
SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval

Anonymous ACL submission

Abstract

Multi-modal information retrieval (MMIR)001
is a rapidly evolving field where significant002
progress has been made through advanced rep-003
resentation learning and cross-modality align-004
ment research, particularly in image-text pair-005
ing. However, current benchmarks for evalu-006
ating MMIR performance on image-text pair-007
ings overlook the scientific domain, which has008
a notable gap with the generic data since the009
caption of scientific charts and tables usually010
describes the analysis of experimental results011
or scientific principles in contrast to human ac-012
tivity or scenery depicted in generic images. To013
bridge this gap, we develop a scientific domain-014
specific MMIR benchmark (SciMMIR) by015
leveraging open-access research paper corpora016
to extract data relevant to the scientific domain.017
This benchmark comprises 530K meticulously018
curated image-text pairs, extracted from figures019
and tables with detailed captions from scien-020
tific documents. We further annotate the image-021
text pairs with a two-level subset-subcategory022
hierarchy to facilitate a more comprehensive023
evaluation of the baselines. We conduct zero-024
shot and fine-tuned evaluations on prominent025
multi-modal image-captioning and visual lan-026
guage models, such as CLIP, BLIP, and BLIP-2.027
Our findings offer critical insights for MMIR028
in the scientific domain, including the impact029
of pre-training and fine-tuning settings and the030
effects of different visual and textual encoders.031

1 Introduction032

Information retrieval (IR) systems are expected to033

provide a matched piece of information from an034

enormous, yet organised, data collection accord-035

ing to given user queries. With the advancement036

of representation learning (Bengio et al., 2013),037

the methodological paradigm of IR systems has038

evolved from using lexical matching to retrieve tex-039

tual data (Luhn, 1957; Jones et al., 2000; Robertson040

et al., 2009) to a mixture of similarity matching041

approaches in a learned representation space, con- 042

sequently supporting additional modalities such as 043

images and audio, in addition to text (Karpukhin 044

et al., 2020; Chen et al., 2020b; Koepke et al., 045

2022). 046

In scientific domains, offering users a fine- 047

grained multi-modal retrieval service presents con- 048

siderable practical significance. Although previ- 049

ous studies have evaluated the image-text retrieval 050

task across a range of general topics on large-scale 051

datasets such as Wikipedia (Young et al., 2014; 052

Lin et al., 2014; Srinivasan et al., 2021; Luo et al., 053

2023), there is a notable research gap in comprehen- 054

sively assessing MMIR models within the scientific 055

domain, specifically. Integrating both in-domain 056

and out-of-domain data in the pre-training phase 057

significantly boosts the performance of visual lan- 058

guage models (VLMs) on downstream tasks. How- 059

ever, most prior VLMs have focused exclusively on 060

generic topic information of the mundane events in 061

daily life, such as images depicting scenery and hu- 062

man activities, consequently overlooking data that 063

is pertinent to scientific domains such as elements 064

related to model architecture, illustrations of sci- 065

entific principles, and results of experiments. Due 066

to the substantial differences between the data dis- 067

tribution and characteristics between generic topic 068

data and scientific data, many VLMs may not have 069

an adequate ability to perform MMIR in the scien- 070

tific domain. Additionally, past table-related work, 071

such as table generation tasks, mainly focused on 072

textual representations of tables while overlooking 073

image-based representations of tabular data. This 074

presents problems for human-computer interaction, 075

as users may desire to input information in the form 076

of screenshots and expect an interactive system to 077

present results in a graphical format. 078

As shown in Figure 1, to address the identified 079

research gap, we introduce SciMMIR, a Scientific 080

Multi-Modal Information Retrieval benchmark. 081

SciMMIR is the first benchmark to comprehen- 082
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Figure 1: An illustration of the SciMMIR framework.

sively evaluate a model’s MMIR ability in the083

scientific domain. To build our data collection,084

we retrieve the figures, tables (in form of image),085

and their associated captions, from scholarly docu-086

ments available on arXiv, an open-access archival087

corpus, to construct image-text pairs. In order088

to comprehensively evaluate the cross-modality089

aligned representations learned by models, our090

SciMMIR benchmark defines the retrieval task as091

bi-directional, including searching the matched tex-092

tual caption in candidate pool with a given image093

(img→txt), and finding corresponding figure or094

table image from a caption (txt→img).095

The performance of VLMs across different types096

of data in the scientific domain is inconsistent,097

where a model may excel on data related to ex-098

perimental results but demonstrate average per-099

formance with regards to image-caption pairs of100

model architectures. If an overall improvement is101

sought for the performance of VLMs, it may not102

yield a noticeable enhancement to its capabilities103

specifically regarding model architectures. Con-104

sequently, such improvements do not necessarily105

translate into effective boosts to a VLM’s overall106

performance. Therefore, we annotate and cate-107

gorise the image-text pairs into three figure-caption108

and two table-caption subcategories based on their109

distinctive described content (such as experimental110

results, model architectures, and scientific princi-111

ples, etc.). Then we conduct fine-grained subset112

evaluation on subcategories in order to support113

targeted improvements to a model based on its per-114

formance in each subcategory, therefore potentially115

improving a model’s capabilities by using high-116

quality data in a certain subcategory with a relative117

decrease in computational cost.118

To explore the MMIR capabilities of our cho- 119

sen image captioning models and VLMs in scien- 120

tific domains, as well as different subcategories 121

, we conduct extensive experiments in both zero- 122

shot and fine-tuned settings across various subcate- 123

gories. We present our key insights as follows: 124

1. We reveal that MMIR tasks in the scientific 125

domain pose significant challenges for current 126

VLMs, which usually do not demonstrate ade- 127

quate performance in scientific domains. Fur- 128

thermore, after fine-tuning VLMs with data 129

specific to scientific domain, there is a marked 130

performance improvement , underlining the 131

effectiveness of domain-specific adaptation. 132

2. The results additionally suggest a distinction 133

between tasks involving the figure and table 134

subsets, with performance on the figure subset 135

being more effectively improved by scientific 136

data domain adaption, showing the general- 137

isability of the visual encoders. In contrast, 138

the performance of VLMs on the table subset 139

is relatively weaker, likely due to image-text 140

samples of tabular data seldom appearing dur- 141

ing pre-training for the VLMs. 142

3. Regardless of parameter size, the BLIP-2 se- 143

ries of models generally perform better on 144

SciMMIR than other pre-trained VLMs. This 145

improved zero-shot capability may be the 146

result of distinct pre-training tasks includ- 147

ing image-text matching and image-text con- 148

trastive learning, rather than standard lan- 149

guage modelling. 150

These findings underscore the importance of tai- 151

lored approaches for different data types within 152

the scientific MMIR framework. A more in-depth 153

exploration of these findings is given in §5. 154
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2 Related Work155

