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ABSTRACT

Neural pruning aims to compress and accelerate deep neural networks by identi-
fying the optimal subnetwork within a specified sparsity budget. In this work, we
study how to gradually sparsify the unpruned dense model to the target sparsity
level with a minimal performance drop. Specifically, we analyze the evolution of
the population of optimal subnetworks under continuous sparsity increments from
a thermodynamics perspective. We first reformulate neural pruning as an expected
loss minimization problem over the mask distributions. Then, we establish an ef-
fective approximation for the sparsity evolution of the optimal mask distribution,
termed the Sparsity Evolutionary Fokker-Planck-Kolmogorov Equation (SFPK),
which provides closed-form, mathematically tractable guidance on distributional
transitions for minimizing the expected loss under an infinitesimal sparsity in-
crement. On top of that, we propose SFPK-pruner, a particle simulation-based
probabilistic pruning method, to sample performant masks with desired sparsity
from the destination distribution of SFPK. In theory, we establish the convergence
guarantee for the proposed SFPK-pruner. In practice, our SFPK-pruner exhibits
competitive performance across various pruning scenarios.

1 INTRODUCTION

Overparameterized deep neural networks have shown remarkable success across diverse applications
(He et al., 2016; Howard et al., 2017; Redmon et al., 2016; Radosavovic et al., 2020; Dosovitskiy
et al., 2021; Touvron et al., 2021; Devlin et al., 2018; Zhang et al., 2015; Brown et al., 2020). How-
ever, their considerable parameter size significantly hinders their efficiency, posing challenges on
edge computing scenarios (Wu et al., 2016; Chen & Ran, 2019; Yao et al., 2017; Han et al., 2017;
Bhattacharya & Lane, 2016). To mitigate this issue, a variety of model compression methods (Han
et al., 2015; He et al., 2018; Hinton et al., 2015; Polino et al., 2018; Courbariaux et al., 2015; Chen
et al., 2019) have been established to reduce the model size and computation cost with minimal
performance drop. Neural pruning is one of the most mainstream methods due to its practicality
and effectiveness (Lee et al., 2019; Tanaka et al., 2020; Louizos et al., 2018; Chen et al., 2021;
Zhuang et al., 2020; Frankle & Carbin, 2019; Zhu & Gupta, 2018a). The objective of neural prun-
ing is to remove unimportant parameters of a dense model until a specified sparsity constraint is
met while minimizing the model loss to the greatest extent possible. In general, neural pruning is
challenging, as it requires identifying optimal subnetworks under a sparsity constraint, which is a
high-dimensional zero-one programming problem (Papadimitriou & Steiglitz, 1998).

Can we mitigate the difficulty of neural pruning if a set of performant subnetworks with slightly
lower sparsity is readily accessible? In practice, a performant subnetwork can be slightly sparsi-
fied with only a small performance drop through minor and careful modifications (Hu et al., 2016;
Srinivas & Babu, 2015). This implies the potential to derive the optimal subnetworks at the de-
sired sparsity level by making minor adjustments to slightly denser optimal subnetworks. Thus, we
are motivated to study how the population of optimal subnetworks evolves when there is a small
increase in sparsity. Following this sparsity evolution of the optimal subnetwork population, the
unpruned model, which initially consists of the optimal subnetwork population with zero sparsity,
can be gradually transformed into the desired optimal subnetworks at the target sparsity level. As a
result, we can prune the model by sampling performant subnetworks from this final population.
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How does the population of optimal subnetworks change as sparsity increases progressively? An
initial attempt to address this question was made in (Mo et al., 2023), which aims to approximate
the trajectory of a carefully constructed optimal subnetwork as sparsity increased from zero to one.
However, this approach only considers a single optimal subnetwork at each sparsity level, failing to
capture the entire population. Furthermore, it assumes that a global optimum could always be found
within the vicinity of an arbitrary optimal subnetwork, which is overly restrictive in practice.

Different from (Mo et al., 2023), our approach draws inspiration from thermodynamics, which stud-
ies the evolution of particle populations through time-dependent particle density functions. These
functions describe the probability distribution of the particle coordinate or velocities under random
forces (Kadanoff, 2000). Following this spirit, we study the sparsity evolution of the population of
optimal subnetworks from a probabilistic perspective. At each sparsity level, we apply the prob-
abilistic lifting technique (Wild et al., 2023) to redefine neural pruning as a problem of expected
loss minimization over the distribution space of subnetworks. From the thermodynamic perspective,
each subnetwork can be analogized to a particle, while a subnetwork distribution at a specific spar-
sity level represents a particle density pattern at a particular time. In this context, the expected loss
can be considered as the overall energy of the particle system. The optimal subnetwork distribution
that minimizes the expected loss effectively summarizes the quality of the entire optimal subnetwork
population by assigning a high weight to each optimum. Therefore, we can approximate the sparsity
evolution of the population of optimal subnetworks by tracking the sparsity evolution of the opti-
mal subnetwork distribution. Instead of solving the optimal subnetwork distribution from scratch at
the target sparsity level, this approach breaks down the process into a series of tractable transitions
between optimal subnetwork distributions at gradually increasing sparsity levels. As demonstrated
later, each transition step can be achieved by carefully refining the quality assignments of the micro-
scopic subnetworks over the support of the current sparsity level’s optimal distribution.

Contributions. 1) We establish a novel probabilistic pruning framework, termed the Sparsity Evo-
lutionary Fokker-Planck-Kolmogorov Equation (SFPK) (Section 4.2): conceptually similar to the
traditional Fokker-Planck-Kolmogorov (FPK) equation, which models the time evolution of parti-
cle density in thermodynamics, our proposed SFPK theory offers a closed-form, mathematically
tractable approach to approximate the evolution of the optimal subnetwork distribution as sparsity
gradually increases, serving as an analog to the FPK equation in probabilistic neural pruning. 2)
we develop SFPK-pruner, a principled pruning method based on particle simulation, which utilizes
SFPK to effectively sample performant subnetworks with desired sparsity (Section 4.3); addition-
ally, we prove the convergence of the SFPK-pruner in Proposition 3; 3) we conduct numerical ex-
periments showing that SFPK-pruner achieves competitive performance across various models and
datasets in both structured and unstructured pruning scenarios (Section 5).

2 RELATED WORK

Various pruning frameworks have been proposed. Score-based methods prune parameters based on
their importance scores. Different metrics Han et al. (2015); Tanaka et al. (2020); Wang et al. (2020);
Lubana & Dick (2021); Lee et al. (2019); Jacot et al. (2018); Rachwan et al. (2022) are proposed
as the score function to determine which weights to prune. However, such importance estimation is
shortsighted for pruning a lot of parameters at once. Regularization-based methods Louizos et al.
(2018); Chen et al. (2021); Zhuang et al. (2020) prune by converting the original binary constrained
optimization problem into a continuous unconstrained optimization problem and incorporating soft
sparsity penalties. However, the penalties are numerically unstable, making it hard to converge to
a desired sparsity level. Sparse-training methods Zhu & Gupta (2018a); Frankle & Carbin (2019);
Morcos et al. (2019); Tai et al. (2022) iteratively prune and fine-tune to approximate optimal sparse
subnetworks, yet the computational demands of jointly optimizing parameters and subnetworks limit
their scalability to large models and datasets.

Bayesian-based neural pruning approaches typically incorporate the distribution of model parame-
ters while imposing specific sparsity constraints. In Neklyudov et al. (2017); Louizos et al. (2017),
certain priors are utilized to push the posterior distribution of model parameters toward a sparse
distribution, facilitating subsequent pruning. In Zhao et al. (2019); Molchanov et al. (2017a), a
Bayesian neural network method called variational dropout is employed, where unimportant con-
nections are naturally discarded based on the dropout results. From a high-level perspective, these
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methods share similarities with our approach in terms of modeling the behavior of the mask distri-
bution. However, there are two distinctions: 1) we focus on a series of marginal distributions under
different sparsity levels rather than the entire parameter distribution spaces, and 2) we do not follow
the posterior estimation paradigm, but instead use a stochastic differential equation to describe the
evolution of the distribution.

3 PRELIMINARIES

Basic Notations. In this paper, the dense neural network to be pruned is parameterized by θ ∈ Θ ⊂
Rd, with Θ representing the parameter space of the d prunable parameters. The ℓp-norm of a vector
v is defined as ∥v∥p ≜ (

∑
i |v[i]|p)1/p, where v[i] denotes v’s i-th entry. The element-wise product

is denoted by ⊙. [n] ≜ {1, ..., n}. Br ≜ {m ∈ Rd : ∥m∥2 ⩽ r} denotes the Euclidean ball with
radius r > 0. We use the terms “probability measure” and “distribution” interchangeably without
specification. For any measurable set M ⊂ Rn, P(M) defines the collection of all probability
measures with a density function (w.r.t Lebesgue measure) supported on M . Dirac(·;m) denotes the
Dirac delta distribution concentrated on m. supp(π) denotes the support of distribution π. Unif(M)
denotes the uniform distribution over M . ν(·|·) : Rd×Rd 7→ R+ denotes a probability kernel, where
ν(·|m) ∈ P(Rd), and the mapping m 7→ ν(M |m) is measurable for any measurable M ⊂ Rd.
Thus, ν(·|m) represents a distribution conditioned on m. ν ∗ π ≜

∫
π(m − δ)ν(δ|m − δ)dδ

represents the convolution between a probability kernel ν and a distribution π. law(m) denotes the
distribution of the random variable m.

Neural Pruning. In neural pruning, given a dense neural network θ∗ and a parameter budget d′
(typically, d′ ≪ d), the objective is to identify the optimal subnetwork containing at most d′ non-zero
parameters while maximizing the model performance: minm∈{0,1}d L(m ⊙ θ∗), s.t. ∥m∥0 = d′.

Here, L(·) : Rd 7→ R+ is a model energy function to be minimized (such as evaluation loss,
predictive error, or generalization bound). m is a binary mask, where m[i] equals to 0 indicates that
the i-th parameter is pruned, and vice versa. We refer to 1 − d′/d as the target sparsity of neural
pruning. The population of optimal masks refers to the set of masks that achieve the minimum
model energy.

Probabilistic Lifting and Convexification. The probabilistic lifting and convexification technique,
initially devised to address the notorious nonconvexity in optimization problems (Wild et al., 2023,
Section 2), involves two key steps: 1) lifting the original Euclidean nonconvex optimization problem
to the distribution space, and 2) incorporating a convex regularizer, as outlined in equation 1.

min
x∈Ω

l(x)
Probabilistic lifting

=⇒ min
π∈P(Ω)

⟨l, π⟩ ≜
∫
Ω

l(x)π(dx)
Convexification

=⇒ min
π∈P(Ω)

⟨l, π⟩+ λR[π], (1)

where l(·) denotes the nonconvex objective function, Ω denotes the nonconvex feasible region,R[·]
denotes a convex functional, and λ > 0 is the regularization rate. This approach revises the original
optimization into a convex distributional optimization problem by substituting Ω with the convex
distribution space P(Ω), and replacing l(·) with the convex functional ⟨l, ·⟩+R[·]. Thanks to the in-
troduced convexity, the global optimum of equation 1 is proven to uniquely exist (Wild et al., 2023).
Furthermore, working within the distribution space provides greater convenience for conducting
continuous evolution analysis and convergence analysis. Admittedly, these conveniences come with
trade-offs: 1) The finite-dimensional optimization problem is lifted to the infinite-dimensional dis-
tribution space, which is numerically more challenging to address. 2) The convex regularizer intro-
duces a gap proportional to λ between the initial objective and the convexified one. To identify the
optimum of equation 1, one needs to resort to generalized variational inference methods (Knoblauch
et al., 2022), such as optimizing over a family of finite-dimensional parameterized distributions or
running infinite-dimensional gradient flow in the distribution space (Louizos & Welling, 2017; Wild
et al., 2024; Santana et al., 2021; Glaser et al., 2021; D’Angelo & Fortuin, 2021).

Sparsity Evolution of the Optimal Mask Distribution. With the probabilistic lifting and convex-
ification technique, we can feel free to analyze the sparsity evolution of the population of optimal
masks in a probabilistic pruning scenario. Let πt be the optimal mask distribution that minimizes the
probabilistic pruning objective at sparsity level t. In intuition, πt weights the quality of each mask
of sparsity t: it assigns large weights to highly performant masks while assigning minimal, or even
zero, weights to poorly performing masks. Thus, the dynamic of t 7→ πt is essentially characterized
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by the evolution of the assignment of mask quality under progressive sparsity increments. In prac-
tice, a performant mask can be slightly sparsified with a small performance drop through minor and
careful alterations. This suggests that, for a small ∆t-sparsity increment, one can derive πt+∆t from
πt through minor adjustments on the quality assignment scheme of πt. If πt is readily accessible,
deriving a local transition from πt to πt+∆t would be easier than solving πt+∆t from scratch. Sup-
pose the transition from πt to πt+∆t can be formulated as T [πt]

1. By informally taking ∆t → 0,
the infinitesimal evolution of πt can be derived as a distribution-valued differential equation:

πt+∆t − πt = T [πt]∆t
∆t→0
=⇒ ∂tπt = T [πt], t ∈ [0, 1− d′/d]. (2)

Note that the formulation of equation 2 bears a great similarity with the standard FPK equation
(Bogachev et al., 2015), which takes the form ∂tpt = A∗[pt]. Here, pt is the particle density at
time t, and A∗[·] is a differential operator determined by the microscopic particle dynamic. While
the standard FPK equation describes the time evolution of the particle density, equation 2 describes
the distributional transition πt under an dt-sparsity increment, making it the sparsity evolutionary
analog of the thermodynamic FPK equation. Therefore, we designate equation 2 as the Sparsity
Evolutionary Fokker-Planck-Kolmogorov Equation (SFPK). SFPK provides explicit guidance on
transforming π0 (the initial optimal mask distribution which is highly concentrated on the unpruned
model) to π1−d′/d, which enables us to sample performant masks within the parameter budget d′.
Next, we focus on formalizing the derivation of the SFPK and developing the SFPK-guided proba-
bilistic pruning algorithm.

