
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OVERCOMING LOOKBACK WINDOW LIMITATIONS:
EXPLORING LONGER WINDOWS IN LONG-TERM TIME
SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-term time series forecasting (LTSF) aims to predict future trends based on
historical data. While longer lookback windows theoretically provide more com-
prehensive insights, current Transformer-based models face the Lookback Win-
dow Limitation (LWL). On one hand, longer windows introduce redundant in-
formation, which can hinder model learning. On the other hand, Transformers
tend to overfit temporal noise rather than extract meaningful temporal information
when dealing with longer sequences, compounded by their quadratic complexity.
In this paper, we aim to overcome LWL, enabling models to leverage more histor-
ical information for improved performance. Specifically, to mitigate information
redundancy, we introduce the Information Bottleneck Filter (IBF), which applies
information bottleneck theory to extract essential subsequences from the input.
Additionally, to address the limitations of the Transformer architecture in han-
dling long sequences, we propose the Hybrid-Transformer-Mamba (HTM), which
combines the linear complexity and long-range modeling capabilities of Mamba
with the Transformer’s strength in modeling short sequences. We integrate these
two model-agnostic modules into various existing methods and conduct experi-
ments on seven datasets. The results demonstrate that incorporating these modules
effectively overcomes the lookback window limitations. Notably, by combining
them with the Patch strategy, we design the PIH (Patch-IBF-HTM), successfully
extending the window length to 1024—a significantly larger window than previ-
ously achieved—and achieving state-of-the-art results, highlighting the potential
of exploring even longer windows.

1 INTRODUCTION

Long-term time series forecasting (LTSF) (Lim & Zohren, 2020) holds significant importance
across various domains such as traffic management, energy optimization, and financial analysis.
Transformer-base methods (Vaswani et al., 2017), known for their attention mechanisms that facili-
tate the automatic learning of sequential dependencies, have emerged as promising tools for LTSF.
Notable models like Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and PatchTST (Nie
et al., 2023) have demonstrated successful applications of Transformers in this domain. To enhance
the forecasting capability of the model, extending the lookback window is a natural choice. A longer
window enables the model to capture long-term trends more accurately, improving its ability to pre-
dict seasonal variations, cyclical patterns, and overall trends. For example, as shown in Fig. 1 (a),
when using a longer window L2, the model successfully captures the cyclical trend in the high-
lighted elliptical region, whereas using a shorter window L1 results in failure. In theory, as the
window length L increases, the model’s performance should gradually improve. However, current
Transformer-based models encounter a Lookback Window Limitation (LWL) (Zeng et al., 2022).
This limitation implies that after reaching the optimal performance at a certain window length L,
further increasing the window does not yield better results. A natural question then arises: How can
we break through LWL and enable the model to perform better with longer windows?

We analyse this issue from both an information-theoretic perspective and a model architecture per-
spective. From the information perspective, time series naturally possess redundancy, and longer
windows tend to have higher redundancy (Prichard & Theiler, 1994a;b). As shown in Fig. 1 (b), after

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 1: (a): When predicting P using a smaller lookback window L1, the information regarding
the elliptical part is not captured, resulting in inaccurate predictions. In contrast, longer window L2

can capture the periodicity of the elliptical part. (b): The redundancy in temporal information is
evident from the fact that both the original sequence (green) and the downsampled sequence (red)
maintain almost identical temporal characteristics.

downsampling the original sequence, the subsequences can still maintain almost identical temporal
characteristics. Longer windows exacerbate this redundancy, as illustrated in Fig. 1 (a). Although
L2 provides more historical information, the several subsequences formed by elliptical segmenta-
tion are highly repetitive, resulting in L2 having significantly higher redundancy than L1. Therefore,
although larger windows provide more information, the high level of redundancy can interfere with
the model’s learning. From the model architecture perspective, despite the Transformer’s pow-
erful sequence modeling capabilities, recent research (Zeng et al., 2022) has indicated that it tends
to overfit temporal noises rather than extract temporal information when presented with longer se-
quences. Additionally, the quadratic complexity of the Transformer also hinders the exploration of
longer windows.

The Patch strategy is one approach to overcome LWL by treating consecutive time steps as a single
patch (Nie et al., 2023; Zhang & Yan, 2023). This reduces sequence redundancy and significantly
decreases the effective sequence length for the Transformer. However, the Patch method is heuristic
and lacks adaptability. It can only reduce redundancy at the local level, failing to address redundancy
at the global level. Moreover, it does not mitigate the quadratic complexity inherent in Transformers.
Moreover, it does not mitigate the quadratic complexity inherent in Transformers. As the number of
patches increases, the computational demands increase dramatically.

In this paper, we propose two model-agnostic modules to address the issues of information redun-
dancy and architectural limitations, respectively. To alleviate information redundany, we intro-
duce the Information Bottleneck Filter (IBF) module based on information bottleneck (IB) the-
ory. The IBF module aims to identify informative subsequences while minimizing redundancy and
noise (Alemi et al., 2016), enabling the model to prioritize significant subsequences within the se-
quence. Directly optimizing the IB objective for sequences proves challenging owing to their dis-
crete nature (Yu et al., 2021b;a), often resulting in training instability and degraded outcomes. Here,
we propose the adoption of a probabilistic framework for sequence selection, alongside the intro-
duction of a noise injection strategy. Initially, noise is injected into sequence elements with a certain
probability, thereby disrupting the flow of information from the input sequence to the perturbed
sequence. Subsequently, we incentivize the perturbed sequence to retain its informative proper-
ties in relation to the labels. The fundamental concept underlying this approach is that important
subsequences should have a low probability of noise injection, whereas injecting larger noise into
redundant sequences does not significantly impact predictions. By tailoring a noise prior for each
input, the IB objective can yield a manageable variational upper bound. To address the difficulties
that Transformers face in handling long sequences, we introduce Mamba (Gu & Dao, 2023), a re-
cently proposed State Space Model (SSM) characterized by linear complexity. Mamba has garnered
attention for its efficacy and efficiency in modeling extensive dependencies within sequential data
(Ma et al., 2024; Liu et al., 2024b; Wang et al., 2024), rendering it particularly suitable for temporal
data analysis. However, this does not imply a complete replacement of Transformers with Mamba.
On one hand, while Mamba theoretically demonstrates linear complexity, Transformers incur lower
computational overheads for shorter sequences owing to efficient hardware optimizations (see Ap-
pendix A.6). On the other hand, in short sequence modeling, we observe discernible performance
differences between Transformers and Mamba across various datasets, potentially stemming from
their distinct capabilities in encoding diverse sequence patterns. To harness the strengths of both ar-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

chitectures simultaneously, we propose Hybrid-Transformer-Mamba (HTM). Specifically, rooted in
the unique characteristics of time series data where temporal relationships persist even after down-
sampling, we partition lengthy sequences into shorter subsequences. Then, we employ Mamba to
capture long-term information from the input long sequence, while utilizing Transformer to capture
short-term information from the short subsequences.

