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Abstract

Due to concerns about human error in crowdsourcing, it is standard practice to collect
labels for the same data point from multiple internet workers. We show that the resulting
budget can be used more effectively with a flexible worker assignment strategy that asks
fewer workers to analyze data that are easy to label and more workers to analyze data that
requires extra scrutiny. Our main contribution is to show how the worker label aggregation
can be formulated using a probabilistic approach, and how the allocations of the number of
workers to a task can be computed optimally based on task difficulty alone, without using
worker profiles. Our representative target task is identifying entailment between sentences.
To illustrate the proposed methodology, we conducted simulation experiments that utilize
a machine learning system as a proxy for workers and demonstrate its advantages over a
state-of-the-art commercial optimizer.

1 Introduction

Machine learning research is advanced by crowdsourcing efforts, for example, to generate training data and
evaluate machine learning models (Wortman Vaughan, 2018). When deciding on how many internet workers
to employ to annotate data, crowd task organizers must strike a compromise between budget constraints
and accuracy expectations. Multiple annotations are typically collected for the same data point, out of
concern for the accuracy of human annotation (Kovashka et al., 2014). Building this redundancy into the
crowdsourcing experiment, however, increases its cost and cannot guarantee accuracy.

The literature describes techniques for computing optimal trade-offs between accuracy and redundancy in
crowdsourcing using a fixed number of crowd workers per task (Karger et al., 2013; Tran-Thanh et al., 2013).
The fixed assignment is agnostic about the latent difficulty of each task, i.e., it is data independent. In this
work, our focus is on a flexible and data-dependent assignment scheme. Intuitively, tasks can be categorized
based on labeling difficulty: “easy" tasks are associated with a high probability of correct labeling, “hard"
tasks have a low probability, and those in between require more scrutiny. While assigning extra workers to
“hard-to-label" tasks seems like a way to improve correctness, it is often inefficient. Often, for truly hard
tasks, even experts may disagree, meaning more worker annotations do not necessarily yield better results
and can waste resources. Similarly, easy tasks require minimal input. Thus, fewer internet workers should
analyze easy- and hard to-label data, and more workers should analyze the remaining data.

Flexible schemes have not been adequately explored in the literature (Sameki et al., 2016a;b; Khetan & Oh,
2016). Handcrafted decision-trees (Sameki et al., 2016a) and random-forest predictors (Sameki et al., 2016b)
have been developed to determine how many crowd workers to assign to a labeling task. It was shown that
the computed worker allocations can provide large budget savings with small sacrifices in accuracy compared
to the traditional fixed allocation scheme. We propose an alternative approach to determine the number of
crowd workers per task that directly optimizes the allocation over all data. For a given budget, we show that
the optimal allocation of the number of crowd workers results in both accuracy improvements and budget
savings.

Consider the human-machine labeling framework shown in Figure 1. The system first answers the question:
How many crowdworkers should be assigned to label the data so as to achieve the best average labeling
accuracy while not exceeding the target budget? The solution to this question provides a budget-optimized
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Figure 1: Human-Machine Labeling Framework. First, the task difficulty of each sample is assessed and used
to optimize the crowdsourcing procedure. Second, the labels from the crowdworkers are used for analysis
and training a ML model, which can then be deployed for large-scale tasks.

crowdsourcing method to accurately label a small dataset. This initial labeled dataset then enables the
development of an ML model through a training-validation-test cycle. Finally, the developed model can
be deployed for label production where the model is used to classify a large number of data samples. We
propose a new crowdsourcing methodology as a tool for ML researchers such as the ones who work on
computer vision or natural language processing domains relying on manual image, video, or text annotations
via crowdsourcing to train their recognition systems (Nowak & Rüger, 2010; Rashtchian et al., 2010; Russell
et al., 2008; Sawant et al., 2011; Su et al., 2012; Vijayanarasimhan & Grauman, 2011; Yan et al., 2010).
Following our methodology, the envisioned human-machine system could yield data analysis at a scale even
beyond what is possible with large crowdsourcing efforts.

Focusing on the first phase of the human-machine labeling framework shown in Figure 1, we make three
contributions in this paper:

• The problem of determining a budget-optimal flexible crowdsourcing strategy is formulated as an
optimization problem. The variables in our formulation represent the worker-to-task allocations, the
sum of the worker costs is constrained to be upper-limited by a budget, and the objective function
measures the average accuracy of aggregated worker labels. We first focus on the setting where the
task labels are binary and then address the general scenario.

• For crowdsourcing tasks with binary labels, we propose the budget-optimized crowdworker allocation
(BUOCA) algorithm that can efficiently find an optimal solution to the corresponding optimization
problem. BUOCA is a greedy algorithm that runs in polynomial time.

• We extend our binary formulation to the multiclass scenario. Our simulation experiments show the
advantages of our multiclass BUOCA algorithm compared to a commercial optimization solver in
terms of label quality and time-efficiency.

2 Related Works

Balancing the demands that accuracy requirements and budget limits place on crowdsourcing experiments
has been the focus of research in various communities, including machine learning (Chen et al., 2015; Dai
et al., 2010; Gao et al., 2016; Karger et al., 2013; 2014; Kolobov et al., 2013; Manino et al., 2018; Simpson
& Roberts, 2014; Tran-Thanh et al., 2013), human computation (Gurari & Grauman, 2017; Li & Liu,
2015; Sameki et al., 2016a), data management (Bansal et al., 2016; Davtyan et al., 2015; Gao et al., 2013;
Parameswaran et al., 2012; Wu et al., 2018), and computer vision (Gurari et al., 2016; 2018; Jain & Grauman,
2013). The crowdsourcing mechanisms used in practice, e.g., collecting image labels to train computer vision
systems, are typically agnostic to the difficulty of a task, assigning the same fixed number of crowdworkers
to each task. Notable exceptions are the recent works by Gurari et al. (2018), Sameki et al. (2016a), and
Gurari & Grauman (2017), who proposed flexible worker assignment schemes.
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If experience ratings of crowdworkers exist and the difficulty of a task can be discerned, routing easy tasks
to novice workers and difficult tasks to expert annotators has also been proposed (Kolobov et al., 2013;
Karger et al., 2014). Optimal task routing, however, is an NP-hard problem, and so online schemes for
task-to-worker assignments have been proposed (Bragg et al., 2014; Chang et al., 2015; Fan et al., 2015;
Rajpal et al., 2015). Recently, the difficulty of a crowdsourcing task has been linked to its ambiguity (Gurari
et al., 2018). For some datasets, there may not be “correct” but only subjective labels.