4 METHODOLOGY

In this section, we first introduce Probabilistic Soft Neural Pruning (Definition 1), a convex prob-
abilistic relaxation that facilitates our derivation, with provable uniqueness and the existence of its
global optimal mask distribution at any sparsity level (Proposition 1). On top of that, we derive
SFPK as an approximation of the sparsity evolution of the optimal mask distributions (Proposition 2
and Proposition 3). Finally, we propose SFPK-Pruner, a particle simulation-based pruning method
(Algorithm 1) that enables us to sample performant masks from the destination distribution of SFPK.

4.1 PROBABILISTIC SOFT NEURAL PRUNING

There are two research issues for formally establishing SFPK following the derivations in equation 2.
Firstly, the minimal increment of the ℓ0-norm based discrete sparsity is 1/d, which hinders us from
taking the limit ∆t→ 0. Secondly, the optimal mask distribution undergoes drastic fluctuations even
under an infinitesimal sparsity increase, as there is no overlap between the sets of masks at different
sparsity levels. This leads to a spiky change in the support of πt, preventing us from analyzing the
continuous transition from πt to πt+dt. To address these two issues, we first generalize the discrete
sparsity to continuous values. We then relax the sparsity constraint to ensure smoother transitions in
mask distributions as sparsity increases. This yields the relaxed soft pruning problem:

min
m∈Mρ

t

Lε(m) ≜ L(Pε(m)⊙ θ∗), Mρ
t ≜

{
m ∈ Rd : s(m) ∈ [t, t+ ρ]

}
. (3)

Here, θ∗ is the dense model, t ∈ [0, 1] is the target sparsity, s(·) : Rd 7→ [0, 1] is a soften sparsity
function satisfying s(m) = 1 − ∥m∥0/d for ∀ m ∈ Mρ

t (e.g. 1 − ∥ · ∥pp/d). To ensure that the
model loss is evaluated on sparse masks, we polarize the soft mask to be ε-nearly binary using
the mask polarizer Pε proposed in Mo et al. (2023, Appendix A.3) 2. Thereby, an infinitesimal
change of the softened sparsity becomes well-defined, while the inherent sparsity of neural pruning
is preserved. As ε → 0 and ρ → 0, equation 3 recovers the original neural pruning problem,
making it an amenable proxy of neural pruning. In the sequel, the term “sparsity” refers to the
soft sparsity s(·) without further specification. We then augment the relaxed soft pruning problem
through probabilistic lifting and convexification.

1The formal expression of the distributional transition ∂tπt = T [πt] will be introduced in Proposition 2.
2Let Iε ≜ ([0, 1]\(−ε, ε))d, we set Pε(m) ≜ argminm′∈Iε∩M

ρ
t
∥m′ −m∥2.
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Definition 1 (Probabilistic Soft Neural Pruning). Following the previously introduced notations, the
Probabilistic Soft Neural Pruning problem at sparsity level t is defined as follows:

min
π∈P(Mρ

t )
⟨Lε, π⟩+ λR[π] ≜

∫
Mρ

t

Lε(m)π(dm) +
λ

2

∫
Mρ

t

κ(m,m′)π(dm)π(dm′), (4)

where λ > 0 is the regularization rate and κ(·, ·) : Rd × Rd 7→ R+ is a convex smooth kernel.
A practical choice of κ is the radial basis function kernel (Gretton et al., 2012), i.e. κ(m,m′) ≜
exp(−∥m−m′∥22/d).
Remark 1. equation 4 possess a thermodynamics interpretation: each mask m represents the particle
coordinate, π represents the particle location density, ⟨Lε, π⟩ quantifies the external potential that
acts on individual particles, and R[π] measures the pair-wise interaction energy, such as repulsive
energy. From this perspective, neural pruning is equivalent to identifying the equilibrium of the
particle system that minimizes the overall energy of the system. However, since the mask sparsity is
restricted to [t, t+ ρ], equation 4 is a constrained thermodynamics system.

As noted in (Arbel et al., 2019, Lemma 25), the convexity of the kernel regularizer κ(·, ·) implies the
convexity ofR[·]. Unlike the relaxed soft pruning equation 3, which aims to find the optimal masks
of the nonconvex objective Lε(·) at sparsity level t, equation 4 aims to identify the distributional
minimizer of the convex functional ⟨Lε, ·⟩ + λR[·] within the sparsity range [t, t + ρ]. As λ and ρ
tends to 0, equation 4 recovers the original polarized soft neural pruning, in the sense that any dis-
tribution over the mixture of optimal masks that minimizes equation 3 is an optimum of equation 4.
Therefore, equation 4 is indeed a probabilistic extension of the relaxed soft pruning problem while
inheriting its theoretical merits in continuous sparsity analysis. Moreover, equation 4 benefits from
the provable existence and uniqueness of its global minimizer, as demonstrated in Proposition 1.
The proof is detailed in Appendix D.1.

Proposition 1 (Existence and Uniqueness of the Optimal Mask Distribution (informal version of
Proposition 4)). Under some regularity conditions on model loss Lε(·), the global minimizer of
probabilistic soft neural pruning equation 4 uniquely exists. This global minimizer is denoted as πt,
and referred to as the “optimal mask distribution at sparsity level t”.

4.2 SPARSITY EVOLUTIONARY FOKKER-PLANCK-KOLMOGOROV EQUATION (SFPK)

Existing distributional gradient flow methods (Glaser et al., 2021; D’Angelo & Fortuin, 2021; Wild
et al., 2023) are primarily designed for unconstrained optimization problems and are not effective in
solving the probabilistic soft neural pruning problem equation 4 within the feasible sparsity range
of [t, t + ρ]. Therefore, an alternative approach is necessary to solve π1−d′/d in a more tractable
manner. As discussed in Section 1, we aim to approximate the evolution of optimal mask distribution
t 7→ πt as the sparsity t increases from 0 to 1− d′/d, following SFPK introduced in equation 2. By
gradually transforming π0 (which can be well approximated by the Dirac distribution concentrated
at the unpruned mask), we can achieve the desired π1−d′/d.

The derivation of SFPK in equation 2 hinges on determining the optimal distributional transition
operator T [·] : P

(
Rd
)
7→ P

(
Rd
)
. In essence, T [πt] is expected to push the support of πt to be

dt-sparser while ensuring a minimal increase in the expected pruning objective. To obtain T [πt], we
need to estimate πt+∆t based on πt. To this end, we employ a distributional localization technique,
which involves two steps: 1) localizing the feasible region to a vicinity of πt, and 2) linearizing the
functional objective of equation 4 at πt. Specifically, we consider candidate distributions that are
reachable from πt by a local transition:

P̂
(
Mρ

t+∆t

)
≜ {ν ∗ πt | supp(ν(·|m)) ∈ Brt∆t, ∀m ∈Mρ

t } ∩ P
(
Mρ

t+∆t

)
. (5)

Here, rt > 0 is the localization radius, and ν(·|·) is a transition kernel, where ν(·|m) denotes
a transition distribution conditioned on m. The convolution ν ∗ πt indicates that each candidate
distribution can be instantiated by mt + δ, where mt ∼ πt is the optimal probabilistic mask and
δ ∼ ν(·|mt) is a local transition conditioned on mt. The constraint in equation 5 ensures that δ is
a minor displacement with ∥δ∥2 ⩽ rt∆t. The intersection in equation 5 implies that δ pushes the
mask from Mρ

t to Mρ
t+∆t, resulting in a ∆t-sparsity increment. Additionally, based on the functional

first-order expansion (Ernzerhof, 1994), the probabilistic pruning objective L[·] ≜ ⟨Lε, ·⟩ + λR[·]
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can be linearized at πt as:

L[π] ≈ L[πt] +

〈
δ

δπt
L, π − πt

〉
= L[πt] +

〈
Lε + λµπt

, π − πt

〉
, (6)

where δ
δπt
L is the functional derivative of L at πt, and µπt

(·) ≜
∫
κ(·,m)πt(dm) is the κ-kernel

mean embedding of πt. We now introduce the one-step distributional transition problem as a local-
ized approximation of equation 4.
Definition 2 (Local Distributional Transition). Using the previously introduced notations, the Local
Distributional Transition problem associated with πt is defined as

min
ν

〈
Lε + λµπt

, ν ∗ πt − πt

〉
, s.t. ν ∗ πt ∈ P̂

(
Mρ

t+∆t

)
. (7)

We refer to the minimizer of equation 7, denoted by νt, as the optimal local transition kernel. The
following proposition establishes an approximation for νt. The proof is detailed in Appendix D.1.
Proposition 2 (Optimal Local Distributional Transition (informal version of Proposition 5 presented
in Appendix)). Under some regularity conditions on Lε(·) and s(·), the optimum of equation 7
is attained at νt(·|m) ≜ Dirac(·;T (m;πt)∆t) within an error tolerance of order O(∆t2). Let
g ≜ −∇Lε(m)− λ∇µπt

(m), s ≜ ∇s(m), and rt∥s∥2 > 1, T (m;πt) is given by

T (m;πt) ≜
s

∥s∥22
+

(
r2t ∥s∥22 − 1

∥s∥22∥g∥22 − (s⊤g)2

) 1
2

·
(
I− ss⊤

∥s∥22

)
g. (8)

Remark 2. In particular, T (m;πt)∆t represents the optimal local transition at the microscope.
equation 8 is a weighted sum of the ascending direction of sparsity s and the descending direction
of the overall energy g, where the second term is obtained by scaling the projection of g onto
the orthogonal space of s. When g aligns with s, the second term becomes zero and T (m;πt)
degenerates to s/∥s∥2; otherwise, it identifies the local displacement that best aligns with g with a
∆t-sparsity increment.

Noticeably, T (m;πt) depends on both the microscopic coordinate m and the macroscopic dis-
tribution πt at sparsity level t. As illustrated in Figure 1, following the optimal local transition,
πt+∆t can be obtained from πt by carefully adjusting each mask in support of πt towards the near-
est optimum at the sparsity level (t + ∆t). The readily accessible πt provides explicit guidance
for transitioning from πt to πt+∆t by refining the quality assignments of microscopic masks. This
process significantly reduces the intractability of solving πt+∆t from scratch at a macroscopic level.
As νt ∗ πt provides a satisfactory estimation of πt+∆t, we are now ready to derive the distributional
transition T [·] in equation 2 and establish the SFPK. The proof is detailed in Appendix D.1.
Proposition 3 (Sparsity Evolutionary Fokker-Planck-Kolmogorov Equation (informal version of
Proposition 6)). Under some regularity conditions on Lε(·) and s(·), by taking ∆t → 0, the se-
quence {π̃k∆t} constructed by π̃t+∆t ≜ νt ∗ π̃t converges weakly to the Sparsity Evolutionary
Fokker-Planck-Kolmogorov Equation (SFPK), denoted by ∂tπt = −∇ · [T (·;πt)πt], where ∇ · [·]
is the divergence operator and T (·;πt) is the optimal local transition defined in Proposition 2.
Remark 3. Proposition 3 provides explicit guidance on minimizing the overall energy under dt-
sparsity increment: at sparsity level t, the optimal local transition induces a vector field T (·;πt)πt;
to minimize the overall energy while arriving Mρ

t+dt, the change in density πt(m) should equal the
amount of T (·;πt)πt-flux crossing m, which is equivalent to the divergence of −T (·;πt)πt at m.

4.3 SFPK-GUIDED PRUNING VIA PARTICLE SIMULATION

As discussed in Section 1, to conduct neural pruning, one needs to sample performant masks from
π1−d′/d, the destination distribution of the SFPK. However, despite SFPK enjoys an exact form,
solving t 7→ πt and sampling from π1−d′/d remain challenging. Thanks to stochastic analysis
theory, we show that the SFPK is associated with a McKean-Vlasov process (Veretennikov, 2006,
Equation 3.1), denoted by (mt)t∈[0,1], satisfying dmt = T (mt, law(mt))dt and law(mt) = πt

(see Appendix D.2). Thereby, the task of sampling masks from π1−d′/d is reduced to a stochastic
process simulation problem, which can be effectively accomplished by simulating a finite interacting
mask particle system.

6
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Algorithm 1 SFPK-pruner

1: Input: target model θ∗, target bud-
get d′, localization radius rt, particle
number n, simulation steps K.