We integrated the two aforementioned model-agnostic modules into multiple Transformer-based
models and conducted detailed experiments on seven datasets. The results demonstrate that these
modules can effectively assist Transformer-based models in overcoming the LWL, enabling better
performance with larger windows while reducing computational costs by 2 to 3 times. Notably,
by incorporating these modules into the PatchTST model, we developed the PIH model (Patch-
IBF-HTM), where the window length was extended to 1024—a significantly larger setting than in
previous studies. The PIH model achieved state-of-the-art results, proving the effectiveness of using
longer lookback windows. Our work can inspire future research to explore even longer window
sizes. (Recent time series large models (Liu et al., 2024a; Jin et al., 2024) have adopted window
sizes greater than L = 1024, which we will discuss in Appendix A.1 in relation to our approach.)

In summary, our primary contributions are as follows: First, while previous work has identified
the existence of the LWL in Transformer-based methods, we focus on overcoming this limitation.
Secondly, we introduce IBF and HTM, two model-agnostic modules designed from the perspectives
of the information bottleneck and model architecture, respectively, to address the LWL. Thirdly,
by integrating these modules into multiple existing models, we observe substantial performance
improvements across seven datasets. Notably, the PIH model, which combines these modules with
the Patch strategy, achieved state-of-the-art results, demonstrating the effectiveness and versatility
of our proposed modules.

2 RELATED WORK

2.1 TRANSFORMER-BASED MODELS

Due to the attention mechanism’s capability to capture long-range dependencies, Transformer-based
models have found widespread application in language and vision tasks. Early attempts (Song et al.,
2018; Ma et al., 2019; Li et al., 2019) at directly applying vanilla Transformers to time series data
failed in long sequence forecasting tasks, as the self-attention operation scales quadratically with the
input sequence length. Existing approaches primarily address this challenge through two avenues.
Patch-based methods, exemplified by PatchTST (Nie et al., 2023) and CrossFormer (Zhang & Yan,
2023), conceptualize consecutive time steps as patches, reducing the number of input tokens and
augmenting local semantics to mitigate redundancy. However, patch-based methods impose con-
straints on the input data format, and computational expenses persist even at the patch level when
the window is large. Another approach focuses on sparse attention mechanisms. Models such as
Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), Pyraformer (Liu et al., 2022b), and
FEDformer (Zhou et al., 2022) adapt the self-attention mechanism to achieve complexities of O(L)
or O(L log(L)). These models rely on specific designs and often sacrifice representational capac-
ity, thereby compromising performance. Our work is independent of these approaches and can be
effectively integrated into them.

2.2 MAMBA FOR TIME SERIES

Recently, several approaches have emerged to incorporate Mamba into time series modeling, each
introducing unique innovations to enhance the capture of temporal dynamics. Bi-Mamba+ (Liang
et al., 2024) introduces a novel Mamba+ block by incorporating a forget gate within Mamba. This
modification enables the selective combination of new features with historical ones in a comple-
mentary manner, boosting the model’s ability to balance past and present information. To further
enhance feature interactions among time series elements, Bi-Mamba+ applies this approach in both
forward and backward directions. S-Mamba (Wang et al., 2024) adopts a different approach by
autonomously tokenizing time points of each variate using a linear layer. The method employs a
bidirectional Mamba layer to extract inter-variate correlations and a Feed-Forward Network to learn
temporal dependencies. Ultimately, S-Mamba generates forecasting results through a linear map-
ping layer, highlighting its structured yet flexible approach to capturing temporal patterns. TimeMa-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Patching	+	E
m
bedding

Split

Flatten	+	L
inear	H

ead

N
oise	Injection

T
ransform

er

M
am
ba

Figure 2: Overall of PIH architecture

chine (Ahamed & Cheng, 2024) takes a broader view of time series data by leveraging multi-scale
contextual cues. Its architecture integrates a quadruple-Mamba design, allowing the model to man-
age both channel-mixing and channel-independence scenarios. By unifying global and local con-
texts at varying scales, TimeMachine effectively selects key information for prediction, thus offering
robust handling of complex temporal structures. MambaTS (Cai et al., 2024) challenges the neces-
sity of causal convolution within Mamba for long-term series forecasting (LTSF). It proposes the
Temporal Mamba Block (TMB) as an alternative. To further prevent model overfitting, MambaTS
incorporates a dropout mechanism that selectively applies to TMB’s parameters, ensuring a more
stable and generalizable model performance.

2.3 INFORMATION BOTTLENECK (IB)

The essence of the IB principle lies in distilling a compact yet predictive code from the input sig-
nal (Tishby et al., 2000). Pioneering work by (Alemi et al., 2016) introduced the concept of vari-
ational information bottleneck (VIB), thereby enriching deep learning methodologies. Presently,
IB and VIB find extensive applications in deep learning, predominantly in representation learning
and feature selection domains. In representation learning, the focus is on training deterministic or
stochastic encoders to derive condensed yet semantically rich representations of input data. These
representations serve as valuable inputs for a plethora of downstream tasks spanning computer vi-
sion (Luo et al., 2019; Peng et al., 2019), reinforcement learning (Goyal et al., 2019; Igl et al., 2019),
natural language processing (Wang et al., 2020), and node representation learning (Wu et al., 2020).
Meanwhile, in the realm of feature selection, IB is used to select a subset of input features such as
pixels in images or dimensions in vectors, which are maximally predictive to the label of input data.
Strategies such as injecting noise into intermediate representations of pre-trained networks and sub-
sequently selecting regions with optimal information per dimension have been explored (Achille &
Soatto, 2018; Schulz & et al., 2020). Additionally, techniques like learning drop rates for individual
dimensions of vector-structured features have been proposed (Kim et al., 2021).

3 METHOD

Given a collection of multivariate time series samples with lookback window L : (x1, . . . ,xL)
where each xt at time step t is a vector of dimension C, we would like to forecast T future values
(xL+1, . . . ,xL+T). We integrate HTM and IBF into the PatchTST framework, resulting in PIH, as
illustrated in Fig. 2. It is worth noting that our method is model-agnostic. In section 4, we also
discuss its integration into other Transformer-based models.

3.1 PATCHING

Given our utilization of a channel-independent strategy, we opt for simplicity by converting mul-
tivariate time series into univariate ones. The input univariate time series x is initially segmented
into patches, which may be either overlapping or non-overlapping. Employing patching strategies

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

enhances locality and captures comprehensive semantic information beyond the point level by ag-
gregating time steps into subseries-level patches. Furthermore, to ensure uniform partitioning of the
patch sequence into K equally-sized blocks in subsequent modules (refer to section 3.3), we employ
Padding(·) to extend the input sequence. Denoting the patch length as P and the stride (the non-
overlapping region between two consecutive patches) as S, the Patch(·) process yields a sequence
of patches h ∈ RN×P , where N denotes the number of patches, N = ⌈ (L−P)

SK ⌉ ∗K. Subsequently,
we employ an embedding layer to map the dimension of each patch from h ∈ RN×P to e ∈ RN×d.

e = Embedding (Patch (Padding (x))) (1)

3.2 INFORMATION BOTTLENECK FILTER (IBF) MODULE FOR REDUNDANCY FILTERING

After obtaining the patch embedding sequence e = {e1, e2, . . . , eN}, our approach involves the
application of Mamba, followed by a subsequent Dropout layer to capture long-term dependency:

z = Dropout(Mamba(e)) (2)

In scenarios where the patch sequence length N is considerable, there exists a possibility of signif-
icant redundancy. To address this issue, we leverage the information bottleneck theory to filter out
redundant information of z.

