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Abstract

Multi-modal information retrieval (MMIR)
is a rapidly evolving field where significant
progress has been made through advanced rep-
resentation learning and cross-modality align-
ment research, particularly in image-text pair-
ing. However, current benchmarks for evalu-
ating MMIR performance on image-text pair-
ings overlook the scientific domain, which has
a notable gap with the generic data since the
caption of scientific charts and tables usually
describes the analysis of experimental results
or scientific principles in contrast to human ac-
tivity or scenery depicted in generic images. To
bridge this gap, we develop a scientific domain-
specific MMIR benchmark (SciMMIR) by
leveraging open-access research paper corpora
to extract data relevant to the scientific domain.
This benchmark comprises S30K meticulously
curated image-text pairs, extracted from figures
and tables with detailed captions from scien-
tific documents. We further annotate the image-
text pairs with a two-level subset-subcategory
hierarchy to facilitate a more comprehensive
evaluation of the baselines. We conduct zero-
shot and fine-tuned evaluations on prominent
multi-modal image-captioning and visual lan-
guage models, such as CLIP, BLIP, and BLIP-2.
Our findings offer critical insights for MMIR
in the scientific domain, including the impact
of pre-training and fine-tuning settings and the
effects of different visual and textual encoders.

1 Introduction

Information retrieval (IR) systems are expected to
provide a matched piece of information from an
enormous, yet organised, data collection accord-
ing to given user queries. With the advancement
of representation learning (Bengio et al., 2013),
the methodological paradigm of IR systems has
evolved from using lexical matching to retrieve tex-
tual data (Luhn, 1957; Jones et al., 2000; Robertson
et al., 2009) to a mixture of similarity matching

approaches in a learned representation space, con-
sequently supporting additional modalities such as
images and audio, in addition to text (Karpukhin
et al., 2020; Chen et al., 2020b; Koepke et al.,
2022).

In scientific domains, offering users a fine-
grained multi-modal retrieval service presents con-
siderable practical significance. Although previ-
ous studies have evaluated the image-text retrieval
task across a range of general topics on large-scale
datasets such as Wikipedia (Young et al., 2014;
Lin et al., 2014; Srinivasan et al., 2021; Luo et al.,
2023), there is a notable research gap in comprehen-
sively assessing MMIR models within the scientific
domain, specifically. Integrating both in-domain
and out-of-domain data in the pre-training phase
significantly boosts the performance of visual lan-
guage models (VLMs) on downstream tasks. How-
ever, most prior VLMs have focused exclusively on
generic topic information of the mundane events in
daily life, such as images depicting scenery and hu-
man activities, consequently overlooking data that
is pertinent to scientific domains such as elements
related to model architecture, illustrations of sci-
entific principles, and results of experiments. Due
to the substantial differences between the data dis-
tribution and characteristics between generic topic
data and scientific data, many VLMs may not have
an adequate ability to perform MMIR in the scien-
tific domain. Additionally, past table-related work,
such as table generation tasks, mainly focused on
textual representations of tables while overlooking
image-based representations of tabular data. This
presents problems for human-computer interaction,
as users may desire to input information in the form
of screenshots and expect an interactive system to
present results in a graphical format.

As shown in Figure 1, to address the identified
research gap, we introduce SciMMIR, a Scientific
Multi-Modal Information Retrieval benchmark.
SciMMIR is the first benchmark to comprehen-
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Figure 1: An illustration of the SciMMIR framework.

sively evaluate a model’s MMIR ability in the
scientific domain. To build our data collection,
we retrieve the figures, tables (in form of image),
and their associated captions, from scholarly docu-
ments available on arXiv, an open-access archival
corpus, to construct image-text pairs. In order
to comprehensively evaluate the cross-modality
aligned representations learned by models, our
SciMMIR benchmark defines the retrieval task as
bi-directional, including searching the matched tex-
tual caption in candidate pool with a given image
(img—txt), and finding corresponding figure or
table image from a caption (txt—img).

The performance of VLMs across different types
of data in the scientific domain is inconsistent,
where a model may excel on data related to ex-
perimental results but demonstrate average per-
formance with regards to image-caption pairs of
model architectures. If an overall improvement is
sought for the performance of VLMs, it may not
yield a noticeable enhancement to its capabilities
specifically regarding model architectures. Con-
sequently, such improvements do not necessarily
translate into effective boosts to a VLM’s overall
performance. Therefore, we annotate and cate-
gorise the image-text pairs into three figure-caption
and two table-caption subcategories based on their
distinctive described content (such as experimental
results, model architectures, and scientific princi-
ples, etc.). Then we conduct fine-grained subset
evaluation on subcategories in order to support
targeted improvements to a model based on its per-
formance in each subcategory, therefore potentially
improving a model’s capabilities by using high-
quality data in a certain subcategory with a relative
decrease in computational cost.

To explore the MMIR capabilities of our cho-
sen image captioning models and VLMs in scien-
tific domains, as well as different subcategories
, we conduct extensive experiments in both zero-
shot and fine-tuned settings across various subcate-
gories. We present our key insights as follows:

1. We reveal that MMIR tasks in the scientific
domain pose significant challenges for current
VLMs, which usually do not demonstrate ade-
quate performance in scientific domains. Fur-
thermore, after fine-tuning VLMs with data
specific to scientific domain, there is a marked
performance improvement , underlining the
effectiveness of domain-specific adaptation.

2. The results additionally suggest a distinction
between tasks involving the figure and table
subsets, with performance on the figure subset
being more effectively improved by scientific
data domain adaption, showing the general-
isability of the visual encoders. In contrast,
the performance of VLMs on the table subset
is relatively weaker, likely due to image-text
samples of tabular data seldom appearing dur-
ing pre-training for the VLMs.

3. Regardless of parameter size, the BLIP-2 se-
ries of models generally perform better on
SciMMIR than other pre-trained VLMs. This
improved zero-shot capability may be the
result of distinct pre-training tasks includ-
ing image-text matching and image-text con-
trastive learning, rather than standard lan-
guage modelling.

