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Abstract

Humans exhibit diverse and expressive whole-body movements. However, attaining
human-like whole-body coordination in humanoid robots remains challenging,
as conventional approaches that mimic whole-body motions often neglect the
distinct roles of upper and lower body. This oversight leads to computationally
intensive policy learning and frequently causes robot instability and falls during
real-world execution. To address these issues, we propose Adversarial Locomotion
and Motion Imitation (ALMI), a novel framework that enables adversarial policy
learning between upper and lower body. Specifically, the lower body aims to
provide robust locomotion capabilities to follow velocity commands while the
upper body tracks various motions. Conversely, the upper-body policy ensures
effective motion tracking when the robot executes velocity-based movements.
Through iterative updates, these policies achieve coordinated whole-body control,
which can be extended to loco-manipulation tasks with teleoperation systems.
Extensive experiments demonstrate that our method achieves robust locomotion
and precise motion tracking in both simulation and on the full-size Unitree H1-2
robot. Additionally, we release a large-scale whole-body motion control dataset
featuring high-quality episodic trajectories from MuJoCo simulations. The project
page is https://almi-humanoid.github.io.

1 Introduction

Humans exhibit diverse and expressive whole-body movements in various activities [1, 2]. For
example, in dancing, humans depend on the lower body for stable movements and gait control, and
the upper body executes precise actions to accomplish specific movements. This coordination allows
for expressive and purposeful motions that are highly adaptable to different situations. However,
achieving human-like whole-body coordination remains a highly challenging task for humanoid
robots. Current methods employ motion re-targeting and Reinforcement Learning (RL) to learn
a whole-body policy that can track human motions by taking the tracking errors as rewards and
optimizing a whole-body policy to maximize such rewards [3, 4].

However, this kind of approach has significant limitations. First, due to the high number of Degrees
of Freedom (DoF) in the humanoid robot, directly learning a whole-body control policy demands a
complex reward structure and makes the training process highly expensive. Second, the differences
between various motions, along with some human movements beyond a robot’s physical capabilities,
make it difficult for the RL policy to converge. In practice, since such whole-body learning approaches
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prioritize precise motion tracking over balance maintenance, the policy often neglects the fundamental
need for robot stability. Meanwhile, the poor stability of the lower body in turn affects the execution
of upper-body motion and reveals challenges in real-world deployment, such as frequent robot falls.
We identify that the main reason is that above methods do not separately consider the unique roles of
the upper and lower bodies in motion learning, specifically, the lower body’s role in robust locomotion
and the upper body’s task of precise motion imitation.

In this paper, we propose a novel framework, named Adversarial Locomotion and Motion Imitation
(ALMI), that separately learns robust locomotion and motion imitation policies for the upper and
lower bodies, respectively. Specifically, the lower body learns to follow different velocity commands
while withstanding adversarial disturbances from the upper body, which leads to robust locomotion
even when the upper-body movements significantly disrupt the stability. Conversely, the upper body
learns to track reference motions accurately despite adversarial disturbances caused by lower-body
instability, which leads to expressive motion imitation even when the lower body is commanded to
move rapidly over uneven terrain. Through iterative updates of the upper and lower policies, these
policies achieve coordinated whole-body control, which can be extended to loco-manipulation tasks
with open-loop upper-body control via teleoperation systems. Unlike recent works [5–7] that adopt
separate control for the upper and lower body, ALMI involves an adversarial training process to
obtain coordinated behavior, which ensures the upper and lower policies converge to an equilibrium
under mild conditions. Extensive experiments demonstrate that ALMI achieves robust locomotion
and precise motion tracking in both simulation and on a full-size Unitree H1-2 humanoid robot.

Further, we construct a large-scale whole-body control dataset, named ALMI-X, featuring episodic
trajectories for the Unitree H1-2 robot in MuJoCo simulations. Each episode is generated by the
ALMI-acquired policy, where the lower body is controlled by the velocity command, and the upper
body is controlled by joystick commands (i.e., desired joints) of the reference motion from the
AMASS dataset [8]. We annotate language descriptions for each episode data according to both
commands of the lower and upper bodies, e.g. moving backward slowly and wave the left hand.
The ALMI-X dataset contains more than 80K trajectories with text commands and corresponding
trajectories. We also give preliminary attempts to train a foundation model from the collected ALMI-
X data, which serves an end-to-end whole-body control policy by leveraging a Transformer-based
architecture.

Our main contributions are summarized as follows: (i) We propose a novel adversarial training frame-
work (ALMI) for robust locomotion and precise motion imitation for humanoid robots, addressing
the distinct roles of upper and lower body through separate policy learning. (ii) We create the first
large-scale whole-body control dataset (ALMI-X) that integrates language descriptions with robot
trajectories, facilitating the training of foundation models for humanoid whole-body control. (iii) We
conduct extensive experiments to verify the effectiveness of the ALMI policy and the preliminary
study for the humanoid foundation control model in both the simulation and the real world.

2 Preliminaries

In our work, we adopt an adversarial training framework for the policy learning of both the upper and
lower bodies. Specifically, we consider an MDPM = (S,Al,Au, T, γ, rl, ru, P ), where the lower
and upper bodies share the same state space S while having different action space, that is, Al andAu,
respectively. rl is the command-following reward for the locomotion policy (i.e., the lower body),
and ru is the tracking reward for motion-imitation policy (i.e., the upper body). P (s′|s, al, au) is the
transition probability function that denotes the probability of transitioning to the next state s′ given
the current state and the actions of both players. We aim to learn two policies, i.e., πl and πu, that
control different actions for the lower and upper bodies, respectively.

We adopted the full-sized Unitree H1-2 robot in our work, which has 27 DoFs in total, and the
policy controls 21 DoFs, excluding the 3 DoFs in each wrist of the hands. The state space is defined
as s = (spropt , cl,ϕt, g

u), where spropt = [qt, q̇t,ωt, gvt,a
l
t−1] is the proprioception of the robot,

cl = [v̂x,t, v̂y,t, ω̂yaw,t] is the velocity command for the lower-body, and ϕt ∈ R2 is the phase
parameter at each time step, and gu ∈ R9 is the reference joint position for the upper body. In
proprioception, the notation qt ∈ R21, q̇t ∈ R21,ωt ∈ R3, gvt ∈ R3, al

t−1 ∈ R12 is the joint
position, the joint velocity, the angular velocity of the base, the projected gravity of the base, and the
last action of the lower body, respectively.
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For the lower body, the policy πl gives an action al ∈ R12 representing target joint positions of the
lower body according to the proprioception, commands, and phase variables at each step, which
are fed into the PD controller to calculate the joint torques. For the upper body, policy πu takes
proprioception and reference joint position as input, and the action au ∈ R9 includes target positions
of the 3 shoulder joints and 1 elbow joint per arm, along with the waist yaw joint. As a result, the
two policies (πl and πu) control distinct action spaces of the robot, and share the same state space by
masking the irrelevant commands for the different policy.

3 Methods
In this section, we first present the theoretical foundation for the adversarial learning framework, and
then give practical algorithms for implementing such a framework for humanoid robots.

3.1 The Adversarial Learning Framework

Problem Formulation for learning πl. We consider a two-player zero-sum Markov game [9, 10]
to learn a robust lower-body policy πl. At each time step, the two players (i.e., πl and πu) choose
different actions (al and au), and the humanoid robot executes both actions to obtain the reward and
the next state. In learning πl, we consider the lower body as agent, and the upper body is adversary
that causes adversarial disturbances to the locomotion policy. Thus, the lower-body policy receives
the command-following reward as rl(s, al, au), and the upper-body policy obtains a negative reward
−rl(s, al, au). Formally, the value function V l(πl, πu) is defined as

V l(s, πl, πu) := Eπl,πu

[∑T

t=0
rl(st, a

l, au)
∣∣s0 = s

]
, (1)

where Eπl,πu is the under the trajectory distribution induced by πl and πu. Then we have the value
function as V l

ρ(π
l, πu) = Es∼ρ[V

l(s, πl, πu)], which is defined by the expectation of accumulated
locomotion reward rl. Then the locomotion policy πl is learned to maximize the value function
to better follow commands in locomotion, while the upper body policy tries to minimize the value
function, aiming to provide an effective disturbance to help learn a robust locomotion policy. Formally,
the two players form a Markov game and there exists a Nash equilibrium such have

V l
ρ(π

l∗ , πu∗) = max
πl

min
πu

V l
ρ(π

l, πu). (2)

To solve this max-min problem, we adopt an independent RL optimization process for both
players. Specifically, the agent obtains [(s0, a

l
0, r

l
0), . . . , (sT , a

l
T , r

l
T )], and adversarial obtains

[(s0, a
u
0 , r

u
0 ), . . . , (sT , a

u
T , r

u
T )] by executing each policy in the game to sample a trajectory, where

each player is oblivious to the actions of the other player. The two players optimize their policies
independently with policy gradients using their own experiences. Then the following theorem holds.
Theorem 3.1. Given ϵ > 0, suppose each policy has ε-greedy exploration scheme with factors of
εx ≍ ϵ and εx ≍ ϵ2, under a specific two-timescale rule of the two players’ learning-rate following
the independent policy gradient, we have

max
πl

min
πu

Vρ(π
l, πu)− E

[
1

N

∑N

i=1
min
πu

Vρ(π
u, πl(i))

]
≤ ϵ (3)

after N episodes, which results in a ϵ-approximate Nash equilibrium.