Information Bottleneck (IB). In machine learning, determining which aspects of input data to re-
tain and which to discard is crucial. The Information Bottleneck (IB) principle (Alemi et al., 2016)
offers a systematic approach to this by compressing the source random variable to preserve infor-
mation relevant for predicting the target random variable, while discarding irrelevant information.
Given random variables X and Y , IB aims to compress X into a bottleneck random variable B,
while retaining information pertinent to predicting Y :

min
B

−I(Y ;B) + βI(X;B) (3)

Here, β serves as a Lagrangian multiplier to balance the two mutual information terms.

Rationale for filtering information from z instead of directly from e: Mamba can be concep-
tualized as a variant of recurrent neural networks (Hochreiter & Schmidhuber, 1997; Schuster &
Paliwal, 1997). Therefore, the representation zt of the t-th patch in Mamba accumulates informa-
tion not only from the current patch et, but also from historical data [e1, . . . , et−1]. In contrast, et
solely contains information from the current patch. Considering the temporal nature of time series
data, the importance of the t-th patch is influenced not only by its own state but also by preceding
patches. Therefore, we apply IBF after Mamba layers.

The IBF module seeks to retrieve the most relevant subsequence xsub for a target prediction Y from
the input sequence x. We adopt the sufficient encoder assumption (Tian et al., 2020), implying
that the information of the input subsequence xsub is preserved in the encoding process, resulting in
I(xsub,Y) ≈ I(zsub,Y) and I(xsub,x) ≈ I(zsub, z), where zsub is a subsequence of z. The Eq. 3
are transformed into:

min
zsub

−I(zsub,Y) + βI(zsub, z) (4)

The first term encourages zsub to be informative to the label Y and the second term minimizes
the mutual information of z and zsub, so that zsub only receives limited information from z. The
discrete nature of sequences renders direct optimization of IB objective impractical, as there are 2N

potential subsequences zsub for a patch sequence of length N . To address this challenge, we relax
patch weights from binary to continuous variables within the range (0, 1). Considering zi as the
representation of the i-th patch, encapsulating information up to and including the i-th patch, we
utilize MLP to assess the importance ci of patch zi:

ci = sigmoid (MLP (zi)) (5)

Consequently, the selection of patch zi can be obtained by sampling from λi ∼ Bern(ci), where
Bern(ci) represents a Bernoulli distribution parameterized by ci. To ensure the differentiability
of the sampling process, we utilize the gumbel sigmoid (Maddison et al., 2017; Jang et al., 2017)
function for the discrete random variable λi, defined as:

λi = Sigmoid
(
1

τ
log

[
ci

1− ci

]
+ log

[
u

1− u

])
(6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where u ∼ Uniform(0, 1), and τ is the temperature hyperparameter. Subsequently, subsequence
zsub can be obtained by zsub = λz. Although we can employ shannon mutual information (Duncan,
1970) to quantify the compressed and informative nature of the distribution of subsequences zsub,
the optimization process is inefficient and unstable due to mutual information estimation (Yu et al.,
2021b). To address this challenge, we employ an optimization strategy known as noise injection (Yu
et al., 2021a), which consists of two stages: sequence perturbation and sequence selection. The
core concept is to allow the model to introduce noise into less informative subsequences while
minimizing noise injection into more informative ones. Initially, noise injection disrupts the flow of
information from the input sequence z to the perturbed sequence znoise. Subsequently, we encourage
the perturbed sequence znoise to maintain its informative properties relative to the label Y. Finally,
zsub is derived by removing the noise from znoise. Eq. 4 can be reformulated as:

min
znoise

−I(znoise, Y) + βI(znoise, z) (7)

where znoise = λz + (1 − λ)ϵ, and ϵ follows a random Gaussian distribution. To preserve the
semantic of znoise, we set ϵ ∼ N (µz, σ

2
z), where µz and σ2

z denote the mean and variance of z. We
first examine the first term −I

(
znoise,Y

)
in Eq. 7 which encourages znoise is informative of label

Y:
−I

(
znoise,Y

)
≤ EY,znoise − log pθ

(
Y | znoise) := Lpred

(
znoise,Y

)
(8)

Here, pθ
(
Y | znoise

)
represents the variational approximation to the true posterior distribution

p
(
Y | znoise

)
(A detailed proof can be found in Appendix A.4). We model pθ

(
Y | znoise

)
as

a predictor parametrized by θ, which outputs the model prediction Y based on the input znoise.
Thus, we can minimize the upper bound of −I

(
znoise,Y

)
by minimizing the model prediction loss

Lpred

(
znoise,Y

)
. We choose to utilize the Mean Squared Error (MSE) loss as Lpred

(
znoise,Y

)
.

For the second term I(znoise, z) in Eq. 7, we can derive its variational upper bound:

−I
(
znoise, z

)
≤ Ez

(
−1

2
logA+

1

2N
A+

1

2N
B2

)
:= Lcomp

(
znoise, z

)
(9)

where A =
∑N

j=1 (1− λj)
2 and B =

∑N
j=1 λj(zj−µz)

σz
. A detail proof is given in Appendix A.4.

Finally, we can efficiently estimate Eq. 8 and Eq. 9 with the batched data in the training set. The
overall loss is:

L = Lpred

(
znoise,Y

)
+ βLcomp

(
znoise, z

)
(10)

3.3 HYBRID-TRANSFORMER-MAMBA(HTM)

Modeling the input long sequence with Mamba and then using Transformer to model the partitioned
short sequences is a promising paradigm (Mehta et al., 2023; Pilault et al., 2023; Lieber et al.,
2024), as it can leverage the strengths of both architectures simultaneously. We have designed two
split methods capable of retaining semantic information: interval split and block split, denoted as:

bi = {znoise
j ∈ znoise : i ≡ j (mod K)} (11)

bi = znoise
(i−1)∗N/K:i∗N/K (12)

where bi represents the i-th sequence block, and K is the number of blocks. The premise for splitting
sequences into subsequences is that the latter can still retain the semantic meaning of the original
long sequences. Fortunately, time series data often adhere to this principle. The interval split is
inspired by SCINet (Liu et al., 2022a), which highlights a unique property of time series: temporal
relations (e.g., trend and seasonal components) are largely preserved after downsampling into two
subsequences. SCINet downsamples the original sequence into two subsequences by separating
the even and odd elements, our interval split extends this approach to partitioning patch sequence
into K blocks, distributing contiguous K patches into K distinct blocks. This partitioning method
preserves the global characteristics of the sequence. Additionally, we propose the block split, where
a continuous segment of patch subsequence forms a block. This partitioning method is based on the
periodicity of time series, where one period (or multiples of a period) is considered as a block, thus
preserving the local information of the sequence.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The patch operation and partitioning reduce the length of the input sequence for Transformer from
L to L/PK, significantly reducing the computational overhead. Combined with Mamba processing
the entire sequence, the overall time complexity of the Hybrid Transformer Model (HTM) becomes
O(L/P) + O((L/PK)2). Although the latter term still exhibits quadratic complexity, appropriate
choices of P and K can maintain L/P within an acceptable constant range.

