.25
achieved between 8.7% and 15.7% shorter waiting times compared to CD across the different batch
durations.

Key takeaway. Similar to the synthetic dataset results, increasing the batch assignment duration
reduces average trip emissions but increases rider waiting times. Moreover, higher α values in LARA

lead to lower emissions but longer waiting times.

Finally, we report the percentage of ride requests performed by drivers with relatively low, and
high emission vehicles to assess the performance of LARA and other comparison algorithms in providing
fair ride assignment across different vehicles. To this end, we categorize vehicles with unit emission of
less than 150gCO2 as a low emission vehicles and vehicles with unit emission of higher than 250gCO2
a high emission vehicles. Using this categorization approach, 24% of dataset drivers categorized to
low emission vehicles and 26% categorized to high emission vehicles. The fraction of ride requests
performed by low/high emission vehicles must be very similar to the fraction of those vehicles in the
platform under control of fully fair algorithm.

In Table 1, and Table 2 we present the percentage of ride requests fulfilled by drivers of low- and
high-emission vehicles, along with the percentage of their total distance spent as deadhead miles. The
results indicate that algorithms like LARA with high α values, or TORA, assign fewer rides to low-emission
vehicles. This occurs because these algorithms prioritize minimizing deadhead distances over reducing
emissions, causing low-emission vehicles to spend more of their total distance on deadhead miles. For
example, under ride assignment of TORA, 55.4% of the distance traveled by low-emission vehicles was
due to deadhead miles, compared to 49.2% under LARA with α = 0.25 and 51.8% under CD. During
high-demand periods, when all drivers are consistently busy, low-emission vehicles tend to travel more
deadhead miles, resulting in fewer ride assignments. This underscores the trade-off between fair ride
allocation and optimizing carbon reduction in ridesharing platforms.

Key takeaway. The ride assignment of LARA indicates that reducing emissions requires a trade-off in
equity among drivers, as those with low-emission vehicles typically handle rides with longer deadhead
distances, resulting in a lower number of ride requests during peak demand hours.

Table 1: Percentage of rides assigned to drivers with low and high emission vehicles for LARA, TORA,
and CD.

LARA-0.75 LARA-0.5 LARA-0.25 TORA CD

Low emission vehicles 12.7 15.9 18.3 12.9 19.4
High emission vehicles 15.9 16.5 20.7 18.9 18.9

13

Table 2: Percentage of distances traveled by drivers as deadhead miles for low, and high emission
vehicles.

LARA-0.75 LARA-0.5 LARA-0.25 TORA CD

Low emission vehicles 52.8 51.7 49.2 55.4 51.8
High emission vehicles 51.9 50.5 48.1 53.8 51.9

6 Related Work

Recent advancements in ridesharing services have led to significant developments through various
approaches. Theoretical approaches including the creation of formal problem models and the develop-
ment of advanced solution algorithms. Empirical approaches provide valuable insights, while machine
learning techniques enhance these insights with sophisticated, data-driven solutions, together enabling
more effective and refined advancements in the field.

On the theoretical side, significant effort is invested in modeling and understanding the structure
of the ridesharing process, as this is essential for improving platform efficiency. Sadowsky et al. [28]
investigate the impact of Uber and Lyft’s entry into major US urban areas on public transportation
usage. The study uses a regression discontinuity design to assess how these ridesharing services in-
fluence public transit ridership. For example, Afeche et al. [1] develop and analyzed an integrated,
game-theoretic model that characterizes the system equilibrium in ridesharing platforms. Hu et al.
[16] study surge pricing strategies in ridesharing platforms by controlling rider fares and driver wages
to balance demand with supply. The main goal of the work by Castillo et al. [6] is to demonstrate
how surge pricing can improve efficiency in ridesharing platforms by reducing the likelihood of an
inefficient ”wild goose chase.” Their stylized model highlights how surge pricing reduces long pickup
times, which in turn helps increase driver earnings by optimizing the allocation of idle drivers. Garg
et al. [15] propose driver payment mechanisms for ridesharing platforms, focusing on enhancing the
incentive compatibility of surge pricing and studying such mechanisms under non-stationary demand
conditions. Ma et al. [21] propose a spatio-temporal pricing mechanism designed to maximize welfare
by aligning incentives. This mechanism sets dynamic prices that are smooth both spatially and tem-
porally, ensuring that drivers accept their assigned trips instead of seeking alternative opportunities.
Feng et al. [12] investigate a two-stage stochastic matching model for ridesharing platforms, focusing
on the challenges posed by uncertainty in rider and driver availability. Bistaffa et al. [3] adopt a
cooperative game theoretic approach in order to tackle the social ridesharing problem by optimizing
coalition formation to reduce overall travel costs. Vazifeh et al. [33] propose an optimization-based
method by developing a network-based solution to calculate the minimal number of vehicles required
to fulfill a set of trips without causing delays. Bian et al. [2] investigate how to optimally match
vehicles with passengers based on individual personalized requirements in ridesharing platforms.