These findings underscore the importance of tai-
lored approaches for different data types within
the scientific MMIR framework. A more in-depth
exploration of these findings is given in §5.



2 Related Work

General Information Retrieval. Information
Retrieval is a fundamental task within NLP, and has
recently been facilitated by dense representation
learning (Reimers and Gurevych, 2019; Karpukhin
et al., 2020). More recently, the desire for uni-
fied representations across tasks has become sig-
nificant, with this line of research proposing to
understand and evaluate task-agnostic representa-
tions in a single representation space (Muennighoff
et al., 2023; Asai et al., 2022; Su et al., 2022; Wei
et al., 2023). In another vein, domain generali-
sation has always been seen as a key weakness
of IR models (Thakur et al., 2021). Through the
subpar performance of general image-text mod-
els on SciMMIR, we evidence that scientific IR,
especially when multi-modal, remains an out-of-
domain (OOD) task despite advancements in gen-
eral information retrieval.

Multi-modal Information Retrieval. In ear-
lier multi-modal representation learning research,
small-scale cross-modal retrieval datasets including
MSCOCO (Lin et al., 2014) and Flickr30k (Plum-
mer et al., 2015) have facilitated the alignment
between visual and linguistic representations. Ef-
forts have since shifted towards large-scale vision-
language pretraining (Radford et al., 2021; Kim
etal., 2021; Lietal., 2021; Jiaet al., 2021; Yu et al.,
2022), with these small-scale retrieval datasets, in
turn, becoming the standard evaluation approach
for such systems. Advancements in multi-modal
representation alignment have also facilitated multi-
modal retrieval-augmented generation (Chen et al.,
2022; Yasunaga et al., 2022; Hu et al., 2023; Lin
et al., 2023), and more recently, evaluating the
unified cross-modal representations across diverse
tasks has emerged as a prevalent trend (Wei et al.,
2023).

Scientific Document Learning. Scientific infor-
mation retrieval has received moderate attention
in NLP, with SciFact (Wadden et al., 2020) and
SCIDOCS (Cohan et al., 2020) commonly incor-
porated in popular zero-shot information retrieval
benchmarks (Thakur et al., 2021). More complex
tasks are proposed in this area, such as DORIS-
MAE, a task to retrieve documents in response
to complex, multifaceted scientific queries (Wang
et al., 2023). In the multi-modal area, VQA (An-
tol et al., 2015) presents another major approach
in evaluating vision-language systems, concerning

Subset Subcategory Number Len (words)
Train  Valid Test Caption

Result 296,191 9,676 9,488 52.89
Figure Illustration 46,098 1,504 1,536 38.44
Architecture 13,135 447 467 27.27
Tabl Result 126,999 4,254 4,229 27.23
%€ parameter 15856 552 543 17.10
Total 498,279 16,433 16,263 43.19

Table 1: Statistics of the SciMMIR dataset.

in-depth visual grounding, rather than the use of
distributional priors (Agrawal et al., 2018). It is
in this area that work with a similar scope to ours
in the scientific domain, such as PlotQA (Methani
et al., 2020) and ChartQA (Masry et al., 2022), is
seen. Our proposed SciMMIR benchmark distin-
guishes itself from these existing works by offering
extensive coverage across annotations of figure and
table subcategories, a larger dataset size, and the
utilisation of the real-world data that is naturally
paired and therefore not reliant on costly human
annotation.

3 Dataset Construction

Data Collection. We collect the PDF files from
a 6 month period from arXiv via the official API.!
We use an open-source tool (Clark and Divvala,
2016) to locate the non-textual elements (i.e., fig-
ures and tables) in the papers and then extract the
corresponding caption texts. All tables and figures
are stored in the form of images, and we remove
the pairs that have empty captions. The aforemen-
tioned collection process results in the SciMMIR
dataset that comprises 530K image-caption sam-
ples, with the average length of captions in the
dataset being 43.19 words as shown in Table 1.
The dataset is split into training, validation, and
testing sets with 498,279, 16,433, and 16,263
samples, respectively. As shown in Figure 2, the
SciMMIR benchmark covers a multitude of disci-
plines. Amongst these, 10 disciplines account for
more than 1%, such as Mathematics, Physics, and
Computer Science. This attests to the diversity of
our dataset and implies the presence of intricate
scientific knowledge within.

Subset and Subcategory Structure. To better
understand the performance of VLMs across vari-
ous data types within the scientific domain, we de-
fine a hierarchical architecture with two subsets and

'We request data submitted between May and October
2023 from https://info.arxiv.org/help/api.
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Figure 2: The ratio of different subject image-caption
data in SciMMIR.

five subcategories for the ScIMMIR benchmark.
Initially, we divide the data into two subsets, Tables
and Figures, as both representations have distinct
data distributions. Tables contain ample textual in-
formation, whereas Figures predominantly utilize
geometric shapes to elucidate scientific principles
or reveal patterns within data. Furthermore, for
tabular data, we further divide into two subcate-
gories, Table-Parameter and Table-Result. This is
performed as Table-Result data primarily serves
to present experimental outcomes (i.e., numerical),
whereas Table-Parameter data provides explana-
tions of parameter meanings or specific numerical
values (i.e., textual), and consequently both have
different data type distributions. As for Figures,
we consider those depicting experimental results,
explaining model architectures, and illustrating var-
ious scientific theories to contain different elements
of commonsense knowledge. Therefore, the perfor-
mance of models on these distinct data types may
vary, leading us to categorise them into three sepa-
rate subcategories. The finer-grained categorisation
is performed in accordance with Table 2.

Subset Subcategory Description
. Depicts scientific study frame-
Architecture p Y .
works and conceptual designs.
. . Illustrates complex scientific
Figure Tlustration p . .
concepts or data relationships.
Visually presents scientific re-
Result yp
search outcomes.
Details of key parameters and
Parameter . . .
variables in studies.
Table S - d disol
ummarises and displays ex-
Result . play
periment/study results.

Table 2: The hierarchical architecture for SciMMIR.