2: Output: a performant binary mask
m̂.

3: t← 0, ∆t← (1− d′/d)/K.
4: Initialize mi

t ← 1, i = 1, ..., n.
5: for k = 1 to K do
6: π̂t ← Unif({mt

i}ni=1)
7: for i = 1 to n do
8: mi

t+∆t ←mi
t + T (mi

t; π̂t)∆t
9: end for

10: t← t+∆t
11: end for
12: m̂← topd′

(∑n
i=1 m

i
t

)
13: return m̂

s

Figure 1: Illustration of the optimal local transition.
Each white dot denotes a mask particle, and each blue
dot denotes the local optimum of Lε. The black curves
denote the density function of πt and πt+∆t that are
highly concentrated on the blue optima.

To achieve this, we propose the SFPK-pruner, which is a particle simulation-based probabilistic
pruning algorithm. As outlined in Algorithm 1 (a detailed version is presented in Algorithm 2 and
Algorithm 3 in Appendix A.1), the SFPK-pruner aims to simulate the evolution of t 7→ πt using the
evolution of the uniform distribution of n interacting mask particles. At sparsity level t, each mask
particle is updated following dmi

t = T (mi
t; π̂t)dt, where π̂t denotes the uniform distribution over

{mi
t}ni=1. Each gradient term in equation 8 is evaluated based on a mini-batch stochastic gradient.

As the sparsity increases from 0 to 1−d′/d, the empirical distribution π̂t turns out to be an effective
approximation of π1−d′/d. Finally, we average over the empirical masks and prune the parameters
associated with the smallest entries of the averaged mask. We refer the readers to Appendix A.1 for
a detailed complexity analysis on SFPK-pruner.

In intuition, the SFPK-pruner can be interpreted as running an interacting ensemble of n mask tra-
jectories with increasing sparsity. While each mask is pulled by an attraction force (blue arrows in
Figure 1) from the local optimum of the next sparsity level, the interaction energy R[·] introduces
repulsive forces (red arrows in Figure 1) between pairs of trajectories, which encourages the trajec-
tories to explore diverse optima. This exploration effect is further enhanced by the gradient noise
induced by the mini-batch gradient computation. In practice, our SFPK-pruner is a model-agnostic
method since it does not rely on a specific formulation of the model loss with respect to the model
parameters and masks. Additionally, one can implement the mask variable as either filter masks,
channel masks, or node masks to conduct structured pruning with desired granularity.

5 EXPERIMENTS

We evaluate our SFPK-pruner for unstructured and structured pruning in one-shot and gradual prun-
ing settings across various deep vision models. The evaluation process of each pruning method
involves 3 steps: 1. Prune the well-trained target network θ∗ to a target sparsity level. 2. Retrain
the pruned model for a fixed number of epochs until convergence. 3. Report the averaged prediction
accuracy over the last few retraining epochs. The experiment settings are detailed in Appendix A.2.

5.1 EXPERIMENTS ON CIFAR-100

We conduct a comparison of the one-shot pruning performance of our SFPK-pruner against several
competitive and popular baseline methods: magnitude pruning (Han et al., 2015), SNIP (Lee et al.,
2019), SynFlow (Tanaka et al., 2020), GraSP (Wang et al., 2020) and PSO (Mo et al., 2023) on
CIFAR-100 (Krizhevsky, 2009). We evaluate the pruning performance of each method at various
sparsity levels on 3 representative models: ResNet-20 (He et al., 2016), VGG16-bn (Simonyan
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& Zisserman, 2015) and WRN-20 (Zagoruyko & Komodakis, 2016). For all experiments, we set
λ = 0.2, n = 10, and K = 100 for SFPK-pruners.

For unstructured pruning, as shown in Figure 2, our SFPK-pruner achieves either the best or compa-
rable performance across all the architectures and sparsity levels. Even when ranking the averaged
masks of all parameters globally, our SFPK-pruner demonstrates significant performance improve-
ments in highly sparse scenarios. This empirical evidence confirms its ability to prevent layer col-
lapse (i.e., eliminating an entire layer) in extreme compression scenarios (Tanaka et al., 2020). We
further compare the channel pruning performance of the baseline methods in Figure 2. Once again,
our SFPK-pruner demonstrates competitive performance across all three models and sparsity levels,
indicating its capability to generate high-quality structured masks.
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Figure 2: Top-1 accuracy (%) of one-shot pruning on CIFAR-100 over 3 random runs.

Table 1: We report the top-1 accuracy (%) of one-shot unstructured pruning without any retraining
on ImageNet-1K. The top-1 accuracy of the unpruned models is reported in the second row. Boldface
indicates the highest top-1 accuracy of each sparsity level.

Model MobileNet-V1 (72.00) ResNet-50 (77.01)

Sparsity Mag SNIP SynFlow WF PSO SFPK (ours) Mag SNIP SynFlow WF PSO SFPK (ours)

75% 49.58 4.08 0.06 60.95 48.47 61.57 58.25 5.87 1.08 67.02 67.04 69.69
80% 36.44 0.99 0.10 52.65 44.43 56.71 42.97 1.54 0.54 58.72 63.38 67.42
84% 19.40 0.44 0.09 41.10 31.61 51.31 24.03 0.68 0.34 46.75 58.98 63.38
87% 5.77 0.29 0.11 25.21 27.30 47.40 9.20 0.36 0.19 32.21 54.25 59.71
90% 0.72 0.18 0.11 12.56 20.53 44.06 3.72 0.39 0.15 17.48 49.08 55.48

5.2 EXPERIMENTS ON IMAGENET-1K

One-shot Pruning. We compare the one-shot unstructured pruning effectiveness of our SFPK-
pruner against two strong baselines, magnitude pruning (Han et al., 2015) and WoodFisher (denoted
by WF) (Singh & Alistarh, 2020), on the ImageNet-1K benchmark (Deng et al., 2009) using two
representative architectures: ResNet-50 (He et al., 2016) and MobileNet-V1 (Howard et al., 2017).
For each baseline method, we directly prune the model to each density level without any retraining,
and then report the resulting top-1 accuracy. For SFPK-pruner, we only apply it once to generate
n mask trajectories terminating at 90% sparsity. We then collect intermediate checkpoints of these
mask trajectories at various sparsity levels and prune the model accordingly based on the averaged
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mask at each intermediate sparsity level without any retraining. We ran the SFPK-pruner on all
the experiments with λ = 0.2, n = 10, and K = 150. As shown in Table 1, our SFPK-pruner
consistently outperforms other baselines at all sparsity levels. This validates the effectiveness of our
proposed SFPK in approximating the sparsity evolution of the optimal mask distribution. Notably,
the computation cost of running the SFPK-pruner with a batch size of 256 for n×K = 1500 steps is
equivalent to that of only 0.3 epoch of retraining on ImageNet. Thus, the particle simulation-based
SFPK-pruner enables us to sample performant masks with a modest number of particles, avoiding
excessive overhead.

We also evaluate the one-shot structured channel pruning performance of our SFPK-pruner on the
transformer-based DeiT-T architecture (Touvron et al., 2021) against the state-of-the-art pruned
transformer, including SCOP (Tang et al., 2020), HVT (Pan et al., 2021), UVC (Yu et al., 2022b),
WDPruning (Yu et al., 2022a), and X-Pruner (Yu & Xiang, 2023). We apply the SFPK-pruner to
prune the model to 50% sparsity with λ = 0.2, n = 10, K = 1000. Then, we retrain the pruned
model for 100 epochs following (Yu & Xiang, 2023). As shown in Table 2a, our SFPK-pruner
achieves competitive top-1 accuracy compared to baseline methods within a comparable FLOP bud-
get. This showcases the efficacy of our SFPK-pruner in structured pruning for transformers.

Table 2: For each experiment, we report the top-1 accuracy (%) of the pruned model. In Table 2b
and Table 2c, we further report the relative performance drop (%) compared to the dense model.

(a) One-shot structured pruning on DeiT-T.

ImageNet-1K One-shot Structured Pruning

DeiT-T Acc@1 Acc@5 FLOPs (%)

Unpruned 72.2 91.1 100.0

SCOP 68.9 89.0 61.5
HVT 69.7 89.4 53.8
PSO 69.9 89.4 52.1
WDPruning 70.3 89.8 53.8
UVC 70.6 - 39.1
X-Pruner 71.1 90.1 49.2
SFPK (ours) 71.6 90.3 51.7

(b) Gradual pruning on MobileNet-V1.

ImageNet-1K Gradual Unstructured Pruning

MobileNet-V1 Dense Pruned Rel. Drop Sparsity

Incremental 70.60 67.60 -4.25 74.11
STR 72.00 68.35 -5.07 75.28
Mag 72.00 69.90 -2.92 75.28
PSO 72.00 69.16 -3.95 75.28
WF 72.00 70.09 -2.65 75.28
SFPK (ours) 72.00 69.79 -3.07 75.00

Incremental 70.60 61.80 -12.46 89.03
STR 72.00 62.10 -13.75 89.01
Mag 72.00 63.02 -12.47 89.00
PSO 72.00 63.64 -11.61 90.00
WF 72.00 63.87 -11.29 89.00
SFPK (ours) 72.00 64.10 -10.97 90.00

(c) Gradual pruning on ResNet-50.

ImageNet-1K Gradual Unstructured Pruning

ResNet-50 Dense Pruned Rel. Drop Sparsity

DSR 74.90 71.60 -4.41 80.00
Incremental 75.95 74.25 -2.24 73.50
DPF 75.95 75.13 -1.08 79.90
GMP + LS 76.69 75.58 -1.45 79.90
VD 76.69 75.28 -1.84 80.00
RIGL + ERK 76.80 75.10 -2.21 80.00
SNFS + LS 77.00 74.90 -2.73 80.00
STR 77.01 76.19 -1.06 79.55
PSO 77.01 75.84 -1.52 80.00
DNW 77.50 76.20 -1.68 80.00
WF 77.01 76.76 -0.32 80.00
CrAM 77.3 75.80 -1.94 90.00
SFPK (ours) 77.01 76.18 -1.26 80.00

Mag 77.01 75.15 -2.42 90.00
GMP + LS 76.69 73.91 -3.62 90.00
VD 76.69 73.84 -3.72 90.27
RIGL + ERK 76.80 73.00 -4.95 90.00
SNFS + LS 77.00 72.90 -5.32 90.00
STR 77.01 74.31 -3.51 90.23
PSO 77.01 74.63 -3.09 90.00
DNW 77.50 74.00 -4.52 90.00
WF 77.01 75.21 -2.34 90.00
CrAM 77.3 74.70 -4.66 90.00
SFPK (ours) 77.01 75.24 -2.30 90.00

Gradual Pruning. To further demonstrate the effectiveness of our SFPK-pruner, we evaluate its
gradual pruning performance on the pre-trained ResNet-50 and MobileNet-V1 models provided in
(Kusupati et al., 2020). We apply the SFPK-pruner to gradually prune the model to 90% sparsity
within 10 prune-and-retrain loops. Specifically, the target sparsity and the number of retraining
epochs of each pruning shot increase exponentially, while the total retraining epochs are kept at 100
to ensure a fair comparison with other baseline methods including Mag (Han et al., 2015), Incremen-
tal (Zhu & Gupta, 2018b), DPF (Lin et al., 2020), GMP+LS (Gale et al., 2019), VD (Molchanov
et al., 2017b), RIGL+ERK (Evci et al., 2020), SNFS+LS (Dettmers & Zettlemoyer, 2020), STR
(Kusupati et al., 2020), DNW (Wortsman et al., 2019), WF (Singh & Alistarh, 2020), PSO (Mo
et al., 2023), and CrAM (Peste et al., 2023). We refer the reader to Appendix C for additional ex-
periments under different training budgets and pretrained checkpoints. We fix λ = 0.2, n = 10,
K = 150 for each pruning shot. In Table 2b and Table 2c, our SFPK-pruner demonstrates decent
performance compared to various competitive pruning baselines. Notably, the intermediate sparsity
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Figure 3: Top-1 accuracy (%) for each experiment. The grey horizontal dashed line indicates the
performance of iterative magnitude pruner (Zimmer et al., 2022) under the same settings.

checkpoints of our SFPK-pruner undergo fewer retraining epochs (as the total retrain epochs are
fixed to 100) than other baseline methods. This validates the effectiveness of our SFPK in guiding
the gradual sparsification of the model.

5.3 ABLATION STUDIES

Ablation on the Regularization Rate λ. As shown in Definition 1, the convexification technique
inevitably introduces a small gap proportional to λ between the original pruning objective and the
convexified one. To test the sensitivity of SFPK-pruner’s performance to λ, we implement the one-
shot SFPK-pruner with different λ values to compress a pretrained ResNet-20 to 95% sparsity on
CIFAR-100. As shown in Figure 3 (top), our SFPK-pruner is robust against various λ values and
performs well even with small λ. We hypothesize that this is because we use mini-batch stochastic
gradients to approximate the gradient terms in equation 8, implicitly introducing gradient noise that
acts as a repulsive random force, serving as a surrogate for the convex regularizer.