Intuitively, the max-min game for the lower and upper bodies leads to a robust locomotion policy
(by maximizing V l

ρ in the outer loop) even when the upper-body movements significantly disrupt
the whole-body balance (by minimizing V l

ρ in the inner loop). This adversarial learning process is
guaranteed to converge to a ϵ-approximate Nash equilibrium according to Theorem 3.1.

Problem Formulation for learning πu. Learning a precise motion imitation policy πu follows a
similar process by considering πu as the agent and πl as the adversary. In the Markov game, the upper
body receives a motion tracking reward ru(s, al, au) and the lower body receives −ru(s, al, au),
which aims to give adversarial disturbances for motion tracking. Then we define V u(s, πl, πu) :=

Eπl,πu

[∑T
t=0 r

u(st, a
l, au)

∣∣s0 = s
]

and V u
ρ (πl, πu) = Es∼ρ[V

u(s, πl, πu)]. Then the Markov
game is formulated as

V u
ρ (πl∗ , πu∗) = max

πu
min
πl

V u
ρ (πl, πu). (4)

3



Upper body (9 DoF)
𝜋𝑢(𝒂𝑢|𝒔𝑡

prop
, 𝒈𝑢)

𝜋𝑙(𝒂𝑙|𝒔𝑡
prop

, 𝒄𝑙,⋅)

adversarial 

motion 𝒈adv
𝑢  

Lower body (12 DoF)

(𝒂𝑙, 𝒂adv
𝑢 )

interact
Privilege Info

Proprioception

Command

Value 𝑉𝑙

Isaac simulation

update policy w. PPO Reward  𝑟𝑙                 

(b) Learning the lower-body policy (a) Learning the upper-body policy 

𝜋𝑢(𝒂𝑢|𝒔𝑡
prop

, 𝒈𝑢)

𝜋𝑙(𝒂𝑙|𝒔𝑡
prop

, 𝒄𝑙,⋅)

(𝒂𝒖, 𝒂adv
𝑙 ) motion

adversarial 

command 𝒄adv
𝑙  

interact

Reward  𝑟𝑢                

Value 𝑉𝑢
update policy w. PPO

velocity 
command

Isaac simulation

Iterative updates

Privilege Info

Proprioception

Command

Figure 1: The overview of ALMI. (a) In updating the upper-body policy πu, we sample adversarial
velocity command cladv and obtains al

adv. Then we use (au,al
adv) to interact with the environment

to collect experiences, which are used to update πu via PPO algorithm [11]. (b) Similarly, in updating
the lower-body policy, we sample adversarial motion gu

adv and obtains au
adv. Then we use (al,au

adv)
to interact and update πl. The two policies (πl, πu) finally converge via multiple mutual iterations.

By performing independent policy gradient optimization for the two players, we can prove that such
a process also results in a ϵ-approximate Nash equilibrium.

Simplified Formulation. According to Eq. (2) and (4), we require two pairs of (πl, πu) to optimize
V l and V u since they are defined by the opposite max-min problem, which could be computationally
expensive. To address this, we propose a simplified framework by learning a single paired policy
(πl, πu). Specifically, (i) in learning the locomotion policy πl, we optimize the parameters of πl

while keeping the upper-body policy πu fixed. However, we sample an adversarial motions with a
designed curriculum from the motion dataset, and set the corresponding reference joint position gu

adv
as the condition of πu(·|spropt , gu

adv) to generate adversarial actions au
adv. Similarly, (ii) in learning

the motion imitation policy πu, we only update πu and keep the lower-body policy πl fixed. Then,
we sample an adversarial command cl with the curriculum for the locomotion policy πl(·|spropt , cl, ·)
to generate al

adv. To conclude, we change the inner-loop optimization of the max-min problem (in
Eq. (2) and (4)) from the parameter space to the command space (i.e., by sampling gu

adv and cladv),
which leads to a practical efficient algorithm. Fig. 1 gives an overview of our method.

3.2 Robust Locomotion for the Lower Body

Table 1: Reward terms and weights for lower policy.
Term Expression Weight

Penalty

DoF position limits I(ql /∈ [ql
min, q

l
max]) -5.0

Alive I(robot stays alive) 0.15
Regularization

Linear velocity of Z axis ∥vz∥22 -2
Angular velocity of X&Y axis ∥wxy∥22 -0.5
Orientation ∥groot

xy ∥22 -1
Torque ∥τ l∥22 -1e-5
Base Height ∥h − htarget∥22 -10.0
DoF acceleration ∥q̈l∥22 -2.5e-7
DoF velocity ∥q̇l∥22 -1e-3
Lower body action rate ∥al

t − al
t−1∥

2
2 -0.01

Hip DoF position ∥qhip roll&yaw∥22 -1
Slippage ∥vfeet

xy ∥22 × I(∥F feet∥2 ≥ 1) -0.2
Feet swing height ∥qfeet

z − 0.08∥22 × I(∥F feet∥2 < 1) -20

Feet Contact
∑Nfeet

i=1 ¬(I(∥F feet
z,i ∥2 > 1) ⊕ I(ϕi < 0.55)) 0.18

Feet distance exp(−100 × d
out of range
feet

) 0.5

Knee distance exp(−100 × d
out of range
knee

) 0.4
Stand still ∥ql

t − ql
t−1∥

2
2 × I(∥cl∥2 < 0.1) -2

Ankle torque ∥τankle∥22 -5e-5
Ankle action rate ∥aankle

t − aankle
t−1 ∥22 -0.02

Stance base velocity ∥v∥22 × I(∥cl∥2 < 0.1) -1
Feet contact forces min(∥F feet − 100∥22, 0) -0.01

Task

Linear velocity exp(−4∥cxy − vxy∥22) 2
Angular velocity exp(−4∥cyaw − vyaw∥22) 1

Achieving robust locomotion
in humanoid robots remains a
significant challenge, primar-
ily due to the dynamic nature
of environments and the inher-
ent complexity of multi-joint
floating base systems. This
instability is particularly pro-
nounced in full-sized humanoid
robots, which often require in-
creased load capacity to ex-
ecute whole-body control or
loco-manipulation tasks. Such
requirements typically lead to
higher arm mass and inertia,
exacerbating system instability.
Consequently, during coordi-
nated upper and lower body
movements or mobile manipu-
lation, disturbances generated
by the upper body exert signifi-
cant impacts on the lower body,
necessitating robust policies to
mitigate these effects.
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Table 2: Reward terms and weights for upper policy.
Term Expression Weight

Penalty

DoF position limits I(qu /∈ [qu
min, q

u
max]) -5.0

Alive I(robot stays alive) 0.15
Regularization

Orientation ∥groot
xy ∥2

2 -1
Torque ∥τu∥2

2 -1e-5
Upper DoF acceleration ∥q̈u∥2

2 -2.5e-7
Upper DoF velocity ∥q̇u∥2

2 -1e-3
Upper body action rate ∥au

t − au
t−1∥

2
2 -0.01

Task

Upper DoF position exp(−0.5∥q̂u − qu∥2
2) 10

Motivation of Curriculum. In learning a
robust locomotion policy, an adversarial up-
per body component is essential to generate
perturbations. However, directly training
such an adversary is challenging. Empiri-
cal results show that without constraints,
the upper body can terminate episodes
early or collide with the lower body to
minimize its reward. Manually design-
ing constraints is labor intensive, and the
lower body can exploit flaws in the reward
function, leading to poor real-world perfor-
mance. Thus, as we discussed in §3.1, we
simplify the original problem by sampling
adversarial motions without updating the upper-body policy. Although aggressive sampling of highly
dynamic motions can reduce the locomotion policy’s value function (i.e. V l) as in Eq. (1), this
strategy cannot adequately teach the locomotion policy how to resist disturbances when the policy is
relatively weak, resulting in slow convergence. To overcome this, we introduce a novel curriculum
mechanism that starts with moderate disturbances and gradually increases their intensity as the lower
body’s robustness improves, ensuring efficient learning and robustness improvement throughout
training.

Dual Curriculum Mechanism. We propose a novel dual curriculum mechanism for adversarial
motion sampling by scoring upper-body motions based on their impact on the lower-body’s stability.
Specifically, we initially train a basic locomotion policy πl

0 without any upper body intervention.
Then we use a PD controller (in the first round) or πu to control the upper-body to track motions from
the re-targeted AMASS [8] dataset in simulation, while the lower body follows the basic velocity
commands. The robot inevitably falls initially due to upper body perturbations, and we record
survival length (denoted as lsl ∈ [0, lslmax]) as the primary metric for motion difficulty. Then, motions
are sorted into a list M = [M1, . . . ,M|M|] by increasing difficulty based on survival length. Further,
we introduce a factor, motion scale αs ∈ [0, 1], to scale the target joint positions of the upper body as

qi
target = qi

0 + αs(q
i
ref − qi

0). (5)

For each iteration, the robot is assigned a window of motions [Mαd
,Mαd+w] from M, where w

is the window size and αd = 1 at the start. These motions, scaled by αs, are used to control the
upper body to provide disturbances. The lower-body policy πl

0 is updated to πl
1 ← πl

0 through an RL
optimization process with locomotion-related rewards detailed in Table 1. To adaptively adjust the
difficulty of sampled motions, we calculate mean survival length (denoted as lmsl) of the sampled
motions as a metric to update αd and αs, which progressively increases motion difficulty based on
the current policy’s anti-disturbance capability. Formally,

αd ←
{
min(αd + w, |M| − w), if lmsl ≥ 0.8 ∗ lslmax

max(αd − 2w, 0), otherwise
, (6)

which increases the difficulty if πl can effectively resist the interference caused by sampled motions,
and decreases the difficulty otherwise. The update of motion scale follows a similar process as

αs ←
{
min(αs + 0.05, 1), αd = |M| − w

max(αs − 0.01, 0), αd = 0
, (7)

which signifies that the motion scale αs increases after all motions at the current scale are successfully
managed. However, increasing αs typically decreases lmsl, potentially causing αd to decrease and
resulting in motion sampling that reverts to previous entries in M. This triggers a new cycle of policy
updates with adjusted motions and scales. To maintain relevance, the motion list M is periodically
re-sorted to ensure alignment with the evolving robustness of the locomotion policy. The Algorithm 1
in Appendix B.2 gives a training process for the locomotion policy.