Our work is different from previously-proposed crowdsourcing methodologies with adaptive worker assign-
ments (Chen et al., 2013a; Dai et al., 2010; Simpson & Roberts, 2014; Tran-Thanh et al., 2013; Welinder
& Perona, 2010) because these assume that the same workers can be employed with “user profile tracking.”
The worker-task allocation scheme by Dai et al. (2010) relies on being able to “incrementally estimate [the
workers’ accuracy] based on their previous work.” The algorithm by Tran-Thanh et al. (2013) relies on a
majority-voting-efficient “fusion method to estimate the answers to each of the tasks,” which also requires
user profile tracking. Our methodology does not include user profile tracking because in our experiments
using the Amazon Mechanical Turk Internet marketplace, we cannot request the same workers in an incre-
mental scheme to estimate the accuracy of their work. Our work makes use of maximum likelihood estimate
under certain conditions (Section 3.2).

Moreover, our work is distinct from prior works that employ a Markov Decision Process (MDP) (Li et al.,
2016b; Chen et al., 2013b; Dai et al., 2013). These works model the crowdsourcing procedure using an MDP
model which estimates, in real time, the next optimal action given the worker annotations in each time
step of a crowdsourcing experiment. Our work, on the other hand, is a “batch method" that focuses on
estimating the optimal number of workers required for each task before publishing the crowdsourcing jobs
to the workers.

3 Proposed Crowdsourcing Methodology

In this section, we describe our budget-optimized crowdworker allocation problem and our proposed method
to solve it. Our problem is formulated in terms of a combinatorial optimization program with an objective
function that captures labeling accuracy and a budget that depends on crowdworker allocations. We first
focus on binary labeling tasks and then discuss the general multiclass case. For binary tasks we establish
the optimality of a greedy allocation strategy when the decision fusion accuracy satisfies certain conditions.

3.1 Formulation of Crowdsourcing Optimization

The goal of the budget-optimized crowdworker allocation problem is to maximize a measure of overall labeling
accuracy while ensuring that a measure of overall worker cost does not exceed a target budget. This can be
formulated as an optimization problem where the worker allocations to different data samples are positive
integer variables, the overall labeling accuracy across data samples is the optimization objective, and the
total worker budget is the constraint.

3.1.1 Variables

In order to formalize our approach, let the data samples be indexed by the positive integers i in the range
{1, . . . , I} and let ni denote the number of crowdworkers allocated to the i-th data sample. Let n =
(n1, n2, ..., nI)⊤ denote the I-tuple of crowdworker allocations. We assume that every data sample is allocated
at least one crowdworker and not more than N crowdworkers. Thus, for all i, we have ni ∈ {1, . . . , N}, i.e.,
n ∈ {1, . . . , N}I .

3.1.2 Crowdsourcing cost and budget

We only consider additive costs in this work. Specifically, the cost function fcost of the crowdsourcing
experiment for crowdworker allocation tuple n is defined by

fcost(n) = fcost(n1, n2, ..., nI) :=
I∑

i=1
c · ni
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where c is the unit cost per sample per crowdworker. We denote the total budget by B. Thus, fcost(n) ≤ B.

3.1.3 Crowdsourcing accuracy

We next define the measure of accuracy that we use. Let Q(i, ni) denote the probability that the decisions of
ni crowdworkers when combined is correct for the i-th sample, i.e., it matches the ground truth of the i-th
sample. Let Q be a matrix (table) with I rows and N columns with value Q(i, ni) denoting the value in the
i-th row and the ni-th column. Then, we can measure the overall accuracy of all tasks given allocation-tuple
n = (n1, n2, ..., nI)⊤ as the expected correct labeling rate (CLR) averaged across all samples:

CLR(Q, n) := 1
I

I∑
i=1

Q(i, ni). (1)

We describe the computation of Q(i, ni) in the following sub-sections.

3.1.4 Problem statement

The budget-optimized crowdworker allocation problem is the following combinatorial optimization problem:

n∗(Q, B, I) := arg max
n∈{1,...N}I

fcost(n)≤B

CLR(Q, n) (2)

3.2 Decision Fusion Method

The value of Q(i, ni) depends on the method used to combine decisions of crowdworkers as well as the
underlying joint probability distribution of ground truth labels and labels assigned by crowdworkers. A
variety of models and methods for data aggregation have been studied in the literature, e.g., the survey
by Li et al. (2016a). In particular, some complex models can account for noise, expertise, and bias of
annotators, but they have higher computational complexity and require additional information which may
not be available. For example, annotator reliability on Figure Eight is based on previously completed tasks
which may not indicate reliability on a new, completely unrelated task.

Therefore, we consider a different approach which is focused on the difficulty of the labeling task rather than
worker factors. Specifically, we make the following assumptions:
Assumption 3.0.1. (Crowdworkers) The crowdworkers are statistically indistinguishable and make in-
dependent decisions. In particular, the crowdworkers make independent and identically distributed (iid)
decisions when annotating each sample.
Assumption 3.0.2. (Samples) Each sample in the dataset has a single ground truth label and the sam-
ples together with their ground truth labels, are sampled in an iid manner according to some underlying
distribution.
Assumption 3.0.3. (Model) We model the difficulty of labeling the i-th sample as pi, the probability of
the said sample being labeled correctly by a randomly chosen crowdworker. The value of pi depends on the
sample i, but we assume that it is the same no matter what the ground truth label of the sample is or which
crowdworker labels it.

A high value of pi indicates an easy labeling task, whereas a low value of pi indicates a hard labeling task.

Additionally, we assume, for now, that the sample labels are binary, i.e., the label space is Y = {1, 2}. The
extension to multi-class cases will be discussed later in Section (6).

In what follows, we will show, for the i-th task with ni worker labels, how to infer the most likely label from
worker annotations using the Maximum Likelihood Estimation (MLE), and how to calculate the probability
that the inferred label is correct in terms of pi. This probability is precisely Q(i, ni) under our approach.
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3.2.1 Maximum Likelihood Estimate of Label from Crowdworker Annotations

Suppose data sample i has been labeled by ni crowdworkers. Let the number of workers deciding classes 1
and 2 be denoted by m

(1)
i and m

(2)
i respectively and let Mi = (m(1)

i , m
(2)
i ). Note that m

(1)
i + m

(2)
i = ni. For

convenience we define M(n) as the set of all non-negative integer tuples that sum to n, i.e.,

M(n) := {(m(1), m(2)) : m(1), m(2) ∈ {0, 1, . . . , n}, m(1) + m(2) = n}.

Then Mi ∈ M(ni). Let li ∈ Y = {1, 2} represent the true label of data sample i. Then, the probability of
observing Mi given li is given by the following:

P (Mi|li = 1) =
(

ni

m
(1)
i

)
p

m
(1)
i

i (1 − pi)ni−m
(1)
i

P (Mi|li = 2) =
(

ni

m
(2)
i

)
p

m
(2)
i

i (1 − pi)ni−m
(2)
i

or more compactly by:

P (Mi|li) =
(

ni

m
(li)
i

)
p

m
(li)
i

i (1 − pi)ni−m
(li)
i (3)

The maximum likelihood estimate of the true label for data sample i given Mi is given by

ŷ
(i)
MLE(Mi) = arg max

y∈{1,2}
P (Mi|y) (4)

= arg max
y∈{1,2}

(
ni

m
(y)
i

)
p

m
(y)
i

i (1 − pi)ni−m
(y)
i

= arg max
y∈{1,2}

p
m

(y)
i

i (1 − pi)ni−m
(y)
i

= arg max
y∈{1,2}

(m(y)
i log(pi) + (ni − m

(y)
i ) log(1 − pi))

= arg max
y∈{1,2}

h(y, Mi, pi) (5)

where the second equality follows from the combinatorial identity
( ni

m
(1)
i

)
=

( ni

ni−m
(1)
i

)
=

( ni

m
(2)
i

)
and

h(y, Mi, pi) := m
(y)
i log(pi) + (ni − m

(y)
i ) log(1 − pi). (6)

We assume that if there is a tie between y = 1 and y = 2 in Equation (5), then the tie is broken by choosing
a label in {1, 2} uniformly at random.