Ablation on the Mask Particle Simulation Scheme. According to Algorithm 1, our SFPK-pruner
relies on numerically simulating the stochastic process dmt = T (m, law(mt))dt using n interact-
ing mask particles. The discretization of the sparsity horizon (controlled by simulation steps K)
and the spatial horizon (controlled by n) are crucial to SFPK’s performance. We apply a one-shot
SFPK-pruner with various (K,n) values to compress a pretrained VGG16-bn to 98% sparsity on
CIFAR-100. Figure 3 (bottom) shows that larger (K,n) leads to finer simulation resolution and
higher performance. In practice, our SFPK-pruner effectively approximates the optimal mask distri-
bution’s sparsity evolution with n ⩾ 4 and K ⩾ 50.

6 CONCLUSIONS

In this paper, we analyze the dynamics of the population of optimal neural pruning masks as sparsity
increases. We propose the Sparsity Evolutionary Fokker-Planck-Kolmogorov Equation (SFPK) as
an approximation for the evolution of mask distribution. Additionally, we introduce a probabilistic
pruning method called SFPK-pruner, which uses an interacting mask particle system to sample
performant masks at desired sparsity levels. The acceleration and scaling of SFPK-pruner for larger
models will be addressed in future work.
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A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION DETAILS OF SFPK-PRUNER

Implementation of SFPK-pruner. A detailed implementation of the SFPK-pruner (Algorithm 1)
is shown in Algorithm 2. A PyTorch implementation is attached in Algorithm 3.

Notably, the mini-batch gradients involved in Algorithm 2 is crucial for mask particles’ simulation.
In theory, the SFPK dynamic should be initialized at π∗

0 , the optimal mask distribution within Mρ
0 .

Since ρ > 0, π∗
0 is closed to, but not identical to, the delta distribution centered on the fully dense

mask. In practice, we approximate π∗
0 by running SFPK with stochastic mini-batch gradient from

the delta distribution at the fully dense model. During the SFPK particle simulation process, the
stochasticity of the mini-batch gradients enhances robustness and stability in sampling, while also
encouraging the exploration of diverse mask particles.

Complexity analysis. As shown in Algorithm 3, the extra computation is SFPK prune(). It
consists of n × K inner SFPK steps. Each SFPK step includes one forward-backward pass on a
mini-batch (to calculate g) and the computation of sparsity gradient s, transition trans, and mask
update. Let d be the number of parameters of the model and s(m) = 1 − ∥m∥22/d be the soft
sparsity function, s can be computed in closed-form in O(d). Computing trans evolves only
inner-products with O(d) complexity, and the mask update also has a complexity of O(d). The
forward-backward pass dominates the cost of one SFPK step. The cost of one SFPK prune()
call equals the cost of “training the model for n×K mini-batches” plus a marginal O(nKd) inner-
product computation.

In our ImageNet experiments, we set n = 150, K = 10, and batch-size = 256. Thus, each
SFPK prune() call is as cheap as 1, 500 training steps, which equals 0.3 epochs (1 epoch of
ImageNet has 1, 281, 167/256 ≈ 5000 batches). As we perform 10 prune-and-retrain iterations, the
total SFPK overhead is as inexpensive as merely 0.3 × 10 = 3 additional training epochs. This is
marginal when compared to the retraining process(100-epoch) of the baseline. In Table 12, Table 14
and Table 16, we compare the training and inference FLOPs of SFPK with other baselines.

Constraints of SPFK-pruner. Our SFPK works effectively when the target model is “rational,”
meaning pruning the model usually increases the loss (i.e. harms the performance) rather than
decreases it (i.e. improves the performance). For instance, an adversarially trained model (e.g.,
trained to maximize task loss) is considered “irrational”, as nullifying some parameters may reduce
the task loss. In this case, applying SFPK to this model can still progressively improve its accuracy
as sparsity increases, because the SFPK update (equation 8) always pushes the particles towards
smaller loss. However, the SFPK trajectory may NOT converge to the true optimal mask distribution
dynamic t 7→ πt, which may lead to suboptimal results.

In intuition, this is because the dense mask m = (1, ..., 1) in this scenario is no longer the optimal
mask across all sparsity levels, and it fails to guide the distributional transition of the optimal mask.
Therefore, the SFPK trajectory may diverge from t 7→ πt as it gets lost from the beginning t = 0.
In theory, SFPK might fail to approximate t 7→ πt as the assumptions (A1) and (A2) in Proposition
4 are violated. Hence, the convergence theorem no longer holds. We recommend applying SFPK to
sufficiently trained “rational” models (e.g. trained to convergence), where the dense mask is likely
to be close to the optimal mask across all sparsity levels.

A.2 IMPLEMENTATION OF PRUNING EXPERIMENTS

Unstructured and Structured Pruning. The only difference between the unstructured and struc-
tured pruning is the granularity of pruning. In unstructured pruning, each parameter is prunable.
In contrast, structured pruning targets substructures of the neural network, such as all the weights
associated with a kernel, all the weights associated with a channel, or all the weights associated with
an attention head. In this paper, we only consider structured channel pruning, where the weights
bonded to a particular channel are governed by a single pruning mask. For pruning methods initially
devised for unstructured pruning, we adapt them to the structured pruning scenario by calculating
the importance score of a channel based on the sum of the importance scores of all its associated
weights.
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One-shot and Gradual Pruning. We consider a pruning shot that involves three steps: 1. Prune
the target model θ∗ to the target sparsity level t. 2. Retrain the pruned model for N epochs to regain
performance. 3. Evaluate and report the top-1 predictive accuracy of the retrained model. Given a
target sparsity level t, the one-shot pruning procedure involves a single pruning step. In contrast,
the gradual pruning procedure consists of multiple pruning steps, with each step compressing the
model toward a pre-specified intermediate sparsity level until the target sparsity is achieved. These
intermediate sparsity levels represent the sparsity schedule. We use an exponential sparsity schedule
across all the gradual pruning experiments: for a T -shot gradual pruning experiment, the i-th inter-
mediate sparsity level is ti/K . Thus, the configuration of a one-shot or gradual pruning experiment
is characterized by the pruning method and the retraining scheme, which includes the epoch amount,
learning rate schedule, batch size, and optimizer. The configurations of all pruning experiments are
elaborated in Table 3 and Table 4.

B FULL EXPERIMENT RESULTS

In this section, we present the complete experimental results from Section 5, including error bars
representing standard deviations, along with results from additional settings. All reported results
are based on 3 independent trials, following the experimental setup outlined in Appendix A.2. The
standard deviations of the gradual pruning results our SFPK-pruner are reported in Table 5.

Table 5: For each experiment, we report the top-1 accuracy (%) of the pruned model. In Table 5b
and Table 5c, we further report the relative performance drop (%) compared to the dense model.

(a) One-shot structured pruning on DeiT-T.

ImageNet-1K One-shot Structured Pruning

DeiT-T Acc@1 Acc@5 FLOPs (%)

Unpruned 72.2 91.1 100.0

SCOP 68.9 89.0 61.5
HVT 69.7 89.4 53.8
PSO 69.9 89.4 52.1
WDPruning 70.3 89.8 53.8
UVC 70.6 - 39.1
X-Pruner 71.1 90.1 49.2
SFPK (ours) 71.6 (0.2) 90.3 (0.1) 51.7

(b) Gradual pruning on MobileNet-V1.

ImageNet-1K Gradual Unstructured Pruning

MobileNet-V1 Dense Pruned Rel. Drop Sparsity

Incremental 70.60 67.60 -4.25 74.11
STR 72.00 68.35 -5.07 75.28
Mag 72.00 69.90 -2.92 75.28
PSO 72.00 69.16 -3.95 75.28
WF 72.00 70.09 -2.65 75.28
SFPK (ours) 72.00 69.79 (0.24) -3.07 (0.29) 75.00

Incremental 70.60 61.80 -12.46 89.03
STR 72.00 62.10 -13.75 89.01
Mag 72.00 63.02 -12.47 89.00
PSO 72.00 63.64 -11.61 90.00
WF 72.00 63.87 -11.29 89.00
SFPK (ours) 72.00 64.10 (0.17) -10.97 (0.19) 90.00

(c) Gradual pruning on ResNet-50.

ImageNet-1K Gradual Unstructured Pruning

ResNet-50 Dense Pruned Rel. Drop Sparsity

DSR 74.90 71.60 -4.41 80.00
Incremental 75.95 74.25 -2.24 73.50
DPF 75.95 75.13 -1.08 79.90
GMP + LS 76.69 75.58 -1.45 79.90
VD 76.69 75.28 -1.84 80.00
RIGL + ERK 76.80 75.10 -2.21 80.00
SNFS + LS 77.00 74.90 -2.73 80.00
STR 77.01 76.19 -1.06 79.55
PSO 77.01 75.84 -1.52 80.00
DNW 77.50 76.20 -1.68 80.00
WF 77.01 76.76 -0.32 80.00
CrAM 77.3 75.80 -1.94 90.00
SFPK (ours) 77.01 76.18 (0.13) -1.26 (0.14) 80.00

Mag 77.01 75.15 -2.42 90.00
GMP + LS 76.69 73.91 -3.62 90.00
VD 76.69 73.84 -3.72 90.27
RIGL + ERK 76.80 73.00 -4.95 90.00
SNFS + LS 77.00 72.90 -5.32 90.00
STR 77.01 74.31 -3.51 90.23
PSO 77.01 74.63 -3.09 90.00
DNW 77.50 74.00 -4.52 90.00
WF 77.01 75.21 -2.34 90.00
CrAM 77.3 74.70 -4.66 90.00
SFPK (ours) 77.01 75.24 (0.09) -2.30 (0.09) 90.00

One-shot pruning on ImageNet-1K. Following the experimental setup in Section 5.2, we perform
one-shot pruning experiments on the ImageNet-1K (Deng et al., 2009) dataset using ResNet-50 (He
et al., 2016), MobileNet-V1 (Howard et al., 2017), and DeiT-T (Touvron et al., 2021) architectures,
under both structured and unstructured pruning settings. We compare our SFPK-pruner against
several strong baselines, including magnitude pruning Han et al. (2015), SNIP Lee et al. (2019),
Tanaka et al. (2020), WoodFisher Singh & Alistarh (2020), and PSO Mo et al. (2023). As shown
in Table 6, our SFPK-pruner exhibits high performance across various different pruning scenarios.
Our experiment results validate that our SFPK effectively approximates the sparsity evolution of the
optimal mask distribution, enabling us to sample high-quality mask within acceptable overhead.
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Algorithm 2 SFPK-guided Pruning via Particle Simulation (SFPK-pruner)

1: Input: target budget d′, dataset S, batch size b, target model parameterized by f(·;θ∗), model
loss L(·, ·), soft sparsity function s(·), RBF kernel κ(·, ·), mask polarizer Pϵ(·), localization
radius rt, particle number n, simulation steps K, regularization rate λ.

2: Output: a performant binary mask m̂ ∈ {0, 1}d with ∥m̂∥0 = d′.
3: t← 0, ∆t← (1− d′/d)/K.
4: Initialize mi

t ← 1, i = 1, ..., n.
5: for k = 1 to K do
6: for i = 1 to n do
7: s← ∇s(mi

t)
8: (x,y)← Mini Batch(S; b)

9: ĝ← −∂mL(f(x;Pε(m
i
t)⊙ θ∗),y)− λ

n

∑n
j=1 ∂1κ(m

i
t,m

j
t )

10: T̂ (mi
t)← s/∥s∥22 +

((
r2t ∥s∥22 − 1

)
/
(
∥s∥22∥ĝ∥22 − (s⊤ĝ)2

)) 1
2 ·
(
ĝ − (ĝ⊤s)/∥s∥2 · s

)
ĝ

11: mi
t+∆t ←mi

t + T̂ (mi
t)∆t

12: end for
13: t← t+∆t
14: end for
15: m̂← topd′

(∑n
i=1 m

i
t

)
16: return m̂

Algorithm 3 SFPK-pruner in PyTorch

def main(model, t, m, dataloader, **args):
# model: masked dense model
# t: target sparsity
# m: pruning steps
# args: SFPK pruning args
for i in range(m):

t_tmp = i_th_sparsity(t, i) # gradual pruning schedule
# model = baseline_prune(model, t_tmp, dataloader, **args)
model = SFPK_prune(model, t_tmp, dataloader, **args)
model = retrain(model)

return model

def SFPK_prune(model, t, dataloader, n, K, r):
# model: masked model
# t: target sparsity
# n: particle number
# K: simulation steps
# r: local radius
eps = 1e-18
masks = init_masks(model, n)
dt = (t - sparsity(model)) / K
for i in range(K):

for mask in masks:
s = calc_s(mask) # calc grad of soft sparsity (1 - norm(mask)) explicitly
x, y = next(dataloader)
reg = calc_kappa(mask, masks) # calc interaction penalty
loss = loss_fn(model, mask, x, y) + reg
g = - grad(loss, mask) # calc grad w.r.t mask

# calc transition
gap = (norm(s) * norm(g)) ** 2 - inner_prod(s, g) ** 2
if gap > eps:

term1 = s / norm(s) ** 2
scale = (((r * norm(s)) ** 2 - 1) / gap) ** 0.5
term2 = scale * (g - inner_prod(s, g) * term1)
trans = term1 + term2

else:
# term2 equals 0 if g is parallel to s
trans = s / norm(s) ** 2

mask += trans * dt # SFPK update

return prune(model, mean(masks))
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Table 3: Experiment settings of one-shot pruning on CIFAR-100. Here, “lr” denotes “learning rate”,
and “Cos” denotes the cosine annealing learning rate schedule, with an initial learning rate of 1e-
4 and 5 warm-up epochs. We follow the implementation of mask polarizer as (Mo et al., 2023,
Algorithm 3). Each run takes around 20 to 30 minutes on a NVIDIA 40G A100 GPU, with each
SFPK update step (line 7 to line 11 of Algorithm 2) taking approximately 0.2 seconds.