3.3 Motion Tracking for the Upper Body

The upper-body policy πu aims to track various motions under disturbances from lower-body
movements with adversarial commands. Before motion tracking, we follow the process proposed by
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Figure 2: ALMI-X dataset and foundation model training. (a) ALMI-X features motion target and
velocity command for the learned policies, combining with language description. (b) The foundation
model learns P (âi+1|s≤i, a≤i, T ) from a segment of state-action pairs via causal attention. In
inference, the last action is executed based on the history and obtains the true state for next steps.

PHC [12] to re-target the human motion from AMASS [8] dataset to humanoid robot. To enhance
motion smoothness, we applied low-pass filtering to the re-targeted motion data.

In the adversarial training process, we use the locomotion policy πl in the current round to control
the lower body, and the upper-body policy is learned by maximizing the motion tracking reward.
Different from §3.2 that requires delicate curriculum mechanism, the curriculum for adversarial πl

can be relatively simple since the command cl only contains velocity commands. Specifically, cl
is sampled from a range of [clmin, c

l
max], and we adjust the value of clmin and clmax according to the

tracking error of motions in the upper body, which is affected by the movement of the lower body. In
training πu, the lower-body command gradually increases its difficulty based on the tracking error of
the upper body. The reward design for the upper-body policy is described in Table 2, and the detailed
curriculum mechanism is provided in Appendix B.3.

4 ALMI-X Datasets and Foundation Model

The adversarial training processes outlined in §3.2 and §3.3 involve an iterative procedure over
multiple epochs to reach convergence. The final policies are used to gather a large-scale high-quality
dataset, which is used to train a foundation model dedicated to end-to-end whole-body control.

Dataset Construction. We collect ALMI-X dataset in MuJoCo simulations by running the trained
ALMI policy, which consists of the final policy πl and πu. In this simulation, we combine a diverse
range of upper-body motions with omnidirectional lower-body commands, and employ a pre-defined
paradigm to generate corresponding linguistic descriptions for each combination. (i) For the upper-
body, we collect data using our upper-body policy to track various motions from a subset of the
AMASS dataset [8], where we remove entries with indistinct movements or those that could not
be matched with the lower-body commands, such as push from behind. (ii) For the lower-body,
we first categorize command directions into several types according to different combination of
linear and angular velocity command and define 3 difficulty levels for command magnitudes, then
the lower-body command is set by combining direction types and difficulty levels. Overall, each
upper-body motion from the AMASS subset is paired with a specific direction type and a difficulty
level serving as the inputs of πu and πl to control the robot. In addition, trajectories in which
the lower body keep standing while the upper body tracks motions are also incorporated into the
dataset. Each language description T in ALMI-X is organized as "${movement mode} ${direction}
${velocity level} and ${motion}", each of which corresponds to the data collected from a trajectory
lasting on average 4 seconds with 200 steps. For each T , we run two policies (i.e., πu, πl) based on
the commands obtained from the aforementioned combinations to achieve humanoid whole-body
control. We record the trajectory information such as the robot states τs = (s0, s1, ..., sT ) and
actions τa = (a0, a1, ..., aT ). Our data exhibits high executability, and the details are discussed in
Appendix C.

Foundation Model for Humanoid Control. Using the ALMI-X dataset, we give preliminary
attempts to train a whole-body foundation model with supervised learning that can execute various
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motions in response to text commands. We adopt a Transformer decoder architecture that implements
causal self-attention modules over a text command and historical state-action pairs. Unlike UH-1
[13] that predicts the entire action sequence based on the text command, our policy autoregressively
models the next action by incorporating real-time interaction history between the robot and the
environment. This architecture avoids executing the entire action sequence without considering the
random noise and interference of the environment, instead adjusting actions based on intermediate
states, ensuring robust and adaptive control. Moreover, compared to methods focused solely on
walking [14], ALMI-X contains more diverse data from various motions and velocity commands,
enabling the learning of the foundation model to achieve complex language-guided whole body
control. The architecture is shown in Fig. 2 and the details are given in Appendix D.

5 Related Works

Humanoid Locomotion. Traditional humanoid locomotion primarily focuses on trajectory planning
[15, 16] and Zero-Moment Point (ZMP)-based gait synthesis [17, 18]. Other methods like whole-
body control [19, 20] and model-predictive control [21, 22] gain significant progress with dynamics
modeling, while it can be difficult to model rich contact in complex terrains [23]. Recently, learning-
based algorithms have shown promising results in humanoid locomotion tasks [24, 25]. RL has
become a powerful tool for learning locomotion policies by enabling agents to interact with the
environment through parallelized simulations [26]. Based on this, humanoids can acquire a wide range
of skills, including walking on complex terrains [27], [28], gait control [29], standing up [30, 31],
narrow-terrain navigation [32], jumping [33], and even parkour [34, 35]. However, most methods
focus solely on controlling the lower-body joints, treating the upper body as a fixed load [36, 37].
Although some studies have explored whole-body control policies [32, 29], their primary objective
is to learn an upper-body swinging policy to coordinate with the locomotion task. In contrast, our
method enables the lower-body policy to resist disturbances caused by various upper-body motions.

Humanoid Motion Imitation. Recent research has proposed expressive motion imitation algorithms
that learn human-like behaviors from motion capture datasets [38–40]. These methods employ motion
re-targeting and RL-based optimization to achieve fine-grained motion imitation and postural stability
[41–43]. However, balancing these two objectives can be challenging, as the execution of motions
may disturb stability, while poor stability, in turn, affects the precision of motion execution. Several
methods address this issue through careful reward design [44, 45], decomposed tracking strategies
[6, 4, 46, 47], and residual learning [48]. Unlike these methods, our approach focuses solely on
tracking human motions in the upper body. Although this may result in less expressiveness, it leads
to robust locomotion in the lower body and precise motion tracking in the upper body, leading to
an effective whole-body policy for real-world deployment. Other methods [49, 50, 5] also adopt
a separate control paradigm for training the two parts with different rewards, while we employ
an adversarial training process to promote coordinated behaviors between locomotion and motion
imitation policies.

Foundation Model for Robotics. Our work is also related to the learning of foundation models for
robotics. Previous works mainly focus on building vision-language-action models for end-to-end
manipulation, such as MT-Diff [51], RT-1 [52], Octo [53], OpenVLA [54], RDT [55], π0 [56], GO-1
[57], and BRS [58]. They rely on large-scale datasets collected by humans, such as RH20T [59],
Bridge Data [60], RoboMIND [61], Open-X [62], AgiBot Data [57] and HGen-Bench[63]. However,
these datasets focus mainly on arm manipulation with a fixed or wheeled platform. In contrast, our
dataset (i.e., ALMI-X) targets whole-body control in humanoid robots, which involves controlling
more DoFs than manipulation tasks. UH-1 [13] is closely related to ALMI, but learns a mapping
from text descriptions to keypoints, and low-level actions are found to be unexecutable in real robots.

6 Experiments

In this section, we evaluate the performance of ALMI using the Unitree H1-2 robot in both simulated
and real-world environments. Our experiments aim to address the following research questions:
Q1. How does ALMI perform in terms of tracking precision for lower-body velocity commands
and upper-body motions? Q2. How does ALMI perform regarding stability and robustness in
complex scenarios? Q3. What benefits does adversarial iterative training and the arm curriculum
mechanism provide for policy optimization? Q4. How does ALMI perform in the real world?
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Training Details. Policy training is conducted within the Isaac Gym simulator utilizing 4,096 parallel
environments. We perform three rounds of adversarial iterations and evaluate the policies of the
final round. Notably, during the adversarial iterative training process, the initial lower-body policy
converges after approximately 104 steps. As iterations progress, the number of steps required for
convergence decreases significantly. The total duration of the three training iterations is approximately
17 hours. For each baseline method, we use the checkpoint obtained after training convergence
for testing. To enhance generalization, we implement domain randomization for sim-to-sim and
sim-to-real transfers, with specific details provided in Appendix B.5.

Evaluation Metrics. For simulated evaluation, we adopt the high-quality CMU MoCap dataset
[64] with 1122 motion clips (denoted as Dcmu) to evaluate different metrics in IsaacGym [26]. The
metrics include (i) the mean linear velocity error Evel(m/s) and the mean angular velocity error
Eang(rad/s) that evaluate the command tracking accuracy; (ii) the upper body joints position error
Eupper

jpe (m) and key points error Eupper
kpe (m) that evaluates the motion tracking accuracy; (iii) the joint

difference for both parts Eupper
action(rad), E

lower
action(rad); (iv) and the projected gravity Eg evaluate the

stability of policy. (v) We also statistically analyze survival rate to assess the robustness of the policy.