If the binary ground truth labels are equally likely, then the maximum likelihood estimate of the label from
Mi is also the Maximum Aposteriori Probability (MAP) estimate of the label based in Mi which minimizes
the probability of estimation error. For simplicity and since the true label probabilities will not be available,
we use the maximum likelihood Estimate and make the following assumption:
Assumption 3.0.4. (Ground truth label) All values of the ground truth label are equally likely.

3.3 Computation of Q: MLE Accuracy

Let Ei denote the event that ŷ
(i)
MLE(Mi) matches the ground truth li, i.e., ŷ

(i)
MLE(Mi) = li. Then, Q(i, ni) =

P (Ei). When pi = 0.5, the probability of Ei is trivially 0.5. When pi ̸= 0.5, we can compute the P (Ei) as
follows:

P (Ei) =
∑

li

∑
Mi∈M(ni)

P (Ei|Mi, li) · P (Mi|li) · P (li). (7)
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In Equation (7), we only need to consider the choices of Mi such that P (Ei|Mi, li) > 0, i.e., choices of Mi for
which ŷ

(i)
MLE(Mi) = li or equivalently by (5) only Mi such that the ground truth label li has the maximum

likelihood:
∀yi ̸= li, h(yi, Mi, pi) ≤ h(li, Mi, pi). (8)

Anticipating that there could be Mi for which the likelihood of another label may be tied with that of li for
the maximum, we define

Jni,li,pi,d :=
{

Mi ∈ M(ni)
∣∣∣∣ ∀yi ̸= li, h(yi, Mi, pi) ≤ h(li, Mi, pi),

with equality only for (d − 1) values of yi ̸= li

}
(9)

as the set of Mi for which there are d labels whose likelihoods are tied for the maximum with the ground
truth label li and where d can range from 1 through |Y|= 2. For all Mi ∈ Jni,li,pi,d, we have

P (Ei|Mi, li) = 1
d

We can now rewrite Equation (7) using Jni,li,pi,d as follows:

P (Ei) =
2∑

li=1

2∑
d=1

∑
Mi∈Jni,li,pi,d

1
d

· P (Mi|li) · P (li) (10)

By Assumption 3.0.4, P (li) follows a uniform distribution, i.e., P (li) = 1
2 . Moreover, the value of pi is the

same no matter what the ground truth label of the sample (Assumption 3.0.3) and the crowdworkers make
iid decisions (Assumption 3.0.1). It therefore follows that P (Ei|li) is the same for all values of li. Therefore,
Equation (10) can be simplified by replacing li with an arbitrary label l0 and removing the outer summation:

P (Ei) =
2∑

d=1

∑
Mi∈Jni,l0,pi,d

1
d

· P (Mi|l0) (11)

Finally, we can use (3) to express the quantity P (Mi|l0). By doing so, we conclude the calculation of P (Ei),
which, by definition, is exactly the value of Q(i, ni):

Q(i, ni) = P (Ei) =


0.5, if pi = 0.5

2∑
d=1

∑
Mi∈Jni,l0,pi,d

1
d

·
(

ni

m
(l0)
i

)
· p

m
(l0)
i

i · (1 − pi)ni−m
(l0)
i , otherwise (12)

4 Greedy Algorithm for Crowdworker Allocation and its Optimality

The optimization problem defined in Section 3.1 is in general NP-hard. For the case when the task labels
are binary, we propose a greedy algorithm that finds an optimal solution in polynomial time.

4.1 Budget-Optimized Crowdworker Allocation Algorithm

The algorithm, which we name as “BUdget-Optimized Crowdworker Allocation" (BUOCA) algorithm, takes
input parameters Q, B and c. The first parameter Q is the table storing Q(i, ni) values, while the second
parameter B and the third one c are the budget and the unit cost respectively. The algorithm returns n, a
list of optimal worker allocations for all tasks, as outputs. The pseudo code is described in Algorithm 1.

Intuitively, the algorithm starts with the allocation of one worker per sample. This corresponds to a total
allocation of I workers with a cost of cI. Then, the algorithm increases the total allocation by two workers
step-by-step till the cost reaches the budget B. By the definition of CLR in Equation (1), when two additional
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Algorithm 1 BUOCA Algorithm (Q, B, c)
1: Initialize array n where each entry ni stores the worker allocation for task i
2: Set all worker allocations (all entries of n) to be 1
3: Initialize the starting cost β = cI
4: while β < B do
5: Find λ = arg maxi(Q(i, ni + 2) − Q(i, ni))
6: Set β = β + 2c
7: if β ≤ B then
8: Set nλ = nλ + 2
9: end if

10: end while
11: Return n

workers are allocated to task i, the CLR value changes by the amount 1
I (Q(i, ni + 2) − Q(i, ni)). Therefore,

at each step m, the algorithm chooses the task sample λ for additional allocation that results in the largest
increase in CLR as follows:

λ = arg max
i

(1
I

(Q(i, ni + 2) − Q(i, ni))) = arg max
i

(Q(i, ni + 2) − Q(i, ni)) (13)

The algorithm finds a globally optimal allocation by greedily accumulating locally optimal ones. In the next
sub-section, we will show that the resulting worker allocation is indeed the globally optimal allocation.

4.2 Global Optimality of BUOCA

In this sub-section, we will prove the global optimality of BUOCA in a sequence of theorems. We first relate
our MLE approach to infer label from worker annotations to voting by simple majority, and then show how
a simple majority vote leads to the global optimality of BUOCA.

4.2.1 Relation between MLE and Simple Majority Voting

We first show that if pi, the probability of task i being correctly labeled by a random worker, is greater than
half, then MLE is the same as majority voting.
Theorem 4.1. If pi > 0.5, then inferring the true label by the MLE approach from ni worker annotations
is the same as voting by simple majority.

Proof. Suppose the task sample i is labeled by ni workers and the worker label class counts are denoted as
the tuple Mi = (m1

i , m2
i ). The maximum likelihood estimation of the true label of the i-th sample is given

by Equation (5). Let y′
i := ŷ

(i)
MLE(Mi) for convenience. Then we must have the following property:

for all yi ̸= y′
i, m

(y′
i)

i log(pi) + (ni − m
(y′

i)
i ) log(1 − pi) ≥ m

(yi)
i log(pi) + (ni − m

(yi)
i ) log(1 − pi)

The inequality can be simplified as

(m(y′
i)

i − m
(yi)
i )(log pi − log(1 − pi)) ≥ 0

If pi > 0.5, then (log pi − log(1 − pi)) > 0 and hence (m(y′
i)

i − m
(yi)
i ) ≥ 0. In other words, m

(y′
i)

i must be the
majority vote in Mi = (m(y′

i)
i , m

(yi)
i ).