CIFAR-100 Structured Unstructured

Model ResNet-20 VGG16-bn WRN-20 ResNet-20 VGG16-bn WRN-20
Top-1 accuracy 70.38 75.68 75.22 70.38 75.68 75.22

R
et

ra
in

se
tti

ng

Batch size 64 64 64 64 64 64
Epochs 100 100 100 100 100 100
lr 0.01 0.01 0.01 0.01 0.01 0.01
lr schedule Cos Cos Cos Cos Cos Cos
Optimizer SGD SGD SGD SGD SGD SGD
Momentum 0.875 0.875 0.875 0.875 0.875 0.875
Weight decay 0 0 0 0 0 0

SF
PK

se
tti

ng

Mini-batch size 512 512 512 512 512 512
Simulation steps K 100 100 100 100 100 100
# mask particles n 10 10 10 10 10 10
Regularization rate λ 0.2 0.2 0.2 0.2 0.2 0.2
Localization radius rt 1.1 1.1 1.01 1.1 1.1 2
Mask polarizer Pε One-hot One-hot One-hot One-hot One-hot One-hot

Table 4: Experiment settings of pruning experiments on ImageNet-1K. Here, “lr” denotes “learning
rate”, and “Cos” denotes the cosine annealing learning rate schedule without any warm-up epoch.
We follow the implementation of mask polarizer as (Mo et al., 2023, Algorithm 3). The one-shot
pruning without retraining experiments shown in Table 1 follow the same SFPK settings as described
above. On an NVIDIA 40G A100 GPU, each run on MobileNet-1K takes about 1.5 days, each run
on ResNet-50 takes about 2 days, and each run on DeiT-T takes about 4 days. Each SFPK update
step (lines 7 to 11 of Algorithm 2) takes approximately 0.4 seconds.

Pruning on ImageNet-1K

Model ResNet-50 MobileNet-V1 DeiT-T
Top-1 accuracy 77.01 72.00 72.20
Granularity Unstructured Unstructured Structured
# pruning shots 10 10 1

R
et

ra
in

se
tti

ng

Batch size 256 256 512
Epochs 100 100 100
lr 1e-2 1e-2 1e-4
lr schedule Cos Cos Cos
Optimizer SGD SGD AdamW
Momentum 0.875 0.875 0.875
Weight decay 2e-5 2e-5 5e-2
Label smoothing 0.1 0.1 0.1

SF
PK

se
tti

ng

Mini-batch size 256 256 256
Simulation steps K 150 150 1000
# mask particles n 10 10 10
Regularization rate λ 0.2 0.2 0.2
Localization radius rt 3 4 8
Mask polarizer Pε One-hot One-hot One-hot
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ResNet-50 (77.01), Unstructured ResNet-50 (77.01), Structured

Sparsity Mag SNIP SynFlow WF PSO SFPK (ours) Sparsity Mag SNIP SynFlow PSO SFPK (ours)

75% 58.25 5.87 1.08 67.02 67.04 69.69 7% 72.54 65.72 72.49 72.74
80% 42.97 1.54 0.54 58.72 63.38 67.42 20% 51.71 51.59 67.60 68.99
84% 24.03 0.68 0.34 46.75 58.98 63.38 30% 13.18 32.18 61.19 62.45
87% 9.20 0.36 0.19 32.21 54.25 59.71 40% 2.16 53.64 55.91
90% 3.71 0.39 0.15 17.48 49.08 55.48 50% 0.52 41.71 42.93

MobileNet-V1 (72.00), Unstructured MobileNet-V1, (72.00) Structured

Sparsity Mag SNIP SynFlow WF PSO SFPK (ours) Sparsity Mag SNIP SynFlow PSO SFPK (ours)

75% 49.58 4.08 0.06 60.95 48.47 61.57 7% 64.48 66.96
80% 36.44 0.99 0.10 52.65 44.43 56.71 20% 21.80 64.56
84% 19.40 0.44 0.09 41.10 31.61 51.31 30% 1.03
87% 5.77 0.29 0.11 25.21 27.30 47.40 40% 0.28
90% 0.72 0.18 0.11 12.56 20.53 44.06 50% 0.15

Deit-T (72.20), Unstructured Deit-T (72.20), Structured

Sparsity Mag SNIP SynFlow PSO SFPK (ours) Sparsity Mag SNIP SynFlow PSO SFPK (ours)

20% 68.14 61.53 65.91 69.94 7% 53.44 70.69
37% 39.74 36.50 59.05 64.22 20% 13.15
50% 6.51 10.54 46.02 55.97 30% 1.58
60% 1.47 1.99 31.82 45.37 40% 0.58
75% 0.16 0.25 12.60 32.70 50% 0.17

Table 6: We report the top-1 accuracy (%) of one-shot pruning without any retraining of ResNet-
50 (top), MobileNet-V1 (middle), and DeiT-T (bottom) on ImageNet-1K. Boldface indicates the
highest top-1 accuracy of each sparsity level. Empty entries indicate that the run is still pending and
will be completed in the final version.

Comparisons on runtime complexity. In Table 7, we report the actual and theoretical runtime
complexities of WF (Singh & Alistarh, 2020), PSO (Mo et al., 2023), and our SFPK-pruner for the
one-shot pruning experiment on ImageNet-1K with ResNet-50 and MobileNet-V1 at 80% sparsity.
Our results show that, in practice, SFPK outperforms WF while maintaining a comparable compu-
tational cost. As expected, the computational cost of SFPK is approximately 10 times that of PSO,
as both methods use 700 discretization steps, while SFPK additionally simulates 10 particles.

We also compare the theoretical complexity of our SFPK-pruner with that of PSO and WF. Let m
denote the data batch size, d the model size, K the discretization step for both PSO and SFPK-
pruner, and n the number of particles in the SFPK-pruner. The theoretical runtime complexity of
the SFPK-pruner is O(nK(d +m)), the theoretical runtime complexity of PSO is O(K(d +m)),
and the theoretical runtime complexity of WF is O(md2). As we will show, for large models where
d is extremely large, WF becomes significantly expensive due to the need to compute the Hessian
matrix. As expected, the computational cost of SFPK is approximately n times that of PSO, as both
methods use K discretization steps, while SFPK additionally simulates n particles.

95% sparsity ResNet-50 on ImageNet-1K MobileNet-V1 on ImageNet-1K

Method WF PSO SFPK (ours) WF PSO SFPK (ours)

Runtime (s) 9629.23 (64.35) 778.41 (9.06) 7544.41 (53.28) 3023.11 (122.41) 368.41 (9.06) 3066.60 (22.79)

Table 7: Comparison of the runtime complexity. We followed the recommended configuration of
WF (Singh & Alistarh, 2020) and configuration in Table 4. For each experiment, we present the av-
erage execution time over 3 random runs on an NVIDIA 40G A100 GPU, with standard deviations.

C ADDITIONAL EXPERIMENTS

Visualizing the layer-wise sparsity of SFPK-pruner. Our SFPK-pruner achieves distinct layer-
wise sparsity ratios compared to ERK and other baselines (e.g., WF (Singh & Alistarh, 2020), STR
(Kusupati et al., 2020), SNFS (Dettmers & Zettlemoyer, 2020)), effectively avoiding layer collapse.
As shown in Figure 4, the layer-wise density (i.e. 1 - sparsity) of SFPK on ResNet-50 ImageNet
concentrates on the earlier layers, without using heuristics like “freezing the first Conv / last FC
layer”. Unlike ERK, which assigns higher sparsity to deeper layers, SFPK shows higher sparsity
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in mid-to-deep layers (IDs 30 to 45) with a smoother overall pattern. SFPK-pruner’s sparsity also
differs from WF’s in early layers, showing that the sparsity pattern of early layers is crucial for
pruning performance.

0 10 20 30 40 50
Layer ID

0.0

0.2

0.4

0.6

0.8

1.0
De

ns
ity

ImageNet ResNet-50 Layer-wise Density (overall density = 10%)
Method (Acc@1)
WF (75.21%)
SNFS (72.90%)
STR (74.73%)
ERK (74.10%)
SFPK (ours) (75.24%)

Figure 4: Visualizing the layer-wise density patterns.

Ablation study on the rationality of θ∗. To study how the rationality of θ∗ affects the effectiveness
of SFPK-pruner, we conduct an ablation study on the initialization of SFPK-pruner on WRN-32x4
(Zagoruyko & Komodakis, 2016) CIFAR-100 (Krizhevsky, 2009). Specifically, we first pretrain
a dense WRN-32x4 from scratch for 300 epochs to convergence, and we save the intermediate
model checkpoints θ∗

t at training epoch t ∈ {0, 50, 100, 150, 200, 300}. Then, we prune each θ∗
t to

90% sparsity in one-shot unstructured manner and retrain it for 100 epochs. We report the training
accuracy of each setting based on 3 trials .

As shown in Table 8, the performance of SFPK increases as the pretraining epochs increases. Specif-
ically, the performance of SFPK-pruner retrains at a decent level even when the model is not pre-
trained to convergence. This empirical evidence suggests the robustness of SFPK-pruner to the
rationality of the model weight.

Pretrained Epoch 0 100 150 200 250 300

Dense Acc. 1.02 (0.01) 51.05 (0.12) 59.15 (0.20) 66.52 (0.08) 72.34 (0.12) 76.01 (0.16)

Pruned Acc. 1.03 (0.04) 50.42 (0.14) 54.07 (0.21) 60.84 (0.11) 62.7 (0.11) 65.66 (0.14)
Tuned Acc. 63.27 (0.52) 68.05 (0.33) 72.2 (0.17) 72.42 (0.14) 72.63 (0.09) 73.24 (0.10)

Table 8: Ablation study on the rationality of θ∗. We report the top-1 accuracy (%) of unstructured
one-shot pruning on WRN-32x4 CIFAR-100. For each pruned model, we present the average top-1
accuracy over 3 random runs, with standard deviations in parentheses.

Pruning at initialization with SFPK. We compare our SFPK against SNIP (Lee et al., 2019),
SynFlow (Tanaka et al., 2020), GraSP (Wang et al., 2020), and Mag (Han et al., 2015) under the
pruning-at-initialization setting. Specifically, we randomly initialize a WRN-20 (Zagoruyko & Ko-
modakis, 2016), prune it to 95% sparsity, and retrain it for 100 epochs to convergence. The average
test accuracy among of final 5 epochs is reported based on 3 trials.

As shown in Table 9, our SFPK illustrate either comparable or better performance than other base-
lines. However, the performance of SFPK can be evidently improved when a well-trained checkpoint
is provided. This evidence helps clarify the significance of the ‘rational’ constraint.

Pruning ResNet-50 to 95% sparsity on ImageNet-1K. Following the setup in Table 4, we prune
ResNet-50 (He et al., 2016) to the 95% sparsity level on ImageNet-1K (Deng et al., 2009) using
SFPK with the same hyperparameters. Due to the limited computation resource, the reported ac-
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Sparsity = 95% Dense Mag SNIP GraSP SynFlow SFPK

PAI Acc. - 52.65 (0.21) 54.19 (0.09) 52.38 (0.12) 54.97 (0.17) 55.62 (0.11)
PTP Acc. 75.26 66.47 (0.33) 62.15 (0.19) 53.31 (0.39) 59.23 (0.72) 68.16 (0.11)

Table 9: We report the top-1 accuracy (%) of unstructured one-shot pruning at initialization (PAI)
and post-training pruning (PTP) results with WRN-20 CIFAR-100. For each pruned model, we
present the average top-1 accuracy over 3 random runs, with standard deviations in parentheses.

curacy is based on one trial, and we will add the results of 2 extra trials into the final version. As
shown in Table 10, our SFPK outperforms various competitive baselines, including WF (Singh &
Alistarh, 2020), STR (Kusupati et al., 2020), standard global magnitude pruning (Han et al., 2015),
GMP (Gale et al., 2019), DNW (Wortsman et al., 2019), (Molchanov et al., 2017b), and RIGL+ERK
(Evci et al., 2020).