Data Annotation. In the process of data anno-
tation, we use manually constructed key phrases
to classify image-text sample pairs. Firstly, we
obtain keywords by observing unique words that
emerge in captions under different subcategories,
thus conducting an initial categorisation of the data.
Subsequently, to ensure the quality of our statis-
tical analysis, we randomly select 2000 images
from the test set and manually review the results
of the keyword-based classification based on the
criteria of whether the image within the image-
caption pairs cater to the description of its subcate-
gory. We then construct new keywords and remove
low-quality ones by analysing which words in the
caption result in misclassified examples. Finally,
we iteratively construct a higher-quality list of key-
words until the classification results of the extracted
2000 samples are deemed by manual evaluation as
having achieved the optimal categorisation results.
The subset and subcategory classification results
are shown in Table 1, providing a structured and
standardised basis for subsequent experiments.

4 Experiment

4.1 Retrieval Baseline

We evaluate a wide range of baseline models.
Drawing on the distributional gap between the sci-
entific and general domains highlighted previously,
we further illustrate the relationship between multi-
modal information retrieval performance in scien-
tific domains and distributions already learned by
the models. To this end, we collect information
about pre-training phase for baseline models in Ta-
ble 3 and present additional details in Appendix A.

Image Captioning Models As our baselines, we
present image-captioning models, including CLIP-
base (Radford et al., 2021) and BLIP-base (Li
et al., 2022), that have learned the pairing relation-
ship between images and the corresponding text
via a strong supervision signal. We evaluate these
image captioning models trained on general do-
main datasets (such as images related to scenery
and daily life events) in both zero-shot and fine-
tuned settings to investigate the need for scientific
domain adaption. We also introduce BERT (De-
vlin et al., 2018) as an alternative text encoder for
captioning (denoted "+BERT" in the tables), where
such ensemble baselines may reveal the influence
of the text encoders.



Pre-training Data

Trainable & *Frozen Parameters

Model ‘ Domain Number Pre-training Task ‘ Visual ‘ Textual ‘ Align
CLIP-base ‘ Internet Crawled ‘ 400M ‘ Contrastive ‘ 62M ‘ 63M ‘ /
BLIP-base COCO, VG, CC3M, CCI12M, SBU, Image-Text Contrastive, Image-Text
) LAION-400M 129M | Matching, Language Modeling 25.5M 108M /
BLIP2-OPT-2.7B \ \ \ \ *2.7B \ *2.7B
Image-Text Contrastive,
BLIP2-OPT-6.7B COCO, VG, CC3M, e teh #6.7B #6.7B
CC12M, SBU, | 129M | i"‘“ge Text l\g“ﬁ'“g’ | *1.3B | |
BLIP2-FLAN-T5-XL | LAION-400M \ | Image-grounded Text \ | *2.85B | *2.85B
Generation
BLIP2-FLAN-T5-XXL \ \ \ \ \ *11.3B \ *11.3B
- i - i * *
LLaMA-Adapter2-7B ‘ ]éé;?/[N ég(()jl\c/l) COYO, MMC4, SBU, ‘ 56.7M ‘ Fine-Tuning only ‘ 62M ‘ 7B ‘ 14M
Kosmos-2 | GRIT \ 90M | Language Modeling | 03B | 1.3B | 19M
COCO, CC3M, CCI2M, LAION-5B,
mPLUGw-OWL2 COYO, DataComp 400M | Language Modeling 0.3B 7B 0.9B
LLaVA-V1.5-7B \ LAION, CC, SBU, ShareGPT \ 392M \ Language Modelling \ 0.3B \ 6.9B \ 0.02B

Table 3: The pre-training information of the baselines.

Visual Language Models. Additionally, we se-
lect large visual language models (VLMs) trained
for multi-modal tasks such as VQA to examine
their zero-shot and fine-tuning MMIR performance
in scientific domain. The details regarding our cho-
sen VLMs are presented in Appendix B.

4.2 Evaluation Protocol

Task Definition. The SciMMIR benchmark
presents a bi-directional MMIR task:

e txt—img: The forward direction retrieval
task, where given a corresponding text, the
model must retrieve the correct image from a
candidate set.

e img—txt: The inverse direction retrieval
task, where given an image, the model must
retrieve the relevant text from a candidate set.

For these two kinds of tasks, we all regard the
samples of train, valid, and test data as candidates.

Given an image img; and a text text;, the rel-
evance score I? in the retrieval ranking is defined
as the dot product between the visual and tex-
tual representations of img; and text; by R =
FEimg; - Etext;- In addition to assessing the model’s
performance on the overall test set (denoted “ALL”
in the tables), we evaluate retrieval models in dif-
ferent subsets and subcategories to scrutinise their
abilities. Specifically, we assess the model’s perfor-
mance on five fine-grained subcategories (shown in
Table 2) of the test set, as well as the performance
on the Figure and Table subsets as a whole.

Metrics. In this paper, we use the MRR and
Hits@K metrics to assess the IR models’ perfor-
mance on the SciMMIR benchmark, which are
further described in Appendix D.

refers to non-public or not fully public data.

Zero-shot We provide a zero-shot (ZS) setting
in the evaluation for all baselines. For the image-
captioning models, the learned features extracted
by the visual encoder and textual encoder are di-
rectly used, since they have been aligned to the
same representation space. For the visual language
models, the visual representation remains the same
but the representations from the textual module are
used depending on their architectures. For encoder-
decoder textual models such as BLIP2-FLAN-TS5s,
we use the output features from the encoder as the
text features. For decoder-only textual models like
BLIP2-OPTs, we take mean pooling of outputs
from the last decoder layer.

Fine-tuning. We also provide evaluation of fine-
tuned (FT) versions of the relatively small mod-
els (CLIP-base and BLIP-base) and a large VLM
(BLIP2-FLAN-T5-XL) trained with our data. Dur-
ing fine-tuning, we employ standard contrastive
learning (Chen et al., 2020a) to maximise the rele-
vance score between positive text-image pairs and
minimise the relevance score between negative text-
image pairs within a batch of samples. In addition
to training the models on the entire training set, we
also train them on different subsets (e.g., Figure-
Result and Table-Parameter) of the training data to
investigate the modeling abilities in a fine-grained
manner.