General Information Retrieval. Information156

Retrieval is a fundamental task within NLP, and has157

recently been facilitated by dense representation158

learning (Reimers and Gurevych, 2019; Karpukhin159

et al., 2020). More recently, the desire for uni-160

fied representations across tasks has become sig-161

nificant, with this line of research proposing to162

understand and evaluate task-agnostic representa-163

tions in a single representation space (Muennighoff164

et al., 2023; Asai et al., 2022; Su et al., 2022; Wei165

et al., 2023). In another vein, domain generali-166

sation has always been seen as a key weakness167

of IR models (Thakur et al., 2021). Through the168

subpar performance of general image-text mod-169

els on SciMMIR, we evidence that scientific IR,170

especially when multi-modal, remains an out-of-171

domain (OOD) task despite advancements in gen-172

eral information retrieval.173

Multi-modal Information Retrieval. In ear-174

lier multi-modal representation learning research,175

small-scale cross-modal retrieval datasets including176

MSCOCO (Lin et al., 2014) and Flickr30k (Plum-177

mer et al., 2015) have facilitated the alignment178

between visual and linguistic representations. Ef-179

forts have since shifted towards large-scale vision-180

language pretraining (Radford et al., 2021; Kim181

et al., 2021; Li et al., 2021; Jia et al., 2021; Yu et al.,182

2022), with these small-scale retrieval datasets, in183

turn, becoming the standard evaluation approach184

for such systems. Advancements in multi-modal185

representation alignment have also facilitated multi-186

modal retrieval-augmented generation (Chen et al.,187

2022; Yasunaga et al., 2022; Hu et al., 2023; Lin188

et al., 2023), and more recently, evaluating the189

unified cross-modal representations across diverse190

tasks has emerged as a prevalent trend (Wei et al.,191

2023).192

Scientific Document Learning. Scientific infor-193

mation retrieval has received moderate attention194

in NLP, with SciFact (Wadden et al., 2020) and195

SCIDOCS (Cohan et al., 2020) commonly incor-196

porated in popular zero-shot information retrieval197

benchmarks (Thakur et al., 2021). More complex198

tasks are proposed in this area, such as DORIS-199

MAE, a task to retrieve documents in response200

to complex, multifaceted scientific queries (Wang201

et al., 2023). In the multi-modal area, VQA (An-202

tol et al., 2015) presents another major approach203

in evaluating vision-language systems, concerning204

Subset Subcategory Number Len (words)

Train Valid Test Caption

Figure
Result 296,191 9,676 9,488 52.89
Illustration 46,098 1,504 1,536 38.44
Architecture 13,135 447 467 27.27

Table Result 126,999 4,254 4,229 27.23
Parameter 15,856 552 543 17.10

Total 498,279 16,433 16,263 43.19

Table 1: Statistics of the SciMMIR dataset.

in-depth visual grounding, rather than the use of 205

distributional priors (Agrawal et al., 2018). It is 206

in this area that work with a similar scope to ours 207

in the scientific domain, such as PlotQA (Methani 208

et al., 2020) and ChartQA (Masry et al., 2022), is 209

seen. Our proposed SciMMIR benchmark distin- 210

guishes itself from these existing works by offering 211

extensive coverage across annotations of figure and 212

table subcategories, a larger dataset size, and the 213

utilisation of the real-world data that is naturally 214

paired and therefore not reliant on costly human 215

annotation. 216

3 Dataset Construction 217

Data Collection. We collect the PDF files from 218

a 6 month period from arXiv via the official API.1 219

We use an open-source tool (Clark and Divvala, 220

2016) to locate the non-textual elements (i.e., fig- 221

ures and tables) in the papers and then extract the 222

corresponding caption texts. All tables and figures 223

are stored in the form of images, and we remove 224

the pairs that have empty captions. The aforemen- 225

tioned collection process results in the SciMMIR 226

dataset that comprises 530K image-caption sam- 227

ples, with the average length of captions in the 228

dataset being 43.19 words as shown in Table 1. 229

The dataset is split into training, validation, and 230

testing sets with 498, 279, 16, 433, and 16, 263 231

samples, respectively. As shown in Figure 2, the 232

SciMMIR benchmark covers a multitude of disci- 233

plines. Amongst these, 10 disciplines account for 234

more than 1%, such as Mathematics, Physics, and 235

Computer Science. This attests to the diversity of 236

our dataset and implies the presence of intricate 237

scientific knowledge within. 238

Subset and Subcategory Structure. To better 239

understand the performance of VLMs across vari- 240

ous data types within the scientific domain, we de- 241

fine a hierarchical architecture with two subsets and 242

1We request data submitted between May and October
2023 from https://info.arxiv.org/help/api.
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Figure 2: The ratio of different subject image-caption
data in SciMMIR.

five subcategories for the SciMMIR benchmark.243

Initially, we divide the data into two subsets, Tables244

and Figures, as both representations have distinct245

data distributions. Tables contain ample textual in-246

formation, whereas Figures predominantly utilize247

geometric shapes to elucidate scientific principles248

or reveal patterns within data. Furthermore, for249

tabular data, we further divide into two subcate-250

gories, Table-Parameter and Table-Result. This is251

performed as Table-Result data primarily serves252

to present experimental outcomes (i.e., numerical),253

whereas Table-Parameter data provides explana-254

tions of parameter meanings or specific numerical255

values (i.e., textual), and consequently both have256

different data type distributions. As for Figures,257

we consider those depicting experimental results,258

explaining model architectures, and illustrating var-259

ious scientific theories to contain different elements260

of commonsense knowledge. Therefore, the perfor-261

mance of models on these distinct data types may262

vary, leading us to categorise them into three sepa-263

rate subcategories. The finer-grained categorisation264

is performed in accordance with Table 2.265

Subset Subcategory Description

Figure

Architecture
Depicts scientific study frame-
works and conceptual designs.