ImageNet-1K Gradual Unstructured Pruning

ResNet-50 Dense Pruned Rel. Drop Sparsity

GMP 76.69 70.59 -7.95 95.00
VD 76.69 69.41 -9.49 94.92
VD 76.69 71.81 -6.36 94.94
RIGL + ERK 76.80 70.00 -8.85 95.00
DNW 77.01 68.30 -11.31 95.00
STR 77.01 70.97 -7.84 94.80
STR 77.01 70.40 -8.58 95.03
Global Magnitude 77.01 71.72 -6.87 95.00
WF 77.01 72.12 -6.30 95.00
SPFK (ours) 77.01 72.23 -6.21 95.00

Table 10: Unstructured gradual pruning with ResNet-50 on ImageNet-1K. For each experiment, we
report the top-1 accuracy (%) of the pruned model and the relative performance drop (%) compared
to the dense model.

Diversity of SPFK mask particles. We conduct additional experiment to study the diversity of
the simulated particle distribution of SFPK. Specifically, at each intermediate step of SFPK, we
track the mean and standard deviation of the loss function (the energy) and the average sparsity
deviation of each mask particle. The average relative mask deviation of the i-th mask is computed
by 1/(n− 1) ·

∑
j ∥mi

t −mj
t∥22/∥mi

t∥22. We visualize the mean and standard deviation (across 10
mask particles) of both the loss value and the relative mask deviation.

As shown in Figure 5, as sparsity increases, the energy of each mask increases without drastic
explosion. Meanwhile, the diversity of the masks progressively grows. This suggests that the SFPK
mask distribution does not collapse and it generates diverse yet effective mask particles as sparsity
decreases, allowing us to sample performant masks at the desired sparsity level.

Ablation study on the ensemble effect in SFPK. To identify how the ensemble scheme con-
tributes to the performance gain of SFPK, we compare SFPK-pruner with an ensemble-based prun-
ing method, termed SWAMP (Choi et al., 2024). We compare non-ensemble SFPK (SFPK w/o ens)
with SWAMP on WRN32x4 and ResNet-50 using the same gradual pruning protocol as in Table 2,
but with particle number n = 1. We quote the SWAMP results from the last row of Table 2 and the
first row of Table 3 in Choi et al. (2024). The results are shown in Table 11 and 12. We observe
that SFPK works well even with only ONE particle, showing that both the SFPK update and particle
simulation scheme contribute to the good performance of SFPK.

Table 12 also shows SFPK w/o ens still matches or exceeds SWAMP’s performance on ResNet-50
ImageNet (IN-Valid) with less FLOPS. At 90% sparsity, SFPK achieves +3.4% accuracy increase
compared to SWAMP within only×0.05 training epochs. Hence, both the SFPK update (Proposition
2) and the particle simulation method (Section 4.2) contribute non-trivially to the benefits of SFPK.
Our SFPK neither alters weights nor uses weight averaging, and it enjoys provable convergence
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Figure 5: Visualization of the relative mask deviation among the SFPK mask particles. A larger
deviation implies a higher degree of diversity of the SFPK masks.

(Proposition 3). In contrast, SWAMP is a combination of L1 pruning and a weight averaging trick,
requiring more training epochs to converge.

SFPK (ours) v.s. SWAMP, WRN-32x4 (78.86) on CIFAR-100

Method Sparsity Accuracy Sparsity Accuracy

SWAMP 50% 77.29 (0.53) 90% 77.14 (0.33)
SFPK w/o ens 50% 78.04 (0.09) 90% 77.38 (0.14)
SFPK (ours) 50% 78.35 (0.11) 90% 77.61 (0.21)
SWAMP 75% 77.35 (0.39) 95% 76.48 (0.73)
SFPK w/o ens 75% 77.68 (0.17) 95% 76.68 (0.19)
SFPK (ours) 75% 77.90 (0.24) 95% 77.04 (0.26)

Table 11: ‘SFPK w/o ens’ refers to disabling the ensembles in SFPK by setting the particle number
n = 1. Conducted on WRN-32x4 on the CIFAR-100 dataset.

Comparison with L1-Spred. We compare our SFPK against the state-of-the-art L1 optimizer, L1-
Spred (Ziyin & Wang, 2023), showing that our method consistently outperforms L1-Spred on both
CIFAR-10/100 and ImageNet. We use the same SFPK configuration as in Table 2. On CIFAR-
10/100, we apply SFPK to prune the timm pretrained ResNet-18 weights to 99% sparsity over 15
pruning shots with a total 150 retrain epochs and report the accuracy of all sparsity checkpoints. We
use SFPK to prune the same checkpoint as that in Ziyin & Wang (2023), torchvision ResNet-
50 V2 pretrained weights, to 90% sparsity over 10 pruning shots and 100 retrain epochs. We report
the accuracy of the 80% / 90% sparsity checkpoints and quote the best results from the CIFAR /
ImageNet forms in the official Github repo of Ziyin & Wang (2023). As shown in Figure 6 and
Table 13, our SFPK consistently outperforms L1-Spred across different pruning settings.

Comparison with 500-epoch RigL. For a fair comparison, we reported the results of the 100-epoch
RigL+ERK (Evci et al., 2020) in the Section 5, rather than the 500-epoch RigL (+ERK). To ensure
fair comparisons between pruning and sparse-training methods, we conduct controlled experiments,
with the same 100-epoch retraining, sparsity constraints, and pretrained weights. That’s why we
reported the 100-epoch RigL+ERK results, the best result among the 100-epoch RigL variants (Evci
et al., 2020, Figure 2).

Table 14 compares SFPK with the 500-epoch RigL in accuracy and FLOPs. Due to the limited
computation resource, we apply SFPK to the torchivision ResNet-50 V2 checkpoint to com-
pensate for the fewer training epochs. The results show that, in practice, where a pretrained model
is usually accessible, our SFPK outperforms the 500-epoch RigL in both accuracy and efficiency.

Comparison with MEST. As our paper focus on a fair comparison within a post-training pruning
(PTP) setting, e.g. pruning a pretrained dense model. We followed the PTP setting in Singh &
Alistarh (2020) to compare pruning methods via controlled experiments, with the same retraining
budgets, sparsity constraints, and pretrained checkpoints. Some sparse-training baselines were not
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SFPK (ours) v.s. SWAMP, ResNet-50 (77.01) on ImageNet

Method Sparsity Accuracy Epoch Tra. FLOPs

SWAMP 45.90% 76.56 210 6.72
SFPK w/o ens 50.10% 76.59 10 0.35
SFPK (ours) 50.10% 76.82 10 0.35

SWAMP 68.80% 76.51 330 10.56
SFPK w/o ens 68.40% 76.38 20 0.55
SFPK (ours) 68.40% 76.59 20 0.55

SWAMP 80.00% 75.69 450 14.4
SFPK w/o ens 80.00% 75.96 40 0.8
SFPK (ours) 80.00% 76.18 40 0.8

SWAMP 86.00% 74.25 570 18.24
SFPK w/o ens 87.41% 75.19 65 0.99
SFPK (ours) 87.41% 75.65 65 0.99

SWAMP 88.90% 71.81 630 20.16
SFPK w/o ens 90.00% 74.53 100 1.19
SFPK (ours) 90.00% 75.24 100 1.19

Table 12: ‘SFPK w/o ens’ refers to disabling the ensembles in SFPK by setting the particle number
n = 1. Conducted on ResNet-50 on the ImageNet dataset. We reported the training FLOPs in units
of 1e18 and inference FLOPs in units 1e9
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Figure 6: SFPK (ours) v.s. L1-Spred on ResNet-18 CIFAR-10/100.

included because the PTP setting differs from the sparse-training setting. PTP focuses on reducing
the size of an off-the-shelf pretrained model and inference FLOPs. In contrast, sparse-training meth-
ods aim to reduce the pretraining memory footprint and training FLOPs. They start from sparsely
and randomly initialized weights and require more training epochs than the retraining epochs in PTP.

We make a direct comparison with MEST (Yuan et al., 2021), a state-of-the-art sparse training
method, using same settings in Table 2. For CIFAR-10/100, we use unstructured SFPK to prune
pretrained ResNet-32 to 90%, 95%, and 98% sparsity, then retrain it for 150 epochs. For ImageNet,
we apply gradual unstructured SFPK pruning to pretrained ResNet-50 to 90% sparsity with a total
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SFPK (ours) v.s. L1-spred, ResNet-50 (V2) ImageNet

Method Sparsity Accuracy Sparsity Accuracy

L1-spred + ft 80% 77.52 90% 69.49
SFPK+ (ours) 80% 77.97 90% 76.56

Table 13: Both methods use the torchvision ResNet-50 V2 pretrained checkpoint with 80.34%
accuracy.

SFPK (ours) v.s. RigL, ResNet-50 (77.01) on ImageNet

Method Sparsity Accuracy Epoch Tra. FLOPs Inf. FLOPs

RigL+ERK 80% 75.1 100 1.34 3.44
RigL+ERK 5× 80% 77.1 500 6.69 3.44
SFPK (ours) 80% 76.18 40 0.80 2.62
SFPK+ (ours) 80% 77.97 40 0.80 2.64

RigL+ERK 90% 73.0 100 0.80 1.96
RigL+ERK 5× 90% 76.4 500 3.94 1.96
SFPK (ours) 90% 75.24 100 1.19 1.53
SFPK+ (ours) 90% 76.56 100 1.19 1.53

Table 14: ‘SFPK+’ refers to applying SFPK to the torchvision ResNet-50 V2 pretrained check-
point with 80.34% accuracy. We reported the training FLOPs in units of 1e18 and inference FLOPs
in units 1e9.

of 100 retraining epochs and 10 pruning shots. Then, we report the accuracy of the 80% sparsity
checkpoint achieved at the 40-th epoch and the final 90% sparsity checkpoint. For a fair compari-
son between our 100-epoch SFPK and the 250-epoch MEST, we use a torchvision ResNet-50
V2 pretrained weight to compensate for the fewer training epochs. To ablate the effect of this
checkpoint, we also implement a 100-epoch MEST that is initialized from the same ResNet-50 V2
checkpoint. We denote it by ‘100-epoch MEST+’. We quote the MEST results from the last row of
Table 1 and Table 2 in Yuan et al. (2021).

As shown in Table 15 and Table 16, our SFPK consistently outperforms MEST on CIFAR-10/100.
Our 100-epoch SFPK consistently outperforms 150-epoch MEST on ImageNet. When using the
torchvision ResNet-50 V2 pretrained weight, our 100-epoch SFPK again beats both the 250-
epoch MEST and 100-epoch MEST+. We also compared their training and inference FLOPs. These
results show that, it is more beneficial to use our SFPK especially when well-trained checkpoints
are accessible.

ResNet-32 CIFAR-10 (Dense Acc.: 94.78) CIFAR-100 (Dense Acc.: 74.53)

Method Sparsity Accuracy Sparsity Accuracy

MEST+EM&S 90% 93.27 (0.14) 90% 71.30 (0.31)
SFPK (ours) 90% 94.57 (0.09) 90% 72.67 (0.12)
MEST+EM&S 95% 92.44 (0.13) 95% 70.36 (0.05)
SFPK (ours) 95% 94.05 (0.17) 95% 71.69 (0.15)
MEST+EM&S 98% 90.51 (0.11) 98% 67.16 (0.25)
SFPK (ours) 98% 92.42 (0.20) 98% 67.48 (0.19)

Table 15: SFPK (ours) v.s. MEST on ResNet-32 CIFAR-10/100.
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SFPK (ours) v.s. MEST, ResNet50 (77.01) on ImageNet

Method Sparsity Accuracy Epochs Tra. FLOPs Inf. FLOPs

MEST ×0.5 80% 75.39 75 0.74 1.70
MEST ×1 80% 75.75 150 1.27 1.70
MEST ×1.7 80% 77.19 250 2.15 1.70
MEST+ ×1 80% 75.99 150 1.27 1.70
SFPK (ours) 80% 76.18 40 0.80 2.62
SFPK+ (ours) 80% 77.97 40 0.80 2.64

MEST ×0.5 90% 72.58 75 0.39 0.90
MEST ×1 90% 75.1 150 0.60 0.90
MEST ×1.7 90% 76.13 250 1.11 0.90
SFPK (ours) 90% 75.24 100 1.19 1.53
SFPK+ (ours) 90% 76.56 100 1.19 1.53

Table 16: ‘SFPK+’/‘MEST+’ refers to applying SFPK/MEST to the torchvision ResNet-50 V2
pretrained checkpoint with 80.34% accuracy. We reported the training FLOPs in units of 1e18 and
inference FLOPs in units 1e9.

D THEORETICAL RESULTS

D.1 PROOF DETAILS

Definition 3 (Weak Convergence). Let µ be the Lebesgue measure on Rd and Ω ⊂ Rd be a ν-
measurable set. A bounded sequence of distributions {πn}n⩾1 ⊂ P(Ω) is said to converge weakly
to π ∈ P(Ω), denoted by πn ⇀ π, if and only if ⟨πn, ϕ⟩ → ⟨π, ϕ⟩ as n→∞ holds for all bounded
and smooth test functions ϕ(·) on Ω.