5 Result Analysis

5.1 Opverall Evaluation

Following the designed evaluation protocol, as
shown in Table 4, we report the baseline perfor-
mances in the universal set (ALL), Figure set, and
Table set. In this subsection, we mainly discuss the



ALL Figure* Table*

Model txt—img img—txt txt—img img—txt txt—img img—txt

MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10

CLIP-base 8.13 13.48 7.94 13.34 9.29 15.41 8.99 15.29 5.29 8.82 5.41 8.65
CLIP-base+BERT 2.47 5.01 3.11 5.85 2.99 6.09 3.80 7.10 1.19 242 1.44 2.85

FT BLIP-base 6.14 11.30 6.18 11.71 6.80 12.59 6.89 13.21 4.59 822 447 8.15
BLIP-base+BERT 11.51 20.09 12.69 21.77 13.01 22,67 14.12 2418 | 7.93 1398 931 16.08
BLIP2-FLAN-T5-XL 4.44 7.74 2.27 4.48 4.93 8.66 257 5.02 3.23 5.48 1.51 3.13
CLIP-base 0.419 0.719 0.364 0.670 0.458 0.767 0.421 0.787 | 0.310 0.586 0.219 0.375
BLIP-base 0.004 0.006 0.003 0.006 0.006 0.009  0.002 0.000 | 0.001 0.000  0.007 0.021
BLIP2-FLAN-T5-XL 0.025 0.031 0.012 0.025 0.028 0.035 0.016 0.035 | 0.020 0.021  0.003 0.000
BLIP2-FLAN-TS-XXL 0.053 0.105 0.004 0.000 0.059 0.104  0.004 0.000 | 0.040 0.105  0.003 0.000
BLIP2-OPT-2.7B 0.052 0.111 0.015 0.031 0.035 0.060 0.013 0.027 | 0.093 0.230  0.020 0.042

7S BLIP2-OPT-6.7B 0.002 0.006 0.002 0.000 0.003 0.008  0.002 0.000 | 0.002 0.000  0.002 0.000
LLaVA-V1.5-7B 0.006 0.012 0.002 0.000 0.008 0.018  0.002 0.000 | 0.002 0.000  0.002 0.000
mPLUG-OwI2-LLaMA2-7B | 0.002 0.000 0.002 0.000 0.003 0.000  0.002 0.000 | 0.001 0.000  0.001 0.000
Kosmos-2 0.008 0.018 0.002 0.000 0.011 0.025  0.002 0.000 | 0.000 0.000  0.001 0.000
LLaMA-Adapter2-7B 0.040 0.061 0.002 0.000 0.056 0.085  0.002 0.000 | 0.001 0.000  0.004 0.000

Table 4: The main results of ScIMMIR benchmark. * refers to average results in the Figure and Table subsets.

results regarding the bi-directional retrieval tasks
and the subset performance.

For both the forward (txt—img) and inverse
(img—txt) tasks, we find that small models fine-
tuned with our in-domain scientific image-text data
generally demonstrate superior performance in all
settings of the SciIMMIR benchmark. As this shows
the necessity of domain adaption for improvement
in the SciMMIR task, our designed tasks remain
challenging for most of the models. For tasks
in either direction, many of the zero-shot large
VLMs demonstrate insufficient performance, with
the MRR and Hits @ 10 metrics, failing to surpass
0.23% in the ALL setting. It is worth mentioning
that the CLIP-base model is well-trained since its
zero-shot performance is better than all other large
VLMs with superior parameter sizes.

The performance of the fine-tuned multi-modal
models in information retrieval involving both fig-
ures and tables is promising overall. However, the
results indicate significantly higher performance
on the Figure subset compared to the Table subset,
suggesting the superior difficulty of the task of ta-
ble retrieval. The lower scores on the table subset
could be due to the scarcity of table-style images
in the pre-training datasets and the lack of textual
perception ability in the visual encoders.

Our SciMMIR benchmark demonstrates the
shortcomings of VLMs in our SciMMIR task and
provides extensive high-quality MMIR data for sci-
entific domains that could be used for fine-tuning
VLMs in order to improve performance on this
domain. Additionally, our experiments show that
retrieving visual tables is challenging and requires
thoroughly mining the semantic connections be-
tween caption information and textual data within
tables. For VLMs not adapted to the image-caption

task in the scientific domain through pre-training
(such as BLIP), fine-tuning with a vanilla pre-
trained language model (such as BERT) can better
establish connections between visual tables and
captions due to captions for tables being a type of
textual information rarely encountered by VLMs
during their pre-training process.

5.2 Zero-Shot Analysis

To provide a more thorough analysis, we present
the zero-shot performance of the baselines across
different subcategories in Table 10 and Table 11
in Appendix F, where only the images or texts from
the same subcategory are considered as candidates.

Zero-shot txt—img. The selected large pre-
trained VLMs do not perform well on various sub-
categories in both the Figure and Table subsets. In
the subcategories of the Table subset, all models,
except CLIP-base, exhibit virtually no accuracy.
In the Figure subset, the BLIP2-FLAN-TS5 series
of models show slightly better performance across
all subcategories of the Figure subset. This may
be attributed to the fact that the encoder part of
text encoder-decoder architecture is better able to
capture textual features.

Zero-shot img—txt. For the Figure subset, the
performance of all VLMs in the reverse direction
is slightly worse than that in the forward direction.
This indicates that the image-grounded text gener-
ation task of VLMs can enhance the model’s per-
formance in multi-modal retrieval for the forward
direction, while the performance in the reverse di-
rection is poorer.