Baselines. Our baselines are as follows: (i) Exbody [6], which employs a unified policy to control
whole-body joints, tracking upper-body movements from motion data and lower-body root motion
via command sampling. (ii) ALMI (whole), which uses a single policy to control the upper and
lower bodies, with identical reward functions for training each part as in ALMI. (iii) ALMI (w/o
curriculum). An ablation study that omits the arm curriculum, where the policy loads the motion
randomly and the motion scale αs is set to 1. (iv) ALMI (w/o adv. learning). This study evaluates
the impact of our iterative adversarial training by testing policies from the first and second rounds.
We also compare our method with approaches that simultaneously imitate both upper and lower
body movements. We consider two state-of-the-art methods: (v) ExBody2 [4], which leverages a
privileged teacher policy to distill precise mimicry skills into a student policy, enabling whole-body
imitation, and (vi) OmniH2O [45], an imitation-based whole-body control method that supports
real-time input from various input devices.

6.1 Main Result of ALMI
To evaluate locomotion and motion tracking capabilities, we calculate metrics in Dcmu using com-
mands in the lower body categorized into difficulty levels easy, medium, and hard, as described
in Table 3. These levels encompass linear velocities in the x and y directions, angular veloc-
ity in the yaw direction, terrain level in the Isaac Gym and the presence of external forces. To
control variables and facilitate analysis, we assess linear and angular velocities separately (set-
ting the other to zero during testing) and report the average metrics.

Table 3: Locomotion difficulty level setting.
Command & Environment

Level v̂x,t v̂y,t ω̂yaw,t terrain level push robot

easy 0.7 0.0 0.2 0 ✗
medium 1.0 0.3 0.4 3 ✓
hard 1.3 0.6 0.6 6 ✓

To answer Q1 and Q2, we give the
comparative results in Table 4. (i)
Tracking accuracy. ALMI demon-
strates superior tracking precision
across all difficulty levels for both

Table 4: Simulated evaluation of ALMI, ALMI (whole body) and Exbody on CMU dataset.

Metrics

Method Evel ↓ Eang ↓ Eupper
jpe ↓ Eupper

kpe ↓ Eupper
action ↓ Elower

action ↓ Eg ↓ Survival ↑

Easy

ALMI 0.1135 0.2647 0.1931 0.0460 0.0462 0.0170 0.6919 1.0000
ALMI(whole) 0.1386 0.5433 0.5756 0.0704 0.0800 3.0356 0.9675 0.9991
Exbody 0.2383 0.4056 0.3559 0.0995 1.7813 1.8152 0.9693 0.8912

Medium

ALMI 0.2192 0.3520 0.2007 0.0450 0.0598 0.0172 0.7604 0.9852
ALMI(whole) 0.2380 0.5563 0.6734 0.0637 0.0409 2.9225 1.0750 0.9763
Exbody 0.3063 0.5087 0.3658 0.1233 1.7683 1.8019 1.0166 0.8845

Hard

ALMI 0.2202 0.4812 0.2116 0.0458 0.0600 0.0175 0.8551 0.9723
ALMI(whole) 0.3178 0.7224 0.7022 0.0635 0.0519 2.9317 1.1656 0.9491
Exbody 0.4838 0.5753 0.3758 0.1269 1.7352 1.7689 1.0243 0.8778
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Table 5: Comparison with Exbody2 and OmniH2O on G1 in simulation.

Metrics

Method Evel ↓ Eang ↓ Eupper
jpe ↓ Eupper

kpe ↓ Eupper
action ↓ Elower

action ↓ Eg ↓ Survival ↑

ALMI 0.1396 0.2776 0.2367 0.0411 0.0198 0.7411 0.0977 0.9484
OmniH2O 0.1615 0.4166 1.0826 0.0598 1.2773 2.3219 0.1696 0.3882
Exbody2 0.4015 0.6066 0.3821 0.0719 1.1797 1.3547 0.3367 0.8848

upper-body motions and lower-body velocity commands, consistently outperforming other baselines.
The results highlight that a single policy struggles with upper-lower body coordination, limiting
tracking accuracy. In contrast, our adversarial training framework simultaneously enhances the
accuracy of both policies for their respective objectives. (ii) Stability and robustness. According
to the survival rate, it can be found that with an improvement in difficulty levels, ALMI can track
motions and velocity commands robustly and effectively prevent falls. This stability is attributed
to the lower-body policy, which effectively learns to execute stable movements despite adversarial
upper-body interference, underscoring the efficacy of adversarial training strategy.

As OmniH2O and Exbody2 are imitation-based whole-body control methods without velocity track-
ing, for ALMI, we use linear and angular velocity provided by the reference motion as velocity
tracking command; for OmniH2O and Exbody2, they directly track the reference motions. This
experiment is conducted without terrain or push. To indicate that our method can be extended to
other robot platforms, we use Unitree G1 robot in this setting. The results are shown in 5. It can
be observed that our method generalizes well across different robotic platforms and demonstrates
superior robustness compared to imitation-based whole-body control methods.

To answer Q3, we evaluate the impact of our arm curriculum and adversarial learning techniques, with
results presented in Table 6. We use the trained lower-body policies across three iterations, labeled
lower-1, lower-2, and lower-3. Under easy velocity commands without environmental disturbances,
performance differences among the iterations are minimal. However, as task complexity increased,
lower-3 demonstrated superior performance across all metrics compared to earlier iterations, while
lower-1 showed notably inferior results. During adversarial training, the lower and upper policies
iteratively refined their motion and command tracking capabilities while generating progressively
larger disturbances for each other, guided by the designed curriculum. For instance, to achieve
high-velocity commands, the lower body might execute large-amplitude actions, inducing oscillations
that disrupt upper-body movements, and vice versa. Through this iterative process, both policies
gradually adapt to adversarial perturbations, eventually reaching a stable condition. In addition,
Table 6 underscores the critical role of the arm curriculum. By systematically introducing upper-body
motions from easy to hard in training, the lower-body policy effectively learned to handle increasingly
difficult perturbations and motion scales.

Table 6: Ablation studies of adversarial training technique and arm curriculum in ALMI.

Metrics

Method Evel ↓ Eang ↓ Eupper
jpe ↓ Eupper

kpe ↓ Eupper
action ↓ Elower

action ↓ Eg ↓ Survival ↑

Easy

lower-3 + upper-2 0.1135 0.2647 0.1931 0.0460 0.0462 0.0170 0.6919 1.0000
lower-2 + upper-2 0.1164 0.2669 0.1955 0.0452 0.0475 0.0171 0.7121 1.0000
lower-1 + upper-2 0.1271 0.2738 0.1928 0.0526 0.0642 0.0171 0.7052 1.0000
w/o arm curriculum 0.1411 0.2726 0.1924 0.0504 0.0618 0.0172 0.7472 0.9995

Medium

lower-3 + upper-2 0.2192 0.3520 0.2007 0.0450 0.0598 0.0172 0.7604 0.9852
lower-2 + upper-2 0.2213 0.3571 0.2032 0.0458 0.0607 0.0172 0.7748 0.9772
lower-1 + upper-2 0.2262 0.3872 0.2173 0.0492 0.0604 0.0175 0.7730 0.9273
w/o arm curriculum 0.2571 0.4348 0.2068 0.0476 0.0601 0.0173 1.0587 0.9652

Hard

lower-3 + upper-2 0.2202 0.4812 0.2116 0.0458 0.0600 0.0175 0.8551 0.9723
lower-2 + upper-2 0.2892 0.5395 0.2231 0.0482 0.0645 0.0178 0.9479 0.9233
lower-1 + upper-2 0.2566 0.5172 0.2451 0.0537 0.0777 0.0179 0.9462 0.8743
w/o arm curriculum 0.3658 0.6398 0.2394 0.0461 0.0726 0.0180 1.2042 0.8480
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(a) Salute (b) Wave (c) Shake hand (d) Punch

Figure 3: The sim-to-real comparison of humanoid robot in tracking various motions.

6.2 Result of Foundation Model

The Transformer-based foundation model leverages textual descriptions of the whole-body motion
along with historical information to predict future action. In experiments, we find that when training
on a subset of the ALMI-X dataset (e.g., waving-related data), the model converges to a robust
policy, enabling execution of various waving and moving motions in the MuJoCo simulations. We
highlight that this is particularly challenging, as no prior works show a purely offline policy can
control full-sized humanoid robots to generate language-guided behaviors. However, when we extend
the training data to the complete ALMI-X, the performance degraded, indicating limitations of the
current model in handling highly diverse behaviors. ALMI-X dataset and our finding provide a
promising starting point for future exploration, with detailed results provided in Appendix D.

6.3 Real-World Experiments

To answer Q4, we deploy ALMI on the Unitree H1-2 robot to evaluate real-world performance. For
lower-body control, we use a joystick-mounted remote controller to send velocity commands to πl,
which controls the robot to achieve omnidirectional movement. For upper body control, we can adopt
open-loop controller or ALMI policy to track various motions, as well as using VR devices to support
dexterous control in loco-manipulation tasks. The details are given in Appendix F.

To evaluate the capabilities in maintaining stability in movements while tracking motions precisely, we
control the robot to execute various upper body motions while standing or walking in omnidirection.
Fig. 3 illustrates the motion tracking behavior, emphasizing the alignment between simulation and
real-world performance. To further demonstrate the robot’s capability to perform complex motions
during locomotion, Fig. 8 in the appendix provides a sim-to-real comparison of the robot completing a
full motion sequence while moving forward and recovering to a standing position. These experiments
confirm that ALMI enables the real robot to achieve robust locomotion and accurate motion tracking.

