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ABSTRACT

Long-term time series forecasting (LTSF) aims to predict future trends based on
historical data. While longer lookback windows theoretically provide more com-
prehensive insights, current Transformer-based models face the Lookback Win-
dow Limitation (LWL). On one hand, longer windows introduce redundant in-
formation, which can hinder model learning. On the other hand, Transformers
tend to overfit temporal noise rather than extract meaningful temporal information
when dealing with longer sequences, compounded by their quadratic complexity.
In this paper, we aim to overcome LWL, enabling models to leverage more histor-
ical information for improved performance. Specifically, to mitigate information
redundancy, we introduce the Information Bottleneck Filter (IBF), which applies
information bottleneck theory to extract essential subsequences from the input.
Additionally, to address the limitations of the Transformer architecture in han-
dling long sequences, we propose the Hybrid-Transformer-Mamba (HTM), which
combines the linear complexity and long-range modeling capabilities of Mamba
with the Transformer’s strength in modeling short sequences. We integrate these
two model-agnostic modules into various existing methods and conduct experi-
ments on seven datasets. The results demonstrate that incorporating these modules
effectively overcomes the lookback window limitations. Notably, by combining
them with the Patch strategy, we design the PIH (Patch-IBF-HTM), successfully
extending the window length to 1024—a significantly larger window than previ-
ously achieved—and achieving state-of-the-art results, highlighting the potential
of exploring even longer windows.

1 INTRODUCTION

Long-term time series forecasting (LTSF) (Lim & Zohren, 2020) holds significant importance
across various domains such as traffic management, energy optimization, and financial analysis.
Transformer-base methods (Vaswani et al., 2017), known for their attention mechanisms that facili-
tate the automatic learning of sequential dependencies, have emerged as promising tools for LTSF.
Notable models like Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and PatchTST (Nie
et al., 2023) have demonstrated successful applications of Transformers in this domain. To enhance
the forecasting capability of the model, extending the lookback window is a natural choice. A longer
window enables the model to capture long-term trends more accurately, improving its ability to pre-
dict seasonal variations, cyclical patterns, and overall trends. For example, as shown in Fig. 1 (a),
when using a longer window L2, the model successfully captures the cyclical trend in the high-
lighted elliptical region, whereas using a shorter window L1 results in failure. In theory, as the
window length L increases, the model’s performance should gradually improve. However, current
Transformer-based models encounter a Lookback Window Limitation (LWL) (Zeng et al., 2022).
This limitation implies that after reaching the optimal performance at a certain window length L,
further increasing the window does not yield better results. A natural question then arises: How can
we break through LWL and enable the model to perform better with longer windows?

We analyse this issue from both an information-theoretic perspective and a model architecture per-
spective. From the information perspective, time series naturally possess redundancy, and longer
windows tend to have higher redundancy (Prichard & Theiler, 1994a;b). As shown in Fig. 1 (b), after
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(a) (b)

Figure 1: (a): When predicting P using a smaller lookback window L1, the information regarding
the elliptical part is not captured, resulting in inaccurate predictions. In contrast, longer window L2

can capture the periodicity of the elliptical part. (b): The redundancy in temporal information is
evident from the fact that both the original sequence (green) and the downsampled sequence (red)
maintain almost identical temporal characteristics.

downsampling the original sequence, the subsequences can still maintain almost identical temporal
characteristics. Longer windows exacerbate this redundancy, as illustrated in Fig. 1 (a). Although
L2 provides more historical information, the several subsequences formed by elliptical segmenta-
tion are highly repetitive, resulting in L2 having significantly higher redundancy than L1. Therefore,
although larger windows provide more information, the high level of redundancy can interfere with
the model’s learning. From the model architecture perspective, despite the Transformer’s pow-
erful sequence modeling capabilities, recent research (Zeng et al., 2022) has indicated that it tends
to overfit temporal noises rather than extract temporal information when presented with longer se-
quences. Additionally, the quadratic complexity of the Transformer also hinders the exploration of
longer windows.

The Patch strategy is one approach to overcome LWL by treating consecutive time steps as a single
patch (Nie et al., 2023; Zhang & Yan, 2023). This reduces sequence redundancy and significantly
decreases the effective sequence length for the Transformer. However, the Patch method is heuristic
and lacks adaptability. It can only reduce redundancy at the local level, failing to address redundancy
at the global level. Moreover, it does not mitigate the quadratic complexity inherent in Transformers.
Moreover, it does not mitigate the quadratic complexity inherent in Transformers. As the number of
patches increases, the computational demands increase dramatically.

In this paper, we propose two model-agnostic modules to address the issues of information redun-
dancy and architectural limitations, respectively. To alleviate information redundany, we intro-
duce the Information Bottleneck Filter (IBF) module based on information bottleneck (IB) the-
ory. The IBF module aims to identify informative subsequences while minimizing redundancy and
noise (Alemi et al., 2016), enabling the model to prioritize significant subsequences within the se-
quence. Directly optimizing the IB objective for sequences proves challenging owing to their dis-
crete nature (Yu et al., 2021b;a), often resulting in training instability and degraded outcomes. Here,
we propose the adoption of a probabilistic framework for sequence selection, alongside the intro-
duction of a noise injection strategy. Initially, noise is injected into sequence elements with a certain
probability, thereby disrupting the flow of information from the input sequence to the perturbed
sequence. Subsequently, we incentivize the perturbed sequence to retain its informative proper-
ties in relation to the labels. The fundamental concept underlying this approach is that important
subsequences should have a low probability of noise injection, whereas injecting larger noise into
redundant sequences does not significantly impact predictions. By tailoring a noise prior for each
input, the IB objective can yield a manageable variational upper bound. To address the difficulties
that Transformers face in handling long sequences, we introduce Mamba (Gu & Dao, 2023), a re-
cently proposed State Space Model (SSM) characterized by linear complexity. Mamba has garnered
attention for its efficacy and efficiency in modeling extensive dependencies within sequential data
(Ma et al., 2024; Liu et al., 2024b; Wang et al., 2024), rendering it particularly suitable for temporal
data analysis. However, this does not imply a complete replacement of Transformers with Mamba.
On one hand, while Mamba theoretically demonstrates linear complexity, Transformers incur lower
computational overheads for shorter sequences owing to efficient hardware optimizations (see Ap-
pendix A.6). On the other hand, in short sequence modeling, we observe discernible performance
differences between Transformers and Mamba across various datasets, potentially stemming from
their distinct capabilities in encoding diverse sequence patterns. To harness the strengths of both ar-
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chitectures simultaneously, we propose Hybrid-Transformer-Mamba (HTM). Specifically, rooted in
the unique characteristics of time series data where temporal relationships persist even after down-
sampling, we partition lengthy sequences into shorter subsequences. Then, we employ Mamba to
capture long-term information from the input long sequence, while utilizing Transformer to capture
short-term information from the short subsequences.