Illustration
Illustrates complex scientific
concepts or data relationships.

Result
Visually presents scientific re-
search outcomes.

Table
Parameter

Details of key parameters and
variables in studies.

Result
Summarises and displays ex-
periment/study results.

Table 2: The hierarchical architecture for SciMMIR.

Data Annotation. In the process of data anno- 266

tation, we use manually constructed key phrases 267

to classify image-text sample pairs. Firstly, we 268

obtain keywords by observing unique words that 269

emerge in captions under different subcategories, 270

thus conducting an initial categorisation of the data. 271

Subsequently, to ensure the quality of our statis- 272

tical analysis, we randomly select 2000 images 273

from the test set and manually review the results 274

of the keyword-based classification based on the 275

criteria of whether the image within the image- 276

caption pairs cater to the description of its subcate- 277

gory. We then construct new keywords and remove 278

low-quality ones by analysing which words in the 279

caption result in misclassified examples. Finally, 280

we iteratively construct a higher-quality list of key- 281

words until the classification results of the extracted 282

2000 samples are deemed by manual evaluation as 283

having achieved the optimal categorisation results. 284

The subset and subcategory classification results 285

are shown in Table 1, providing a structured and 286

standardised basis for subsequent experiments. 287

4 Experiment 288

4.1 Retrieval Baseline 289

We evaluate a wide range of baseline models. 290

Drawing on the distributional gap between the sci- 291

entific and general domains highlighted previously, 292

we further illustrate the relationship between multi- 293

modal information retrieval performance in scien- 294

tific domains and distributions already learned by 295

the models. To this end, we collect information 296

about pre-training phase for baseline models in Ta- 297

ble 3 and present additional details in Appendix A. 298

Image Captioning Models As our baselines, we 299

present image-captioning models, including CLIP- 300

base (Radford et al., 2021) and BLIP-base (Li 301

et al., 2022), that have learned the pairing relation- 302

ship between images and the corresponding text 303

via a strong supervision signal. We evaluate these 304

image captioning models trained on general do- 305

main datasets (such as images related to scenery 306

and daily life events) in both zero-shot and fine- 307

tuned settings to investigate the need for scientific 308

domain adaption. We also introduce BERT (De- 309

vlin et al., 2018) as an alternative text encoder for 310

captioning (denoted "+BERT" in the tables), where 311

such ensemble baselines may reveal the influence 312

of the text encoders. 313
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Model Pre-training Data Pre-training Task Trainable & *Frozen Parameters
Domain Number Visual Textual Align

CLIP-base Internet Crawled 400M Contrastive 62M 63M /

BLIP-base COCO, VG, CC3M, CC12M, SBU,
LAION-400M 129M

Image-Text Contrastive, Image-Text
Matching, Language Modeling 25.5M 108M /

BLIP2-OPT-2.7B

COCO, VG, CC3M,
CC12M, SBU,
LAION-400M

129M

Image-Text Contrastive,
Image-Text Matching,
Image-grounded Text
Generation

*1.3B

*2.7B *2.7B

BLIP2-OPT-6.7B *6.7B *6.7B

BLIP2-FLAN-T5-XL *2.85B *2.85B

BLIP2-FLAN-T5-XXL *11.3B *11.3B

LLaMA-Adapter2-7B LAION-400M, COYO, MMC4, SBU,
CC3M, COCO

56.7M Fine-Tuning only *62M *7B 14M

Kosmos-2 GRIT 90M Language Modeling 0.3B 1.3B 19M

mPLUGw-OWL2
COCO, CC3M, CC12M, LAION-5B,
COYO, DataComp 400M Language Modeling 0.3B 7B 0.9B

LLaVA-V1.5-7B LAION, CC, SBU, ShareGPT 392M Language Modelling 0.3B 6.9B 0.02B

Table 3: The pre-training information of the baselines. "_" refers to non-public or not fully public data.