7 Conclusion

This paper presented ALMI, an adversarial training framework for humanoid whole-body control.
ALMI leverages the designed curriculum for upper and lower body training, achieving stable lo-
comotion and precise motion imitation through iterative policy updates. Our theoretical analysis
demonstrates ALMI’s effectiveness within a two-player Markov game framework, supported by
practical algorithms for implementation. The learned policy is used to collect the ALMI-X dataset
with language annotations, facilitating foundation model training for the research community. Empir-
ical results highlight ALMI’s superior performance in both simulated environments and real-world
deployments. However, our approach still has limitations. The adversarial framework of ALMI,
albeit practical and robust for mobile manipulation, performs suboptimally in highly dynamic whole-
body tasks like dancing; furthermore, our foundation model remains exploratory, with significant
headroom for enhancing data efficiency. Future works include enhancing whole-body coordination
through unified task-oriented rewards and improving the foundation model using advanced model
architectures.
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guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
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7. Experiment statistical significance
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Answer: [Yes]

Justification: Please see our experimental setup details, and Appendix E for our real robot deployment
setup.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics, and make sure that our research conducted in the
paper conform with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in Appendix F.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
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Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite works of related assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: No new assets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: NA

Guidelines:
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Theoretical Analysis

In this section, we provide more theoretical analysis for the Markov game in our method. We give the analysis
of the zero-sum game to learn the locomotion policy πl, and a similar analysis can be derived for learning πu.

Recall that in learning πl, we consider the lower body as agent, and the upper body is adversary that causes
adversarial disturbances to the locomotion policy. Thus, the lower-body policy receives the command-following
reward as rl(s, al, au), and the upper-body policy obtains a negative reward −rl(s, al, au). Formally, the value
function V l(πl, πu) is defined as

V l(s, πl, πu) := Eπl,πu

[∑T

t=0
rl(st, a

l, au)
∣∣s0 = s

]
, (8)

Then we have the value function as V l
ρ (π

l, πu) = Es∼ρ[V
l(s, πl, πu)], which is defined by the expectation of

accumulated locomotion reward rl. According to the theory of stochastic game [65], for any game G, there
exists a Nash equilibrium (π⋆

1 , π
⋆
2) such that Vρ(π

⋆
1 , π2) ≤ Vρ(π

⋆
1 , π

⋆
2) ≤ Vρ(π1, π

⋆
2). Then we have

Vρ(π
l, πu⋆) ≤ Vρ(π

l⋆ , πu⋆) ≤ Vρ(π
l⋆ , πu), for all πl, πu, (9)

and in particular

V l⋆
ρ := V l

ρ (π
l∗ , πu∗) = max

πl
min
πu

V l
ρ (π

l, πu) = min
πu

max
πl

V l
ρ (π

l, πu), (10)

which signifies that πl is learned to maximize the value function to better follow commands in locomotion,
while πu tries to minimize the value function, aiming to provide an effective disturbance to help learn a robust
locomotion policy. Our goal in this setting is to develop algorithms to find ε-approximate Nash equilibrium, i.e.
to find πl such that ∣∣min

πu
Vρ(π

l, πu)− V l
ρ (π

l⋆ , πu⋆)
∣∣ ≤ ε, (11)

To solve this min-max problem in Eq. (10), we adopt an independent RL optimization process for
both players. Specifically, the agent obtains [(s0, a

l
0, r

l
0), . . . , (sT , a

l
T , r

l
T )], and adversarial obtains

[(s0, a
u
0 , r

u
0 ), . . . , (sT , a

u
T , r

u
T )] by executing each policy in the game to sample a trajectory, where each player

is oblivious to the actions of the other player. In our analysis, we adopt continuous policy parameterizations
x 7→ πu, and y 7→ πl, where x ∈ X ⊆ Rd1 , y ∈ Y ⊆ Rd2 are parameter vectors. Each player simply treats
V l
ρ (x, y) 7→ V l

ρ (π
u, πl) as a continuous optimization objective, and updates their policy using REINFORCE

gradient estimator [66]. For episode i, the two players update their policies with stochastic gradient descent, as

x(i+1) ← PX (x(i) − ηx∇̂(i)
x ), y(i+1) ← PY(y

(i) + ηy∇̂(i)
y ), (12)

where PX denotes euclidean projection onto the convex set X , with

∇̂(i)
x 7→ R(i)

T

T∑
t=0

∇ log πu(a
u(i)
t | s(i)t ), ∇̂(i)

y 7→ R(i)

T

T∑
t=0

∇ log πl(a
l(i)
t | s(i)t ), (13)

where R(i)

T 7→
∑T

t=0 r
l(i)
t . This process is independent for two players, as they optimize policies independently

with policy gradients using their own experiences. Here, it is well-known that if players update their policies
independently using online gradient descent/ascent with the same learning rate, the resulting dynamics may
cycle, leading to poor guarantees [67, 68]. However, previous studies show that two-timescale rules help policy
converge in simple minimax optimization settings [69, 70]. As a result, we follow recent studies in the Min-Max
game [71] and use two-timescale updates for the two players, which is a simple modification of the usual gradient
descent-ascent scheme for Min-Max optimization, in which the Min player uses a much smaller step size than
the Max player. Next, to ensure that the variance of the REINFORCE estimator remains bounded, we require
that both players use ε-greedy exploration in conjunction with the basic policy gradient updates.

Assumption A.1. Both players follow direct parameterization with ε-greedy exploration, as πu(au | s) =
(1− εx)1s,au + εx/|Au| and πl(al | s) = (1− εy)1s,al + εy/|Al|, where εx, εy ∈ [0, 1] are the exploration
factors.

Then the following theorem holds by following Assumption A.1 and the two-timescale rule of update.

Theorem A.2 (Restate of Theorem 3.1). Given ϵ > 0, suppose each policy has ε-greedy exploration scheme
with factors of εx ≍ ϵ and εx ≍ ϵ2, under a specific two-timescale rule of the two players’ learning-rate
following the independent policy gradient, we have

max
πl

min
πu

Vρ(π
l, πu)− E

[
1

N

∑N

i=1
min
πu

Vρ(π
u, πl(i))

]
≤ ϵ (14)

after N episodes, which results in a ϵ-approximate Nash equilibrium.
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Proof. This proof basically follows Appendix A.2 of Daskalakis et al. [71], which proves that the Max player
leads to the ϵ-approximate Nash equilibrium. We can follow a similar process to prove that the Min player also
has the same property. According to [71], by following the REINFORCE gradient estimator, we have

Eπu,πl∥∇̂x −∇xV
l
ρ (x, y)∥2 ≤ 24

|Au|2

εxζ4
, and Eπx,πy∥∇̂y −∇yV

l
ρ (x, y)∥2 ≤ 24

|Al|2

εyζ4
, (15)

where ζ is the stopping probability of the Markov game. Then according to the performance difference lemma
[72], we have

Vρ(π
u, πl)− Vρ(π

u′
, πl) =

∑
s∈S

d̃π
u,πl

ρ (s)Ea∼πu(·|s)Eb∼πl(·|s)

[
Aπu′

,πl

(s, a, b)

]
(16)

Then, for a policy π, let π⋆
1(π

l) ∈ Π⋆
1(π

l) denote a policy minimizing ∥ d
π1,πl

ρ

ρ
∥∞, then we have

V l
ρ (x, y)−min

x′
Vρ(x

′, y) ≤ Vρ(π
u, πl)− Vρ(π

∗
1(π

l), πl) (17)

=
∑
s,a

d̃
π⋆
1 (πl),πl

ρ (s)π⋆
1(π

l)(a | s)Eb∼πl(·|s)[−A
πu,πl

(s, a, b)] (18)

≤
∑
s

d̃
π⋆
1 (πl),πl

ρ (s)max
a

Eb∼πl(·|s)[−A
πu,πl

(s, a, b)] (19)

≤
∥∥∥ d̃π⋆

1 (πl),πl

ρ

d̃ρ
πu,πl

(s)

∥∥∥
∞

∑
s

d̃π
u,πl

ρ (s)max
a

Eb∼πl(·|s)[−A
πu,πl

(s, a, b)]. (20)

We observe that
∥∥∥ d̃

π⋆
1 (πl),πl

ρ

d̃ρ
πu,πl

∥∥∥
∞
≤ 1

ζ

∥∥∥ d
π⋆
1 (πl),πl

ρ

ρ

∥∥∥
∞
≤ 1

ζ
CG , where CG is the minimax mismatch coefficient

for the game G. Then we have∑
s,a

d̃π
u,πl

ρ (s)max
a

Eb∼πl(·|s)[−A
πu,πl

(s, a, b)]

= max
x̄∈∆(Au)|S|

∑
s,a

d̃π
u,πl

ρ (s)x̄s,aEb∼πl(·|s)[−A
πu,πl

(s, a, b)]

= max
x̄∈∆(Au)|S

|
∑
s,a

d̃π
u,πl

ρ (s)(πu(a | s)− x̄s,a)Eb∼πl(·|s)[Q
πu,πl

(s, a, b)]

= max
x̄∈∆(Au)|S|

∑
s,a

d̃π
u,πl

ρ (s)((1− εx)xs,a + εxA
−1 − x̄s,a)Eb∼πl(·|s)[Q

πu,πl

(s, a, b)],

≤ max
x̄∈∆(Au)|S|

∑
s,a

d̃π
u,πl

ρ (s)((1− εx)xs,a + εxA
−1 − εxx̄s,a − (1− εx)x̄s,a)Eb∼πl(·|s)[Q

πu,πl

(s, a, b)]