Proposition 4 (Existence and Uniqueness of the Optimal Mask Distribution (formal version of
Proposition 1)). Let s(·) : Rd 7→ R+ be the soft sparsity function, Lε(·) : Rd 7→ R+ be the
model loss function that is a.e. smooth, κ(·, ·) : Rd × Rd 7→ R+ denotes the RBF function kernel,
we consider the following distributional optimization problem

min
P(Mρ

t )
⟨Lε, π⟩+ λR[π] ≜

∫
Mt

Lε(m)π(dm) +
λ

2

∫
Mt

κ(m,m′)π(dm)π(dm′), (9)

with λ > 0 and Mρ
t ≜

{
m ∈ Rd : s(m) ∈ [t, t+ ρ]

}
. For simplicity, we denote the functional

objective as L[·] ≜ ⟨Lε, ·⟩+ λR[·]. Assume that Lε(·) satisfies the following assumptions:

(A1). Strict sparsity monotonicity: the optimal loss at lower sparsity levels is always strictly
smaller than at the higher sparsity levels. Specifically, there exists α > 0, for any sparsity
levels t < t′, such that infm∈M0

t
Lε(m) < infm∈M0

t′
Lε(m)− α(t′ − t)2.

(A2). Lower semi-continuity: for all m ∈ Rd, for any sequence {mi}i⩾1 that converges to m,
it holds that lim infi→∞ Lε(m

i) ⩾ Lε(m).

Then, for any sparsity level t, there exists a πt such that L(πt) = inf {L(π) : π ∈ P (Mρ
t )}. More-

over, the global minimizer of L[·] in P (Mρ
t ) is unique.

Proof of Proposition 4. By definition, the objective functional is lower bounded by 0, which implies
0 ⩽ L∗ ≜ inf {L[π] : π ∈ P (Mρ

t )} < ∞. Thus, there exists a sequence {Ln}n⩾1 in L [P (Mρ
t )],

satisfying Ln → L∗ as n → ∞ and for each n, ∃ πn ∈ P (Mρ
t ) such that Ln = L[πn]. Then

we want to show the sequence {πn}n⩾1 is tight, that is, for any ϵ > 0, there exists a compact set
K ⊂Mρ

t such that for any n ∈ N, we have πn(K) > 1− ϵ.

Once the tightness of {πn}n⩾1 is established, we can apply the Prokhorov’s theorem (Billingsley,
1968, Theorem 5.1) to extract a subsequence {πnk}k⩾1 of {πn}n⩾1 and a distribution πt ∈ P (Mρ

t )
such that πnk ⇀ πt for k →∞. According to (Ambrosio et al., 2006, Lemma 5.1.7), (A2) implies
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the lower semi-continuity of the linear functional ⟨Lε, ·⟩. Furthermore, the continuity of κ(·, ·)
implies that L[·] is also lower semi-continuous, which further yields

L[πt] ⩽ lim inf
k→∞

L[πnk ] = lim inf
k→∞

Lnk
= lim

n→∞
Ln = L∗. (10)

By definition of L∗, it holds that L∗ ⩽ L[πt] ⩽ L∗, showing that the infimum is indeed achievable
in P(Mρ

t ) at πt, i.e. L[πt] = L∗. This proves the existence of the optimal mask distribution.

Then we prove the uniqueness of πt by contradiction. Suppose L∗ is attained at two different
distributions π1

t and π2
t . By (Arbel et al., 2019, Lemma 25), the strict convexity of κ(·, ·) implies

the strict convexity of R[·] and L[·]. Let β ∈ (0, 1) and π3
t = βπ1

t + (1 − β)π2
t , it holds that

π3
t ∈ P(M

ρ
t ) and

L[π3
t ] < βL[π1

t ] + (1− β)L[π2
t ] = L∗. (11)

Thus, this contradicts the definition of L∗, which implies that L∗ is uniquely attained at πt.

To complete the proof, we only need to establish the tightness of the aforementioned sequence
{πn}n⩾1. This can be proved via contradiction. Suppose {πn}n⩾1 is not tight, then there exists
ϵ > 0 such that for all k ∈ N, there exist nk ∈ N , for arbitrary Ik ⊂ Mρ

t with πnk(Ik) ⩽ 1 − ϵ.
This implies

Lnk
= L[πnk ] =

∫
Ik

+

∫
Mρ

t \Ik
Lε(m)πnk(dm) + λR[πnk ] (12)

⩾
∫
Ik

+

∫
Mρ

t \Ik
Lε(m)πnk(dm) (13)

⩾ inf{L[π] : π ∈ P(Ik)}+ πnk(Mρ
t \Ik) · inf{Lε(m) : m ∈Mρ

t \Ik} (14)

⩾ inf{L[π] : π ∈ P(Ik)}+ ϵ inf{Lε(m) : m ∈Mρ
t \Ik}. (15)

Let Ik ≜ M
ρ− 1

k
t , it holds that Mρ

t \Ik = M
1
k

t+ρ− 1
k

. Therefore, the condition (A1) implies that

Lnk
⩾ inf{L[π] : π ∈ P(Ik)}+ ϵ inf{Lε(m) : m ∈Mρ

t \Ik} (16)

= inf{L[π] : π ∈ P(Mρ− 1
k

t )}+ ϵ inf
{
Lε(m) : m ∈M

1
k

t+ρ− 1
k

}
(17)

> inf{L[π] : π ∈ P(Mρ− 1
k

t )}+ ϵ
(
inf
{
Lε(m) : m ∈M

1
k
t

}
+ α (ρ− 1/k)

2
)

(18)

⩾ inf{L[π] : π ∈ P(Mρ− 1
k

t )}+ ϵα(ρ− 1/k)2. (19)

By taking the limitation k → ∞ on the both side, it holds that L∗ ⩾ L∗ + ϵαρ2, with ϵαρ2 > 0,
which is a contradiction. Thus, this implies the tightness of {πn}n⩾1 and completes the proof.

Proposition 5 (Optimal Local Distributional Transition (formal version of Proposition 2)). Follow-
ing the notations and conditions introduced in Proposition 4, let πt be the optimal mask distribution
at sparsity level t, let µπt

(·) ≜
∫
κ(·,m)πt(dm) be the κ-mean embedding of πt, we consider the

following local distributional transition problem

min
ν
L̂[ν] ≜ ⟨Lε + λµπt , ν ∗ πt − πt⟩, s.t. ν ∈ P̂

(
Mρ

t+∆t

)
(20)

P̂
(
Mρ

t+∆t

)
≜ {ν ∗ πt | supp(ν(·|m)) ∈ Brt∆t,∀m ∈Mρ

t } ∩ P
(
Mρ

t+∆t

)
, (21)

where rt > 0 is the local radius satisfying rt∥∇s(m)∥2 > 1 for all m ∈ Mρ
t . We further assume

that s(·) satisfies

(A3). Local regularity: s(·) provides a local norm control. Specifically, for any m, there exists
ϵ > 0, and C > 0, such that any m′ satisfying ∥m′ −m∥2 ⩽ ϵ holds that

∥m′ −m∥2 ⩽ C|s(m′)− s(m)|.

Then, νt(·|m) ≜ Dirac(·;T (m;πt)∆t) achieves the optimal value of equation 20 within an error
of order O(∆t2), that is, L̂[νt] − L̂∗ = O(∆t2) and νt ∈ P̂(Mρ

t+∆t−C∆t2) for some constant C.
Specifically, let g ≜ −∇Lε(m)− λ∇µπt(m) and s ≜ ∇s(m), T (m;πt) is given by

T (m;πt) ≜
s

∥s∥22
+

(
r2t ∥s∥22 − 1

∥s∥22∥g∥22 − (s⊤g)
2

) 1
2

·
(
I− ss⊤

∥s∥22

)
g. (22)
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Proof of Proposition 5. For simplicity, we denote F (·) ≜ Lε(·) + λµπt
(·). By standard derivation,

it holds that

L̂[ν] =
∫

F (m)((ν ∗ πt)(m)− πt(m))dm (23)

=

∫
F (m)

(∫
ν(δ|m− δ)πt(m− δ)dδ − πt(m)

)
dm (24)

=

∫
F (m)

∫
(ν(δ|m− δ)πt(m− δ)− ν(δ|m)πt(m)) dδdm (25)

=−
∫∫

F (m)
(
∇m(ν(δ|m)πt(m))⊤δ +O(∥δ∥22)

)
dmdδ (26)

=−
∫∫

F (m)∇m(ν(δ|m)πt(m))⊤δdmdδ +O(∆t2) (27)

=

∫∫ (
∇F (m)⊤δ

)
ν(dδ|m)πt(dm) +O(∆t2). (28)

To identify a minimizer of L̂[ν] within O(∆t2) error, one can resort to solving equation 28 in a
point-wise (microscopic) manner. Specifically, we consider the following deterministic optimization
problem

min
δ
∇F (m)⊤δ, s.t. s(m+ δ) = s(m) + ∆t, ∥δ∥2 ⩽ rt∆t. (29)

Suppose δ∗(m) is the minimizer of equation 29, let ν∗(·|m) denotes the minimizer of the first term
in equation 20, then it holds that ν∗(·|m) = Dirac(·; δ∗(m)). This can be proved by definition:
for any m ∈ Mρ

t , suppose A(m) is the support of ν∗(·|m) such that ∀ δ′ ∈ A, ∥δ′∥2 ⩽ rt∆t,
s(m+ δ′) = s(m) + ∆t, then it holds that∫∫ (

∇F (m)⊤δ
)
ν∗(dδ|m)πt(dm) (30)

=

∫ (∫
A(m)

+

∫
A(m)c

(
∇F (m)⊤δ

)
ν∗(dδ|m)

)
πt(dm) (31)

⩽
∫ (
∇F (m)⊤δ∗(m)

)
ν∗(A(m)|m)πt(dm) + 0 (32)

=

∫ (
∇F (m)⊤δ∗(m)

)
πt(dm) (33)

=

∫∫ (
∇F (m)⊤δ

)
Dirac(dδ; δ∗(m))πt(dm). (34)

Notice that solving δ∗(m) from equation 29 is still challenging, since the constraint is nonlinear.
Thus, we aim to slightly relax the constraint within anO(∆t2)-order error. Specifically, we consider
the following convex optimization problem

min
δ
∇F (m)⊤δ, s.t.∇s(m)⊤δ = ∆t, ∥δ∥2 ⩽ rt∆t. (35)

Clearly, (A3) implies that the minimizer of equation 35, denoted by δ̂∗(m), achieves the optimum
of equation 29 within a O(∆t2)-order error. Thus, one can establish an O(∆t2)-order error approx-
imation for ν∗(·;m) as Dirac(·; δ̂∗(m)). The final step to finishing the proof is to derive δ̂∗(m). In
fact, as equation 35 is a convex optimization problem, the optimum is attained at the decision bound-
ary. Moreover, the optimum lies in the linear space spanned by {∇F (m),∇s(m)}. For simplicity,
we denote g ≜ −∇F (m) and s ≜ ∇s(m), then we parameterized the optimum of equation 35
as ag + bs. Finally, the proof is completed by solving the coefficients a and b from the following
equations

s⊤(ag + bs) = ∆t, ∥ag + bs∥2 = rt∆t, (36)
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which yields

a =

(
r2t ∥g∥22 − 1

∥g∥22∥s∥22 − (g⊤s)

) 1
2

·∆t, b =

(
∆t−

(
g⊤s

)
a
)

∥g∥22
. (37)

Therefore, the proof is completed by taking

T (m;πt) ≜ δ̂∗(m) = ag + bs =
s

∥s∥22
+

(
r2t ∥s∥22 − 1

∥s∥22∥g∥22 − (s⊤g)
2

) 1
2

·
(
I− ss⊤

∥s∥22

)
g. (38)

Proposition 6 (Derivation of SFPK (formal version of Proposition 3)). Following the previously
introduced notations and conditions, we further assume that

(A4). Quadratic growth: the growth of expected loss is quadratically bounded w.r.t sparsity lev-
els. Specifically, there exists β > 0, for any sparsity levels t < t′, such that

inf
m∈M0

t′

Lε(m) < inf
m∈M0

t

Lε(m) + β(t′ − t)2.

Then, by taking ∆t→ 0, the sequence {π̃k∆t} constructed by π̃t+∆t ≜ νt ∗ π̃t converges weakly to
the Sparsity Evolutionary Fokker-Planck-Kolmogorov Equation (SFPK), denoted by

∂tπt = −∇ · [T (·;πt)πt] , (39)

where ∇ · [·] denotes the divergence operator and T (·;πt) is the optimal local transition function
defined in Proposition 5.

Proof of Proposition 6. The proof sketch is summarized as follows: 1) we first show that the se-
quence {π̃k∆t}k converges weakly to the distribution-valued differential equation (π̃t)t that satisfies
the SFPK ∂tπ̃t = −∇ · [T (·; π̃t)π̃t], then 2) we show that π̃t = πt for any t ∈ [0, 1− d′/d] with πt

denoting the optimal mask distribution defined in Proposition 4.