Visual Language Models. Additionally, we se-314

lect large visual language models (VLMs) trained315

for multi-modal tasks such as VQA to examine316

their zero-shot and fine-tuning MMIR performance317

in scientific domain. The details regarding our cho-318

sen VLMs are presented in Appendix B.319

4.2 Evaluation Protocol320

Task Definition. The SciMMIR benchmark321

presents a bi-directional MMIR task:322

• txt→img: The forward direction retrieval323

task, where given a corresponding text, the324

model must retrieve the correct image from a325

candidate set.326

• img→txt: The inverse direction retrieval327

task, where given an image, the model must328

retrieve the relevant text from a candidate set.329

For these two kinds of tasks, we all regard the330

samples of train, valid, and test data as candidates.331

Given an image imgi and a text textj , the rel-332

evance score R in the retrieval ranking is defined333

as the dot product between the visual and tex-334

tual representations of imgi and textj by R =335

Eimgi ·Etextj . In addition to assessing the model’s336

performance on the overall test set (denoted “ALL”337

in the tables), we evaluate retrieval models in dif-338

ferent subsets and subcategories to scrutinise their339

abilities. Specifically, we assess the model’s perfor-340

mance on five fine-grained subcategories (shown in341

Table 2) of the test set, as well as the performance342

on the Figure and Table subsets as a whole.343

Metrics. In this paper, we use the MRR and344

Hits@K metrics to assess the IR models’ perfor-345

mance on the SciMMIR benchmark, which are346

further described in Appendix D.347

Zero-shot We provide a zero-shot (ZS) setting 348

in the evaluation for all baselines. For the image- 349

captioning models, the learned features extracted 350

by the visual encoder and textual encoder are di- 351

rectly used, since they have been aligned to the 352

same representation space. For the visual language 353

models, the visual representation remains the same 354

but the representations from the textual module are 355

used depending on their architectures. For encoder- 356

decoder textual models such as BLIP2-FLAN-T5s, 357

we use the output features from the encoder as the 358

text features. For decoder-only textual models like 359

BLIP2-OPTs, we take mean pooling of outputs 360

from the last decoder layer. 361

Fine-tuning. We also provide evaluation of fine- 362

tuned (FT) versions of the relatively small mod- 363

els (CLIP-base and BLIP-base) and a large VLM 364

(BLIP2-FLAN-T5-XL) trained with our data. Dur- 365

ing fine-tuning, we employ standard contrastive 366

learning (Chen et al., 2020a) to maximise the rele- 367

vance score between positive text-image pairs and 368

minimise the relevance score between negative text- 369

image pairs within a batch of samples. In addition 370

to training the models on the entire training set, we 371

also train them on different subsets (e.g., Figure- 372

Result and Table-Parameter) of the training data to 373

investigate the modeling abilities in a fine-grained 374

manner. 375

5 Result Analysis 376

5.1 Overall Evaluation 377

Following the designed evaluation protocol, as 378

shown in Table 4, we report the baseline perfor- 379

mances in the universal set (ALL), Figure set, and 380

Table set. In this subsection, we mainly discuss the 381
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ALL Figure* Table*
txt→img img→txt txt→img img→txt txt→img img→txtModel

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CLIP-base 8.13 13.48 7.94 13.34 9.29 15.41 8.99 15.29 5.29 8.82 5.41 8.65
CLIP-base+BERT 2.47 5.01 3.11 5.85 2.99 6.09 3.80 7.10 1.19 2.42 1.44 2.85
BLIP-base 6.14 11.30 6.18 11.71 6.80 12.59 6.89 13.21 4.59 8.22 4.47 8.15
BLIP-base+BERT 11.51 20.09 12.69 21.77 13.01 22.67 14.12 24.18 7.93 13.98 9.31 16.08FT

BLIP2-FLAN-T5-XL 4.44 7.74 2.27 4.48 4.93 8.66 2.57 5.02 3.23 5.48 1.51 3.13

CLIP-base 0.419 0.719 0.364 0.670 0.458 0.767 0.421 0.787 0.310 0.586 0.219 0.375
BLIP-base 0.004 0.006 0.003 0.006 0.006 0.009 0.002 0.000 0.001 0.000 0.007 0.021
BLIP2-FLAN-T5-XL 0.025 0.031 0.012 0.025 0.028 0.035 0.016 0.035 0.020 0.021 0.003 0.000
BLIP2-FLAN-T5-XXL 0.053 0.105 0.004 0.000 0.059 0.104 0.004 0.000 0.040 0.105 0.003 0.000
BLIP2-OPT-2.7B 0.052 0.111 0.015 0.031 0.035 0.060 0.013 0.027 0.093 0.230 0.020 0.042
BLIP2-OPT-6.7B 0.002 0.006 0.002 0.000 0.003 0.008 0.002 0.000 0.002 0.000 0.002 0.000
LLaVA-V1.5-7B 0.006 0.012 0.002 0.000 0.008 0.018 0.002 0.000 0.002 0.000 0.002 0.000
mPLUG-Owl2-LLaMA2-7B 0.002 0.000 0.002 0.000 0.003 0.000 0.002 0.000 0.001 0.000 0.001 0.000
Kosmos-2 0.008 0.018 0.002 0.000 0.011 0.025 0.002 0.000 0.000 0.000 0.001 0.000

ZS

LLaMA-Adapter2-7B 0.040 0.061 0.002 0.000 0.056 0.085 0.002 0.000 0.001 0.000 0.004 0.000

Table 4: The main results of SciMMIR benchmark. * refers to average results in the Figure and Table subsets.

results regarding the bi-directional retrieval tasks382

and the subset performance.383

For both the forward (txt→img) and inverse384

(img→txt) tasks, we find that small models fine-385

tuned with our in-domain scientific image-text data386

generally demonstrate superior performance in all387

settings of the SciMMIR benchmark. As this shows388

the necessity of domain adaption for improvement389

in the SciMMIR task, our designed tasks remain390

challenging for most of the models. For tasks391

in either direction, many of the zero-shot large392

VLMs demonstrate insufficient performance, with393

the MRR and Hits@10 metrics, failing to surpass394

0.23% in the ALL setting. It is worth mentioning395

that the CLIP-base model is well-trained since its396

zero-shot performance is better than all other large397

VLMs with superior parameter sizes.398

The performance of the fine-tuned multi-modal399

models in information retrieval involving both fig-400

ures and tables is promising overall. However, the401

results indicate significantly higher performance402

on the Figure subset compared to the Table subset,403

suggesting the superior difficulty of the task of ta-404

ble retrieval. The lower scores on the table subset405

could be due to the scarcity of table-style images406

in the pre-training datasets and the lack of textual407

perception ability in the visual encoders.408

Our SciMMIR benchmark demonstrates the409

shortcomings of VLMs in our SciMMIR task and410

provides extensive high-quality MMIR data for sci-411

entific domains that could be used for fine-tuning412

VLMs in order to improve performance on this413

domain. Additionally, our experiments show that414

retrieving visual tables is challenging and requires415

thoroughly mining the semantic connections be-416

tween caption information and textual data within417

tables. For VLMs not adapted to the image-caption418

task in the scientific domain through pre-training 419

(such as BLIP), fine-tuning with a vanilla pre- 420

trained language model (such as BERT) can better 421

establish connections between visual tables and 422

captions due to captions for tables being a type of 423

textual information rarely encountered by VLMs 424

during their pre-training process. 425

5.2 Zero-Shot Analysis 426

To provide a more thorough analysis, we present 427

the zero-shot performance of the baselines across 428

different subcategories in Table 10 and Table 11 429

in Appendix F, where only the images or texts from 430

the same subcategory are considered as candidates. 431

Zero-shot txt→img. The selected large pre- 432

trained VLMs do not perform well on various sub- 433

categories in both the Figure and Table subsets. In 434

the subcategories of the Table subset, all models, 435

except CLIP-base, exhibit virtually no accuracy. 436

In the Figure subset, the BLIP2-FLAN-T5 series 437

of models show slightly better performance across 438

all subcategories of the Figure subset. This may 439

be attributed to the fact that the encoder part of 440

text encoder-decoder architecture is better able to 441

capture textual features. 442

Zero-shot img→txt. For the Figure subset, the 443

performance of all VLMs in the reverse direction 444

is slightly worse than that in the forward direction. 445

This indicates that the image-grounded text gener- 446

ation task of VLMs can enhance the model’s per- 447

formance in multi-modal retrieval for the forward 448

direction, while the performance in the reverse di- 449

rection is poorer. 450

5.3 Analysis on Fine-tuning Setting 451

Overall Analysis. As shown in Table 9 in Ap- 452

pendix E, we fine-tune the models using data of 453
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Model Training Data
Fig Architecture Fig Illustration Fig Result

txt→img img→txt txt→img img→txt txt→img img→txt
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CLIP-base