≤ (1− εx) max
x̄∈∆(Au)|S |

∑
s,a

d̃π
u,πl

ρ (s)(xs,a − x̄s,a)Eb∼πl(·|s)[Q
πu,πl

(s, a, b)] +
2εx
ζ2

= max
x̄∈∆(Au)|S|

⟨∇xVρ(x, y), x− x̄⟩+
2εx
ζ2

, (21)

where the last equation holds since Pr[T ≥ t] ≤ (1− ζ)t for any t ≥ 0 that for any ρ ∈ ∆(S),

∇xVρ(x, y) = Eτ∼Prπx,πy (·|s0)

[
T∑

t=0

(∇x log πx(at|st))Qπx,πy (st, at, bt)

]
(22)

=
∑
s∈S

Ea∼πx(·|s)Eb∼πy(·|s)

[
d̃
πx,πy
ρ (s)(∇x log πx(a|s))Qπx,πy (s, a, b)

]
. (23)

Thus, for any s ∈ S, a ∈ A, we have

∂Vρ(x, y)

∂xs,a
= (1− εx)d̃πx,πy

ρ (s)Eb∼πy(·|s) [Q
πx,πy (s, a, b)] ,

and so it follows that ∣∣∣∣∂Vρ(x, y)

∂xs,a

∣∣∣∣ ≤ d
πx,πy
ρ (s)

ζ

∣∣Eb∼πy(·|s) [Q
πx,πy (s, a, b)]

∣∣ .
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According to Eq. (17) and (21), we have

Vρ(π
u, πl)−min

x′
Vρ(x

′, πl) ≤ min
π1∈Π∗

1(π
l)

∥∥∥∥∥dπ1,π
l

ρ

ρ

∥∥∥∥∥
∞

(
1

ζ
max

x̄∈∆(Au)|S|

〈
∇xVρ(π

u, πl), πu − x̄
〉
+

2εx
ζ3

)
,

(24)

The term in the right side can be bounded by O
(

ϵCg

ζ

)
according to the gradient dominance condition in Lemma

1a of [71]. Then, according to Theorem 2a of [71], suppose each policy has ε-greedy exploration scheme with
factors of εx ≍ ϵ and εx ≍ ϵ2, the average performance difference can be bounded. Specifically, under a specific
two-timescale rule of the two players’ learning-rate, we have

max
πl

min
πu

Vρ(π
l, πu)− E

[
1

N

∑N

i=1
min
πu

Vρ(π
u, πl(i))

]
≤ O

(
ϵCg

ζ

)
, (25)

which concludes our proof.

B Implementation Details

B.1 State and Action Space

In this section, we introduce the detailed observation and action-space information of policies used in experiments.
The adversarial iterations use the same state space setting. We use 21 DoF of the H1-2 robot without its wrist
joints. The details are in Table 7.

Table 7: State and action space information in ALMI setting.

State Term Lower dim. Upper dim. Whole dim.

Base angular velocity 3 3 3
Base gravity 3 3 3
Commands 3 (velocity) 9 (motion) 12 (velocity+motion)
DoF position 21 21 21
DoF velocity 21 21 21
Actions 12 (lower) 9 (upper) 21 (whole)
Periodic phase 2 2 2

Total dim 65 68 83

The policies use the PPO [11] algorithm for training, where the observation of the critic policy has 3 additional
dimensions of base linear velocity compared to the state space of the actor policy, which is often called privileged
information in robotics. For action space, the lower body policy uses 12 DoF of two leg joints, the upper body
uses 9 DoF of one waist joint and two arms, and the whole body policy uses all 21 DoF joints.

B.2 Training Detail of the Locomotion Policy

Algorithm Description We employ PPO to train the locomotion policy, which consists of two key compo-
nents: the policy and the environment. Trajectories are generated by deploying the policy on the robot within the
environment, and the collected data is then used to update the policy. Additionally, the curriculum factors are
used to adjust at the end of each episode. The algorithmic description is given in Algorithm 1.

Implementation Details To enable the robot to exhibit a regular gait during movement and remain stationary
when the velocity command is zero, we design a gait phase parameter ϕt = (ϕt,left, ϕt,right) as an observation
term, which is updated as:

ϕt+1,left = ϕt,left + f × dt, (26)
ϕt+1,right = ϕt+1,left + ψ, (27)

where f, dt, ψ are gait frequency, time step and gait offset, respectively. We use PPO to train the policy and
employ an asymmetric actor-critic architecture, where the critic is granted access to the base linear velocity vt

as privileged information. For the first iteration, we apply an open-loop controller to control the upper-body to
track the reference motion trajectory. In subsequent iterations, we employ the trained upper-body policy as the
upper-body controller.

Reward Design We divide the reward terms into three parts according to their role: penalty rewards to
prevent unwanted behaviors, regularization to refine motion, and task reward to achieve goal tracking (velocity
commands or upper body DoF position). The details are in Table 1. The three iterations use the same reward
terms and weights.
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Algorithm 1 Training process of the locomotion policy
Require: max iterations N , max episode length lsl

max
1: Initialize policy πl

θ , value function V l
ϕ

2: for iteration = 1, . . . , N do
3: Collect trajectories by running policy πl

θ in the environment
4: // Update curriculum at episode termination
5: if lmsl > 0.8× lsl

max then
6: αd ← min(αd + w, ∥M∥ − w)
7: else
8: αd ← max(αd − 2w, 0)
9: end if

10: if αd == ∥M∥ − w then
11: αs ← min(αs + 0.05, 1), αd ← 0
12: else if αd == 0 then
13: αs ← max(αs − 0.01, 0)
14: end if
15: Perform PPO update with GAE advantage update
16: end for
17: return Trained policy πθ

B.3 Training Detail of the Motion-Tracking Policy

Algorithm Description During the training of the upper-body motion tracking policy, we use the pre-trained
lower-body policy πl to execute the locomotion command and simultaneously introduce disturbance to the
upper-body. We begin by sampling the locomotion velocity commands from a narrow range and compute
the tracking error of the motion-tracking task. At each episode termination, if the tracking error is smaller
than a threshold, the command sampling range will be extended to generate more intensive disturbance to the
upper-body. We use PPO to train the motion tracking policy to simply follow the reference DoF position sampled
from the dataset. We did not use the 6D pose of keypoints as an observation because the computation is based
on the robot’s root pose, which will differ from that of motion dataset under omnidirectional commands. In
contrast, joint angles avoid such dependency and provide sufficient information for motion tracking.

Curriculum Setting In learning the motion tracking policy in the upper body, the lower-body command
follows a curriculum by adjusting the range of the velocity commands. Formally,

clmin ←

{
max(clmin − 0.1,Cl

min), exp(−0.5∥q̂u − qu∥22) > du

max(clmin + 0.1,Cl
min), otherwise

, (28)

clmax ←

{
min(clmax + 0.1,Cl

max), exp(−0.5∥q̂u − qu∥22) > du

min(clmax − 0.1,Cl
max), otherwise

, (29)

where clmin, c
l
max are the lower and upper bound of the current command range, cl is sampled from[clmin, c

l
max]

during training. [Cl
min,C

l
max] is the range limit of pre-defined commands. q̂u, qu and du are the reference upper

body joint position, upper body joint position and the threshold of motion tracking error, respectively. The
related terms and values are given in Table 8.

Table 8: Upper body curriculum terms and values.

Term Value

Cl
min [-0.7, -0.5, -0.5]

Cl
max [0.7, 0.5, 0.5]

du 0.9

Reward Design Table 2 gives the reward terms for the motion tracking policy in the upper body. The
upper-body policies of adversarial iterations all use these reward terms and weights.

B.4 PPO Hyperparameters

We use GAE to estimate the advantage and CLIP-PPO to train our policy. The total loss is given by:

Ltotal = Lpolicy + wvLvalue − wsS, (30)
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where

Lpolicy = −E[min(ri(θ)Âi, clip(ri(θ), 1− ϵ, 1 + ϵ)Âi)], (31)

Lvalue = E[(V (si)−Ri)
2], (32)

S = E[−πθ(a|s) log πθ(a|s)], (33)

where ri(θ) = πθ(ai|si)
πθold

(ai|si)
and Âi is the estimated advantage. wv and ws are value loss coefficient and entropy

term coefficient, respectively. The hyperparameters of the PPO algorithm and the information of the network
backbone are listed in Table 10.

B.5 Domain Randomization

Domain randomization is a popular technique for improving domain transfer, often used in a zero-shot setting
when the target domain is unknown or cannot easily be used for training [73]. In order to adapt the trained policy
to the real world, we employ the domain randomization technique during training to facilitate robust sim-to-sim
and sim-to-real transfer [36, 37]. We give the domain randomization terms and ranges used during the training
process, and the details are in Table 9.

Table 9: Domain randomization terms and
ranges.