4 EXPERIMENT

Our experiments are divided into three parts. In the first part, we set the lookback window length
to L = 1024, which, to our knowledge, is longer than any previously used method. The PIH model
achieved state-of-the-art results, encouraging future research to explore even longer windows. Addi-
tionally, the IBF module enhances the model’s interpretability, while the HTM module significantly
reduces computational costs. In the second part, we investigate the integration of the IBF and HTM
modules into other Transformer-based models, such as Transformer, Informer, and Autoformer. The
results demonstrate that, after incorporating these modules, the models effectively overcome LWL
and achieve better performance with longer windows, highlighting the general applicability of these
modules. Future research could adopt these model-agnostic modules to improve performance with
extended windows. Finally, in the third part, we conducted ablation experiments on the model com-
ponents.

4.1 COMPARISON OF PIH WITH OTHER MODELS

Experimental Settings and Baselines. We evaluate PIH on seven popular datasets (See Ap-
pendix A.2), including Weather, Traffic, Electricity, and four ETT datasets (Etth1, Etth2, Ettm1,
Ettm2). PIH integrates the IBF and HTM modules into the PatchTST model, making PatchTST the
primary baseline. To assess how effectively our model utilizes longer lookback windows, we set
L = 1024 for both PIH and PatchTST, which is significantly longer than in previous studies. The
other experimental settings can be found in Appendix A.5.

We additionally selected Mamba-based, Transformer-based, and Linear-based models as baselines.
S-Mamba (Wang et al., 2024) utilizes a bidirectional Mamba layer to extract inter-variate correla-
tions, while a Feed-Forward Network is employed to learn temporal dependencies. For Transformer-
based models, in addition to PatchTST, we selected three other models: FEDformer (Zhou et al.,
2022), Autoformer (Wu et al., 2021), and Informer (Zhou et al., 2021). Since these baselines were
originally designed with relatively shorter windows (e.g., 96), we reran them with seven different
lookback windows L = {24, 48, 96, 192, 336, 720, 1024} and selected the best results to establish
robust baselines. Furthermore, we include two Linear-based models, DLinear and NLinear (Zeng
et al., 2022). Given that these two models were proposed to address the limitations of Transformer-
based models in handling long lookback windows, we also set L = 1024 for them. All models
follow the same experimental setup, with prediction lengths T ∈ {96, 192, 336, 720}. We use MSE
and MAE as evaluation metrics.

Results and Analysis. The results of multivariate long-term forecasting are summarized in Tab. 1.
For models like S-Mamba, Transformer, Autoformer, and Informer, PIH significantly outperforms
them. Even for models specifically designed to handle long sequences, such as PatchTST, DLin-
ear, and NLinear, PIH still surpasses them, demonstrating its effectiveness in processing longer
sequences. It is worth noting that we did not intentionally choose an unusual setting like L = 1024
to lower the performance of these three models. In Appendix A.3, we also provide their performance
under shorter windows (e.g., 336 and 512), where PIH continues to outperform them. Overall, PIH
with a much longer window setting achieves better results than other models with shorter windows.
Our experiments highlight the potential for further increasing the window size.

The Potential of Longer Windows. Tab. 1 shows that under long lookback window settings
with L = 1024, PIH significantly outperforms other methods. We further explore whether ex-
panding the window size is meaningful. As shown in Fig. 3 (a), we set the lookback window to
L = {96, 336, 512, 1024} and used the average MSE over 7 datasets with forecasting horizons
of T ∈ {96, 192, 336, 720} as the evaluation metric. The results indicate that the performance of
PatchTST improves steadily as the window increases from 96 to 512, but declines when extended

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Multivariate long-term forecasting results with different prediction lengths T ∈
{96, 192, 336, 720}. We provide the mean value for each column in the final row.

Models PIH PatchTST S-Mamba FEDformer Autoformer Informer DLinear NLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.394 0.371 0.405 0.386 0.406 0.376 0.415 0.435 0.446 0.941 0.769 0.511 0.520 0.379 0.404
192 0.396 0.418 0.408 0.429 0.448 0.444 0.423 0.446 0.456 0.457 1.007 0.786 0.414 0.428 0.414 0.426
336 0.409 0.432 0.431 0.449 0.494 0.468 0.444 0.462 0.486 0.487 1.038 0.784 0.453 0.458 0.442 0.445
720 0.435 0.466 0.482 0.483 0.493 0.488 0.469 0.492 0.515 0.517 1.144 0.857 0.511 0.520 0.470 0.477

E
T

T
h2

96 0.263 0.328 0.277 0.340 0.298 0.349 0.332 0.374 0.332 0.368 1.549 0.952 0.294 0.361 0.296 0.351
192 0.324 0.370 0.343 0.385 0.379 0.398 0.407 0.446 0.426 0.434 3.792 1.542 0.430 0.448 0.337 0.382
336 0.314 0.376 0.338 0.394 0.417 0.432 0.400 0.447 0.477 0.479 4.215 1.642 0.492 0.484 0.359 0.407
720 0.378 0.425 0.403 0.442 0.431 0.449 0.412 0.469 0.453 0.490 3.656 1.619 0.905 0.683 0.417 0.456

E
T

T
m

1 96 0.291 0.349 0.294 0.349 0.331 0.368 0.326 0.390 0.510 0.492 0.626 0.560 0.314 0.358 0.317 0.359
192 0.337 0.374 0.334 0.374 0.371 0.387 0.365 0.415 0.514 0.495 0.725 0.619 0.356 0.391 0.352 0.381
336 0.360 0.386 0.363 0.392 0.417 0.418 0.392 0.425 0.510 0.492 1.005 0.741 0.365 0.388 0.374 0.393
720 0.405 0.411 0.407 0.416 0.471 0.448 0.446 0.458 0.527 0.493 1.133 0.845 0.410 0.417 0.409 0.413

E
T

T
m

2 96 0.161 0.253 0.164 0.259 0.179 0.263 0.180 0.271 0.205 0.293 0.355 0.462 0.164 0.260 0.163 0.257
192 0.213 0.289 0.216 0.295 0.253 0.310 0.252 0.318 0.278 0.336 0.595 0.586 0.238 0.317 0.216 0.294
336 0.265 0.326 0.268 0.331 0.312 0.348 0.324 0.364 0.343 0.379 1.270 0.871 0.265 0.326 0.265 0.326
720 0.342 0.375 0.350 0.383 0.412 0.408 0.410 0.420 0.414 0.419 3.001 1.267 0.338 0.375 0.338 0.375

W
ea

th
er 96 0.147 0.198 0.147 0.197 0.166 0.210 0.238 0.314 0.249 0.329 0.354 0.405 0.167 0.225 0.170 0.226

192 0.191 0.239 0.190 0.241 0.215 0.253 0.275 0.329 0.325 0.370 0.419 0.434 0.211 0.267 0.215 0.265
336 0.241 0.280 0.243 0.283 0.276 0.298 0.339 0.377 0.351 0.391 0.583 0.543 0.255 0.304 0.259 0.298
720 0.309 0.329 0.306 0.328 0.353 0.349 0.389 0.409 0.415 0.426 0.916 0.705 0.313 0.351 0.321 0.342

Tr
af

fic

96 0.357 0.248 0.394 0.289 0.381 0.261 0.576 0.359 0.597 0.371 0.733 0.410 0.385 0.275 0.383 0.270
192 0.371 0.255 0.407 0.295 0.397 0.267 0.610 0.380 0.607 0.382 0.777 0.435 0.397 0.279 0.397 0.274
336 0.392 0.261 0.422 0.302 0.423 0.276 0.608 0.375 0.623 0.387 0.776 0.434 0.412 0.288 0.410 0.281
720 0.430 0.282 0.46 0.319 0.458 0.300 0.621 0.375 0.639 0.395 0.827 0.466 0.450 0.309 0.449 0.303