All 9.77 16.92 9.84 15.42 10.01 15.30 9.35 14.97 9.16 15.37 8.90 15.34
Fig-Architecture 5.60 8.35 6.11 8.14 2.61 4.95 2.95 5.01 2.50 4.02 2.35 4.18
Fig-Illustration 8.58 12.85 8.82 13.28 6.76 11.72 7.08 11.78 5.69 9.20 5.46 8.96
Fig-Result 9.24 15.42 9.76 14.99 8.58 14.19 8.86 14.26 8.79 14.10 9.05 14.79
Table-Parameter 2.67 4.50 3.04 3.85 1.78 3.19 2.42 4.49 1.82 2.99 1.55 2.74
Table-Result 3.12 5.78 3.31 5.35 1.91 3.91 2.33 4.49 2.58 4.26 1.48 2.80

CLIP-base+BERT All 2.30 4.93 2.76 6.42 3.12 5.53 3.59 6.97 3.01 6.23 3.88 7.16

BLIP-base

All 5.11 10.06 5.53 10.28 5.35 10.09 5.64 10.16 7.11 13.10 7.15 13.82
Fig-Architecture 0.04 0.00 0.06 0.21 0.02 0.00 0.03 0.07 0.03 0.06 0.02 0.01
Fig-Illustration 0.04 0.00 0.09 0.00 0.26 0.52 0.45 0.91 0.08 0.16 0.09 0.14
Fig Result 2.55 6.21 3.20 6.00 2.91 6.25 3.380 6.84 4.66 9.13 4.80 9.18
Table-Parameter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Table-Result 0.12 0.21 0.01 0.00 0.01 0.00 0.03 0.07 0.05 0.07 0.06 0.09

BLIP-base+BERT All 9.95 18.42 12.09 18.63 11.17 19.27 11.63 20.25 13.44 23.39 14.60 25.04

BLIP2-FLAN-T5-XL All 6.75 11.34 4.06 8.56 5.99 10.41 3.16 6.44 4.69 8.27 2.41 4.64

Table 5: The results of fine-tuning models on Figure subsets of our SciMMIR benchmark.

Model Training Data
Table Result Table Parameter

txt→img img→txt txt→img img→txt
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CLIP-base

All 5.40 9.01 5.52 8.82 4.45 7.37 4.55 7.37
Fig-Architecture 1.22 2.06 1.34 2.34 1.35 2.58 1.47 2.95
Fig-Illustration 1.42 2.70 1.79 3.14 1.93 2.95 2.60 4.42
Fig-Result 2.71 4.49 2.53 4.52 2.19 4.05 2.30 4.79
Table-Parameter 1.46 2.70 1.56 2.62 1.52 3.31 1.82 3.68
Table-Result 4.28 7.26 1.28 2.29 3.77 6.63 0.87 1.29

CLIP-base+BERT All 1.18 2.41 1.46 2.93 1.31 2.58 1.33 2.21

BLIP-base

All 4.77 8.42 4.54 8.23 3.16 6.63 3.99 7.55
Fig-Architecture 0.01 0.00 0.03 0.02 0.01 0.00 0.02 0.00
Fig-Illustration 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00
Fig-Result 0.70 1.32 0.65 1.16 0.32 1.29 0.56 0.74
Table-Parameter 0.01 0.02 0.01 0.00 0.02 0.00 0.06 0.00
Table-Result 0.92 1.80 0.92 1.82 0.83 0.74 0.52 1.10

BLIP-base+BERT All 8.17 14.35 9.70 16.48 6.01 11.05 6.19 12.89

BLIP2-FLAN-T5-XL All 3.11 5.29 1.33 2.90 4.22 6.99 3.00 4.97

Table 6: The results of fine-tuning models on Table subsets of our SciMMIR benchmark.

different categories and evaluate the performance454

regarding all samples in train, valid and test data455

as candidates. The results indicate that training the456

model only with data from a specific subcategory457

leads to a significant performance gap compared to458

the model fine-tuned with all the data. There are459

two main factors contributing to this. Firstly, the460

dataset size of a specific subcategory is relatively461

small. Secondly, there are significant differences in462

data distributions among different subcategories.463

The BLIP-base+BERT model performs the best464

across all fine-tuned settings, while the perfor-465

mance of the CLIP model decreases when its text466

encoder is replaced. Notably, merely fine-tuning467

the Q-Former parameters of BLIP2-FLAN-T5-XL468

to adapt the large VLM to the scientific domain did469

not yield as effective results as the smaller models.470

Consequently, there remains a need for efficiently471

fine-tuning small models to construct robust con-472

nections between the representations of the visual473

and textual modalities.474

The Impact of Subcategory Training Data. As475

shown in Table 5 and Table 6, we report the result476

on testing samples of specific subcategories, for the 477

sake of comprehensively investigating the impact 478

of different subcategory training data. 479

For BLIP, the model’s improvement on specific 480

test subcategories generally aligns with the subcate- 481

gories used for training, but its overall performance 482

on the samples from other subcategories is poorer. 483

This demonstrates the effectiveness of our annota- 484

tion in accurately clustering data points, and the 485

gaps among different subcategories. 486

As for CLIP, the models trained on different 487

subcategories consistently perform best in the Fig- 488

Architecture subcategory. We believe this is be- 489

cause the CLIP model has demonstrated a certain 490

level of performance on the SciMMIR dataset and 491

possesses a certain understanding of the data dis- 492

tribution within it. This suggests that solid pre- 493

training can more effectively facilitate the model 494

in adapting to the scientific domain, and further, 495

it can potentially promote the model’s learning of 496

commonalities among different subcategories of 497

data, thus enhancing its generalization capabilities 498

across various subcategories. 499
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Model Testing Data Fig-Architecture Fig-Illustration Fig-Result Table-Result Table-Parameters
txt→img img→txt txt→img img→txt txt→img img→txt txt→img img→txt txt→img img→txt