5.3 Analysis on Fine-tuning Setting

Overall Analysis. As shown in Table 9 in Ap-
pendix E, we fine-tune the models using data of



Fig Architecture Fig Illustration Fig Result

Model Training Data txt—img img—txt txt—img img—txt txt—img img—txt
MRR Hits@l10 MRR Hits@10 | MRR Hits@l0 MRR Hits@10 | MRR Hits@10 MRR Hits@10
All 9.77 16.92 9.84 15.42 | 10.01 15.30 9.35 14.97 9.16 15.37 8.90 15.34
Fig-Architecture | 5.60 835  6.11 8.14 | 261 495 295 5.01 2.50 4.02 235 4.18
CLIP-base Fig-Illustration 8.58 12.85 8.82 13.28 6.76 11.72 7.08 11.78 5.69 9.20 5.46 8.96
’ Fig-Result 9.24 1542 9.76 1499 | 8.58 14.19  8.86 1426 | 8.79 14.10  9.05 14.79
Table-Parameter 2.67 4.50 3.04 3.85 1.78 3.19 242 4.49 1.82 2.99 1.55 2.74
Table-Result 3.12 578 331 5.35 1.91 391 2.33 449 | 258 4.26 1.48 2.80
CLIP-base+BERT | Al | 230 493 276 6.42 | 3.12 553 359 697 | 3.01 6.23 388 7.16
All 5.11 10.06 5.53 10.28 535 10.09 5.64 10.16 7.11 13.10 7.15 13.82
Fig-Architecture | 0.04 0.00  0.06 0.21 0.02 0.00  0.03 0.07 | 0.03 0.06  0.02 0.01
BLIP-bas Fig-Illustration 0.04 0.00 0.09 0.00 0.26 0.52 0.45 0.91 0.08 0.16 0.09 0.14
oase Fig Result 255 621 320 6.00 | 291 625 3.380 6.84 | 4.66 9.13 480 9.18
Table-Parameter | 0.00 0.00  0.00 0.00 | 0.00 0.00  0.00 0.00 | 0.00 0.00  0.01 0.00
Table-Result 0.12 021  0.01 0.00 | 0.01 0.00  0.03 0.07 | 0.05 0.07  0.06 0.09
BLIP-base+BERT | Al | 995 1842 12.09 18.63 | 11.17 1927 11.63 20.25 | 13.44 2339  14.60 25.04
BLIP2-FLAN-T5-XL ‘ All ‘ 6.75 11.34 4.06 8.56 ‘ 5.99 10.41 3.16 6.44 ‘ 4.69 8.27 241 4.64

Table 5: The results of fine-tuning models on Figure subsets of our SciMMIR benchmark.

Table Result Table Parameter

Model Training Data txt—img img—txt txt—img img—txt
MRR Hits@l0 MRR Hits@l0 | MRR Hits@10 MRR Hits@10
All 5.40 9.01 5.52 8.82 4.45 7.37 4.55 7.37
Fig-Architecture 1.22 2.06 1.34 234 1.35 2.58 1.47 295
CLIP-bas Fig-Tllustration 1.42 2.70 1.79 3.14 1.93 2.95 2.60 4.42
-base Fig-Result 271 449 253 452 | 219 405 230 4.79
Table-Parameter 1.46 2.70 1.56 2.62 1.52 3.31 1.82 3.68
Table-Result 4.28 7.26 1.28 2.29 3.77 6.63 0.87 129
CLIP-base+BERT ‘ All ‘ 1.18 241 1.46 293 ‘ 1.31 2.58 1.33 221
All 4.77 8.42 4.54 8.23 3.16 6.63 3.99 7.55
Fig-Architecture 0.01 0.00 0.03 0.02 0.01 0.00 0.02 0.00
BLIP-base Fig-Illustration 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00
i Fig-Result 0.70 1.32 0.65 1.16 0.32 1.29 0.56 0.74
Table-Parameter 0.01 0.02 0.01 0.00 0.02 0.00 0.06 0.00
Table-Result 0.92 1.80 0.92 1.82 0.83 0.74 0.52 1.10
BLIP-base+BERT ‘ All ‘ 8.17 14.35 9.70 16.48 ‘ 6.01 11.05 6.19 12.89
BLIP2-FLAN-T5-XL | All | 311 529 133 290 | 422 6.99  3.00 4.97

Table 6: The results of fine-tuning models on Table subsets of our SciIMMIR benchmark.

different categories and evaluate the performance
regarding all samples in train, valid and test data
as candidates. The results indicate that training the
model only with data from a specific subcategory
leads to a significant performance gap compared to
the model fine-tuned with all the data. There are
two main factors contributing to this. Firstly, the
dataset size of a specific subcategory is relatively
small. Secondly, there are significant differences in
data distributions among different subcategories.

The BLIP-base+BERT model performs the best
across all fine-tuned settings, while the perfor-
mance of the CLIP model decreases when its text
encoder is replaced. Notably, merely fine-tuning
the Q-Former parameters of BLIP2-FLAN-T5-XL
to adapt the large VLM to the scientific domain did
not yield as effective results as the smaller models.
Consequently, there remains a need for efficiently
fine-tuning small models to construct robust con-
nections between the representations of the visual
and textual modalities.

The Impact of Subcategory Training Data. As
shown in Table 5 and Table 6, we report the result

on testing samples of specific subcategories, for the
sake of comprehensively investigating the impact
of different subcategory training data.

For BLIP, the model’s improvement on specific
test subcategories generally aligns with the subcate-
gories used for training, but its overall performance
on the samples from other subcategories is poorer.
This demonstrates the effectiveness of our annota-
tion in accurately clustering data points, and the
gaps among different subcategories.

As for CLIP, the models trained on different
subcategories consistently perform best in the Fig-
Architecture subcategory. We believe this is be-
cause the CLIP model has demonstrated a certain
level of performance on the SciMMIR dataset and
possesses a certain understanding of the data dis-
tribution within it. This suggests that solid pre-
training can more effectively facilitate the model
in adapting to the scientific domain, and further,
it can potentially promote the model’s learning of
commonalities among different subcategories of
data, thus enhancing its generalization capabilities
across various subcategories.