In a similar manner one can show that if pi < 0.5, then inferring the true label using the MLE approach
from ni worker annotations is the same as simple minority voting.
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4.2.2 Relation between pi and Q(i, ni)

As shown in Equation (12), Q(i, ni) for pi ̸= 0.5 is in fact, a function of both pi and ni. We denote this
function by q(pi, ni):

Q(i, ni) = q(pi, ni) =
2∑

d=1

∑
Mi∈Jni,l0,pi,d

1
d

·
(

ni

m
(l0)
i

)
· p

m
(l0)
i

i · (1 − pi)ni−m
(l0)
i (14)

We next show that q(pi, ni) is in fact, symmetric with respect to pi.
Theorem 4.2. Let q(pi, ni) be a function as defined in Equation (14), then q(pi, ni) = q(1 − pi, ni).

Proof. When pi = 0.5 then 1 − pi = pi = 0.5 and trivially we have q(pi, ni) = q(1 − pi, ni). Now consider the
case pi ̸= 0.5. We recall the definitions of h(y, Mi, pi) from Equation (6) and Jni,l0,pi,d from Equation (9):

h(y, Mi, pi) := m
(y)
i log(pi) + (ni − m

(y)
i ) log(1 − pi)

and
Jni,li,pi,d :=

{
Mi ∈ M(ni)

∣∣∣∣ ∀yi ̸= li, h(yi, Mi, pi) ≤ h(li, Mi, pi),
with equality only for (d − 1) values of yi ̸= li

}
.

Next observe that h(1, Mi, pi) = h(2, Mi, 1 − pi). This implies that (m(1)
i , m

(2)
i ) ∈ Jni,li,pi,d ⇔ (m(2)

i , m
(1)
i ) ∈

Jni,li,1−pi,d. Therefore, there is a bijection between Jni,li,pi,d and Jni,li,1−pi,d such that for any element
Mi = (m(1)

i , m
(2)
i ) ∈ Jni,li,1−pi,d, the corresponding element in Jni,li,pi,d is M ′

i = (m(2)
i , m

(1)
i ). Using this

together with the complementary property of binomial distribution, we have

q(1 − pi, ni) =
2∑

d=1

∑
Mi∈Jni,l0,1−pi,d

(
ni

m
(l0)
i

)
· (1 − pi)m

(l0)
i · p

ni−m
(l0)
i

i

=
2∑

d=1

∑
Mi∈Jni,l0,1−pi,d

(
ni

ni − m
(l0)
i

)
· p

ni−m
(l0)
i

i · (1 − pi)m
(l0)
i

=
2∑

d=1

∑
Mi∈Jni,l0,pi,d

(
ni

m
(l0)
i

)
· p

m
(l0)
i

i · (1 − pi)ni−m
(l0)
i

= q(pi, ni)

(15)

Therefore, we conclude that q(pi, ni) = q(1 − pi, ni).

From Theorem 4.1 and Theorem 4.2, we can assume, without loss of generality, that pi > 0.5 when working
with Equation (14). Then, Jni,l0,pi,d can be written as

Jni,l0,pi,d =



{
(m(1)

i , m
(2)
i )

∣∣∣∣∣ m
(1)
i , m

(2)
i ∈ Z∗; m

(1)
i + m

(2)
i = ni;

for yi ̸= l0, m
(yi)
i < m

(l0)
i

}
, if d = 1

{(ni

2 ,
ni

2 )}, if d = 2 and ni is even

∅, if d = 2 and ni is odd

Based on this observation, Equation (14) reduces to

Q(i, ni) = q(pi, ni) =



ni∑
m

l0
i

= ni+1
2

(
ni

ml0
i

)
p

m
l0
i

i (1 − pi)ni−m
l0
i , if ni is odd

ni∑
m

l0
i

= ni
2 +1

(
ni

ml0
i

)
p

m
l0
i

i (1 − pi)ni−m
l0
i + 1

2

(
ni
ni

2

)
p

ni
2

i (1 − pi)
ni
2 , otherwise

(16)
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4.2.3 Allocation Incremental Size

Before proceeding to prove the global optimality of BUOCA, we would like to use the proven theorems to
explain why BUOCA adds two workers for the selected task at each step. The initial number of workers
allocated for each task is one, therefore, intuitively, adding two workers at each subsequent step can avoid
ties. Nonetheless, we now show that adding only one worker at each step when the current worker number
is odd will not change the CLR value. To do so, we first prove the following theorem.
Theorem 4.3. Let n ∈ Z+, p ∈ [0, 1], and

q(p, n) =



n∑
m= n+1

2

(
n

m

)
pm(1 − p)n−m, if n is odd

n∑
m= n

2 +1

(
n

m

)
pm(1 − p)n−m + 1

2

(
n
n
2

)
p

n
2 (1 − p) n

2 , otherwise

If n is odd, then q(p, n) = q(p, n + 1).

Proof. Suppose n is odd, let a = 1
2 (n+1) and observe that n−(a−1) = a. Then, by the recurrence property

of binomial coefficients and algebra, we have

q(p, n + 1) = 1
2

(
n + 1

a

)
pa(1 − p)a +

n+1∑
m=a+1

(
n + 1

m

)
pm(1 − p)n+1−m

= 1
2

{(
n

a

)
+

(
n

a − 1

)}
pa(1 − p)a +

n+1∑
m=a+1

{(
n

m

)
+

(
n

m − 1

)}
pm(1 − p)n+1−m

=
(

n

a

)
pa(1 − p)a +

n+1∑
m=a+1

(
n

m

)
pm(1 − p)n+1−m +

n+1∑
m=a+1

(
n

m − 1

)
pm(1 − p)n+1−m

=
(

n

a

)
pa(1 − p)a + (1 − p)

n∑
m=a+1

(
n

m

)
pm(1 − p)n−m +

n∑
m=a

(
n

m

)
pm+1(1 − p)n−m

=
(

n

a

)
pa(1 − p)a +

n∑
m=a+1

(
n

m

)
pm(1 − p)n−m

−
n∑

m=a+1

(
n

m

)
pm+1(1 − p)n−m +

n∑
m=a

(
n

m

)
pm+1(1 − p)n−m

=
(

n

a

)
pa(1 − p)a +

(
n

a

)
pa+1(1 − p)n−a +

n∑
m=a+1

(
n

m

)
pm(1 − p)n−m

= p

(
n

a

)
pa(1 − p)n−a + (1 − p)

(
n

a

)
pa(1 − p)n−a +

n∑
m=a+1

(
n

m

)
pm(1 − p)n−m

=
(

n

a

)
pa(1 − p)n−a +

n∑
m=a+1

(
n

m

)
pm(1 − p)n−m

=
n∑

m=a

(
n

m

)
pm(1 − p)n−m

= q(p, n)

We now formally state the theorem regarding the incremental size.