Term Value

Dynamics Randomization

Friction U(0.1, 1.25)
Base mass U(−3, 5) kg
Link mass U(0.9, 1.1)× default kg
Base CoM U(−0.1, 0.1) m
Control delay U(0, 40) ms

External Perturbation

Push robot interval = 10s, vxy = 1m/s

Randomized Terrain

Terrain type trimesh, level from 0 to 10

Velocity Command

Linear x velocity U(−1.0, 1.0)
Linear y velocity U(−0.3, 0.3)
Angular yaw velocity U(−0.5, 0.5)

Table 10: Hyperparameters related to PPO

Hyperparameter Default Value

Actor lstm size [64]
Actor MLP size [64, 32]
Critic MLP size [64, 32]
Optimizer Adam
Batch size 4096
Mini Batches 4
Learning epoches 8
Activation elu
Entropy coef(ws) 0.01
Value loss coef(wv) 1.0
Clip param 0.2
Max grad norm 1.0
Init noise std 0.8
Learning rate 1e-3
Desired KL 0.01
GAE decay factor(λ) 0.95
GAE discount factor(γ) 0.998
Curriculum window size(w) 40

C Data Collection and Model Details

Dataset Overview The ALMI-X dataset contains 1989 motions combined with 41 commands, resulting
81,549 trajectories totally. Each trajectory is organized as τ = {τ ts , τ ta, τ tdof_pos, τ

t
trans, τ

t
rot}Tt=1, respectively

representing robot states, actions, joint angles, global position and global orientation, where the global position
and global orientation are usually considered as privilege information that is missing in the state space. The
statistical results shown in Fig. 4, Fig. 5 and Fig. 6 demonstrate the advantages of ALMI-X, and the experimental
results of Appendix D further indicate that our dataset is higher quality and more suitable for foundation model
training. The dataset is available at https://almi-humanoid.github.io/.

Table 11: Command difficulty level setting.
Command

Level v̂x,t v̂y,t ω̂yaw,t

easy [0.2,0.4] [0.2,0.3] [0.2,0.3]
medium [0.4,0.5] [0.3,0.4] [0.3,0.4]
hard [0.5,0.7] [0.4,0.5] [0.4,0.5]
fix 0.4 0.4 0.4

Data Collection Details (i) For the lower-body, we
first categorize command directions into 11 types (8 transla-
tion directions: front, back, left, right, front-left, front-right,
back-left, and back-right; 2 rotation directions: left and
right; and keep standing) according to different combina-
tion of linear and angular velocity command, and define
4 difficulty levels for command magnitudes, as shown in
Table 11. We sample velocity value for the first 3 levels
and task a fix value for the ‘fix’ level, which corresponds
to a text that does not contain speed-related modifiers, e.g. just ‘go forward’ without ‘slowly’ or ‘fast’. We take
the lower-body commands according to the difficulty levels with corresponding ranges, combining with different
direction types. In addition, we set a special category for standing, resulting in 41 categories totally. (ii) For the
upper body, we select motions according to §4 and remove those that are overly large in amplitude or difficult
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to distinguish, resulting in 680 different motions. However, these motions have an uneven distribution, with
each motion category associated with a different number of trajectories. As shown in the left plot of Fig. 4, for
instance, the number of steps for "wave" greatly exceeds that of "salute". Through empirical evaluation, we find
that imbalanced data distribution negatively impacts the training performance of the foundation model.

To address this problem, we classify the motions into 30 categories based on their corresponding texts. Then
we count the number of steps in each category and augment those with fewer steps by repeating their motion
sequences multiple times during data collection. This is not equivalent to mere data duplication, since environ-
mental interactions cause the robot to produce slightly different trajectories each time, despite following the
same reference motion. After that, the data volume across all categories is approximately the same, as shown in
Fig. 4.

After data augmentation, we obtain a total of 1,989 motions. When combined with different direction and
difficulty commands, these motions generate a total of 81,549 trajectory sequences. Fig. 5 shows the planar
position of all steps in space. The visualization result shows that despite the accumulated errors from the policy
and the limitations of the simulator, the robot is still able to execute velocity commands in a reasonably correct
manner. For instance, under the ‘go forward’ command, the steps are distributed along the positive x-axis,
enabling the foundation model to learn representations across the space.

Fig. 6 illustrates the distribution of the upper body-hand positions of dataset. The visualization shows that the
upper body motions in the dataset basically allow the robot arms to cover the entire activity space. When we
train the lower body policy, we set the arm curriculum which is detailed in §3.2 to gradually expand the activity
range of the two arms from the default position to the whole activity space.

Comparison to Humanoid-X [13] data Compared to the existing text-to-action dataset, Humanoid-X
[13], our dataset exhibits much higher quality, which can be utilized for relatively stable open-loop control of the
robot in simulations without causing the robot to lose control. This is because the RL policy that UH-1 employs
to track motions have complex sources and can introduce dangerous or unreasonable behavior. However, due to
the robust lower-body policy and expressive upper-body policy obtained through adversarial and curriculum
learning, our collected ALMI-X dataset exhibits high executability. This attribute benefits the learning of
the robot foundation model via a supervised learning paradigm, since the learned model would be better for
deployment and also ensures safety in the real robot.

D Experiment Results of Foundation Model

In this section, we introduce the architecture details and inference process of the Transformer-based foundation
model. Then, we give experimental results and analysis of the trained model.

Architecture Details During the training process, we first extract a segment of states and actions with fixed
length H and its corresponding language description T , then concatenate the state and action for the same
frame resulting in a new sequence {(si, ai), (si+1, ai+1), ..., (si+H−1, ai+H−1)}, each of which is projected
onto an embedding vector xi = Linear(oi, ai). We use CLIP [74] and a linear layer process the language
description T into a vector of the same dimension xtext = Linear(CLIP(T )) These vectors serve as input to
the transformer decoder, which predicts the subsequent actions corresponding to each input. The computation
process of the l-th transformer decoder layer and the output layer can be represented as follows:

xltext, x
l
i, ..., x

l
i+H−1 = CausalSA(xl−1

text, x
l−1
i , ..., xl−1

i+H−1), (34)

{âi+1, ..., âi+H} = Linear(xNtext, x
N
i , ..., x

N
i+H−1) (35)

151,262 steps 388,112 steps

wave
pour and mix
stretch out arm
stir
violin
wipe
guitar
drink
shower
hand to head
cut
wash
draw circle
dry arm
tennis

open arm
take of t-shirt
take book from shelf
clap hand
play golf
punch
cup
make a bow with hand
throw
shake hand
cast
high five
make the stop sign
chop
salute

expand

Figure 4: Percentage of steps for different categories of motions before and after data augmentation.
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Figure 5: The visualization of x − y coordinates of the robot for each step in the dataset. We
down-sample the data for visualization.

where N is the number of transformer decoder layers. âj , where i+ 1 ≤ j ≤ i+H + 1, represent the predict
action integrating text command information and historical state-action pairs. Mean square errors between
predict and ground truth actions are used for policy update.

Model Inference In inference, the input text vector ttext remains constant throughout the execution of the
task. The robot executes the action decoded from the last vectors of the policy output. It is then concatenated
with the newly acquired state, which is then computed into an embedding vector and serve as the last vector
of the input for the policy to predict the next action. In the initial stage, when the length h of the historical
state-action pairs is less than H , the robot will execute the action decoded using the vector corresponding to the
latest state-action pair rather than the last one.

Implementation Details We investigated multiple designs for language-guided whole-body humanoid
control through supervised learning using the ALMI-X dataset. We evaluate the Transformer architecture with
different input sequence lengths for the closed-loop robot control approach, while also exploring the open-loop
control approach of prediction and execution of the entire sequence with a tokenizer like UH-1 [13]. Specifically,
the Transformer is trained with different state-action sequence lengths. We selected 20 and 400 as the input
sequence lengths for the closed-loop control, while the open-loop control approach predicts the entire motion
sequence with a maximum sequence length of 700 (175 after tokenization). For a shorter sequence, we expect
the model to focus more on short-term historical information, allowing more robust locomotion performance. As
for the longer sequence, we aim to integrate information from complete motion sequences in modeling, thereby
better responding to text commands. For tokenization, we employ the same VQ-VAE [75] architecture as in

Figure 6: We illustrate the hand positions in the dataset relative to the robot’s hand joints. From left
to right, scaling factors of 0.05, 0.5, and 1.0 are applied to the arm joint angle offsets from the default
pose, effectively modulating the motion amplitude. Larger scaling results in more pronounced arm
movements.
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Table 12: Average velocity of Foundation
models with different text commands.

Average Velocity

Text commands
w.r.t. lower body v̄x v̄y ω̄yaw

CL-20sl

forward fast 0.48 0.18 0.08
left fast 0.07 0.28 0.00
backward to
left slowly -0.19 0.21 0.00

turn left slowly 0.02 0.02 0.08
go right fast -0.11 -0.37 -0.07
keep standing 0.00 0.00 0.01

CL-400sl

forward fast 0.87 -0.05 -0.10
left fast 0.53 0.42 -0.07
backward to
left slowly 0.35 0.30 -0.01

turn left slowly 0.53 0.16 0.2
go right fast 0.47 -0.50 -0.10
keep standing 0.22 0.08 0.00

Table 13: Survival duration (SD) and success
rates of upper-body(SRup)/lower-body(SRlow)
with different text commands.

Metrics

Text commands SRlow SRup SD

CL-20sl

go forward slowly
and wave left. 1.00 0.20 8.0

go backward moderately
and wave right. 1.00 0.20 8.0

go right fast and wave both. 1.00 0.40 8.0

CL-400sl

go forward slowly
and wave left. 1.00 1.00 2.14

go backward moderately
and wave right. 1.00 1.00 2.54

go right fast and wave both. 0.00 1.00 3.57

OL

go forward slowly
and wave left. 0.00 1.00 0.31

go backward moderately
and wave right. 0.00 1.00 0.29

go right fast and wave both. 0.00 1.00 0.32

T2M-GPT [76] to tokenize four state-action pairs into one token; while for the non-tokenized design, we utilize
a linear layer to project both the text command feature and state-action pairs into a shared latent space.