FT-CLIP-base

Fig Architecture 12.85 12.72 16.62 18.22 69.57 67.22 0.84 1.65 0.13 0.19
Fig Illustration 5.16 4.66 20.59 22.66 73.30 71.47 0.83 0.98 0.13 0.23
Fig Results 3.80 3.62 13.01 14.25 81.48 80.15 1.48 1.64 0.22 0.34
Table Results 0.12 0.15 0.24 0.70 4.16 4.97 85.68 84.29 9.81 9.89
Table Parameters 0.29 0.35 0.53 1.34 5.08 9.61 73.44 72.19 20.64 16.50

ZS-CLIP-base

Fig Architecture 7.34 6.72 28.54 23.06 59.42 66.62 4.20 2.70 0.49 0.90
Fig Illustration 3.99 3.68 30.56 23.44 61.74 71.04 3.40 1.47 0.31 0.36
Fig Results 4.12 4.17 24.31 19.59 63.04 73.52 7.74 2.29 0.79 0.44
Table Results 0.36 2.55 1.48 4.91 9.28 38.69 75.89 41.92 12.99 11.92
Table Parameters 0.26 3.00 2.38 7.38 9.52 42.43 74.40 34.68 13.44 12.50

Table 7: The accuracy and error analysis of CLIP models on our SciMMIR benchmark.

The model trained on Figure-Results data500

demonstrates the best performance across the entire501

Figure subset. One reason could be that the Figure-502

Result subset has the largest training proportion503

(54.02%) and text documents with relatively longer504

average length (52.93 words for Fig Result’s av-505

erage text length compared to the dataset’s overall506

average text length of 43.23 words) in the train-507

ing dataset. This highlights the impact of training508

dataset size and its length coverage of text (Xiao509

et al., 2023a) on the performance and generalisabil-510

ity of retrieval models.511

5.4 Text Encoder Generalisability512

To investigate the impact of text encoders on SciM-513

MIR, we substitute the text encoders in both BLIP-514

base and CLIP-base models with BERT-base. As515

shown in Table 9 in Appendix E, replacing the text516

encoder of BLIP with BERT results in a significant517

improvement, while that of CLIP experiences a de-518

cline. The reason for the performance change being519

opposite after replacing text encoder with BERT in520

both the CLIP and BLIP may be as follows:521

CLIP. With the uniformity promise of contrastive522

learning (Wang and Isola, 2020), the textual and523

visual embeddings are well-aligned in an isotropic524

space in the pre-training phase of CLIP, which is525

demonstrated by the zero-shot setting experiments.526

However, replacing the text encoder with a highly527

anisotropic vanilla text encoder (e.g., BERT) hin-528

ders the stable alignment with the already learned529

vision encoder (Xiao et al., 2023b). We hypothesise530

that freezing the vision encoder in early fine-tuning531

may help guide the replaced language model.532

BLIP. On the other hand, in comparison to CLIP,533

BLIP uses BERT as its text encoder during the534

pre-training phase. This structural consistency con-535

tributes to the model’s better adaptation to the sci-536

entific domain. However, the use of BERT may537

allow for the learning of a better representation of538

text to build an association between images and 539

text, as tables contain a lot of text information. 540

5.5 Accuracy and Error Analysis 541

For better analysis of the performance, we conduct 542

experiments on test data of different subcategories 543

and calculate the ratio of all subcategories in the 544

top 10 answers predicted by the fine-tuned CLIP 545

and vanilla CLIP. Retrieval answers that have the 546

same subcategory as the testing subcategories are 547

regarded as correct, and vice versa. 548

As shown in Table 7, due to the larger vol- 549

ume of data for candidates labelled as Fig-Results 550

and Table-Results (58.00% and 26.16%, calculated 551

through Table 1, respectively), the models tend to 552

predict samples from these categories as answers. 553

When comparing zero-shot and fine-tuned models, 554

it can be observed that fine-tuning leads to a de- 555

crease in the proportion of incorrect predictions 556

across almost all categories. 557

Compared with zero-shot results, the fine-tuned 558

models show the largest improvement in prediction 559

accuracy on the Figure-Architecture and Figure- 560

Result testing data. However, the increase in predic- 561

tion accuracy on the Table subset after fine-tuning 562

is not obvious, indicating that retrieving informa- 563

tion from Tables still poses significant challenges. 564

6 Conclusion 565

In summary, we introduce a novel benchmark and 566

a corresponding dataset designed to address the 567

gap in evaluating multi-modal information retrieval 568

(MMIR) models in the scientific domain. Addi- 569

tionally, we categorise the images into fine-grained 570

subcategories based on the characteristics of the fig- 571

ures and tables to facilitate a more comprehensive 572

evaluation and analysis. Our evaluation of zero- 573

shot and fine-tuned approaches, which we conduct 574

on extensive baselines within various subsets and 575

subcategories, offers valuable insights for future 576

research. 577
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Limitations578

Due to computational resource constraints, we only579

fine-tune BLIP2-FLAN-T5-XL on our SciMMIR580

dataset and did not investigate the fine-tuning ef-581

fects of other large VLMs on our benchmark. In582

this work, we find that BLIP+BERT could improve583

the model’s ability in our benchmark, specifically584

for the Table subset. However, we do not design ex-585

periments to explore which kind of models would586

be better suited to the replacement of the textual587

encoder with BERT or other language models.588

Ethics Statement589

The dataset used in our research is constructed us-590

ing publicly available data sources, ensuring that591

there are no privacy concerns or violations. We do592

not collect any personally identifiable information,593

and all data used in our research is obtained fol-594

lowing legal and ethical standards In the stage of595

designing key words and human evaluation clas-596

sification of image-text pair, we employed three597

graduate students experienced in natural language598

processing for human evaluation. We paid the grad-599

uate students about $13 per hour, well above the600

local average wage, and engaged in constructive601

discussions if they had concerns about the process.602

Despite we try our best efforts to ensure data603

quality, given the sheer volume of data, we cannot604

guarantee that all results and content within the sci-605

entific domain dataset are accurate. This inherent606

limitation could potentially lead to models generat-607

ing misleading or deceptive outputs in future use,608

necessitating further filtering in future work.609
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A The Baseline Pre-training Datasets907