We integrated the two aforementioned model-agnostic modules into multiple Transformer-based
models and conducted detailed experiments on seven datasets. The results demonstrate that these
modules can effectively assist Transformer-based models in overcoming the LWL, enabling better
performance with larger windows while reducing computational costs by 2 to 3 times. Notably,
by incorporating these modules into the PatchTST model, we developed the PIH model (Patch-
IBF-HTM), where the window length was extended to 1024—a significantly larger setting than in
previous studies. The PIH model achieved state-of-the-art results, proving the effectiveness of using
longer lookback windows. Our work can inspire future research to explore even longer window
sizes. (Recent time series large models (Liu et al., 2024a; Jin et al., 2024) have adopted window
sizes greater than L = 1024, which we will discuss in Appendix A.1 in relation to our approach.)

In summary, our primary contributions are as follows: First, while previous work has identified
the existence of the LWL in Transformer-based methods, we focus on overcoming this limitation.
Secondly, we introduce IBF and HTM, two model-agnostic modules designed from the perspectives
of the information bottleneck and model architecture, respectively, to address the LWL. Thirdly,
by integrating these modules into multiple existing models, we observe substantial performance
improvements across seven datasets. Notably, the PIH model, which combines these modules with
the Patch strategy, achieved state-of-the-art results, demonstrating the effectiveness and versatility
of our proposed modules.

2 RELATED WORK

2.1 TRANSFORMER-BASED MODELS

Due to the attention mechanism’s capability to capture long-range dependencies, Transformer-based
models have found widespread application in language and vision tasks. Early attempts (Song et al.,
2018; Ma et al., 2019; Li et al., 2019) at directly applying vanilla Transformers to time series data
failed in long sequence forecasting tasks, as the self-attention operation scales quadratically with the
input sequence length. Existing approaches primarily address this challenge through two avenues.
Patch-based methods, exemplified by PatchTST (Nie et al., 2023) and CrossFormer (Zhang & Yan,
2023), conceptualize consecutive time steps as patches, reducing the number of input tokens and
augmenting local semantics to mitigate redundancy. However, patch-based methods impose con-
straints on the input data format, and computational expenses persist even at the patch level when
the window is large. Another approach focuses on sparse attention mechanisms. Models such as
Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), Pyraformer (Liu et al., 2022b), and
FEDformer (Zhou et al., 2022) adapt the self-attention mechanism to achieve complexities of O(L)
or O(L log(L)). These models rely on specific designs and often sacrifice representational capac-
ity, thereby compromising performance. Our work is independent of these approaches and can be
effectively integrated into them.

2.2 MAMBA FOR TIME SERIES

Recently, several approaches have emerged to incorporate Mamba into time series modeling, each
introducing unique innovations to enhance the capture of temporal dynamics. Bi-Mamba+ (Liang
et al., 2024) introduces a novel Mamba+ block by incorporating a forget gate within Mamba. This
modification enables the selective combination of new features with historical ones in a comple-
mentary manner, boosting the model’s ability to balance past and present information. To further
enhance feature interactions among time series elements, Bi-Mamba+ applies this approach in both
forward and backward directions. S-Mamba (Wang et al., 2024) adopts a different approach by
autonomously tokenizing time points of each variate using a linear layer. The method employs a
bidirectional Mamba layer to extract inter-variate correlations and a Feed-Forward Network to learn
temporal dependencies. Ultimately, S-Mamba generates forecasting results through a linear map-
ping layer, highlighting its structured yet flexible approach to capturing temporal patterns. TimeMa-
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Figure 2: Overall of PIH architecture

chine (Ahamed & Cheng, 2024) takes a broader view of time series data by leveraging multi-scale
contextual cues. Its architecture integrates a quadruple-Mamba design, allowing the model to man-
age both channel-mixing and channel-independence scenarios. By unifying global and local con-
texts at varying scales, TimeMachine effectively selects key information for prediction, thus offering
robust handling of complex temporal structures. MambaTS (Cai et al., 2024) challenges the neces-
sity of causal convolution within Mamba for long-term series forecasting (LTSF). It proposes the
Temporal Mamba Block (TMB) as an alternative. To further prevent model overfitting, MambaTS
incorporates a dropout mechanism that selectively applies to TMB’s parameters, ensuring a more
stable and generalizable model performance.

2.3 INFORMATION BOTTLENECK (IB)

The essence of the IB principle lies in distilling a compact yet predictive code from the input sig-
nal (Tishby et al., 2000). Pioneering work by (Alemi et al., 2016) introduced the concept of vari-
ational information bottleneck (VIB), thereby enriching deep learning methodologies. Presently,
IB and VIB find extensive applications in deep learning, predominantly in representation learning
and feature selection domains. In representation learning, the focus is on training deterministic or
stochastic encoders to derive condensed yet semantically rich representations of input data. These
representations serve as valuable inputs for a plethora of downstream tasks spanning computer vi-
sion (Luo et al., 2019; Peng et al., 2019), reinforcement learning (Goyal et al., 2019; Igl et al., 2019),
natural language processing (Wang et al., 2020), and node representation learning (Wu et al., 2020).
Meanwhile, in the realm of feature selection, IB is used to select a subset of input features such as
pixels in images or dimensions in vectors, which are maximally predictive to the label of input data.
Strategies such as injecting noise into intermediate representations of pre-trained networks and sub-
sequently selecting regions with optimal information per dimension have been explored (Achille &
Soatto, 2018; Schulz & et al., 2020). Additionally, techniques like learning drop rates for individual
dimensions of vector-structured features have been proposed (Kim et al., 2021).

3 METHOD

Given a collection of multivariate time series samples with lookback window L : (x1, . . . ,xL)
where each xt at time step t is a vector of dimension C, we would like to forecast T future values
(xL+1, . . . ,xL+T ). We integrate HTM and IBF into the PatchTST framework, resulting in PIH, as
illustrated in Fig. 2. It is worth noting that our method is model-agnostic. In section 4, we also
discuss its integration into other Transformer-based models.