Research on the empirical and machine learning aspects of ridesharing focuses on utilizing data-
driven methods and machine learning to reveal patterns in the ridesharing process to improve various
aspects of ridesharing services. Chen et al. [9]demonstrate how surge pricing encourages drivers to
extend their working hours, thereby enhancing overall efficiency. Bongiovanni et al. [5] presents a
machine learning-based optimization framework for autonomous ridesharing operations, using a two-
phase approach to improve vehicle-trip assignments. Fielbaum et al. [13]investigate the sources of
unreliability in ridesharing systems, focusing on how user-to-vehicle assignments impact trip delays
and waiting times, using a New York City case study to assess trade-offs between uncertainty reduction
and service quality. Riley et al. [26] study optimizing large-scale real-time ridesharing systems by
reducing customer wait times and minimizing the number of vehicles required, while maintaining
service guarantees and adhering to ride duration limits. Their approach integrates a dispatching
algorithm, a machine learning model to predict demand, and model predictive control to reposition

14

idle vehicles. Yatnalkar et al. [36] present an Enhanced ridesharing Model (ERSM) that leverages
machine learning to match riders based on human characteristics and predict their key preferences,
with the goal of enhancing user satisfaction. The model tackles social barriers, long wait times, and
pricing challenges in ridesharing. Tong et al. [32] propose a unified linear regression model with 200
million multidimensional features, along with optimization strategies to enhance the efficiency of model
training and updates. Since ridesharing demand depends heavily on supply, the observed demand in
historical data reflects only a portion of the true demand, limited by available supply. The primary goal
of their work is to create a multi-community spatio-temporal graph convolutional network framework
for accurately predicting passenger demand across multiple regions in urban transportation systems.
Fielbaum et al. [13]investigate the sources of unreliability in ridesharing systems, focusing on how
user-to-vehicle assignments impact trip delays and waiting times, using a New York City case study to
assess trade-offs between uncertainty reduction and service quality. Riley et al. [26] study optimizing
large-scale real-time ridesharing systems by reducing customer wait times and minimizing the number
of vehicles required, while maintaining service guarantees and adhering to ride duration limits. Their
approach integrates a dispatching algorithm, a machine learning model to predict demand, and model
predictive control to reposition idle vehicles. Yatnalkar et al. [36] present an Enhanced ridesharing
Model (ERSM) that leverages machine learning to match riders based on human characteristics and
predict their key preferences, with the goal of enhancing user satisfaction. The model tackles social
barriers, long wait times, and pricing challenges in ridesharing. Tong et al. [32] propose a unified
linear regression model with 200 million multidimensional features, along with optimization strategies
to enhance the efficiency of model training and updates. Since ridesharing demand depends heavily
on supply, the observed demand in historical data reflects only a portion of the true demand, limited
by available supply. The primary goal of their work is to create a multi-community spatio-temporal
graph convolutional network framework for accurately predicting passenger demand across multiple
regions in urban transportation systems. Liu et al. [20] develop a personalized ridesharing demand
prediction model that learns unique weights to capture distinct patterns and variations in demand
across various locations and times.