We provide a reference list for the pre-908

training image-text datasets mentioned in Table 3.909

COCO (Lin et al., 2014), consists of over 200,000910

images across various categories including people,911

animals, everyday objects, and indoor scenes. The912

VG (Krishna et al., 2017) dataset consists of over913

100,000 images and covers a diverse range of visual914

concepts, including objects, scenes, relationships915

between objects, and other contextual information916

within images. CC3M (Sharma et al., 2018) con-917

tains over 3.3 million of images paired with de-918

scriptive captions, covering a wide range of topics919

and scenes. CC12M (Changpinyo et al., 2021) con-920

tains 12.4 million image-text pairs, which is 3 times921

larger in scale compared to CC3M with a higher922

diversity degree containing more instances of out-923

of-domain (OOD) visual concepts. SBU (Ordonez924

et al., 2011) contains over 1 million images with925

visually relevant captions. The dataset is designed926

to be large enough for reasonable image-based927

matches to a query and the captions are filtered928

to ensure they are visually descriptive and likely to929

refer to visual content. LAION-400M (Schuhmann930

et al., 2021) is an open dataset that consists of 400931

million image-text pairs, their CLIP embeddings,932

and KNN indices for efficient similarity search.933

It includes image URLs, corresponding metadata,934

CLIP image embeddings, and various KNN indices935

for quick search. LAION-5B (Schuhmann et al.,936

2022) is an open, large-scale dataset that consists of937

5.85 billion image-text pairs, with 2.32 billion pairs938

in English. COYO (Byeon et al., 2022) is a large-939

scale dataset containing 747M image-text pairs as940

well as many other meta-attributes to increase the941

usability to train various models. MMC4 (Zhu942

et al., 2023) consists of 101.2 million documents943

with 571 million images interleaved with 43 billion944

English tokens. It covers a wide range of every-945

day topics such as cooking, travel, technology, and946

more. GRIT (Peng et al., 2023) is a large-scale947

dataset of Grounded Image-Text pairs that consists948

of approximately 91 million images, 115 million949

text spans, and 137 million associated bounding950

boxes. DataCamp (Gadre et al., 2023) is a partici-951

patory benchmark that focuses on dataset curation952

for large image-text datasets. It provides a new can- 953

didate pool of 12.8 billion image-text pairs. The 954

dataset size in DataComp is a design choice and 955

not predetermined. 956

B Used Visual Language Models 957

• BLIP-2 (Li et al., 2023) series models use 958

a querying transformer module to address 959

the modality gap. We choose the models 960

grounded in large language models (LLMs), 961

BLIP2-OPT-2.7B, BLIP2-OPT-6.7B, BLIP2- 962

FLAN-T5-XL and BLIP2-FLAN-T5-XXL, as 963

our baselines. 964

• LLaVA-V1.5-7B (Liu et al., 2023) use two 965

simple methods, namely, an MLP cross-modal 966

connector incorporating academic task related 967

data such as VQA to improve the ability of 968

the LLaVA. 969

• LLaMA-Adapter2-7B (Gao et al., 2023) effi- 970

ciently fine-tunes additional parameters based 971

on the LLaMA model (Touvron et al., 2023), 972

where the extra expert models further boost 973

its image understanding capability. 974

• Kosmos-2 (Peng et al., 2023) aligns percep- 975

tion with language and adds the ability to 976

recognise and understand images based on 977

its multi-turn dialogue and reasoning capabili- 978

ties. Specifically, it achieves the capability of 979

grounding images, allowing it to interact with 980

inputs at the object level. 981

• mPLUGw-OWL2 (Ye et al., 2023) introduces 982

a Modality-Adaptive Module (MAM) into the 983

large language model. By adding a small num- 984

ber of parameters during the attention process, 985

it further learns a shared space for both vision 986

and language representations. 987

C Effects of Visual Encoder Resolution 988

In Table 4 for overall results, we compare the fine- 989

tuned BLIP with the default image preprocessing 990

dimensions of 384 and fine-tuned CLIP with the 991

default image preprocessing dimensions of 224, 992

where the results are relatively close. To make a 993

fairer comparison, we decrease the image dimen- 994

sions of BLIP-base model from 384 to 224 to be 995

the same as CLIP-base to conduct SciMMIR evalu- 996

ation, as described in Table 8. 997

It can be seen that the granularity of image pro- 998

cessing has a significant impact on model perfor- 999

mance. When using a lower preprocessing dimen- 1000
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Img Dim Model Training Dataset txt→img img→txt
MRR Hits@10 MRR Hits@10

224 BLIP-base

ALL 0.958 2.034 1.138 2.294
Fig Architecture 0.002 0.000 0.006 0.000
Fig Illustration 0.036 0.024 0.011 0.000
Fig Result 0.167 0.260 0.115 0.213
Table Result 0.408 0.757 0.368 0.686
Table Parameter 0.011 0.024 0.009 0.000

224 BLIP-base+BERT ALL 1.614 3.334 2.102 4.375

384 BLIP-base

ALL 6.14 11.3 6.18 11.71
Fig Architecture 0.02 0.04 0.02 0.02
Fig Illustration 0.07 0.14 0.1 0.17
Fig Result 3.26 6.48 3.4 6.5
Table Result 0.3 0.54 0.3 0.57
Table Parameter 0.01 0.01 0.01 0

384 BLIP-base+BERT ALL 11.51 20.09 12.69 21.77

Table 8: The averaged results of fine-tuning BLIP with different preprocessing image dimensions on ALL testing
candidates of our SciMMIR benchmark.