Evaluation Metrics Since training a foundation model to follow all text commands in ALMI-X is quite
challenging, we conduct preliminary investigations using only wave-relative motion. We evaluate the models
using different control approaches and input sequence lengths with different text commands in MuJoCo
simulations, repeating each command 5 times with each test lasting 8 seconds. we adopt the following notation:
CL− xsl denotes the closed-loop control approach without tokenization, where x represents the input sequence
length (e.g., CL− 20sl). OL indicates the open-loop control approach with tokenization, which predicts and
executes the entire motion sequence in a single forward pass. We evaluated several metrics, including robot
survival time (up to 8 seconds), velocity during test time, and success rate of lower-body and upper-body.
We consider the lower-body successful if the robot’s movement direction matches the text command, and the
upper-body successful if the robot waves the correct hand.

Experiment Results Results in Table 13 demonstrate that the open-loop control approach, which predicts
and executes the entire action sequence based on a single text command, fails to maintain the robot’s balance

VR Motion Dataset

inverse kinematics retarget

upper body joint position

Proprioception lower body 
joint 

position

router

switch control mode Deployment

Figure 7: Real word deployment overview. The deployment framework contains an Apple Vision
Pro, a router, a Unitree H1-2 robot and a PC which runs our policy and teleoperation server. The
upper-body target DoF pos is given by teleoperation or motions from our motion dataset. We can
switch the control mode via the remote controller. Through this framework, the robot can perform
upper-body motion during movement, and diverse loco-manipulation tasks.

29



and leads to an extremely low survival time. In contrast, the closed-loop control method exhibits more robust
locomotion and superior lower-body text-following performance. Table 12 demonstrates that the closed-loop
approach with a short input sequence length enables robot’s movement direction adapts to commands such as
forward and right and its velocity adjusts to modifiers like fast and slowly, aligning more accurately with the
sampled velocity commands as shown in Table 11. However, the approach with a longer sequence length results
in poorer lower-body motion performance in both movement direction and velocity. It can be inferred that the
long input sequence length plays a crucial role in the upper-body success rate, since OL and CL− 400sl achieve
much better upper-body compliance with text commands, and focusing the model exclusively on short-term
historical information brings locomotion stability and better command performance of the lower body. These
experimental results indicate that training a humanoid foundation control model using supervised learning and a
large-scale high-quality dataset represents a feasible approach with substantial exploratory potential. However,
we find that the current model faces challenges when extending the training data to the entire ALMI-X, indicating
limitations of the current model in handling highly diverse behaviors.

E More Experiments Regarding Adversarial Training

We also conducted more experiments to verify the rationality and advantages of the simplification to the original
method.

Without simplifying the max-min problem, four separate policies would be required in each round of policy
learning. Specifically, in round 1, when updating, an additional adversary is required; when updating, an
additional adversary is required. It would be computationally expensive to train an additional adversary in
each round. As a result, we change the inner-loop optimization of the adversary from the parameter space to
the command space, which allows us to sample adversarial command to approximate the effects of training
adversarial policies. We add additional experiments to show the necessity of the simplification:

Train an Adversary. If we do not adopt the simplified approach, we would instead directly train an
adversary to attack the policy. However, it is very challenging to properly control the strength of the adversary.
Take the training of lower body policy as example, we jointly train an upper-body adversary to minimize
the lower-body reward. We vary action_clip_scale to control adversary strength, where action_clip =
100× action_clip_scale. The results are shown in the Table 14. It can be seen that large adversary collapse
training, while weak adversaries yield poor robustness. In contrast, our curriculum-based method, guided by
motion difficulty, provides effective and stable adversarial training.

Table 14: Comparison before and after simplification of the adversarial training.

Metrics

Method Evel ↓ Eang ↓ E
upper
jpe ↓ E

upper
kpe

↓ E
upper
action ↓ Elower

action ↓ Eg ↓ Survival ↑

ALMI (Ours) 0.2202 0.4812 0.2116 0.0458 0.0600 0.0175 0.8551 0.9723
action_clip_scale = 0.1 1.2610 5.3445 / / / 6.4459 1.7446 0
action_clip_scale = 0.01 1.3707 6.8632 / / / 6.1924 2.3056 0

Policy with adversarial goals. Another way to implement adversarial training is to assign each policy two
objectives. For this experiment, we train upper and lower policies jointly, each maximizing its own reward while
minimizing the other’s. We vary adversarial strength via reward weights (e.g., -1 for strong adversary and -0.1
for weak adversary). Table 15 show adversarial weight greatly affects training, and tuning it is nontrivial. The
training of weak πu

a+ strong πl
a and strong πu

a+ strong πl
a are failed. Our simplified method ensures stable and

effective adversarial interaction. Among converged settings, our method outperforms others in all metrics.

Table 15: The lower and upper policies are updated simultaneously, and both have two sets of goals.

Metrics

Method Evel ↓ Eang ↓ E
upper
jpe ↓ E

upper
kpe

↓ E
upper
action ↓ Elower

action ↓ Eg ↓ Survival ↑

ALMI (Ours) 0.2202 0.4812 0.2116 0.0458 0.0600 0.0175 0.8551 0.9723
weak πu

a+ weak πl
a 0.3415 1.4413 0.29469 0.0526 0.0970 0.0183 1.0250 0.9612

strong πu
a+ weak πl

a 1.1220 4.6715 2.7251 0.1840 0.2450 4.6937 1.1702 0.3524

F Real-Robot Deployment

Hardware and Deployment We conduct experiments using the Unitree H1-2 robot equipped with the
ROBOTERA XHAND robotic hand, applying ALMI-trained policies to the lower body control and various
interfaces (i.e., open-loop controller, ALMI policy, and VR device) for the upper body control, as shown in
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a)

(a) Salute (b) High five

(c) Swing tennis racket 

Figure 8: Upper body behavior of the robot during locomotion compared between simulator and
real world. In simulator, robot keeps standing to show the original upper body motion; In real world,
robot goes forward while doing motion.

Fig. 7. Specifically, (i) we can use an open-loop controller that sends the target joint positions of the pre-loaded
motions; (ii) we can obtain actions of the upper body via the policy πu, which uses the reference joint positions
of the preloaded motion as input. In real-world experiments, we find that open-loop control has higher tracking
accuracy when the robot remains standing, but the learned policy shows better stability during movement.
(iii) The other one is combining with teleoperation systems, which enable the robot to perform loco-manipulation
tasks. Specifically, the upper-body follows wrist poses of humans and the relative positions between the robot
end-effectors and the robot head are expected to match those between the human wrists and head, then the arm
actions are obtained from inverse kinematics. The finger movements are also captured by VR simultaneously to
control the dexterous hands for loco-manipulation tasks. Benefiting from the superiority of the training method
and the use of domain randomization, our policy does not require additional sim-to-real techniques and can be
deployed directly on the NVIDIA Jetson Orin NX onboard the robot for inference. The action output frequency
of the policy is 50Hz.

Teleoperation for Loco-Manipulation. Due to the absence of hand keypoints in the motion dataset,
we use the VR device to capture human hand poses. This data was then used to real-time control the robot’s
dexterous hand, enabling it to perform various loco-manipulation tasks. In this setup, the robot’s camera provides
real-time, first-person 3D visual feedback to the VR device, allowing the operator to see through the robot’s
perspective. The system translates human wrist poses into the robot’s coordinate frame, ensuring that the relative
positions between the robot’s end-effectors and head mirror those of the human wrists and head. The robot
wrist orientations are calibrated to match the absolute orientations of the human wrists, as determined during
the initialization of the hand-tracking system. We employ closed-loop inverse kinematics, implemented with
Pinocchio [77], to calculate the robot arm’s joint angles. The human hand keypoints are translated into robot
joint angle commands through dex-retargeting, utilizing a flexible and efficient motion retargeting library [78].
Our method further leverages vector optimizers to enhance the performance of the dexterous hand control. The
teleoperation system basically follows Open-Television [50].

Real-robot Experiments on Motion Tracking In the real world, we use the remote controller to control
the robot to complete a series of motion tracking tasks. Fig. 8 provides some illustrative examples of our ALMI’s
motion tracking quality compared between simulation and real world. These results demonstrate that our policy
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achieves comparable performance in tracking speed commands and upper-body motions in the real world as in
the simulator, without relying on any additional sim-to-real techniques.

Real-robot Experiments on Loco-Manipulation By leveraging the ALMI policy and teleoperation
deployment, we enable the robot to accomplish a variety of real-world loco-manipulation tasks. Fig. 9 illustrates
that the robot can hit the tennis ball with a precise swing. Our robot can also complete household tasks, which
requires a combination of stable movement with manipulation capabilities. In Fig. 10(a), the robot can carry a
5kg box and walk stably; while in Fig. 10(b), the robot can use a vacuum to clean the floor.

Figure 9: Robot swings the tennis racket with precision.

(a) Carry box (b) Vacuum floor

Figure 10: Robot performs loco-manipulation tasks with Teleoperation. (a) Carry a 5kg box. (b)
Vaccum floor.

G Broader Social Impact

Our humanoid locomotion method with teleoperation enables robots to perform diverse tasks in human en-
vironments, with potential applications in disaster response, healthcare, and industrial automation. However,
challenges such as job displacement and safety risks must be addressed to ensure responsible deployment. Ethical
guidelines and policy discussions will be crucial to maximize societal benefits while minimizing unintended
consequences.
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