9
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Theorem 4.4. Let Q(i, ni) be defined in Equation (12). For any odd positive integer ni, Q(i, ni) = Q(i, ni +
1)

Proof. First of all, if pi = 0.5, then Q(i, ni) = Q(i, ni + 1) = 0.5 is trivially true for all positive integer ni.
Now, consider the case when pi ̸= 0.5.

By Theorem 4.1 and Theorem 4.2, we can assume, without loss of generality, that pi > 0.5. Then, Q(i, ni)
reduces to the form described in Equation (16). Finally, by Theorem 4.3, it follows that Q(i, ni) = Q(i, ni+1)
for any odd positive integer ni.

4.2.4 Concavity and Monotonicity Properties of q(p, n)

We next prove the following theorem which establishes the concavity and monotonicity of q(p, n). The
theorem not only serves as a stepping stone for the global optimality of BUOCA, but also suggests that, in
practice, the while loop of the algorithm can stop early when no positive change of CLR can be made when
choosing the next task by Equation (13).
Theorem 4.5. If n is an odd positive integer and p ∈ [0, 1], then

q(p, n) =
n∑

m= n+1
2

(
n

m

)
pm(1 − p)n−m

is strictly increasing and concave with respect to the integer variable n for all p > 0.5.

Proof. We shall first prove the monotonicity property of q(p, n).

Since n is an odd positive integer, let n = (2t − 1), where t is a positive integer. Let X[1], X[2], . . ., be
independent and identically distributed Bernoulli(p) random variables. Then P (X[1] = 1) = p = 1 −
P (X[1] = 0). Let S[t] := X[1] + ... + X[2t − 1] denote the total number of successes in n = (2t − 1)
Bernoulli(p) trials. Finally, let a[t] := P (S[t] ≥ t). Then, q(p, n) = q(p, 2t − 1) = a[t].

Since S[t + 1] = S[t] + X[2t] + X[2t + 1], we can express q(p, n + 2) = a[t + 1] = P (S[t + 1] ≥ t + 1) as follows:

a[t + 1] = P (S[t] + 0 ≥ t + 1) · P (X[2t] = 0, X[2t + 1] = 0)
+ P (S[t] + 1 ≥ t + 1) · P (X[2t] = 0, X[2t + 1] = 1)
+ P (S[t] + 1 ≥ t + 1) · P (X[2t] = 1, X[2t + 1] = 0)
+ P (S[t] + 2 ≥ t + 1) · P (X[2t] = 1, X[2t + 1] = 1)

= P (S[t] ≥ t + 1) · (1 − p)2 + P (S[t] ≥ t) · (2p(1 − p)) + P (S[t] ≥ t − 1) · p2

Now, P (S[t] ≥ t) = a[t] and P (S[t] ≥ t+1) = a[t]−P (S[t] = t). Also, P (S[t] ≥ t−1) = a[t]+P (S[t] = t−1).
Thus,

a[t + 1] = a[t] − (1 − p)2 · P (S[t] = t) + p2 · P (S[t] = t − 1).

Since P (S[t] = s) =
(

n
s

)
ps(1 − p)n−s and n = (2t − 1), we have

(
n
t

)
=

(
n

n−t

)
=

(
n

t−1
)

and therefore
P (S[t] = t − 1) = P (S[t] = t) · (1 − p)/p. Using this together with a[t + 1] = q(n + 2), and a[t] = q(n) in the
above equation we obtain:

q(p, n + 2) = q(p, n) + P (S[t] = t) · (1 − p)(2p − 1)

The last term is positive if p > 0.5, negative if p < 0.5, and zero if p = 0.5. This proves that q(p, n) is strictly
increasing if p > 0.5, strictly decreasing if p < 0.5, and a constant (equal to q(0.5, 1) = 0.5) if p = 0.5.

We shall now establish the concavity property of q(p, n). From the proof of monotonicity of q(p, n) we have

q(p, n + 2) − q(p, n) = P (S[t] = t) · (1 − p)(2p − 1).

10
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Then the ratio

q(p, n + 4) − q(p, n + 2)
q(p, n + 2) − q(p, n) = P (S[t + 1] = t + 1)

P (S[t] = t) =
(2t+1

t+1
)
pt+1(1 − p)2t+1−(t+1)(2t−1
t

)
pt(1 − p)2t−1−t

= 2p(1 − p) · 2t + 1
t + 1 .

For all positive integers t, 2(2t + 1)/(t + 1) < 4 and for all p ̸= 0.5 we have p(1 − p) < 1/4. It follows that if
p ̸= 0.5, the ratio is strictly less than one. Thus, q(p, n) is strictly concave for all p ̸= 0.5.

4.2.5 Proof of Global Optimality of BUOCA

The final theorem states the global optimality of BUOCA:
Theorem 4.6. If for all i, Q(i, ni) is either (1) non-increasing or (2) increasing and concave with respect
to ni, then the greedy algorithm BUOCA returns globally optimal allocations and CLR values for all budgets
from cI to cNI, where c is the unit cost, I is the total number of tasks, and N is the maximum workers
allowed for each task.

Proof. First we note that the monotonicity and concavity properties in the statement of the theorem only
need to hold with respect to odd positive integers, as BUOCA only considers these values for ni.

For all data samples i for which Q(i, ni) is non-increasing, the optimal allocation is clearly equal to 1. The
BUOCA algorithm will return this value for these samples since their initial allocation is 1 and they never
get incremented because Q(i, ni +2)−Q(i, ni) is never positive. Thus the evolution of the BUOCA algorithm
is unaffected by the presence of samples for which Q(i, ni) is non-increasing.

Therefore, for the purpose of this proof we assume, without loss of generality, that the increasing and
concavity conditions in the statement of the theorem are satisfied by all data samples. Formally,

∀i ∈ {1, . . . , I}, Q(i, ni) is increasing in ni. (17)

and

∀i ∈ {1, . . . , I} and all odd positive integers ni,

Q(i, ni + 4) − Q(i, ni + 2) ≤ Q(i, ni + 2) − Q(i, ni). (18)

Let us denote the iteration index (step) of BUOCA with variable m, the allocations at step m as n[m], and the
cost at step m as β[m]. Since the total allocation is incremented at each step, proving the global optimality
of BUOCA for all budgets from cI to cNI is equivalent to proving that when B = cNI, CLR(Q, n[m]) is
optimal for all m.

We have shown in Section 4.1 that the CLR value is increased step-by-step in BUOCA and the improvement
is calculated as

CLR(Q, n[m + 1]) − CLR(Q, n[m]) = 1
I

(Q(λ, nλ[m] + 2) − Q(λ, nλ[m]))

where I is the total number of tasks and λ is selected according to Equation (13).