7 Conclusion

In this paper, we introduced the problem of online deadhead control and formulated it as an opti-
mization problem aimed at reducing the expected carbon emissions of ridesharing platforms while
maintaining low rider wait times. We proposed LARA, an online algorithm designed to achieve near-
optimal solutions by dynamically adjusting deadhead distance limits based on the number of ride
requests in the assignment queue. Along with providing a theoretical analysis of LARA’s performance
relative to the optimal offline algorithm, we conducted extensive experiments using both synthetic and
real-world datasets to evaluate its effectiveness. Our results show that LARA outperforms state-of-the-
art algorithms across a variety of scenarios, with its advantages becoming particularly evident during
high-demand periods. In future work, we plan to develop an online algorithm with a worst-case per-
formance guarantee that minimizes both emissions and wait times while ensuring fair ride assignments
across different drivers.

8 Acknowledgment

This research was supported in part by NSF grants CAREER 2045641, CPS-2136199, CNS-2106299,
CNS-2102963, CSR-1763617, CNS-2106463, and CNS-1901137. We acknowledge their financial assis-
tance in making this project possible.

15

References

[1] Philipp Afeche, Zhe Liu, and Costis Maglaras. Ride-hailing networks with strategic drivers: The
impact of platform control capabilities on performance. Rotman School of Management Working
Paper, (3120544):18–19, 2022.

[2] Zheyong Bian and Xiang Liu. Mechanism design for first-mile ridesharing based on personalized
requirements part i: Theoretical analysis in generalized scenarios. Transportation Research Part
B: Methodological, 120:147–171, 2019.

[3] Filippo Bistaffa, Alessandro Farinelli, Georgios Chalkiadakis, and Sarvapali D Ramchurn. A
cooperative game-theoretic approach to the social ridesharing problem. Artificial Intelligence,
246:86–117, 2017.

[4] Filippo Bistaffa, Christian Blum, Jesús Cerquides, Alessandro Farinelli, and Juan A Rodŕıguez-
Aguilar. A computational approach to quantify the benefits of ridesharing for policy makers and
travellers. IEEE Transactions on Intelligent Transportation Systems, 22(1):119–130, 2019.

[5] Claudia Bongiovanni, Mor Kaspi, Jean-Francois Cordeau, and Nikolas Geroliminis. A machine
learning-driven two-phase metaheuristic for autonomous ridesharing operations. Transportation
Research Part E: Logistics and Transportation Review, 165:102835, 2022.

[6] Juan Camilo Castillo, Daniel T Knoepfle, and E Glen Weyl. Matching in ride hailing: Wild goose
chases and how to solve them. Available at SSRN 2890666, 2022.

[7] Nelson D Chan and Susan A Shaheen. Ridesharing in north america: Past, present, and future.
Transport reviews, 32(1):93–112, 2012.

[8] Chris Chatfield. The holt-winters forecasting procedure. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 27(3):264–279, 1978.

[9] M Keith Chen and Michael Sheldon. Dynamic pricing in a labor market: Surge pricing and
flexible work on the uber platform. Ec, 16:455, 2016.

[10] Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. An optimal algorithm for monte
carlo estimation. SIAM Journal on computing, 29(5):1484–1496, 2000.

[11] Gregory D Erhardt, Sneha Roy, Drew Cooper, Bhargava Sana, Mei Chen, and Joe Castiglione.
Do transportation network companies decrease or increase congestion? Science advances, 5(5):
eaau2670, 2019.

[12] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to
ride hailing. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2862–2877. SIAM, 2021.

[13] Andrés Fielbaum and Javier Alonso-Mora. Unreliability in ridesharing systems: Measuring
changes in users’ times due to new requests. Transportation Research Part C: Emerging Tech-
nologies, 121:102831, 2020.

[14] International Transport Forum. Urban mobility: Not just clean, but green, 2024. URL https:

//www.itf-oecd.org/urban-mobility-clean-green.

[15] Nikhil Garg and Hamid Nazerzadeh. Driver surge pricing. Management Science, 68(5):3219–3235,
2022.

16

https://www.itf-oecd.org/urban-mobility-clean-green
https://www.itf-oecd.org/urban-mobility-clean-green

[16] Bin Hu, Ming Hu, and Han Zhu. Surge pricing and two-sided temporal responses in ride hailing.
Manufacturing & Service Operations Management, 24(1):91–109, 2022.

[17] Juan-Manuel Jover and Thomas Kailath. A parallel architecture for kalman filter measurement
update and parameter estimation. Automatica, 22(1):43–57, 1986.