E
le

ct
ri

ci
ty 96 0.127 0.220 0.133 0.226 0.142 0.238 0.186 0.302 0.196 0.313 0.304 0.393 0.132 0.229 0.133 0.229

192 0.145 0.240 0.151 0.249 0.169 0.267 0.197 0.311 0.211 0.324 0.327 0.417 0.146 0.243 0.148 0.242
336 0.160 0.256 0.167 0.263 0.178 0.275 0.213 0.328 0.214 0.327 0.333 0.422 0.161 0.260 0.164 0.259
720 0.192 0.287 0.206 0.299 0.207 0.303 0.233 0.344 0.236 0.342 0.351 0.427 0.195 0.292 0.203 0.292

Mean 0.297 0.326 0.310 0.336 0.338 0.346 0.372 0.386 0.412 0.408 1.17 0.728 0.341 0.355 0.314 0.336

Figure 3: (a): The performance comparison between PIH and PatchTST at L ∈
{96, 336, 512, 1024}. (b): Comparison of GPU memory (GB) and training time (minutes/epoch)
for PatchTST, PatchTST, HTM, and PIH. (c): Visualization of a sample sequence in the Electricity,
highlighting the most important 20 patches identified by the IBF module with green shading.

to 1024. In contrast, PIH exhibits a consistent performance improvement as the window size in-
creases from 96 to 1024. This suggests that the HTM and IBF modules help PatchTST overcome
the L = 512 window limitation, achieving better performance with longer windows. Another note-
worthy observation is that, except for L = 96, PIH consistently outperforms PatchTST for the same
L. We hypothesize that with L = 96, sequence redundancy is low, and the Patch strategy alone
is sufficient to manage it effectively, rendering IBF and HTM unnecessary. Consequently, PIH lags
behind PatchTST at this window size. However, as the window length increases and sequence redun-
dancy grows, the IBF and HTM modules become more effective, allowing PIH to surpass PatchTST.

Computational Overhead. In addition to performance comparisons, we evaluated computation
time and memory usage, as shown in Fig. 3 (b). When using only the HTM module without the
IBF (referred to as HTM), it demonstrates significant improvements in both computational time and
memory usage compared to the pure Transformer architecture (referred to as PatchTST), surpassing
it by a notable margin (2 to 3 times). Additionally, HTM outperforms the pure Mamba architec-
ture (referred to as PatchTSM), which can be attributed to the Transformer’s lower computational
cost when handling shorter sequences compared to Mamba. Moreover, when both HTM and IBF
are integrated (i.e., PIH), the additional overhead introduced is negligible, as the IBF module only
consists of a simple MLP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: The performance changes across the Traffic, Electricity, and ETTm1 datasets upon inte-
grating HTM and IBF into Transformers. The triangular markers indicate the window limitations.

Interpretability of IBF. Another advantage of incorporating the IBF module is its ability to en-
hance interpretability by identifying crucial subsequences for the final prediction. As shown in Fig. 3
(c), we provide a visualization of a sample from the Electricity dataset. The top 20 most important
patches are marked in green, indicating that the model focuses more on sequences at peak positions.

4.2 INTEGRATION INTO OTHER MODELS.

Figure 4: Performance comparison af-
ter integrating HTM and IBF into Trans-
former, Informer, and Autoformer.

We integrate the HTM and IBF modules into three dif-
ferent Transformer-based architectures to validate their
generality (where “Origin” represents the original model
and “Ours” denotes the integration of the HTM and
IBF modules). We set various lookback windows L =
{24, 48, 96, 192, 336, 720, 1024} and a prediction length
of T = 720, selecting the best results. We utilize the
average MSE across seven datasets as the evaluation met-
ric, with the results illustrated in Fig. 4. Informer, Auto-
former, and Transformer all demonstrate significant per-
formance improvements after incorporating the HTM and
IBF modules. Additionally, we present the performance
curves (MSE) for the ETTm1, Electricity, and Traffic
datasets with a prediction length of T = 720 in Fig. 5.
For the original Transformer models, the lookback win-
dow limitations for these three datasets are 48, 48, and
120, respectively, while our models increase these limita-
tions to 192, 96, and 228, achieving better performance.

Furthermore, we observe that with smaller windows, issues such as information redundancy and
the inherent weaknesses of Transformers are less pronounced, leading to similar or even worse
performance from our models. However, as the window size increases, our models significantly
outperform the original Transformers.

4.3 ABLATION STUDY

Component Ablation. We introduce HTM module and IBF module. To assess their effective-
ness, we utilize PatchTST as a baseline, upon which we separately introduce IBF, HTM and both
simultaneously to obtain three variants: +IB, +HTM, and PIH. Additionally, we introduce a variant
of HTM, HMM, which solely employs Mamba to handle both the original long sequences and the
divided short sequences. We refrain from designing a variant that processes the original long se-
quences with Transformer and the divided short sequences with Mamba, as it contradicts our goal of
reducing computational complexity. All experiments maintain consistent settings, with a lookback
window set to 1024 and prediction lengths set to 96, 192, 336, and 720. The average MSE across
seven datasets is used as the evaluation metric. As illustrated in Fig. 6, the following observations are
made: (1) Both IBF and HTM modules enhance the model’s performance, and combining these two
modules yields superior results. (2) Compared to HMM, HTM exhibits slightly better performance,
which can be attributed to the different mechanisms between Transformer and Mamba, making each
more suited to handling different types of sequences. By combining the strengths of both, the hybrid
approach achieves superior results. As discussed earlier, the Transformer has lower computational

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Left: Ablation experiments of different modules at prediction T = {96, 192, 336, 720},
using average MSE across 7 datasets as the evaluation metric. Right: Comparison of interval split
and block split methods across different datasets, using average MSE across 7 datasets at prediction
lengths T = {96, 192, 336, 720} as the evaluation metric.

costs for shorter sequences, while Mamba is more efficient for longer sequences. Therefore, from
both performance and computational overhead perspectives, using a combination of both architec-
tures is a better choice than relying solely on one. (3) At longer prediction lengths, such as T = 720,
our model demonstrates greater improvements compared to T = 96, indicating that larger windows
L provide more significant benefits for longer-term predictions (longer T).

Interval Split vs. Block Split. We compared the performance of interval split and block split
across various datasets, as illustrated in Fig. 6. Overall, the effectiveness of both partitioning meth-
ods is roughly comparable, demonstrating their capability to preserve sequential characteristics.
However, slight variations in performance are observed across different datasets. We speculate that
this discrepancy arises from the distinct abilities of each partitioning method to retain specific se-
quential patterns. Intuitively, interval split emphasizes global variations, while block split focuses
on variations within periods. Determining the most suitable partitioning strategy remains a subject
for future investigation.

5 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we focus on addressing the LWL by analyzing it from both model archi-
tecture and information-theoretic perspectives, proposing the HTM and IBF modules. We combine
these with the patch strategy to design the PIH model, which can handle longer windows than previ-
ous works and achieves state-of-the-art results, demonstrating the potential of exploring longer win-
dows. Additionally, we integrate these two modules into other Transformer-based models, enabling
them to overcome window limitations and achieve improved performance with longer windows.