3.1 PATCHING

Given our utilization of a channel-independent strategy, we opt for simplicity by converting mul-
tivariate time series into univariate ones. The input univariate time series x is initially segmented
into patches, which may be either overlapping or non-overlapping. Employing patching strategies
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enhances locality and captures comprehensive semantic information beyond the point level by ag-
gregating time steps into subseries-level patches. Furthermore, to ensure uniform partitioning of the
patch sequence into K equally-sized blocks in subsequent modules (refer to section 3.3), we employ
Padding(·) to extend the input sequence. Denoting the patch length as P and the stride (the non-
overlapping region between two consecutive patches) as S, the Patch(·) process yields a sequence
of patches h ∈ RN×P , where N denotes the number of patches, N = ⌈ (L−P )

SK ⌉ ∗K. Subsequently,
we employ an embedding layer to map the dimension of each patch from h ∈ RN×P to e ∈ RN×d.

e = Embedding (Patch (Padding (x))) (1)

3.2 INFORMATION BOTTLENECK FILTER (IBF) MODULE FOR REDUNDANCY FILTERING

After obtaining the patch embedding sequence e = {e1, e2, . . . , eN}, our approach involves the
application of Mamba, followed by a subsequent Dropout layer to capture long-term dependency:

z = Dropout(Mamba(e)) (2)

In scenarios where the patch sequence length N is considerable, there exists a possibility of signif-
icant redundancy. To address this issue, we leverage the information bottleneck theory to filter out
redundant information of z.

Information Bottleneck (IB). In machine learning, determining which aspects of input data to re-
tain and which to discard is crucial. The Information Bottleneck (IB) principle (Alemi et al., 2016)
offers a systematic approach to this by compressing the source random variable to preserve infor-
mation relevant for predicting the target random variable, while discarding irrelevant information.
Given random variables X and Y , IB aims to compress X into a bottleneck random variable B,
while retaining information pertinent to predicting Y :

min
B

−I(Y ;B) + βI(X;B) (3)

Here, β serves as a Lagrangian multiplier to balance the two mutual information terms.

Rationale for filtering information from z instead of directly from e: Mamba can be concep-
tualized as a variant of recurrent neural networks (Hochreiter & Schmidhuber, 1997; Schuster &
Paliwal, 1997). Therefore, the representation zt of the t-th patch in Mamba accumulates informa-
tion not only from the current patch et, but also from historical data [e1, . . . , et−1]. In contrast, et
solely contains information from the current patch. Considering the temporal nature of time series
data, the importance of the t-th patch is influenced not only by its own state but also by preceding
patches. Therefore, we apply IBF after Mamba layers.

The IBF module seeks to retrieve the most relevant subsequence xsub for a target prediction Y from
the input sequence x. We adopt the sufficient encoder assumption (Tian et al., 2020), implying
that the information of the input subsequence xsub is preserved in the encoding process, resulting in
I(xsub,Y) ≈ I(zsub,Y) and I(xsub,x) ≈ I(zsub, z), where zsub is a subsequence of z. The Eq. 3
are transformed into:

min
zsub

−I(zsub,Y) + βI(zsub, z) (4)

The first term encourages zsub to be informative to the label Y and the second term minimizes
the mutual information of z and zsub, so that zsub only receives limited information from z. The
discrete nature of sequences renders direct optimization of IB objective impractical, as there are 2N

potential subsequences zsub for a patch sequence of length N . To address this challenge, we relax
patch weights from binary to continuous variables within the range (0, 1). Considering zi as the
representation of the i-th patch, encapsulating information up to and including the i-th patch, we
utilize MLP to assess the importance ci of patch zi:

ci = sigmoid (MLP (zi)) (5)

Consequently, the selection of patch zi can be obtained by sampling from λi ∼ Bern(ci), where
Bern(ci) represents a Bernoulli distribution parameterized by ci. To ensure the differentiability
of the sampling process, we utilize the gumbel sigmoid (Maddison et al., 2017; Jang et al., 2017)
function for the discrete random variable λi, defined as:

λi = Sigmoid
(
1

τ
log

[
ci

1− ci

]
+ log

[
u

1− u

])
(6)
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where u ∼ Uniform(0, 1), and τ is the temperature hyperparameter. Subsequently, subsequence
zsub can be obtained by zsub = λz. Although we can employ shannon mutual information (Duncan,
1970) to quantify the compressed and informative nature of the distribution of subsequences zsub,
the optimization process is inefficient and unstable due to mutual information estimation (Yu et al.,
2021b). To address this challenge, we employ an optimization strategy known as noise injection (Yu
et al., 2021a), which consists of two stages: sequence perturbation and sequence selection. The
core concept is to allow the model to introduce noise into less informative subsequences while
minimizing noise injection into more informative ones. Initially, noise injection disrupts the flow of
information from the input sequence z to the perturbed sequence znoise. Subsequently, we encourage
the perturbed sequence znoise to maintain its informative properties relative to the label Y. Finally,
zsub is derived by removing the noise from znoise. Eq. 4 can be reformulated as:

min
znoise

−I(znoise, Y ) + βI(znoise, z) (7)

where znoise = λz + (1 − λ)ϵ, and ϵ follows a random Gaussian distribution. To preserve the
semantic of znoise, we set ϵ ∼ N (µz, σ

2
z), where µz and σ2

z denote the mean and variance of z. We
first examine the first term −I

(
znoise,Y

)
in Eq. 7 which encourages znoise is informative of label

Y:
−I

(
znoise,Y

)
≤ EY,znoise − log pθ

(
Y | znoise) := Lpred

(
znoise,Y

)
(8)

Here, pθ
(
Y | znoise

)
represents the variational approximation to the true posterior distribution

p
(
Y | znoise

)
(A detailed proof can be found in Appendix A.4). We model pθ

(
Y | znoise

)
as

a predictor parametrized by θ, which outputs the model prediction Y based on the input znoise.
Thus, we can minimize the upper bound of −I

(
znoise,Y

)
by minimizing the model prediction loss

Lpred

(
znoise,Y

)
. We choose to utilize the Mean Squared Error (MSE) loss as Lpred

(
znoise,Y

)
.