Step 1. To establish the weak convergence of {πk∆t}k, we need to show for any t and k ≜ ⌊t/∆t⌋,
it holds that

1

∆t
(π̃(k+1)∆t − π̃k∆t) ⇀ −∇ · [T (·, π̃k∆t)π̃k∆t] (40)

as ∆t→ 0. By definition, this is equivalent to

lim
∆t→0

1

∆t

∫
(π̃(k+1)∆t(m)− π̃k∆t(m))ϕ(m)dm = −

∫
∇m · [T (m, π̃k∆t)π̃k∆t(m)]ϕ(m)dm, (41)

where ϕ(·) is an arbitrary bounded smooth test function. Then, the desired weak convergence can be
proved by showing that, for any t, let k ≜ ⌊t/∆t⌋, π̃k∆t ⇀ π̃t as ∆t→ 0. According to Proposition
5, for any k, π̃(k+1)∆t = νk∆t ∗ π̃k∆tm which implies

1

∆t

∫
(π̃(k+1)∆t(m)− π̃k∆t(m))ϕ(m)dm (42)

=
1

∆t

∫
(νk∆t ∗ π̃k∆t(m)− π̃k∆t(m))ϕ(m)dm (43)

=
1

∆t

∫∫
(νk∆t(δ|m− δ)π̃k∆t(m− δ)− νk∆t(δ|m)π̃k∆t(m))dδϕ(m)dm (44)

=− 1

∆t

∫∫
∇m(νk∆t(δ|m)π̃k∆t(m))⊤δϕ(m)dδdm+O(∆t) (45)

=
1

∆t

∫∫
∇ϕ(m)⊤δνk∆t(δ|m)π̃k∆t(m)dδdm+O(∆t) (46)

=
1

∆t

∫∫
∇ϕ(m)⊤δDirac(dδ;T (m, π̃k∆t)∆t))π̃k∆t(m)dm+O(∆t) (47)

=

∫
∇ϕ(m)⊤T (m, π̃k∆t)π̃k∆t(m)dm+O(∆t) (48)

=−
∫

∇m · [T (m, π̃k∆t)π̃k∆t(m)]ϕ(m)dm+O(∆t). (49)
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This implies the statement in equation 41. Then, we only need to show for k ≜ ⌊t/∆t⌋, π̃k∆t ⇀ π̃t

as ∆t → 0. This equivalent to show that (π̃(k+1)∆t − π̃k∆t) ⇀ 0 as ∆t → 0, which implies the
existence and the continuity (w.r.t the weak topology) of the limiting process (π̃t)t. Recall that since
Lε(·), κ(·, ·) and s(·) are a.e.-smooth on the support of π̃k∆t, the right hand side of equation 41 is
bounded, indicating that ⟨π̃(k+1)∆t − π̃k∆t, ϕ⟩ = O(∆t) holds for any bounded continuous ϕ(·),
which further implies (π̃(k+1)∆t − π̃k∆t) ⇀ 0 as ∆t→ 0.

Step 2. Suppose πt is the optimal mask distribution defined in Proposition 4. We aim to prove that if
π̃0 = π0, it holds that π̃t = πt for any t ∈ [0, 1− d′/d]. This is equivalent to show ⟨π̃t − πt, ϕ⟩ = 0
for any bounded continuous ϕ(·) and any t ∈ [0, 1 − d′/d]. To this end, we study the evolution of
the deviation term |⟨π̃t − πt, ϕ⟩| under a finite sparsity increment.

First, we show that πt+∆t ∈ P̂(Mρ
t+∆t), which implies there exist an oracle transition kernel ν∗t (·|·)

and rt > 0 such that πt+∆t = ν∗t ∗ πt and supp(ν∗t (·|m)) ⊂ Brt∆t for any m ∈ Mρ
t . Recall that

the functional L[·] is strictly convex, there exists c > 0, such that
c

2
∥πt+∆t − πt∥2L2 ⩽

〈
δ

δπt
L, πt − πt+∆t

〉
+ L[πt+∆t]− L[πt]

Def.
⩽ L[πt+∆t]− L[πt]

(A4)
⩽ β∆t2. (50)

Therefore, by taking rt = 2β/c, we have
sup
ϕ
|⟨πt+∆t − πt, ϕ⟩| ⩽ ∥πt+∆t − πt∥L2∥ϕ∥L∞ ⩽ rt∆t,

which indicates the 1-Wasserstein distance Ambrosio et al. (2006) between πt+∆t and πt is bounded
by rt∆t and hence πt+∆t ∈ P̂(Mρ

t+∆t), proving the existence of the oracle transition kernel ν∗t .
Now, we can feel free to represent πt+∆t with ν∗t ∗πt. For simplicity, we slightly abuse the notations
and denote all the constants as C and Ct in the remainder of the paper. For any bounded smooth test
function ϕ, it holds that

|⟨π̃t+∆t − πt+∆t, ϕ⟩| = |⟨νt ∗ π̃t − ν∗t ∗ πt, ϕ⟩| (51)
⩽ |⟨(νt − ν∗t ) ∗ πt, ϕ⟩|︸ ︷︷ ︸

(T1): localization error

+ |⟨νt ∗ (π̃t − πt), ϕ⟩|︸ ︷︷ ︸
(T2): simulation error

. (52)

Then, we bound the terms (T1) and (T2) respectively. For any bounded smooth test function ϕ(·)
and an arbitrary small η, we denote Ωη ≜ {m : ϕ(m) > η/2}. By definition,

|⟨νt ∗ (π̃t − πt), ϕ⟩| =
∣∣∣∣∫∫ νt(δ|m− δ)(π̃t(m− δ)− πt(m− δ))ϕ(m)dδdm

∣∣∣∣ (53)

⩽

∣∣∣∣∣
∫∫

Ωη

νt(δ|m)(π̃t(m)− πt(m− δ))ϕ(m+ δ)dδdm

∣∣∣∣∣+ Cη (54)

=

∣∣∣∣∣
∫∫

Ωη

(π̃t(m)− πt(m))ϕ(m+ δ)Dirac(dδ|T (m; π̃t)∆t)dm

∣∣∣∣∣+ Cη (55)

=

∣∣∣∣∣
∫∫

Ωη

(π̃t(m)− πt(m))(ϕ(m) +∇ϕ(m)⊤δ +O(∥δ∥22))Dirac(dδ|T (m; π̃t)∆t)dm

∣∣∣∣∣+ Cη (56)

⩽

∣∣∣∣∣
∫∫

Ωη

(π̃t(m)− πt(m))ϕ(m)Dirac(dδ|T (m; π̃t)∆t)dm

∣∣∣∣∣
+

∣∣∣∣∣
∫∫

Ωη

(π̃t(m)− πt(m))(∇ϕ(m)⊤δ +O(∥δ∥22))Dirac(dδ|T (m; π̃t)∆t)dm

∣∣∣∣∣+ Cη (57)

⩽|⟨π̃t − πt, ϕ⟩|+

∣∣∣∣∣
∫
Ωη

(π̃t(m)− πt(m))(∇ϕ(m)⊤T (m; π̃t))dm

∣∣∣∣∣ ·∆t+ Cη +O(∆t2) (58)

⩽|⟨π̃t − πt, ϕ⟩|+

∣∣∣∣∣
∫
Ωη

(π̃t(m)− πt(m))ϕ(m)(∇(log ϕ(m))⊤T (m; π̃t))dm

∣∣∣∣∣ ·∆t+ Cη +O(∆t2)

⩽|⟨π̃t − πt, ϕ⟩|+

∣∣∣∣∣
∫
Ωη

(π̃t(m)− πt(m))ϕ(m)dm

∣∣∣∣∣ ·max
Ωη

∣∣∣∇(log ϕ(·))⊤T (·; π̃t)
∣∣∣∆t+ Cη +O(∆t2)

⩽(1 + Ct∆t)|⟨π̃t − πt, ϕ⟩|+ Cη +O(∆t2). (59)
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To bound (T1), one need to leverage the localization property of νt. Recall that ν∗t is the minimizer
of

min
ν
L[ν ∗ πt], s.t. ν ∗ πt ∈ P̂(Mρ

t ). (60)

This implies L[ν∗t ∗πt]−L[νt ∗πt] ⩽ 0. Applying the second-order functional expansion at ν∗t ∗πt
to the left hand side yields that〈

δ

δπt+∆t
L, (ν∗

t − νt) ∗ πt

〉
⩽ Ct

∥∥∥∥ δ2

δ2πt
L
∥∥∥∥
∞

· ∥(ν∗
t − νt) ∗ πt∥2L2

⩽ Ct∆t2. (61)

On the other hand, since νt is the minimizer of

min
ν

〈
δ

δπt
L, ν ∗ πt − πt

〉
, s.t. ν ∗ πt ∈ P̂(Mρ

t ) =⇒ 0 ⩽

〈
δ

δπt
L, (ν∗

t − ν) ∗ πt

〉
, (62)

which further implies〈
δ

δπt+∆t
L, (ν∗

t − νt) ∗ πt

〉
⩾

〈
δ

δπt
L, (ν∗

t − νt) ∗ πt

〉
− 2

∥∥∥∥ δ2

δ2πt
L
∥∥∥∥
∞

Ct∆t2 (63)

⩾

∣∣∣∣〈Lε + µπt , (ν
∗
t − νt) ∗ πt

〉∣∣∣∣− Ct∆t2 (64)

⩾ inf
M

ρ
t

(Lε + µπt) · ∥(ν
∗
t − νt) ∗ πt∥L1 − Ct∆t2. (65)

Therefore, the combination of equation 61 and equation 65 implies

|⟨(νt − ν∗t ) ∗ πt, ϕ⟩| ⩽ ∥(ν∗t − νt) ∗ πt∥L1
∥ϕ∥∞ ⩽ Ct∆t2. (66)

For any fixed η > 0, we combine equation 59 and equation 66 and take ∆t→ 0 to derive

|⟨π̃t+∆t − πt+∆t, ϕ⟩| − |⟨π̃t − πt, ϕ⟩| ⩽Ct∆t2 + Ct|⟨π̃t − πt, ϕ⟩|∆t+ Cη (67)
∆t→0
=⇒ d|⟨π̃t − πt, ϕ⟩| ⩽Cη + Ct|⟨π̃t − πt, ϕ⟩|dt. (68)

Finally, we apply the Gröwnwall inequality Gronwall (1919) to the function t 7→ |⟨π̃t − πt, ϕ⟩| and
we prove that

|⟨π̃t − πt, ϕ⟩| ⩽ Cη

(
t+

∫ t

0

sCse
∫ t
s
Cτdτds

)
(69)

holds for any t ∈ [0, 1− d′/d] and any η > 0. By taking η → 0, the right hand side of equation 69
tends to 0, which completes the proof.

D.2 REALISING SFPK VIA PARTICLE SIMULATION-BASED APPROXIMATION

In this section, we aim to realize the sampling from π1−d′/d by simulating SFPK using an interacting
mask particle system. We omit the literature review on some basic concepts, such as infinitesimal
generator and the origins of FPK equations, in thermodynamic and stochastic analysis, and we refer
interested readers to Bogachev et al. (2015); Wild et al. (2023) for detailed introductions.

Let (mt)t be a stochastic process, let πt be the particle density function at time t, the stochastic
analysis theory shows that the time evolution of πt is associated with the adjoint of the infinitesimal
generator of the stochastic process. Specifically, suppose πt follows an FPK equation ∂tπt = A∗πt,
where A∗ is a known differential operator. Then, one can instantiate πt using a stochastic process
(mt)t, such that law(mt) = πt for all t, and the infinitesimal generator of the process equals to A,
which is indeed the adjoint operator of A∗ (that is ⟨A[f ], g⟩ = ⟨f,A∗[g]⟩). Finally, the dynamic of
(mt)t can be derived based on its infinitesimal generator A. In intuition, the infinitesimal generator
is an operator describing how an arbitrary statistic of the thermodynamic system changes under an
infinitesimal time increase.

Following this spirit, we aim to derive the stochastic process associated with SFPK. To this end,
we only need to identify the adjoin operator of πt 7→ −∇ · [T (·, πt)πt]. For any bounded smooth
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test function ϕ(·), we want to identify A, such that ⟨−∇ · [T (·, πt)πt], ϕ⟩ = ⟨πt,A[ϕ]⟩. Following
standard derivation, it holds that

⟨−∇ · [T (·, πt)πt], ϕ⟩ = −
∫

∇ · [T (m, πt)πt(m)]ϕ(m)dm =

∫
T (m, πt)

⊤∇ϕ(m)πt(m)dm, (70)

which implies A[·] = T (m, πt)
⊤∇. According to the stochastic analysis theory (Wild et al., 2023,

Equation (54)), the SFPK is associated to the following McKean-Vlasov process:

dmt = T (mt, law(mt))dt, (71)

where the drift term is dependent on both the microscopic coordinate mt and the macroscopic
distribution πt. Fortunately, (Veretennikov, 2006, Section 2) provides a standard approach to sim-
ulate solutions to equation 71 using the empirical distribution over an ensemble of interacting parti-
cles. Formally, the authors show that if we take

dmi
t = T (mi

t, π̂
n
t )dt, i = 1, ..., n, with π̂n

t ≜
1

n

n∑
i=1

Dirac(·;mi
t), (72)

then (Veretennikov, 2006, Theorem 2.2) proves that π̂n
t ⇀ πt as n → ∞. Therefore, to sample

performant mask from π1−d′/d, we simulate the SFPK dynamic using n interacting mask particles
and update the system according to equation 72 from t = 0 to t = 1− d′/d. Finally, we can sample
desired masks from the empirical distribution π̂1−d′/d.
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