Model Testing Data Fig-Architecture Fig-Illustration Fig-Result Table-Result Table-Parameters
txt—img img—txt | txt—img img—txt | txt—img img—txt | txt—img img—txt | txt—img img—txt
Fig Architecture 12.85 12.72 16.62 18.22 69.57 67.22 0.84 1.65 0.13 0.19
Fig Ilustration 5.16 4.66 20.59 22.66 73.30 71.47 0.83 0.98 0.13 0.23
FT-CLIP-base Fig Results 3.80 3.62 13.01 14.25 81.48 80.15 1.48 1.64 0.22 0.34
Table Results 0.12 0.15 0.24 0.70 4.16 4.97 85.68 84.29 9.81 9.89
Table Parameters 0.29 0.35 0.53 1.34 5.08 9.61 73.44 72.19 20.64 16.50
Fig Architecture 7.34 6.72 28.54 23.06 59.42 66.62 4.20 2.70 0.49 0.90
Fig Illustration 3.99 3.68 30.56 23.44 61.74 71.04 3.40 1.47 0.31 0.36
7S-CLIP-base Fig Results 4.12 4.17 2431 19.59 63.04 73.52 7.74 2.29 0.79 0.44
Table Results 0.36 2.55 1.48 491 9.28 38.69 75.89 41.92 12.99 11.92
Table Parameters 0.26 3.00 238 7.38 9.52 42.43 74.40 34.68 13.44 12.50

Table 7: The accuracy and error analysis of CLIP models on our SciMMIR benchmark.

The model trained on Figure-Results data
demonstrates the best performance across the entire
Figure subset. One reason could be that the Figure-
Result subset has the largest training proportion
(54.02%) and text documents with relatively longer
average length (52.93 words for Fig Result’s av-
erage text length compared to the dataset’s overall
average text length of 43.23 words) in the train-
ing dataset. This highlights the impact of training
dataset size and its length coverage of text (Xiao
et al., 2023a) on the performance and generalisabil-
ity of retrieval models.

5.4 Text Encoder Generalisability

To investigate the impact of text encoders on SciM-
MIR, we substitute the text encoders in both BLIP-
base and CLIP-base models with BERT-base. As
shown in Table 9 in Appendix E, replacing the text
encoder of BLIP with BERT results in a significant
improvement, while that of CLIP experiences a de-
cline. The reason for the performance change being
opposite after replacing text encoder with BERT in
both the CLIP and BLIP may be as follows:

CLIP. With the uniformity promise of contrastive
learning (Wang and Isola, 2020), the textual and
visual embeddings are well-aligned in an isotropic
space in the pre-training phase of CLIP, which is
demonstrated by the zero-shot setting experiments.
However, replacing the text encoder with a highly
anisotropic vanilla text encoder (e.g., BERT) hin-
ders the stable alignment with the already learned
vision encoder (Xiao et al., 2023b). We hypothesise
that freezing the vision encoder in early fine-tuning
may help guide the replaced language model.

BLIP. On the other hand, in comparison to CLIP,
BLIP uses BERT as its text encoder during the
pre-training phase. This structural consistency con-
tributes to the model’s better adaptation to the sci-
entific domain. However, the use of BERT may
allow for the learning of a better representation of

text to build an association between images and
text, as tables contain a lot of text information.

5.5 Accuracy and Error Analysis

For better analysis of the performance, we conduct
experiments on test data of different subcategories
and calculate the ratio of all subcategories in the
top 10 answers predicted by the fine-tuned CLIP
and vanilla CLIP. Retrieval answers that have the
same subcategory as the testing subcategories are
regarded as correct, and vice versa.

As shown in Table 7, due to the larger vol-
ume of data for candidates labelled as Fig-Results
and Table-Results (58.00% and 26.16%, calculated
through Table 1, respectively), the models tend to
predict samples from these categories as answers.
When comparing zero-shot and fine-tuned models,
it can be observed that fine-tuning leads to a de-
crease in the proportion of incorrect predictions
across almost all categories.

Compared with zero-shot results, the fine-tuned
models show the largest improvement in prediction
accuracy on the Figure-Architecture and Figure-
Result testing data. However, the increase in predic-
tion accuracy on the Table subset after fine-tuning
is not obvious, indicating that retrieving informa-
tion from Tables still poses significant challenges.

6 Conclusion

In summary, we introduce a novel benchmark and
a corresponding dataset designed to address the
gap in evaluating multi-modal information retrieval
(MMIR) models in the scientific domain. Addi-
tionally, we categorise the images into fine-grained
subcategories based on the characteristics of the fig-
ures and tables to facilitate a more comprehensive
evaluation and analysis. Our evaluation of zero-
shot and fine-tuned approaches, which we conduct
on extensive baselines within various subsets and
subcategories, offers valuable insights for future
research.



Limitations

Due to computational resource constraints, we only
fine-tune BLIP2-FLAN-T5-XL on our SciMMIR
dataset and did not investigate the fine-tuning ef-
fects of other large VLMs on our benchmark. In
this work, we find that BLIP+BERT could improve
the model’s ability in our benchmark, specifically
for the Table subset. However, we do not design ex-
periments to explore which kind of models would
be better suited to the replacement of the textual
encoder with BERT or other language models.

Ethics Statement

The dataset used in our research is constructed us-
ing publicly available data sources, ensuring that
there are no privacy concerns or violations. We do
not collect any personally identifiable information,
and all data used in our research is obtained fol-
lowing legal and ethical standards In the stage of
designing key words and human evaluation clas-
sification of image-text pair, we employed three
graduate students experienced in natural language
processing for human evaluation. We paid the grad-
uate students about $13 per hour, well above the
local average wage, and engaged in constructive
discussions if they had concerns about the process.
Despite we try our best efforts to ensure data
quality, given the sheer volume of data, we cannot
guarantee that all results and content within the sci-
entific domain dataset are accurate. This inherent
limitation could potentially lead to models generat-
ing misleading or deceptive outputs in future use,
necessitating further filtering in future work.
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A The Baseline Pre-training Datasets