For the second term I(znoise, z) in Eq. 7, we can derive its variational upper bound:

−I
(
znoise, z

)
≤ Ez

(
−1

2
logA+

1

2N
A+

1

2N
B2

)
:= Lcomp

(
znoise, z

)
(9)

where A =
∑N

j=1 (1− λj)
2 and B =

∑N
j=1 λj(zj−µz)

σz
. A detail proof is given in Appendix A.4.

Finally, we can efficiently estimate Eq. 8 and Eq. 9 with the batched data in the training set. The
overall loss is:

L = Lpred

(
znoise,Y

)
+ βLcomp

(
znoise, z

)
(10)

3.3 HYBRID-TRANSFORMER-MAMBA(HTM)

Modeling the input long sequence with Mamba and then using Transformer to model the partitioned
short sequences is a promising paradigm (Mehta et al., 2023; Pilault et al., 2023; Lieber et al.,
2024), as it can leverage the strengths of both architectures simultaneously. We have designed two
split methods capable of retaining semantic information: interval split and block split, denoted as:

bi = {znoise
j ∈ znoise : i ≡ j (mod K)} (11)

bi = znoise
(i−1)∗N/K:i∗N/K (12)

where bi represents the i-th sequence block, and K is the number of blocks. The premise for splitting
sequences into subsequences is that the latter can still retain the semantic meaning of the original
long sequences. Fortunately, time series data often adhere to this principle. The interval split is
inspired by SCINet (Liu et al., 2022a), which highlights a unique property of time series: temporal
relations (e.g., trend and seasonal components) are largely preserved after downsampling into two
subsequences. SCINet downsamples the original sequence into two subsequences by separating
the even and odd elements, our interval split extends this approach to partitioning patch sequence
into K blocks, distributing contiguous K patches into K distinct blocks. This partitioning method
preserves the global characteristics of the sequence. Additionally, we propose the block split, where
a continuous segment of patch subsequence forms a block. This partitioning method is based on the
periodicity of time series, where one period (or multiples of a period) is considered as a block, thus
preserving the local information of the sequence.
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The patch operation and partitioning reduce the length of the input sequence for Transformer from
L to L/PK, significantly reducing the computational overhead. Combined with Mamba processing
the entire sequence, the overall time complexity of the Hybrid Transformer Model (HTM) becomes
O(L/P ) + O((L/PK)2). Although the latter term still exhibits quadratic complexity, appropriate
choices of P and K can maintain L/P within an acceptable constant range.

4 EXPERIMENT

Our experiments are divided into three parts. In the first part, we set the lookback window length
to L = 1024, which, to our knowledge, is longer than any previously used method. The PIH model
achieved state-of-the-art results, encouraging future research to explore even longer windows. Addi-
tionally, the IBF module enhances the model’s interpretability, while the HTM module significantly
reduces computational costs. In the second part, we investigate the integration of the IBF and HTM
modules into other Transformer-based models, such as Transformer, Informer, and Autoformer. The
results demonstrate that, after incorporating these modules, the models effectively overcome LWL
and achieve better performance with longer windows, highlighting the general applicability of these
modules. Future research could adopt these model-agnostic modules to improve performance with
extended windows. Finally, in the third part, we conducted ablation experiments on the model com-
ponents.

4.1 COMPARISON OF PIH WITH OTHER MODELS

Experimental Settings and Baselines. We evaluate PIH on seven popular datasets (See Ap-
pendix A.2), including Weather, Traffic, Electricity, and four ETT datasets (Etth1, Etth2, Ettm1,
Ettm2). PIH integrates the IBF and HTM modules into the PatchTST model, making PatchTST the
primary baseline. To assess how effectively our model utilizes longer lookback windows, we set
L = 1024 for both PIH and PatchTST, which is significantly longer than in previous studies. The
other experimental settings can be found in Appendix A.5.

We additionally selected Mamba-based, Transformer-based, and Linear-based models as baselines.
S-Mamba (Wang et al., 2024) utilizes a bidirectional Mamba layer to extract inter-variate correla-
tions, while a Feed-Forward Network is employed to learn temporal dependencies. For Transformer-
based models, in addition to PatchTST, we selected three other models: FEDformer (Zhou et al.,
2022), Autoformer (Wu et al., 2021), and Informer (Zhou et al., 2021). Since these baselines were
originally designed with relatively shorter windows (e.g., 96), we reran them with seven different
lookback windows L = {24, 48, 96, 192, 336, 720, 1024} and selected the best results to establish
robust baselines. Furthermore, we include two Linear-based models, DLinear and NLinear (Zeng
et al., 2022). Given that these two models were proposed to address the limitations of Transformer-
based models in handling long lookback windows, we also set L = 1024 for them. All models
follow the same experimental setup, with prediction lengths T ∈ {96, 192, 336, 720}. We use MSE
and MAE as evaluation metrics.

Results and Analysis. The results of multivariate long-term forecasting are summarized in Tab. 1.
For models like S-Mamba, Transformer, Autoformer, and Informer, PIH significantly outperforms
them. Even for models specifically designed to handle long sequences, such as PatchTST, DLin-
ear, and NLinear, PIH still surpasses them, demonstrating its effectiveness in processing longer
sequences. It is worth noting that we did not intentionally choose an unusual setting like L = 1024
to lower the performance of these three models. In Appendix A.3, we also provide their performance
under shorter windows (e.g., 336 and 512), where PIH continues to outperform them. Overall, PIH
with a much longer window setting achieves better results than other models with shorter windows.
Our experiments highlight the potential for further increasing the window size.

The Potential of Longer Windows. Tab. 1 shows that under long lookback window settings
with L = 1024, PIH significantly outperforms other methods. We further explore whether ex-
panding the window size is meaningful. As shown in Fig. 3 (a), we set the lookback window to
L = {96, 336, 512, 1024} and used the average MSE over 7 datasets with forecasting horizons
of T ∈ {96, 192, 336, 720} as the evaluation metric. The results indicate that the performance of
PatchTST improves steadily as the window increases from 96 to 512, but declines when extended

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Multivariate long-term forecasting results with different prediction lengths T ∈
{96, 192, 336, 720}. We provide the mean value for each column in the final row.