[18] Eleftheria Kontou, Venu Garikapati, and Yi Hou. Reducing ridesourcing empty vehicle travel
with future travel demand prediction. Transportation Research Part C: Emerging Technologies,
121:102826, 2020.

[19] Eugene L Lawler. The traveling salesman problem: a guided tour of combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics, 1985.

[20] Yang Liu, Fanyou Wu, Cheng Lyu, Xin Liu, and Zhiyuan Liu. Behavior2vector: Embedding
users’ personalized travel behavior to vector. IEEE Transactions on Intelligent Transportation
Systems, 23(7):8346–8355, 2021.

[21] Hongyao Ma, Fei Fang, and David C Parkes. Spatio-temporal pricing for ridesharing platforms.
ACM SIGecom Exchanges, 18(2):53–57, 2020.

[22] Vedant Nanda, Pan Xu, Karthik Abhinav Sankararaman, John Dickerson, and Aravind Srini-
vasan. Balancing the tradeoff between profit and fairness in rideshare platforms during high-
demand hours. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
2210–2217, 2020.

[23] Michael J Neely. Dynamic optimization and learning for renewal systems. IEEE Transactions on
Automatic Control, 58(1):32–46, 2012.

[24] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3
(4):376–384, 1991.

[25] RideAustin. Ride-austin-june6-april13. https://data.world/ride-austin/

ride-austin-june-6-april-13, 2017.

[26] Connor Riley, Pascal Van Hentenryck, and Enpeng Yuan. Real-time dispatching of large-scale
ride-sharing systems: Integrating optimization, machine learning, and model predictive control.
arXiv preprint arXiv:2003.10942, 2020.

[27] John S Sadowsky. On the optimality and stability of exponential twisting in monte carlo estima-
tion. IEEE Transactions on Information Theory, 39(1):119–128, 1993.

[28] Nicole Sadowsky and Erik Nelson. The impact of ride-hailing services on public transportation
use: A discontinuity regression analysis. 2017.

[29] Mahsa Sahebdel, Ali Zeynali, Noman Bashir, Mohammad H Hajiesmaili, and Jimi Oke. Data-
driven algorithms for reducing the carbon footprint of ride-sharing ecosystems. In Companion
Proceedings of the 14th ACM International Conference on Future Energy Systems, 2023.

[30] Mahsa Sahebdel, Ali Zeynali, Noman Bashir, Prashant Shenoy, and Mohammad Hajiesmaili. A
holistic approach for equity-aware carbon reduction of the ridesharing platforms. In Proceedings
of the 15th ACM International Conference on Future and Sustainable Energy Systems, pages
361–372, 2024.

[31] Statista. Shared mobility: Ride hailing worldwide, 2024. URL https://www.statista.com/

outlook/mmo/shared-mobility/ride-hailing/worldwide.

17

https://data.world/ride-austin/ride-austin-june-6-april-13
https://data.world/ride-austin/ride-austin-june-6-april-13
https://www.statista.com/outlook/mmo/shared-mobility/ride-hailing/worldwide
https://www.statista.com/outlook/mmo/shared-mobility/ride-hailing/worldwide

[32] Jinjun Tang, Jian Liang, Fang Liu, Jingjing Hao, and Yinhai Wang. Multi-community passen-
ger demand prediction at region level based on spatio-temporal graph convolutional network.
Transportation Research Part C: Emerging Technologies, 124:102951, 2021.

[33] Mohammad M Vazifeh, Paolo Santi, Giovanni Resta, Steven H Strogatz, and Carlo Ratti. Ad-
dressing the minimum fleet problem in on-demand urban mobility. Nature, 557(7706):534–538,
2018.

[34] G Welch. An introduction to the kalman filter. 1995.

[35] Tom Wenzel, Clement Rames, Eleftheria Kontou, and Alejandro Henao. Travel and energy
implications of ridesourcing service in austin, texas. Transportation Research Part D: Transport
and Environment, 70:18–34, 2019.

[36] Govind Yatnalkar, Husnu S Narman, and Haroon Malik. An enhanced ride sharing model based
on human characteristics and machine learning recommender system. Procedia Computer Science,
170:626–633, 2020.