We provide a reference list for the pre-
training image-text datasets mentioned in Table 3.
COCO (Lin et al., 2014), consists of over 200,000
images across various categories including people,
animals, everyday objects, and indoor scenes. The
VG (Krishna et al., 2017) dataset consists of over
100,000 images and covers a diverse range of visual
concepts, including objects, scenes, relationships
between objects, and other contextual information
within images. CC3M (Sharma et al., 2018) con-
tains over 3.3 million of images paired with de-
scriptive captions, covering a wide range of topics
and scenes. CC12M (Changpinyo et al., 2021) con-
tains 12.4 million image-text pairs, which is 3 times
larger in scale compared to CC3M with a higher
diversity degree containing more instances of out-
of-domain (OOD) visual concepts. SBU (Ordonez
et al., 2011) contains over 1 million images with
visually relevant captions. The dataset is designed
to be large enough for reasonable image-based
matches to a query and the captions are filtered
to ensure they are visually descriptive and likely to
refer to visual content. LAION-400M (Schuhmann
et al., 2021) is an open dataset that consists of 400
million image-text pairs, their CLIP embeddings,
and KNN indices for efficient similarity search.
It includes image URLSs, corresponding metadata,
CLIP image embeddings, and various KNN indices
for quick search. LAION-5B (Schuhmann et al.,
2022) is an open, large-scale dataset that consists of
5.85 billion image-text pairs, with 2.32 billion pairs
in English. COYO (Byeon et al., 2022) is a large-
scale dataset containing 747M image-text pairs as
well as many other meta-attributes to increase the
usability to train various models. MMC4 (Zhu
et al., 2023) consists of 101.2 million documents
with 571 million images interleaved with 43 billion
English tokens. It covers a wide range of every-
day topics such as cooking, travel, technology, and
more. GRIT (Peng et al., 2023) is a large-scale
dataset of Grounded Image-Text pairs that consists
of approximately 91 million images, 115 million
text spans, and 137 million associated bounding
boxes. DataCamp (Gadre et al., 2023) is a partici-
patory benchmark that focuses on dataset curation
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for large image-text datasets. It provides a new can-
didate pool of 12.8 billion image-text pairs. The
dataset size in DataComp is a design choice and
not predetermined.

B Used Visual Language Models

* BLIP-2 (Li et al., 2023) series models use
a querying transformer module to address
the modality gap. We choose the models
grounded in large language models (LLMs),
BLIP2-OPT-2.7B, BLIP2-OPT-6.7B, BLIP2-
FLAN-T5-XL and BLIP2-FLAN-T5-XXL, as
our baselines.

* LLaVA-V1.5-7B (Liu et al., 2023) use two
simple methods, namely, an MLP cross-modal
connector incorporating academic task related
data such as VQA to improve the ability of
the LLaVA.

* LLaMA-Adapter2-7B (Gao et al., 2023) effi-
ciently fine-tunes additional parameters based
on the LLaMA model (Touvron et al., 2023),
where the extra expert models further boost
its image understanding capability.

Kosmos-2 (Peng et al., 2023) aligns percep-
tion with language and adds the ability to
recognise and understand images based on
its multi-turn dialogue and reasoning capabili-
ties. Specifically, it achieves the capability of
grounding images, allowing it to interact with
inputs at the object level.

mPLUGw-OWL2 (Ye et al., 2023) introduces
a Modality-Adaptive Module (MAM) into the
large language model. By adding a small num-
ber of parameters during the attention process,
it further learns a shared space for both vision
and language representations.

C Effects of Visual Encoder Resolution

In Table 4 for overall results, we compare the fine-
tuned BLIP with the default image preprocessing
dimensions of 384 and fine-tuned CLIP with the
default image preprocessing dimensions of 224,
where the results are relatively close. To make a
fairer comparison, we decrease the image dimen-
sions of BLIP-base model from 384 to 224 to be
the same as CLIP-base to conduct SciMMIR evalu-
ation, as described in Table 8.

It can be seen that the granularity of image pro-
cessing has a significant impact on model perfor-
mance. When using a lower preprocessing dimen-



txt—img img—txt

Img Dim Model Training Dataset MRR  Hits@10 MRR Hits@10
ALL 0.958 2.034 | 1.138 2.294

Fig Architecture 0.002 0.000 | 0.006 0.000

. Fig Illustration 0.036 0.024 | 0.011 0.000

224 BLIP-base Fig Result 0.167 0260 | 0.115 0.213
Table Result 0.408 0.757 | 0.368 0.686

Table Parameter 0.011 0.024 | 0.009 0.000

224 | BLIP-base+BERT | ALL | 1.614 3.334 | 2.102 4.375
ALL 6.14 11.3 6.18 11.71

Fig Architecture 0.02 0.04 0.02 0.02

Fig Ilustration 0.07 0.14 0.1 0.17

384 BLIP-base Fig Result 326 6.48 34 6.5
Table Result 0.3 0.54 0.3 0.57

Table Parameter 0.01 0.01 0.01 0

384 | BLIP-base+BERT | ALL | 1151 2009 | 12.69 21.77

Table 8: The averaged results of fine-tuning BLIP with different preprocessing image dimensions on ALL testing

candidates of our SciMMIR benchmark.

sion, the performance of BLIP is significantly de-
creased in both txt—img and img—txt tasks, us-
ing all training data settings. The performance of
the CLIP model, which uses the same image pro-
cessing dimension, is almost double that of BLIP.

Furthermore, although replacing the text encoder
of BLIP with BERT during training on lower-
dimensional (224) image preprocessed data im-
proved the performance of the model, there was
still a significant gap compared to CLIP. However,
when the text encoder of BLIP was replaced with
BERT during training on higher-dimensional image
preprocessed data, the performance of the model
was far superior to both CLIP and CLIP+BERT.
This suggests that certain image-text shared inter-
active information is stored in the visual representa-
tions, and higher image quality can help the models
better establish the connection between image and
text representations.

D MRR and Hit@K

* MRR stands for Mean Reciprocal Rank, and
is calculated as the reciprocal of the golden
label’s ranking in candidates. A higher MRR
score indicates better performance.