Limitations and Future Work. First, our experiments demonstrate that extending the window
length to L = 1024 still yields performance improvements, suggesting that further exploration of
longer windows is a promising direction. Secondly, we found that longer lookback windows are not
always beneficial for all datasets. Therefore, identifying which types of data are suitable for very
long windows is another important area for future research. Thirdly, the interval split and block
split methods proposed in this paper are heuristic. Designing an adaptive, end-to-end segmentation
method tailored to each training dataset may lead to better results. Lastly, while recent large time-
series models have adopted much longer windows, we claim that our approach is orthogonal to
theirs. It is worth exploring whether our method can be integrated into these large models to further
extend their window sizes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40
(12):2897–2905, 2018.

Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term
forecasting, 2024. URL https://arxiv.org/abs/2403.09898.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. CoRR, abs/1612.00410, 2016. URL http://arxiv.org/abs/1612.00410.

Xiuding Cai, Yaoyao Zhu, Xueyao Wang, and Yu Yao. Mambats: Improved selective state
space models for long-term time series forecasting, 2024. URL https://arxiv.org/abs/
2405.16440.

Tyrone E Duncan. On the calculation of mutual information. SIAM Journal on Applied Mathematics,
19(1):215–220, 1970.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, Youqiang Zhang, and Junshi Huang.
Dimba: Transformer-mamba diffusion models, 2024. URL https://arxiv.org/abs/
2406.01159.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. In The International Conference on Representation Learning, 2019.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 1997. doi: 10.1162/NECO.1997.9.8.1735. URL https://doi.org/10.1162/
neco.1997.9.8.1735.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In Advances in neural information processing systems, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models, 2024. URL https://arxiv.org/abs/2310.
01728.

Jaekyeom Kim, Minjung Kim, Dongyeon Woo, and Gunhee Kim. Drop-bottleneck: Learning dis-
crete compressed representation for noise-robust exploration. arXiv preprint arXiv:2103.12300,
2021.

Sheng Li, Xiaoyu Jin, Yue Xuan, Xiang Zhou, Weihua Chen, Yi-Xin Wang, and Xia Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. arXiv,
abs/1907.00235, 2019.

Aobo Liang, Xingguo Jiang, Yan Sun, Xiaohou Shi, and Ke Li. Bi-mamba+: Bidirectional mamba
for time series forecasting, 2024. URL https://arxiv.org/abs/2404.15772.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba

11

https://arxiv.org/abs/2403.09898
http://arxiv.org/abs/1612.00410
https://arxiv.org/abs/2405.16440
https://arxiv.org/abs/2405.16440
https://arxiv.org/abs/2406.01159
https://arxiv.org/abs/2406.01159
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2310.01728
https://arxiv.org/abs/2404.15772

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

language model. CoRR, abs/2403.19887, 2024. doi: 10.48550/ARXIV.2403.19887. URL
https://doi.org/10.48550/arXiv.2403.19887.

Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. CoRR,
abs/2004.13408, 2020. URL https://arxiv.org/abs/2004.13408.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu.
Scinet: Time series modeling and forecasting with sample convolution and interaction. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
266983d0949aed78a16fa4782237dea7-Abstract-Conference.html.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations, 2022b.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models, 2024a. URL https:
//arxiv.org/abs/2402.02368.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024b.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Significance-aware information bottle-
neck for domain adaptive semantic segmentation. In ICCV, pp. 6777–6786. IEEE, 2019.

Jiajun Ma, Zheng Shou, Alireza Zareian, Hamed Mansour, Anthony Vetro, and Shih-Fu Chang.
Cdsa: Cross-dimensional self-attention for multivariate, geo-tagged time series imputation. arXiv,
abs/1905.09904, 2019.

Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
image segmentation. CoRR, abs/2401.04722, 2024. doi: 10.48550/ARXIV.2401.04722. URL
https://doi.org/10.48550/arXiv.2401.04722.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=S1jE5L5gl.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language mod-
eling via gated state spaces. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=5MkYIYCbva.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=Jbdc0vTOcol.

XueBin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational dis-
criminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining infor-
mation flow. In The International Conference on Representation Learning, 2019.

Jonathan Pilault, Mahan Fathi, Orhan Firat, Chris Pal, Pierre-Luc Bacon, and Ross
Goroshin. Block-state transformers. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
16ccd203e9e3696a7ab0dcf568316379-Abstract-Conference.html.

12

https://doi.org/10.48550/arXiv.2403.19887
https://arxiv.org/abs/2004.13408
http://papers.nips.cc/paper_files/paper/2022/hash/266983d0949aed78a16fa4782237dea7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/266983d0949aed78a16fa4782237dea7-Abstract-Conference.html
https://arxiv.org/abs/2402.02368
https://arxiv.org/abs/2402.02368
https://doi.org/10.48550/arXiv.2401.04722
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/pdf?id=5MkYIYCbva
https://openreview.net/pdf?id=5MkYIYCbva
https://openreview.net/pdf?id=Jbdc0vTOcol
http://papers.nips.cc/paper_files/paper/2023/hash/16ccd203e9e3696a7ab0dcf568316379-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/16ccd203e9e3696a7ab0dcf568316379-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dean Prichard and James Theiler. Generalized redundancies for time series analysis. Physica
D: Nonlinear Phenomena, 84:476–493, 1994a. URL https://api.semanticscholar.
org/CorpusID:119356794.

Dean Prichard and James Theiler. Generalized redundancies for time series analysis. Physica
D: Nonlinear Phenomena, 84:476–493, 1994b. URL https://api.semanticscholar.
org/CorpusID:119356794.

Karl Schulz and et al. Restricting the flow: Information bottlenecks for attribution. In ICLR, 2020.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans. Signal
Process., 45(11):2673–2681, 1997. doi: 10.1109/78.650093. URL https://doi.org/10.
1109/78.650093.

Haichao Song, Deepak Rajan, Jayaraman J Thiagarajan, and Andreas Spanias. Attend and diagnose:
Clinical time series analysis using attention models. In AAAI, 2018.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
Isola. What makes for good views for contrastive learning? In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c2e5eaae9152079b9e95845750bb9ab-Abstract.html.

Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bottleneck method.
CoRR, physics/0004057, 2000. URL http://arxiv.org/abs/physics/0004057.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017. URL https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh,
Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of
mamba-based language models, 2024. URL https://arxiv.org/abs/2406.07887.

Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learning efficient
multi-agent communication: An information bottleneck approach. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and
Yifei Zhang. Is mamba effective for time series forecasting?, 2024. URL https://arxiv.
org/abs/2403.11144.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. In NeurIPS,
2020.

Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph informa-
tion bottleneck. CoRR, abs/2112.09899, 2021a. URL https://arxiv.org/abs/2112.
09899.