Models PIH PatchTST S-Mamba FEDformer Autoformer Informer DLinear NLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.394 0.371 0.405 0.386 0.406 0.376 0.415 0.435 0.446 0.941 0.769 0.511 0.520 0.379 0.404
192 0.396 0.418 0.408 0.429 0.448 0.444 0.423 0.446 0.456 0.457 1.007 0.786 0.414 0.428 0.414 0.426
336 0.409 0.432 0.431 0.449 0.494 0.468 0.444 0.462 0.486 0.487 1.038 0.784 0.453 0.458 0.442 0.445
720 0.435 0.466 0.482 0.483 0.493 0.488 0.469 0.492 0.515 0.517 1.144 0.857 0.511 0.520 0.470 0.477

E
T

T
h2

96 0.263 0.328 0.277 0.340 0.298 0.349 0.332 0.374 0.332 0.368 1.549 0.952 0.294 0.361 0.296 0.351
192 0.324 0.370 0.343 0.385 0.379 0.398 0.407 0.446 0.426 0.434 3.792 1.542 0.430 0.448 0.337 0.382
336 0.314 0.376 0.338 0.394 0.417 0.432 0.400 0.447 0.477 0.479 4.215 1.642 0.492 0.484 0.359 0.407
720 0.378 0.425 0.403 0.442 0.431 0.449 0.412 0.469 0.453 0.490 3.656 1.619 0.905 0.683 0.417 0.456

E
T

T
m

1 96 0.291 0.349 0.294 0.349 0.331 0.368 0.326 0.390 0.510 0.492 0.626 0.560 0.314 0.358 0.317 0.359
192 0.337 0.374 0.334 0.374 0.371 0.387 0.365 0.415 0.514 0.495 0.725 0.619 0.356 0.391 0.352 0.381
336 0.360 0.386 0.363 0.392 0.417 0.418 0.392 0.425 0.510 0.492 1.005 0.741 0.365 0.388 0.374 0.393
720 0.405 0.411 0.407 0.416 0.471 0.448 0.446 0.458 0.527 0.493 1.133 0.845 0.410 0.417 0.409 0.413

E
T

T
m

2 96 0.161 0.253 0.164 0.259 0.179 0.263 0.180 0.271 0.205 0.293 0.355 0.462 0.164 0.260 0.163 0.257
192 0.213 0.289 0.216 0.295 0.253 0.310 0.252 0.318 0.278 0.336 0.595 0.586 0.238 0.317 0.216 0.294
336 0.265 0.326 0.268 0.331 0.312 0.348 0.324 0.364 0.343 0.379 1.270 0.871 0.265 0.326 0.265 0.326
720 0.342 0.375 0.350 0.383 0.412 0.408 0.410 0.420 0.414 0.419 3.001 1.267 0.338 0.375 0.338 0.375

W
ea

th
er 96 0.147 0.198 0.147 0.197 0.166 0.210 0.238 0.314 0.249 0.329 0.354 0.405 0.167 0.225 0.170 0.226

192 0.191 0.239 0.190 0.241 0.215 0.253 0.275 0.329 0.325 0.370 0.419 0.434 0.211 0.267 0.215 0.265
336 0.241 0.280 0.243 0.283 0.276 0.298 0.339 0.377 0.351 0.391 0.583 0.543 0.255 0.304 0.259 0.298
720 0.309 0.329 0.306 0.328 0.353 0.349 0.389 0.409 0.415 0.426 0.916 0.705 0.313 0.351 0.321 0.342

Tr
af

fic

96 0.357 0.248 0.394 0.289 0.381 0.261 0.576 0.359 0.597 0.371 0.733 0.410 0.385 0.275 0.383 0.270
192 0.371 0.255 0.407 0.295 0.397 0.267 0.610 0.380 0.607 0.382 0.777 0.435 0.397 0.279 0.397 0.274
336 0.392 0.261 0.422 0.302 0.423 0.276 0.608 0.375 0.623 0.387 0.776 0.434 0.412 0.288 0.410 0.281
720 0.430 0.282 0.46 0.319 0.458 0.300 0.621 0.375 0.639 0.395 0.827 0.466 0.450 0.309 0.449 0.303

E
le

ct
ri

ci
ty 96 0.127 0.220 0.133 0.226 0.142 0.238 0.186 0.302 0.196 0.313 0.304 0.393 0.132 0.229 0.133 0.229

192 0.145 0.240 0.151 0.249 0.169 0.267 0.197 0.311 0.211 0.324 0.327 0.417 0.146 0.243 0.148 0.242
336 0.160 0.256 0.167 0.263 0.178 0.275 0.213 0.328 0.214 0.327 0.333 0.422 0.161 0.260 0.164 0.259
720 0.192 0.287 0.206 0.299 0.207 0.303 0.233 0.344 0.236 0.342 0.351 0.427 0.195 0.292 0.203 0.292

Mean 0.297 0.326 0.310 0.336 0.338 0.346 0.372 0.386 0.412 0.408 1.17 0.728 0.341 0.355 0.314 0.336

Figure 3: (a): The performance comparison between PIH and PatchTST at L ∈
{96, 336, 512, 1024}. (b): Comparison of GPU memory (GB) and training time (minutes/epoch)
for PatchTST, PatchTST, HTM, and PIH. (c): Visualization of a sample sequence in the Electricity,
highlighting the most important 20 patches identified by the IBF module with green shading.

to 1024. In contrast, PIH exhibits a consistent performance improvement as the window size in-
creases from 96 to 1024. This suggests that the HTM and IBF modules help PatchTST overcome
the L = 512 window limitation, achieving better performance with longer windows. Another note-
worthy observation is that, except for L = 96, PIH consistently outperforms PatchTST for the same
L. We hypothesize that with L = 96, sequence redundancy is low, and the Patch strategy alone
is sufficient to manage it effectively, rendering IBF and HTM unnecessary. Consequently, PIH lags
behind PatchTST at this window size. However, as the window length increases and sequence redun-
dancy grows, the IBF and HTM modules become more effective, allowing PIH to surpass PatchTST.

Computational Overhead. In addition to performance comparisons, we evaluated computation
time and memory usage, as shown in Fig. 3 (b). When using only the HTM module without the
IBF (referred to as HTM), it demonstrates significant improvements in both computational time and
memory usage compared to the pure Transformer architecture (referred to as PatchTST), surpassing
it by a notable margin (2 to 3 times). Additionally, HTM outperforms the pure Mamba architec-
ture (referred to as PatchTSM), which can be attributed to the Transformer’s lower computational
cost when handling shorter sequences compared to Mamba. Moreover, when both HTM and IBF
are integrated (i.e., PIH), the additional overhead introduced is negligible, as the IBF module only
consists of a simple MLP.
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Figure 5: The performance changes across the Traffic, Electricity, and ETTm1 datasets upon inte-
grating HTM and IBF into Transformers. The triangular markers indicate the window limitations.