» Hits@K assesses the accuracy of the retrieval
system by checking whether the golden la-
bel is present within the top-k ranked results.
Hits@10 are used in our measurements.

E Fine-tuning Analysis

The effect of text-image matching task. As
shown in the Table 9, the BLIP-2 series of models
outperform other large VLMs in both Figure and
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. o txt—img img—txt
Model Training Dataset | \ipp' His@10 | MRR  Hits@10
ALL 8.13 13.48 7.94 13.34
Fig-Architecture 223 3.67 222 3.86
Fig-Illustration 4.64 7.64 4.66 7.69
CLIP-base Fig-Result 6.98 1131 | 7.3 11.74
Table-Parameter 1.74 2.99 1.68 2.94
Table-Result 3.01 5.13 1.54 2.85
CLIP-base+BERT ‘ ALL ‘ 247 5.01 ‘ 3.11 5.85
ALL 6.14 11.30 6.18 11.71
Fig-Architecture 0.02 0.04 0.02 0.02
Fig-llustration 0.07 0.14 0.10 0.17
BLIP-base Fig-Result 3.26 648 | 340 6.50
Table-Parameter 0.01 0.01 0.01 0.00
Table-Result 0.30 0.54 0.30 0.57
BLIP-base+BERT ‘ ALL ‘ 11.51 20.09 ‘ 12.69 21.77
BLIP2-FLAN-TS-XL ‘ All ‘ 4.44 7.74 ‘ 227 4.48

Table 9: The results of fine-tuning models that are
trained on different types of training data.

Table subcategories, especially in the forward di-
rection task. We believe that this is because BLIP-2
incorporates the text-image matching task and the
image-grounded text generation task during its pre-
training process to better align textual and visual
information. The experimental results demonstrate
that other models solely relying on image-grounded
text generation tasks may not yield effective rep-
resentations for multi-modal retrieval. Therefore,
dedicated pre-training for multi-modal retrieval still
requires a primary focus on the text-image match-
ing task.

F Zero-shot Analysis

CLIP-base and BLIP-base. As shown in the Ta-
ble 10 and Table 11, the CLIP-base captioning base-
line, which is specifically designed for image-text
matching, shows certain generalisability in both for-
ward and inverse retrieval across all subcategories
within the Figure and Table subsets. In contrast, the
BLIP-base model shows nearly no signs of effec-



Fig Architecture Fig Ilustration Fig Result

Model txt—img img—txt txt—img img—txt txt—img img—txt

MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10 | MRR Hits@l0 MRR Hits@10
CLIP-base 1.351 1.927 1.074 2.141 | 0.750 1.237  0.458 0.716 | 0.373 0.643  0.386 0.738
BLIP-base 0.003 0.000  0.001 0.000 | 0.003 0.000  0.002 0.000 | 0.006 0.011  0.002 0.000
BLIP2-FLAN-T5-XL 0.010 0.000  0.003 0.000 | 0.010 0.000  0.004 0.000 | 0.032 0.042  0.019 0.042
BLIP2-FLAN-T5-XLL 0.056 0.214  0.003 0.000 | 0.037 0.065  0.005 0.000 | 0.062 0.105  0.004 0.000
BLIP2-OPT-2.7B 0.130 0.214  0.005 0.000 | 0.033 0.130  0.006 0.000 | 0.031 0.042 0.014 0.032
BLIP2-OPT-6.7B 0.001 0.000  0.001 0.000 | 0.009 0.065 0.001 0.000 | 0.002 0.000  0.002 0.000
LLaVA-V1.5-7B 0.003 0.000  0.004 0.000 | 0.003 0.000  0.004 0.000 | 0.009 0.021  0.002 0.000
Kosmos-2 0.123 0.428  0.008 0.000 | 0.011 0.000  0.004 0.000 | 0.006 0.011  0.002 0.000
mPLUG-OwI2-LLaMA2-7B | 0.022 0.000  0.003 0.000 | 0.302 0.521  0.003 0.000 | 0.019 0.021  0.002 0.000
LLaMA-Adapter2-7B 0.001 0.000  0.001 0.000 | 0.008 0.000  0.002 0.000 | 0.002 0.000  0.002 0.000

Table 10: The zero-shot results of multimodal models on Figure subsets of our SciMMIR benchmark.

Table Result Table Parameter

Model txt—img img—txt txt—img img—txt

MRR Hits@10 MRR Hits@10 | MRR Hits@10 MRR Hits@10
CLIP-base 0.281 0.544  0.177 0.284 | 0.545 0.921 0.558 1.105
BLIP-base 0.001 0.000  0.007 0.024 | 0.000 0.000 0.003 0.000
BLIP2-FLAN-T5-XL 0.021 0.024  0.003 0.000 | 0.010 0.000  0.005 0.000
BLIP2-FLAN-T5-XLL 0.041 0.095 0.003 0.000 | 0.030 0.184 0.003 0.000
BLIP2-OPT-2.7B 0.076 0.213  0.010 0.024 | 0.228 0.368 0.101 0.184
BLIP2-OPT-6.7B 0.002 0.000 0.002 0.000 | 0.001 0.000 0.002 0.000
LLaVA-V1.5-7B 0.002 0.000 0.002 0.000 | 0.003 0.000 0.004 0.000
Kosmos-2 0.000 0.000 0.001 0.000 | 0.000 0.000 0.003 0.000
mPLUG-OwI2-LLaMA2-7B | 0.001 0.000 0.004 0.000 | 0.002 0.000 0.005 0.000
LLaMA-Adapter2-7B 0.001 0.000 0.001 0.000 | 0.001 0.000 0.001 0.000

Table 11: The zero-shot results of multi-modal models on Table subsets of our SciMMIR benchmark datasets.

tive learning on the scientific domain multi-modal
data. These models have strong MMIR abilities
for generic topic data, such as BLIP achieving an
IR@1 of 86.7% on the Flicker dataset in the zero-
shot setting, whilst BLIP does not surpass 0.05%
(MMR metric). This further demonstrates the chal-
lenges presented for MMIR in scientific domains.
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