Since the Q(i, ni)’s are increasing in ni for all i, by construction, CLR(Q, n[m]) is increasing in m as well.
The increasing trend only stops when the cost fcost(n[m]) =

∑I
i=1 c · ni[m] reaches the budget B, and we

denote that final time step with mf .

For convenience, we let δi denote the tuple of length I whose i-th component is 1 and all other components
are 0. The proof is by induction on m.

11
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Base case (step 1): For m = 1, since there is only one feasible list of allocations namely: n1[1] = . . . =
nI [1] = 1, it is trivially globally optimum for the cost β[1] = cJ .

If mf = 1 we are done. If mf > 1, then for m < mf we have the following induction hypothesis.

Induction hypothesis (step m): Let n[m] returned by BUOCA be globally optimum. Then, for all n′[m]
that are feasible under the same cost,

CLR(Q, n[m]) ≥ CLR(Q, n′[m]).

Inductive step m+1: Let n′[m+1] be any feasible list of allocations for the next higher cost of β[m+1] =
β[m] + 2c corresponding to two additional crowdworkers and let n[m + 1] be the corresponding allocation
list returned by BUOCA. We will demonstrate that CLR(Q, n[m + 1]) ≥ CLR(Q, n′[m + 1]) and thereby
prove the result.

Since m < mf , for λ given by Eq. (13), we have

n[m + 1] = n[m] + 2δλ (19)

and for all i ∈ {1, . . . , I},

CLR(Q, n[m] + 2δλ) ≥ CLR(Q, n[m] + 2δi). (20)

It is sufficient to consider only n′[m + 1] that have the same cost as n[m + 1] which, since m < mf , equals
β[m + 1] = β[m] + 2c. This is because any lower cost feasible allocation list will have a CLR that is less
than or equal to the CLR of n[m] which, by the induction hypothesis, is globally optimum for its cost. Since
m < mf , the CLR of n[m] is in turn strictly dominated by the CLR of n[m + 1].

Hence we can focus on n′[m + 1] such that
∑I

i=1 n′
i[m + 1] =

∑I
i=1 ni[m + 1]. If n′[m + 1] ̸= n[m + 1] then

there is at least one sample j ∈ {1, . . . , I} for which n′
j [m + 1] > nj [m + 1] or equivalently, since allocations

can only be odd positive integers,

n′
j [m + 1] ≥ nj [m + 1] + 2 ≥ nj [m] + 2 (21)

where the last inequality is because in step m, allocations increase by 2 for sample λ and do not increase for
all other samples. This leads us to the following series of inequalities

CLR(Q, n[m + 1]) (a)= CLR(n[m] + 2δλ)
(b)
≥ CLR(n[m] + 2δj)
(c)= CLR(n[m]) + 1

I
(Q(j, nj [m] + 2) − Q(j, nj [m]))

(d)
≥ CLR(n′[m + 1] − 2δj) + 1

I
(Q(j, nj [m] + 2) − Q(j, nj [m]))

(e)
≥ CLR(n′[m + 1] − 2δj) + 1

I
(Q(j, n′

j [m + 1]) − Q(j, n′
j [m + 1] − 2))

(f)= CLR(n′[m + 1])

where (a) follows from Equation (19), (b) from Equation (20), (c) and (f) follow from the definition of CLR
in Equation (1), (d) follows from the global optimality of n[m] for the cost β[m] and the fact that the cost of
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n′[m+1] equals β[m]+2c, and finally, inequality (e) follows from Equation (21) and the concavity condition
of Equation (18). To explain inequality (e) in more detail: nj [m], nj [m] + 2 are two consecutive odd integers
and so are n′

j [m + 1] − 2, n′
j [m + 1]. Equation (21) shows that the pair n′

j [m + 1] − 2, n′
j [m + 1] is not to the

left of (i.e., is greater than or equal to) the pair nj [m], nj [m] + 2. The concavity condition of Equation (18)
shows that the Q function increment over all consecutive odd integers can only decrease or remain constant
as we consider larger and larger pairs of odd consecutive integers. This implies inequality (e).

5 Simulations to Demonstrate Effectiveness of BUOCA

We conducted simulated experiments to demonstrate the effectiveness of the BUOCA algorithm. Recall
that the inputs to BUOCA are the budget B and the Q table containing the probabilities {pi} of correct
combined worker decisions for all allocations of workers and all samples. Given Q, BUOCA provably yields
optimal crowdworker allocations for any budget B.

While users of BUOCA may have a good idea about the maximum budget B they can expend, they may
not know how difficult some tasks may be for a given pool of crowdworkers. Consequently, the {pi} values
that make up the Q table are not directly available in practice and would need to be estimated from training
data using a suitable ML model. The main goal of this section is to explore the impact that inaccuracies in
the estimation of the {pi} values have on the CLR of allocations found by the BUOCA algorithm. Figure 2
shows the simulation workflow in detail. The simulation workflow takes a dataset, including sample contents
such as images, text, etc., and true labels (one for each sample). An ML model, such as a neural network,
is then trained on the labeled dataset and then used to assign soft labels, i.e., the class probability values
of the final softmax layer (or equivalent values if the ML model is not a neural network) to any given input
sample.

The workflow then splits into two branches, each producing a CLR score. According to the top branch, for
each sample i, the soft label entry corresponding to the correct (ground truth) discrete label of that sample is
chosen as the probability of labeling (i.e., the pi value). These probability values are then used to construct
the Q table, denoted by QT , which is used to determine the ideal optimal allocation AT . Lastly, a CLR score
is computed based on QT and AT . In the bottom branch of the workflow, for each sample i, the soft labels
are used to create simulated crowdworker labels: N crowdworker labels are generated randomly according
to the soft label probability distribution for that sample and then the fraction of correct ones together with
the ground truth label of the sample is used to construct the table QS which is then used to determine the
optimal allocations AS . Lastly, a CLR score is computed with QT and AS .

Figure 2: Simulation Workflow

Once the workflow is completed, we can evaluate the performance of BUOCA when run on potentially
inaccurate input obtained from the ML model by comparing the two CLR scores (defined in Equa-
tion (1)): CLR(QT , AT ) for the top branch indicating the performance based on using the true Q table,
and CLR(QT , AS) for the bottom branch indicating the performance based on using a Q table estimated

13
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from simulated crowdworker labels. Note that for the bottom branch, the Q table used for evaluation is the
one from the top branch since the top branch corresponds to the true Q table in these experiments.

The whole workflow is repeated for a range of budget values so that we can observe a performance trend
(except we only need to train the model once). For each tested budget value, We repeatedly simulate the
bottom branch 100 times to estimate confidence bounds for the CLR evaluation.

Figure 3: Fine-tuning accuracy

Experiments Using Simulation Workflow on Textual Entailment Task

We applied the workflow described previously to a Recognizing Textual Entailment (RTE) dataset. The
original dataset (namely, RTE1 ) was released by Dagan et al. (2005). However, we used a subset of the
original dataset which was released by Snow et al. (2008) and has been used by previous crowdsourcing
works. There are 800 task samples in the RTE dataset each of which contains a pair of sentences, namely
text and hypothesis, and a binary ground truth label annotated by experts indicating whether or not the
truth of the text leads to the truth of the hypothesis. Exactly half of the 800 samples are labeled negative
while the other half are labeled positive.