sion, the performance of BLIP is significantly de-1001

creased in both txt→img and img→txt tasks, us-1002

ing all training data settings. The performance of1003

the CLIP model, which uses the same image pro-1004

cessing dimension, is almost double that of BLIP.1005

Furthermore, although replacing the text encoder1006

of BLIP with BERT during training on lower-1007

dimensional (224) image preprocessed data im-1008

proved the performance of the model, there was1009

still a significant gap compared to CLIP. However,1010

when the text encoder of BLIP was replaced with1011

BERT during training on higher-dimensional image1012

preprocessed data, the performance of the model1013

was far superior to both CLIP and CLIP+BERT.1014

This suggests that certain image-text shared inter-1015

active information is stored in the visual representa-1016

tions, and higher image quality can help the models1017

better establish the connection between image and1018

text representations.1019

D MRR and Hit@K1020

• MRR stands for Mean Reciprocal Rank, and1021

is calculated as the reciprocal of the golden1022

label’s ranking in candidates. A higher MRR1023

score indicates better performance.1024

• Hits@K assesses the accuracy of the retrieval1025

system by checking whether the golden la-1026

bel is present within the top-k ranked results.1027

Hits@10 are used in our measurements.1028

E Fine-tuning Analysis1029

The effect of text-image matching task. As1030

shown in the Table 9, the BLIP-2 series of models1031

outperform other large VLMs in both Figure and1032

Model Training Dataset txt→img img→txt
MRR Hits@10 MRR Hits@10

CLIP-base

ALL 8.13 13.48 7.94 13.34
Fig-Architecture 2.23 3.67 2.22 3.86
Fig-Illustration 4.64 7.64 4.66 7.69
Fig-Result 6.98 11.31 7.13 11.74
Table-Parameter 1.74 2.99 1.68 2.94
Table-Result 3.01 5.13 1.54 2.85

CLIP-base+BERT ALL 2.47 5.01 3.11 5.85

BLIP-base

ALL 6.14 11.30 6.18 11.71
Fig-Architecture 0.02 0.04 0.02 0.02
Fig-Illustration 0.07 0.14 0.10 0.17
Fig-Result 3.26 6.48 3.40 6.50
Table-Parameter 0.01 0.01 0.01 0.00
Table-Result 0.30 0.54 0.30 0.57

BLIP-base+BERT ALL 11.51 20.09 12.69 21.77

BLIP2-FLAN-T5-XL All 4.44 7.74 2.27 4.48

Table 9: The results of fine-tuning models that are
trained on different types of training data.

Table subcategories, especially in the forward di- 1033

rection task. We believe that this is because BLIP-2 1034

incorporates the text-image matching task and the 1035

image-grounded text generation task during its pre- 1036

training process to better align textual and visual 1037

information. The experimental results demonstrate 1038

that other models solely relying on image-grounded 1039

text generation tasks may not yield effective rep- 1040

resentations for multi-modal retrieval. Therefore, 1041

dedicated pre-training for multi-modal retrieval still 1042

requires a primary focus on the text-image match- 1043

ing task. 1044

F Zero-shot Analysis 1045

CLIP-base and BLIP-base. As shown in the Ta- 1046

ble 10 and Table 11, the CLIP-base captioning base- 1047

line, which is specifically designed for image-text 1048

matching, shows certain generalisability in both for- 1049

ward and inverse retrieval across all subcategories 1050

within the Figure and Table subsets. In contrast, the 1051

BLIP-base model shows nearly no signs of effec- 1052
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Model
Fig Architecture Fig Illustration Fig Result

txt→img img→txt txt→img img→txt txt→img img→txt
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CLIP-base 1.351 1.927 1.074 2.141 0.750 1.237 0.458 0.716 0.373 0.643 0.386 0.738
BLIP-base 0.003 0.000 0.001 0.000 0.003 0.000 0.002 0.000 0.006 0.011 0.002 0.000
BLIP2-FLAN-T5-XL 0.010 0.000 0.003 0.000 0.010 0.000 0.004 0.000 0.032 0.042 0.019 0.042
BLIP2-FLAN-T5-XLL 0.056 0.214 0.003 0.000 0.037 0.065 0.005 0.000 0.062 0.105 0.004 0.000
BLIP2-OPT-2.7B 0.130 0.214 0.005 0.000 0.033 0.130 0.006 0.000 0.031 0.042 0.014 0.032
BLIP2-OPT-6.7B 0.001 0.000 0.001 0.000 0.009 0.065 0.001 0.000 0.002 0.000 0.002 0.000
LLaVA-V1.5-7B 0.003 0.000 0.004 0.000 0.003 0.000 0.004 0.000 0.009 0.021 0.002 0.000
Kosmos-2 0.123 0.428 0.008 0.000 0.011 0.000 0.004 0.000 0.006 0.011 0.002 0.000
mPLUG-Owl2-LLaMA2-7B 0.022 0.000 0.003 0.000 0.302 0.521 0.003 0.000 0.019 0.021 0.002 0.000
LLaMA-Adapter2-7B 0.001 0.000 0.001 0.000 0.008 0.000 0.002 0.000 0.002 0.000 0.002 0.000

Table 10: The zero-shot results of multimodal models on Figure subsets of our SciMMIR benchmark.

Model
Table Result Table Parameter

txt→img img→txt txt→img img→txt
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

CLIP-base 0.281 0.544 0.177 0.284 0.545 0.921 0.558 1.105
BLIP-base 0.001 0.000 0.007 0.024 0.000 0.000 0.003 0.000
BLIP2-FLAN-T5-XL 0.021 0.024 0.003 0.000 0.010 0.000 0.005 0.000
BLIP2-FLAN-T5-XLL 0.041 0.095 0.003 0.000 0.030 0.184 0.003 0.000
BLIP2-OPT-2.7B 0.076 0.213 0.010 0.024 0.228 0.368 0.101 0.184
BLIP2-OPT-6.7B 0.002 0.000 0.002 0.000 0.001 0.000 0.002 0.000
LLaVA-V1.5-7B 0.002 0.000 0.002 0.000 0.003 0.000 0.004 0.000
Kosmos-2 0.000 0.000 0.001 0.000 0.000 0.000 0.003 0.000
mPLUG-Owl2-LLaMA2-7B 0.001 0.000 0.004 0.000 0.002 0.000 0.005 0.000
LLaMA-Adapter2-7B 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000

Table 11: The zero-shot results of multi-modal models on Table subsets of our SciMMIR benchmark datasets.

tive learning on the scientific domain multi-modal1053

data. These models have strong MMIR abilities1054

for generic topic data, such as BLIP achieving an1055

IR@1 of 86.7% on the Flicker dataset in the zero-1056

shot setting, whilst BLIP does not surpass 0.05%1057

(MMR metric). This further demonstrates the chal-1058

lenges presented for MMIR in scientific domains.1059
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