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph informa-
tion bottleneck for subgraph recognition. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b. URL
https://openreview.net/forum?id=bM4Iqfg8M2k.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

13

https://api.semanticscholar.org/CorpusID:119356794
https://api.semanticscholar.org/CorpusID:119356794
https://api.semanticscholar.org/CorpusID:119356794
https://api.semanticscholar.org/CorpusID:119356794
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://proceedings.neurips.cc/paper/2020/hash/4c2e5eaae9152079b9e95845750bb9ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c2e5eaae9152079b9e95845750bb9ab-Abstract.html
http://arxiv.org/abs/physics/0004057
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2403.11144
https://arxiv.org/abs/2403.11144
https://arxiv.org/abs/2112.09899
https://arxiv.org/abs/2112.09899
https://openreview.net/forum?id=bM4Iqfg8M2k

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, 2022.

A APPENDIX

A.1 RELATIONSHIP WITH LARGE TIME-SERIES MODELS

Although some recent large time-series models are capable of handling longer windows, they rely
on significantly more parameters and much larger training datasets compared to our experiments.
Additionally, when tested on the same datasets we used, these models still employ smaller window
sizes. Our work does not conflict with these advancements in large time-series models. This is
because the HTM and IBF modules we propose are model-agnostic and can be integrated into large
time-series models, a direction worth exploring in future research.

A.2 DATASET

We use 7 popular multivariate datasets provided in (Wu et al., 2021) for forecasting and representa-
tion learning. Weather dataset collects 21 meteorological indicators in Germany, such as humidity
and air temperature. Traffic dataset records the road occupancy rates from different sensors on
San Francisco freeways. Electricity is a dataset that describes 321 customers’ hourly electricity
consumption. ETT(Electricity Transformer Temperature) datasets are collected from two different
electric transformers labeled with 1 and 2, and each of them contains 2 different resolutions (15
minutes and 1 hour) denoted with m and h. Thus, in total we have 4 ETT datasets: ETTm1, ETTm2,
ETTh1, and ETTh2.

Table 2: Statistics of popular datasets for benchmark.

Datasets Weather Traffic Electricity ETTh1 ETTh2 ETTm1 ETTm2

Features 21 862 321 7 7 7 7
Timesteps 52696 17544 26304 17420 17420 69680 69680

A.3 PERFORMANCE OF PATCHTST, DLINEAR, AND NLINEAR UNDER DIFFERENT WINDOW
LENGTHS

Here, we conducted experiments with DLinear and NLinear, two linear-based models, under two
settings: L = 336 and L = 1024, with results shown in Table 3. For PatchTST, we do not present
the results here because the original paper provides detailed results for PatchTST at window lengths
of 336 and 512, while this paper includes results for a window length of 1024, making it unnecessary
to repeat the information.We can draw the following conclusions:

• Linear-based models indeed perform well against noise, with NLinear(L = 1024) generally
outperforming NLinear(L = 336). This is consistent with the results of PIH, indicating that
larger windows are beneficial.

• NLinear(L = 1024) generally outperforms NLinear(L = 336), whereas DLinear(L =
1024) consistently underperforms compared to DLinear(L = 336). Thus, directly increas-
ing the window size in linear-based methods is not always effective.

• PIH(L = 1024) outperforms NLinear(L = 1024), which can be attributed to the superior
representational capabilities of the Transformer and Mamba modules compared to linear

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

modules. Therefore, it is essential to continue exploring the potential of Transformer-based
models with longer windows rather than relying solely on linear-based models.

Table 3: Comparison between DLinear, NLinear, and PIH with lookback windows LL of 336 and
1024.

Weather Traffic Electricity Etth1 Etth2 Ettm1 Ettm2 Avg. Total Avg.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear(336) 96 0.176 0.237 0.410 0.282 0.140 0.237 0.375 0.399 0.289 0.353 0.299 0.343 0.167 0.260 0.265 0.302 0.332 0.351
192 0.220 0.282 0.423 0.287 0.153 0.249 0.405 0.416 0.383 0.418 0.335 0.365 0.224 0.303 0.306 0.331
336 0.265 0.319 0.436 0.296 0.169 0.267 0.439 0.443 0.448 0.465 0.369 0.386 0.281 0.342 0.344 0.360
720 0.323 0.362 0.466 0.315 0.203 0.301 0.472 0.490 0.605 0.551 0.425 0.421 0.397 0.421 0.413 0.409

DLinear(1024) 96 0.167 0.225 0.385 0.275 0.132 0.229 0.378 0.403 0.294 0.361 0.314 0.358 0.164 0.260 0.262 0.301 0.341 0.355
192 0.211 0.267 0.397 0.279 0.146 0.243 0.414 0.428 0.430 0.448 0.356 0.391 0.238 0.317 0.313 0.339
336 0.255 0.304 0.412 0.288 0.161 0.260 0.453 0.458 0.492 0.484 0.365 0.388 0.265 0.326 0.343 0.358
720 0.313 0.351 0.450 0.309 0.195 0.292 0.511 0.520 0.905 0.683 0.410 0.417 0.338 0.375 0.446 0.421

NLinear(336) 96 0.182 0.232 0.410 0.279 0.141 0.237 0.374 0.394 0.277 0.338 0.306 0.348 0.167 0.255 0.265 0.298 0.337 0.333
192 0.225 0.269 0.410 0.279 0.154 0.248 0.408 0.415 0.344 0.381 0.349 0.375 0.221 0.293 0.302 0.323
336 0.271 0.301 0.435 0.290 0.171 0.265 0.429 0.427 0.357 0.400 0.375 0.388 0.274 0.327 0.330 0.343
720 0.338 0.348 0.464 0.307 0.210 0.297 0.440 0.453 0.394 0.436 0.433 0.422 0.368 0.384 0.378 0.368

NLinear(1024) 96 0.170 0.226 0.383 0.270 0.133 0.229 0.379 0.404 0.296 0.351 0.317 0.359 0.163 0.257 0.263 0.299 0.314 0.336
192 0.215 0.265 0.397 0.274 0.148 0.242 0.414 0.426 0.337 0.382 0.352 0.381 0.216 0.294 0.297 0.323
336 0.259 0.298 0.410 0.281 0.164 0.259 0.442 0.445 0.359 0.407 0.374 0.393 0.265 0.326 0.325 0.344
720 0.321 0.342 0.449 0.303 0.203 0.292 0.470 0.477 0.417 0.456 0.409 0.413 0.338 0.375 0.372 0.379

PIH(1024) 96 0.147 0.198 0.357 0.248 0.127 0.220 0.360 0.394 0.263 0.328 0.291 0.349 0.161 0.253 0.244 0.284 0.297 0.326
192 0.191 0.239 0.371 0.255 0.145 0.240 0.396 0.418 0.324 0.370 0.337 0.374 0.213 0.289 0.282 0.312
336 0.241 0.280 0.392 0.261 0.160 0.256 0.409 0.432 0.314 0.376 0.360 0.386 0.265 0.326 0.306 0.331
720 0.309 0.329 0.430 0.282 0.192 0.287 0.435 0.466 0.378 0.425 0.405 0.411 0.342 0.375 0.356 0.368

A.4 PROOFS OF IB

A.4.1 PROOF OF EQ. 8

We first examine the first term −I
(
znoise,Y

)
in Eq. 4 which encourages znoise is informative of

label Y .
−I

(
znoise,Y

)
≤ EY,znoise − log qθ

(
Y | znoise)

:= Lpred

(
znoise, Y

) (13)

Here, pθ
(
Y | znoise

)
represents the variational approximation to the true posterior distribution

p
(
Y | znoise

)
(a detailed proof can be found in Appendix A.4). This equation illustrates that min-

imizing −I
(
znoise,Y

)
is achieved by minimizing the prediction loss between znoise and Y. We

choose to utilize the Mean Squared Error (MSE) loss to quantify the disparity between the predic-
tion and the ground truth.