Interpretability of IBF. Another advantage of incorporating the IBF module is its ability to en-
hance interpretability by identifying crucial subsequences for the final prediction. As shown in Fig. 3
(c), we provide a visualization of a sample from the Electricity dataset. The top 20 most important
patches are marked in green, indicating that the model focuses more on sequences at peak positions.

4.2 INTEGRATION INTO OTHER MODELS.

Figure 4: Performance comparison af-
ter integrating HTM and IBF into Trans-
former, Informer, and Autoformer.

We integrate the HTM and IBF modules into three dif-
ferent Transformer-based architectures to validate their
generality (where “Origin” represents the original model
and “Ours” denotes the integration of the HTM and
IBF modules). We set various lookback windows L =
{24, 48, 96, 192, 336, 720, 1024} and a prediction length
of T = 720, selecting the best results. We utilize the
average MSE across seven datasets as the evaluation met-
ric, with the results illustrated in Fig. 4. Informer, Auto-
former, and Transformer all demonstrate significant per-
formance improvements after incorporating the HTM and
IBF modules. Additionally, we present the performance
curves (MSE) for the ETTm1, Electricity, and Traffic
datasets with a prediction length of T = 720 in Fig. 5.
For the original Transformer models, the lookback win-
dow limitations for these three datasets are 48, 48, and
120, respectively, while our models increase these limita-
tions to 192, 96, and 228, achieving better performance.

Furthermore, we observe that with smaller windows, issues such as information redundancy and
the inherent weaknesses of Transformers are less pronounced, leading to similar or even worse
performance from our models. However, as the window size increases, our models significantly
outperform the original Transformers.

4.3 ABLATION STUDY

Component Ablation. We introduce HTM module and IBF module. To assess their effective-
ness, we utilize PatchTST as a baseline, upon which we separately introduce IBF, HTM and both
simultaneously to obtain three variants: +IB, +HTM, and PIH. Additionally, we introduce a variant
of HTM, HMM, which solely employs Mamba to handle both the original long sequences and the
divided short sequences. We refrain from designing a variant that processes the original long se-
quences with Transformer and the divided short sequences with Mamba, as it contradicts our goal of
reducing computational complexity. All experiments maintain consistent settings, with a lookback
window set to 1024 and prediction lengths set to 96, 192, 336, and 720. The average MSE across
seven datasets is used as the evaluation metric. As illustrated in Fig. 6, the following observations are
made: (1) Both IBF and HTM modules enhance the model’s performance, and combining these two
modules yields superior results. (2) Compared to HMM, HTM exhibits slightly better performance,
which can be attributed to the different mechanisms between Transformer and Mamba, making each
more suited to handling different types of sequences. By combining the strengths of both, the hybrid
approach achieves superior results. As discussed earlier, the Transformer has lower computational
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Figure 6: Left: Ablation experiments of different modules at prediction T = {96, 192, 336, 720},
using average MSE across 7 datasets as the evaluation metric. Right: Comparison of interval split
and block split methods across different datasets, using average MSE across 7 datasets at prediction
lengths T = {96, 192, 336, 720} as the evaluation metric.

costs for shorter sequences, while Mamba is more efficient for longer sequences. Therefore, from
both performance and computational overhead perspectives, using a combination of both architec-
tures is a better choice than relying solely on one. (3) At longer prediction lengths, such as T = 720,
our model demonstrates greater improvements compared to T = 96, indicating that larger windows
L provide more significant benefits for longer-term predictions (longer T ).

Interval Split vs. Block Split. We compared the performance of interval split and block split
across various datasets, as illustrated in Fig. 6. Overall, the effectiveness of both partitioning meth-
ods is roughly comparable, demonstrating their capability to preserve sequential characteristics.
However, slight variations in performance are observed across different datasets. We speculate that
this discrepancy arises from the distinct abilities of each partitioning method to retain specific se-
quential patterns. Intuitively, interval split emphasizes global variations, while block split focuses
on variations within periods. Determining the most suitable partitioning strategy remains a subject
for future investigation.

5 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we focus on addressing the LWL by analyzing it from both model archi-
tecture and information-theoretic perspectives, proposing the HTM and IBF modules. We combine
these with the patch strategy to design the PIH model, which can handle longer windows than previ-
ous works and achieves state-of-the-art results, demonstrating the potential of exploring longer win-
dows. Additionally, we integrate these two modules into other Transformer-based models, enabling
them to overcome window limitations and achieve improved performance with longer windows.

Limitations and Future Work. First, our experiments demonstrate that extending the window
length to L = 1024 still yields performance improvements, suggesting that further exploration of
longer windows is a promising direction. Secondly, we found that longer lookback windows are not
always beneficial for all datasets. Therefore, identifying which types of data are suitable for very
long windows is another important area for future research. Thirdly, the interval split and block
split methods proposed in this paper are heuristic. Designing an adaptive, end-to-end segmentation
method tailored to each training dataset may lead to better results. Lastly, while recent large time-
series models have adopted much longer windows, we claim that our approach is orthogonal to
theirs. It is worth exploring whether our method can be integrated into these large models to further
extend their window sizes.
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A APPENDIX

A.1 RELATIONSHIP WITH LARGE TIME-SERIES MODELS

Although some recent large time-series models are capable of handling longer windows, they rely
on significantly more parameters and much larger training datasets compared to our experiments.
Additionally, when tested on the same datasets we used, these models still employ smaller window
sizes. Our work does not conflict with these advancements in large time-series models. This is
because the HTM and IBF modules we propose are model-agnostic and can be integrated into large
time-series models, a direction worth exploring in future research.

A.2 DATASET

We use 7 popular multivariate datasets provided in (Wu et al., 2021) for forecasting and representa-
tion learning. Weather dataset collects 21 meteorological indicators in Germany, such as humidity
and air temperature. Traffic dataset records the road occupancy rates from different sensors on
San Francisco freeways. Electricity is a dataset that describes 321 customers’ hourly electricity
consumption. ETT(Electricity Transformer Temperature) datasets are collected from two different
electric transformers labeled with 1 and 2, and each of them contains 2 different resolutions (15
minutes and 1 hour) denoted with m and h. Thus, in total we have 4 ETT datasets: ETTm1, ETTm2,
ETTh1, and ETTh2.