To generate simulated worker labels we used a pre-trained DeBERTa model released by Sileo (2023). Instead
of re-training the model on the dataset, we performed fine-tuning. The fine-tuning accuracy scores for
different numbers of epochs are recorded in Figure 3. The accuracy scores vary between 0.86 and 0.9, with
higher accuracy for higher epoch numbers.

We varied two impactful parameters during the experiments: the epoch number for which the DeBERTa
model was fine-tuned, and N , the maximum number of simulated annotations of each task. In theory, both
parameters can affect the CLR values: the epoch number affects the model’s prediction power and hence
the correct labeling probability for each task, and the maximum number of simulated annotations directly
impacts the Q table.

Discussion of Results

Our experiments suggest that both the number of fine-tuning epochs and the number of simulated crowd-
worker annotations show positive correlation with the CLR score. Plots of CLR scores with respect to budget
for different numbers of epochs and different maximum numbers of simulated crowdworkers are shown in
Figure 4.

The plots in the same row of Figure 4 share the same fine-tuning epoch number, while the plots in the
same column have the same maximum number N of simulated per-task annotations. In each plot, the blue
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curve corresponds to the CLR values obtained with the model’s soft labels (top branch in Figure 2), the
orange curve corresponds to the mean CLR values obtained with the simulated annotations (bottom branch
in Figure 2), and the green and the red curves show the standard deviation of the mean CLR values.

As these plots show, increasing the number of fine-tuning epochs or the number of simulated crowdworkers
not only leads to greater CLR values but also narrows the gaps between the ideal values (blue curve) and
the mean values based on the ML prediction (orange curve). The DeBERTa model instance we chose was so
well trained that fine-tuning for only three epochs already yields a high performance score and increasing the
number of epochs quickly leads to diminishing returns. For example, with the maximum number of workers
set to 3, the highest ideal CLR value achieved is 0.95 using a model fine-tuned for merely three epochs (first
row and first column of Figure 4). After fine-tuning for two more epochs (second row and first column of
Figure 4), the CLR increases by only 0.01. On the other hand, increasing the maximum number of simulated
crowdworkers per task seems to create slightly more noticeable changes to the CLR score. Take the bottom
row in Figure 4 for example. When the maximum number of workers per task is 3, the highest ideal CLR
value is about 0.971, which is also the highest CLR value in the same column of the figure. Nonetheless,
increasing the maximum number of workers to 9 pushes the CLR up to about 0.984 and increasing N to 20
nudges the the highest CLR value to nearly 0.99.

6 Multi-Class Extension

Thus far, we focused on binary task labels. We now show how to extend the binary label formulation to the
multi-class scenario.

6.1 MLE and Inference Accuracy

The extension starts with a new quantity pi,x|li
, the probability of task i having ground truth label li being

labeled as class x by a random worker. We maintain Assumption 3.0.1 and Assumption 3.0.2.

Next, we again use MLE to infer the true label for given ni worker labels. Let C be the number of label
classes and let Mi = (m(1)

i , m
(2)
i , ..., m

(C)
i ) be the tuple of class counts of the ni worker labels. We infer the

true label for a given Mi similarly to Equation (4).

The calculation of P (Mi|li = y) needs to be adjusted to the multi-class scenario as follows:

P (Mi|li = y) =
(

ni

m
(1)
i m

(2)
i ...m

(C)
i

) C∏
x=1

p
m

(x)
i

i,x|y (22)

This leads to the new expression for ŷ
(i)
MLE(Mi):

ŷ
(i)
MLE(Mi) = arg max

y
P (Mi|li = y)

= arg max
y

(
ni

m
(1)
i m

(2)
i ...m

(C)
i

) C∏
x=1

p
m

(x)
i

i,x|y

= arg max
y

C∏
x=1

p
m

(x)
i

i,x|y

= arg max
y

C∑
x=1

m
(x)
i log(pi,x|y)

(23)

The calculation of P (Ei), the probability that ŷ
(i)
MLE(Mi) matches the ground truth li, is very similar to the

binary scenario. Nevertheless, the set Jni,li,d needs to be modified as follows

15



Under review as submission to TMLR

Figure 4: CLR-vs-budget plots for binary-label tasks.

Jni,li,pi,·|li
,d =

{
Mi ∈ M(ni)

∣∣∣∣ ∀y ̸= li, h(li, Mi, pi,·|li
) ≥ h(y, Mi, pi,·|y),

with equality only for (d − 1) values of y ̸= li

}

16



Under review as submission to TMLR

where

M(n) := {(m(1), m(2), . . . , m(C)) : m(1), m(2), . . . , m(C) ∈ {0, 1, . . . , n}, m(1) + m(2) + . . . + m(C) = n}.

and

h(y, Mi, pi,·|y) =
C∑

x=1
m

(x)
i log(pi,x|y).

Lastly, the new form of Q(i, ni) = P (Ei) is

Q(i, ni) = P (Ei) =


1
C

, if pi,·|li
= 1

C
for any li

C∑
d=1

∑
Mi∈Jni,l0,pi,·|l0

,d

1
d

(
ni

Mi

) C∏
x=1

p
m

(x)
i

i,x|l0
, otherwise

(24)

This completes the calculation of Q(i, ni) in the multi-class label scenario.

6.2 Simplification

The calculation shown in Equation (24) requires the knowledge of all pi,x|y values. This may not be practical
in practice. However, one can simplify the calculation by making the following assumption:
Assumption 6.0.1. For each task i,

pi,x|y =
{

pi if x = y
1−pi

C−1 otherwise.

Under this assumption, we can again use the quantity pi, the probability of task i being correctly labeled by
a random worker, to express Q(i, ni):

Q(i, ni) = P (Ei) =


1
C

, if pi = 1
C

C∑
d=1

∑
Mi∈Jni,l0,pi,·|l0

,d

1
d

(
ni

Mi

)
p

m
(l0)
i

i

(
1 − pi

C − 1

)ni−m
(l0)
i

, otherwise
(25)

6.3 Adapted BUOCA Algorithm

The original BUOCA algorithm shown in Algorithm 1 is not suitable for the multiclass scenario as it is
designed for binary tasks. For example, the result that the worker allocation increment can be restricted to
two without loss of optimality (Theorem 4.4 ) would not hold, in general, for non-binary tasks. We therefore
propose a modified greedy algorithm, Multiclass BUOCA, described in Algorithm 2. In Multiclass BUOCA,
the worker increment size is not held fixed in advance to a specific value (like one or two).