18

A Proof of Theorem 1

Proof. We begin by defining a Lyapunov function L(b) and the conditional Lyapunov drift function,
D(b), as follows:

L(b) =
1

2
Q(b)2,

D(b) =E [L(b+ 1)− L(b)|Q(b),Mb] .

Next, we evaluate the drift function using the update rule for Q(b) from Equation (6).

Q(b+ 1)2 =Q(b)2 + r2b +
∑
d∈D

ab,d · β2b − 2rbQ(b)

+2Q(b)
∑
d∈D

ab,d · βb − 2rb
∑
d∈D

ab,d · βb.

⇒ D(b) =
1

2
E[(rb −

∑
d∈D

ab,d · βb)2|Q(b),Mb]

−Q(b)E[(rb −
∑
d∈D

ab,d · βb)|Q(b),Mb].

By subtracting a value of Qmax · βb
∑

d∈D ab,d · (1− α+ α · gM (d)) from both sides, we obtain:

D(b)−Qmax · βb
∑
d∈D

ab,d · (1− α+ α · gM (d))

=
1

2
E[(rb −

∑
d∈D

ab,d · βb)2|Q(b),Mb]

−Q(b)E[(rb −
∑
d∈D

ab,d · βb)|Q(b),Mb]

−Qmax · βb
∑
d∈D

ab,d · (1− α+ α · gM (d))

≤1

2
E[(rb −

∑
d∈D

ab,d · βb)2|Q(b),Mb]

−Q(b)E[(rb − ψ
∑
d∈D

a∗b,d · βb)|Q(b),Mb]

−ψQmax · βb
∑
d∈D

a∗b,d · (1− α+ α · gM (d))

≤1

2
E[(rb −

∑
d∈D

ab,d · βb)2|Q(b),Mb]

+Q(b)E[
∑
d

ab,d(d+ dt,b)]E[(
∑
d∈D

a∗b,d
βb

(d+ dt,b)

− rb∑
d ab,d(d+ dt,b)

)|Q(b),Mb]

−ψQmax · βb
∑
d∈D

a∗b,d · (1− α+ α · gM (d)),

19

where a∗b,d is the action of optimal stationary algorithm for DCP, and ψ =
E[
∑

d ab,d(d+dt,b)]
E[
∑

d a∗b,d(d+dt,b)]
. The above

inequality holds since LARA’s action results from solving the maximization problem (5a), i.e.∑
d

a∗b,d
(Qmax · (1− α+ α · gM (d))−Q(b))

d+ dt,b

≤
∑
d

ab,d
(Qmax · (1− α+ α · gM (d))−Q(b))

d+ dt,b
.

The second term is always negative, as the expected rate of assignment under the optimal stationary
algorithm cannot exceed the expected posting rate of new ride requests. By taking the conditional
expectation of both sides, summing over all batches, and dividing by Qmax ·BNE[d+ dt,b], we get:

⇒ 1

Qmax ·BNE[d+ dt,b]

BN∑
b=1

D(b)−
BN∑
b=1

βb
∑
d∈D

ab,d
1− α+ α · gM (d)

BNE[d+ dt,b]

≤ 1

2Qmax ·BNE[d+ dt,b]

BN∑
b=1

E[(rb −
∑
d∈D

ab,d · βb)2|Q(b),Mb]

−
BN∑
b=1

βb
∑
d∈D

a∗b,d
1− α+ α · gM (d)

BNE[d+ dt,b]

≤
E[r2b]

Qmax · E[d+ dt,b]
−

BN∑
b=1

βb
∑
d∈D

a∗b,d
1− α+ α · gM (d)

BNE[d+ dt,b]
.

Taking the limit as BN →∞ completes the proof.

20

	Introduction
	Case Study on Limiting Deadhead distances
	Motivational Example

	Online Deadhead Control Problem
	Optimal Offline Algorithm for DCP

	LARA: An Online Algorithm for DCP
	Design of LARA
	Performance Analysis of LARA
	More Detail on Decision Making of LARA
	Estimating Function gM in Practice

	Experimental Analysis
	Experiments on Synthetic Data
	Experiments on Real Dataset

	Related Work
	Conclusion
	Acknowledgment
	Proof of Theorem 1