Table 2: Statistics of popular datasets for benchmark.

Datasets Weather Traffic Electricity ETTh1 ETTh2 ETTm1 ETTm2

Features 21 862 321 7 7 7 7
Timesteps 52696 17544 26304 17420 17420 69680 69680

A.3 PERFORMANCE OF PATCHTST, DLINEAR, AND NLINEAR UNDER DIFFERENT WINDOW
LENGTHS

Here, we conducted experiments with DLinear and NLinear, two linear-based models, under two
settings: L = 336 and L = 1024, with results shown in Table 3. For PatchTST, we do not present
the results here because the original paper provides detailed results for PatchTST at window lengths
of 336 and 512, while this paper includes results for a window length of 1024, making it unnecessary
to repeat the information.We can draw the following conclusions:

• Linear-based models indeed perform well against noise, with NLinear(L = 1024) generally
outperforming NLinear(L = 336). This is consistent with the results of PIH, indicating that
larger windows are beneficial.

• NLinear(L = 1024) generally outperforms NLinear(L = 336), whereas DLinear(L =
1024) consistently underperforms compared to DLinear(L = 336). Thus, directly increas-
ing the window size in linear-based methods is not always effective.

• PIH(L = 1024) outperforms NLinear(L = 1024), which can be attributed to the superior
representational capabilities of the Transformer and Mamba modules compared to linear
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modules. Therefore, it is essential to continue exploring the potential of Transformer-based
models with longer windows rather than relying solely on linear-based models.

Table 3: Comparison between DLinear, NLinear, and PIH with lookback windows LL of 336 and
1024.

Weather Traffic Electricity Etth1 Etth2 Ettm1 Ettm2 Avg. Total Avg.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear(336) 96 0.176 0.237 0.410 0.282 0.140 0.237 0.375 0.399 0.289 0.353 0.299 0.343 0.167 0.260 0.265 0.302 0.332 0.351
192 0.220 0.282 0.423 0.287 0.153 0.249 0.405 0.416 0.383 0.418 0.335 0.365 0.224 0.303 0.306 0.331
336 0.265 0.319 0.436 0.296 0.169 0.267 0.439 0.443 0.448 0.465 0.369 0.386 0.281 0.342 0.344 0.360
720 0.323 0.362 0.466 0.315 0.203 0.301 0.472 0.490 0.605 0.551 0.425 0.421 0.397 0.421 0.413 0.409

DLinear(1024) 96 0.167 0.225 0.385 0.275 0.132 0.229 0.378 0.403 0.294 0.361 0.314 0.358 0.164 0.260 0.262 0.301 0.341 0.355
192 0.211 0.267 0.397 0.279 0.146 0.243 0.414 0.428 0.430 0.448 0.356 0.391 0.238 0.317 0.313 0.339
336 0.255 0.304 0.412 0.288 0.161 0.260 0.453 0.458 0.492 0.484 0.365 0.388 0.265 0.326 0.343 0.358
720 0.313 0.351 0.450 0.309 0.195 0.292 0.511 0.520 0.905 0.683 0.410 0.417 0.338 0.375 0.446 0.421

NLinear(336) 96 0.182 0.232 0.410 0.279 0.141 0.237 0.374 0.394 0.277 0.338 0.306 0.348 0.167 0.255 0.265 0.298 0.337 0.333
192 0.225 0.269 0.410 0.279 0.154 0.248 0.408 0.415 0.344 0.381 0.349 0.375 0.221 0.293 0.302 0.323
336 0.271 0.301 0.435 0.290 0.171 0.265 0.429 0.427 0.357 0.400 0.375 0.388 0.274 0.327 0.330 0.343
720 0.338 0.348 0.464 0.307 0.210 0.297 0.440 0.453 0.394 0.436 0.433 0.422 0.368 0.384 0.378 0.368

NLinear(1024) 96 0.170 0.226 0.383 0.270 0.133 0.229 0.379 0.404 0.296 0.351 0.317 0.359 0.163 0.257 0.263 0.299 0.314 0.336
192 0.215 0.265 0.397 0.274 0.148 0.242 0.414 0.426 0.337 0.382 0.352 0.381 0.216 0.294 0.297 0.323
336 0.259 0.298 0.410 0.281 0.164 0.259 0.442 0.445 0.359 0.407 0.374 0.393 0.265 0.326 0.325 0.344
720 0.321 0.342 0.449 0.303 0.203 0.292 0.470 0.477 0.417 0.456 0.409 0.413 0.338 0.375 0.372 0.379

PIH(1024) 96 0.147 0.198 0.357 0.248 0.127 0.220 0.360 0.394 0.263 0.328 0.291 0.349 0.161 0.253 0.244 0.284 0.297 0.326
192 0.191 0.239 0.371 0.255 0.145 0.240 0.396 0.418 0.324 0.370 0.337 0.374 0.213 0.289 0.282 0.312
336 0.241 0.280 0.392 0.261 0.160 0.256 0.409 0.432 0.314 0.376 0.360 0.386 0.265 0.326 0.306 0.331
720 0.309 0.329 0.430 0.282 0.192 0.287 0.435 0.466 0.378 0.425 0.405 0.411 0.342 0.375 0.356 0.368

A.4 PROOFS OF IB

A.4.1 PROOF OF EQ. 8

We first examine the first term −I
(
znoise,Y

)
in Eq. 4 which encourages znoise is informative of

label Y .
−I

(
znoise,Y

)
≤ EY,znoise − log qθ

(
Y | znoise)

:= Lpred

(
znoise, Y

) (13)

Here, pθ
(
Y | znoise

)
represents the variational approximation to the true posterior distribution

p
(
Y | znoise

)
(a detailed proof can be found in Appendix A.4). This equation illustrates that min-

imizing −I
(
znoise,Y

)
is achieved by minimizing the prediction loss between znoise and Y. We

choose to utilize the Mean Squared Error (MSE) loss to quantify the disparity between the predic-
tion and the ground truth.