As demonstrated in Section 4.2, the global optimality of BUOCA algorithm for binary tasks hinged on the
Q(i, ni) function being either non-increasing or increasing and concave with respect to ni for all i. The
multiclass Q(i, ni), unfortunately, does not enjoy these properties in general. Therefore, unlike BUOCA,
Multiclass BUOCA is not guaranteed to yield a globally optimal solution; only a locally optimal one (being
a greedy algorithm).

6.4 Simulation Experiments for Multiclass BUOCA

We conducted simulation experiments following the same workflow described in Section 5, with the ML
Model, the Label Simulator and the Optimizer changed for the multi-class scenario. Since Multiclass BUOCA
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Algorithm 2 Multiclass BUOCA Algorithm (Q, B, c)
1: Initialize array n where each entry ni stores the worker allocation for task i
2: Set all worker allocations (all entries of n) to be 1
3: Initialize the starting cost β = cI
4: Denote I as the number of tasks (i.e., the number of rows in Q)
5: Denote N as the maximum number of workers of each task (i.e., the number of columns in Q)
6: while β < B do
7: Initialize array s of length I where each entry si = 0
8: Initialize array d of length I where each entry di = 0
9: for each sample i do

10: Find the smallest integer k ∈ (0, N − ni] s.t. Q(i, ni + k) − Q(i, ni) > 0
11: Set si = k and di = Q(i, ni + k) − Q(i, ni)
12: end for
13: Find λ = arg maxi(d)
14: Set β = β + c · sλ

15: if β ≤ B then
16: Set nλ = nλ + sλ

17: end if
18: end while
19: Return n

is not guaranteed to provide the globally optimal solution, we reformulated the optimization problem as an
equivalent Integer Programming (IP) problem and compared the CLR versus budget curves and associated
runtimes of Multiclass BUOCA and the state-of-the-art commercial IP solver Gurobi (Gurobi Optimization,
LLC, 2024).

Experiments

For our multiclass experiments we used a combination of two RTE datasets: RTE2 (Haim et al., 2006) and
RTE3 (Giampiccolo et al., 2007). These two datasets contain the same five entailment labels, one of which
is “no relation." Since the samples labeled as “no relation" occupy about half of the dataset, creating a rather
unbalanced scenario, we kept only the samples with one of the remaining four labels for simulation. This
led to a dataset of 810 samples and the label ratios 205 : 187 : 206 : 212 which is close to uniform. The ML
model used was again the pre-trained DeBERTa model released by Sileo (2023), but with a classifier layer
for four classes.

Moreover, in order to use the IP solver, we constructed an IP problem equivalent to Equation (2) as follows.

max
∑I

i=1
∑N

j=1 xij · Q(i, j)
s.t.

∑N
j=1 xij = 1 i = 1, 2, ..., I∑I
i=1

∑N
j=1 xij · j ≤ B

∀i∀j, xij = 0, 1

(26)

In this IP problem, each binary variable xij is an indicator for an entry in the Q table. The first constraint
ensures that only one entry in each row of the Q table is selected, while the second constraint corresponds
to the budget limit.

To compare the efficiency of the two optimization methods, we timed their execution processes when they
were computing the “target" scores. Since there are thousands of budget points in these experiments, we
selected 40 points equispaced between the lowest and the highest budget points and timed the execution
between all consecutive budget points. When given a budget point B, Multiclass BUOCA being a greedy
algorithm can compute the (possibly suboptimal) allocations for all budget points up to B. In contrast,
the Gurobi IP solver can compute an optimal allocation only for the given budget point B. We therefore
compare runtimes of Gurobi and Multiclass BUOCA in terms of both the marginal execution time between
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two consecutive budget points of interest as well as the accumulative execution time from the starting
budget point.

Discussion of Results

Our experiments show that, while Multiclass BUOCA was slightly outperformed by the Gurobi solver in
terms of CLR when N is small, it was much more efficient than the Gurobi solver, especially when there are
more budget points of interest.

We compare the accuracy of Multiclass BUOCA and the commercial solver in CRL-versus-budget plots for
different maximum numbers of simulated crowdworkers in Figure 5. The three plots in the first row of
Figure 5 show the results from Multiclass BUOCA while the ones in the second row show the results from
the Gurobi solver. All six plots are obtained using the same DeBERTa model fine-tuned for 100 epochs.
There is a noticeable difference between the plots in the first column corresponding to a maximum of three
workers per task. However, the difference becomes insignificant in the other two columns. This observation
suggests that when the maximum number of workers per task is not too limited, the suboptimal results from
Multiclass BUOCA only trail behind the optimal ones from the commercial solver by a very small margin.

Figure 5: CLR-vs-budget plots for multiclass tasks.

We compare the execution times of the Multiclass BUOCA and Gurobi solver for different maximum numbers
of simulated crowdworkers in Figure 6. From these plots, we observe that it takes the Multiclass BUOCA
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and Gurobi solver similar amounts of time to find the optimal allocation if only a few budget points are
given. The runtime of Gurobi solver, however, will skyrocket if many budget points are being considered.

Figure 6: Runtime (in milliseconds) vs. budget plots for multiclass tasks.
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7 Conclusions

We modeled the optimal worker allocation problem in crowdsourcing as an optimization problem that aims
to maximize aggregated label quality while under a budget constraint. We proposed a probabilistic approach
based on the Maximum Likelihood principle to model the decision fusion from workers during crowdsourcing.
We showed that if the task labels are binary, then our proposed approach is equivalent to voting by simple
majority.

We contributed a new algorithm, BUOCA, which can be used to conduct pilot crowdsourcing studies in order
to compute the average correct labeling rate of crowd workers for a given budget and dataset. We proved
the global optimality of BUOCA for binary task labels. Further, we showed that Multiclass BUOCA, an
adaptive version of BUOCA for multiclass task labels, achieves near-optimal allocations while costing only
a fraction of the time it takes for a commercial optimization solver to find the optimal solutions. Lastly,
the pilot study results can be used to estimate, for a given budget, the expected accuracy of the results in
subsequent larger crowdsourcing studies, where collecting expert labels is prohibitively expensive.

Other than the suboptimal property of Multiclass BUOCA, a limitation of our approach, is the challenge
to estimate task difficulty accurately. This limitation applies to both binary and multi-class task settings.
Since the task difficulty is the cornerstone of our formulation, a reliable mechanism to accurately estimate
task difficulty without incurring additional cost is essential to bring our proposed approach into practice.
The design of such mechanisms is an important direction for future work.
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A Appendix

A.1 Notations

To improve readability, we summarize important notations in Table 1 for quick reference.

Table 1: Notations

Notation Meaning
i sample/task index
I number of samples/tasks
C number of classes
ni number of workers for task i
N maximum number of workers for a task
n (n1, n2, ..., nI)⊤, that is, worker allocation list

Mi (m(1)
i , m

(2)
i , ..., m

(C)
i ), the class counts of a certain list of worker labels for task i

pi probability of correct labeling task i by a random worker
pyx probability of labeling a task with label x given the ground truth label y
gy probability of labeling a task correctly given the ground truth label y

Q(i, ni) probability of correct labeling task i by the aggregation of ni random workers
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