Here we provide more details about how to yield Eq. 13. By the definition of mutual information
and introducing variational approximation pθ

(
Y | znoise

)
of intractable distribution p

(
Y | znoise

)
,

we have:

I
(
Y, znoise) = EY,znoise

[
log

p
(
Y | znoise

)
p(Y)

]

= EY,znoise

[
log

pθ
(
Y | znoise

)
p(Y)

]
+ Eznoise

[
KL

(
p
(
Y | znoise) ∥pθ (Y | znoise))]

(14)

According to the non-negativity of the KL divergence, we have:

I
(
Y; znoise) ≥ EY,znoise

[
log

pθ
(
Y | znoise

)
p(Y)

]
= EY,znoise

[
log pθ

(
Y | znoise)]+H(Y)

We can ignore H(Y) since it can be treated as a constant. We model pθ
(
Y | znoise

)
as a predictor pa-

rameterized by θ, which generates the model prediction Y based on the input znoise. Thus, minimiz-
ing the upper bound of −I

(
znoise,Y

)
entails minimizing the model prediction loss Lpred

(
znoise,Y

)
.

We opt to employ the Mean Squared Error (MSE) loss to quantify the difference between the pre-
diction and the ground truth.
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A.4.2 PROOF OF EQ. 9

We derive the upper bound of I
(
znoise, z

)
by introducing the variation approximation q

(
znoise

)
of

distribution p
(
znoise

)
:

I
(
znoise, z

)
= Ez,znoise

[
log

pϕ
(
znoise | z

)
p(z)

]

= Ez,znoise

[
log

pϕ
(
znoise | z

)
q(znoise)

]
− Eznoise,z

[
KL

(
p
(
znoise)

)
∥q

(
znoise))]

(15)

According to the non-negativity of KL divergence, we have:

I
(
znoise, z

)
≤ Ez

[
KL

(
pϕ

(
(znoise | z

)
∥q

(
znoise))] (16)

we assume that q
(
znoise

)
is obtained by aggregating the patch representations in a fully perturbed

sequences. The noise ϵ ∼ N
(
µz, σ

2
z

)
is sampled from a Gaussian distribution where µz and σ2

z are
mean and variance of z. Choosing sum pooling as the aggregatiion function, since the summation
of Gaussian distributions is a Gaussian, we have the following equation:

q
(
znoise) = N

(
Nµz, Nσ2

z

)
(17)

Then for pϕ
(
znoise | z

)
, we have the following equation:

pϕ
(
(znoise | z

)
= N

Nµz +

N∑
j=1

λjzj −
N∑
j=1

λjµz,

N∑
j=1

(1− λj)
2
σ2
z

 (18)

Finally, we have following inequality by plugging Equation 17 and Equation 18 into Equation Equa-
tion 16:

I
(
znoise, z

)
≤ Ez

[
−1

2
logA+

1

2N
A+

1

2N
B2

]
+ C

where A =
∑N

j=1 (1− λj)
2
, B =

∑N
j=1 λj(zj−µz)

σH1
and C is a constant term which is ignored during

optimization.

A.5 EXPERIMENTS SETTINGS

PIH is built upon the PatchTST framework and thus incorporates all hyperparameters from
PatchTST. To ensure a fair comparison, we adhered strictly to the settings of PatchTST for these
shared hyperparameters, with the exception of the learning rate. We conducted a hyperparameter
search only for those introduced by the HTM and IBF modules, as this was necessary. The only ex-
ception is the learning rate. Given the introduction of the Mamba and IBF modules, the default learn-
ing rate of lr = 0.0001 in PatchTST is suboptimal. Consequently, we set the search space for the
PIH learning rate to lr = {0.001, 0.0005, 0.0001}. To ensure a fair comparison, we also performed
a hyperparameter search for the learning rate in PatchTST, using lr = {0.001, 0.0005, 0.0001},
and selected the optimal results. The resulting mean Absolute Error (MAE) values were 0.310 and
0.335, which are almost unchanged compared to the default learning rate (lr = 0.0001), yielding
0.310 and 0.336. Thus, this does not affect our result analysis.

Our model incorporates several crucial hyperparameters, including K, which determines the number
of partitions; β, which governs the balance between prediction and compression in the information
bottleneck (IB) objective; and the temperature factor τ , which influences subsequence sampling.
We set K ∈ {2, 4}, β ∈ {0.0001, 0.001, 0.1, 1}, and τ ∈ {0.1, 0.5, 1, 2}. We selected the optimal
hyperparameters based on the results from the validation set.

Additionally, we analyzed the effects of these hyperparameters. The results indicate that the choice
of K does not significantly impact performance. In contrast, both τ and β exhibit considerable
influence on performance, likely due to variations in the redundancy levels across different datasets.
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A.6 MAMBA VS TRANSFORMER

We analyze our model from both performance and computational overhead perspectives and find
that the hybrid architecture has distinct advantages over using only Mamba or Transformer.

From a performance perspective , the ablation experiments presented in Fig. 6 indicate that re-
moving the Transformer results in slightly worse performance, highlighting the significant advantage
of the combined Transformer and Mamba architecture. This finding is further supported by recent
works such as Mamba-2-Hybrid (Waleffe et al., 2024), Dimba (Fei et al., 2024), and Jamba (Lieber
et al., 2024).

Considering computational overhead , our framework employs the Transformer solely to pro-
cess the partitioned short subsequences, which generally mitigates concerns about the costs associ-
ated with the Transformer. To validate this, we compared the computation time and GPU memory
usage between using a single layer of Mamba and a single layer of Transformer under various look-
back window settings (with nearly identical parameter counts). As shown in Fig. 4, when L ≤ 336,
the computational overhead of the Transformer is even lower than that of Mamba; however, at
L = 1024, the computational cost of the Transformer is nearly twice that of Mamba. In our ex-
periments, K is typically set to 4, resulting in a subsequence length of L/K = 1024/4 < 336.
Consequently, the addition of the Transformer module incurs less overhead compared to using only
Mamba.

In summary, we conclude that retaining the Transformer module is essential for enhancing perfor-
mance while managing computational costs effectively.

Table 4: Comparison of GPU memory usage and training time per epoch for a single-layer Trans-
former and Mamba on the Weather dataset as the lookback window L varies.

96 192 336 512 1024
Mamba time (s) 18.76 21.63 28.25 36.52 58.47

memory (G) 2.02 3.30 4.90 6.78 9.53
Transformer time (s) 7.33 17.94 27.84 44.70 96.57

memory (G) 0.75 1.64 3.21 5.56 15.05
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