Here we provide more details about how to yield Eq. 13. By the definition of mutual information
and introducing variational approximation pθ

(
Y | znoise

)
of intractable distribution p

(
Y | znoise

)
,

we have:

I
(
Y, znoise) = EY,znoise

[
log

p
(
Y | znoise

)
p(Y)

]

= EY,znoise

[
log

pθ
(
Y | znoise

)
p(Y)

]
+ Eznoise

[
KL

(
p
(
Y | znoise) ∥pθ (Y | znoise))]

(14)

According to the non-negativity of the KL divergence, we have:

I
(
Y; znoise) ≥ EY,znoise

[
log

pθ
(
Y | znoise

)
p(Y)

]
= EY,znoise

[
log pθ

(
Y | znoise)]+H(Y)

We can ignore H(Y) since it can be treated as a constant. We model pθ
(
Y | znoise

)
as a predictor pa-

rameterized by θ, which generates the model prediction Y based on the input znoise. Thus, minimiz-
ing the upper bound of −I

(
znoise,Y

)
entails minimizing the model prediction loss Lpred

(
znoise,Y

)
.

We opt to employ the Mean Squared Error (MSE) loss to quantify the difference between the pre-
diction and the ground truth.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4.2 PROOF OF EQ. 9

We derive the upper bound of I
(
znoise, z

)
by introducing the variation approximation q

(
znoise

)
of

distribution p
(
znoise

)
:

I
(
znoise, z

)
= Ez,znoise

[
log

pϕ
(
znoise | z

)
p(z)

]

= Ez,znoise

[
log

pϕ
(
znoise | z

)
q(znoise)

]
− Eznoise,z

[
KL

(
p
(
znoise)

)
∥q

(
znoise))]

(15)

According to the non-negativity of KL divergence, we have:

I
(
znoise, z

)
≤ Ez

[
KL

(
pϕ

(
(znoise | z

)
∥q

(
znoise))] (16)

we assume that q
(
znoise

)
is obtained by aggregating the patch representations in a fully perturbed

sequences. The noise ϵ ∼ N
(
µz, σ

2
z

)
is sampled from a Gaussian distribution where µz and σ2

z are
mean and variance of z. Choosing sum pooling as the aggregatiion function, since the summation
of Gaussian distributions is a Gaussian, we have the following equation:

q
(
znoise) = N

(
Nµz, Nσ2

z

)
(17)

Then for pϕ
(
znoise | z

)
, we have the following equation:

pϕ
(
(znoise | z

)
= N

Nµz +

N∑
j=1

λjzj −
N∑
j=1

λjµz,

N∑
j=1

(1− λj)
2
σ2
z

 (18)

Finally, we have following inequality by plugging Equation 17 and Equation 18 into Equation Equa-
tion 16:

I
(
znoise, z

)
≤ Ez

[
−1

2
logA+

1

2N
A+

1

2N
B2

]
+ C

where A =
∑N

j=1 (1− λj)
2
, B =

∑N
j=1 λj(zj−µz)

σH1
and C is a constant term which is ignored during

optimization.

A.5 EXPERIMENTS SETTINGS

PIH is built upon the PatchTST framework and thus incorporates all hyperparameters from
PatchTST. To ensure a fair comparison, we adhered strictly to the settings of PatchTST for these
shared hyperparameters, with the exception of the learning rate. We conducted a hyperparameter
search only for those introduced by the HTM and IBF modules, as this was necessary. The only ex-
ception is the learning rate. Given the introduction of the Mamba and IBF modules, the default learn-
ing rate of lr = 0.0001 in PatchTST is suboptimal. Consequently, we set the search space for the
PIH learning rate to lr = {0.001, 0.0005, 0.0001}. To ensure a fair comparison, we also performed
a hyperparameter search for the learning rate in PatchTST, using lr = {0.001, 0.0005, 0.0001},
and selected the optimal results. The resulting mean Absolute Error (MAE) values were 0.310 and
0.335, which are almost unchanged compared to the default learning rate (lr = 0.0001), yielding
0.310 and 0.336. Thus, this does not affect our result analysis.

Our model incorporates several crucial hyperparameters, including K, which determines the number
of partitions; β, which governs the balance between prediction and compression in the information
bottleneck (IB) objective; and the temperature factor τ , which influences subsequence sampling.
We set K ∈ {2, 4}, β ∈ {0.0001, 0.001, 0.1, 1}, and τ ∈ {0.1, 0.5, 1, 2}. We selected the optimal
hyperparameters based on the results from the validation set.

Additionally, we analyzed the effects of these hyperparameters. The results indicate that the choice
of K does not significantly impact performance. In contrast, both τ and β exhibit considerable
influence on performance, likely due to variations in the redundancy levels across different datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.6 MAMBA VS TRANSFORMER

We analyze our model from both performance and computational overhead perspectives and find
that the hybrid architecture has distinct advantages over using only Mamba or Transformer.

From a performance perspective , the ablation experiments presented in Fig. 6 indicate that re-
moving the Transformer results in slightly worse performance, highlighting the significant advantage
of the combined Transformer and Mamba architecture. This finding is further supported by recent
works such as Mamba-2-Hybrid (Waleffe et al., 2024), Dimba (Fei et al., 2024), and Jamba (Lieber
et al., 2024).

Considering computational overhead , our framework employs the Transformer solely to pro-
cess the partitioned short subsequences, which generally mitigates concerns about the costs associ-
ated with the Transformer. To validate this, we compared the computation time and GPU memory
usage between using a single layer of Mamba and a single layer of Transformer under various look-
back window settings (with nearly identical parameter counts). As shown in Fig. 4, when L ≤ 336,
the computational overhead of the Transformer is even lower than that of Mamba; however, at
L = 1024, the computational cost of the Transformer is nearly twice that of Mamba. In our ex-
periments, K is typically set to 4, resulting in a subsequence length of L/K = 1024/4 < 336.
Consequently, the addition of the Transformer module incurs less overhead compared to using only
Mamba.

In summary, we conclude that retaining the Transformer module is essential for enhancing perfor-
mance while managing computational costs effectively.

Table 4: Comparison of GPU memory usage and training time per epoch for a single-layer Trans-
former and Mamba on the Weather dataset as the lookback window L varies.

96 192 336 512 1024
Mamba time (s) 18.76 21.63 28.25 36.52 58.47

memory (G) 2.02 3.30 4.90 6.78 9.53
Transformer time (s) 7.33 17.94 27.84 44.70 96.57

memory (G) 0.75 1.64 3.21 5.56 15.05

17

	Introduction
	Related Work
	Transformer-based Models
	Mamba for time series
	Information Bottleneck (IB)

	Method
	Patching
	Information Bottleneck Filter (IBF) Module for Redundancy Filtering
	Hybrid-Transformer-Mamba(HTM)

	Experiment
	Comparison of PIH with Other Models
	Integration into Other Models.
	Ablation Study

	Conclusion and future work
	Appendix
	Relationship with Large Time-Series Models
	Dataset
	Performance of PatchTST, DLinear, and NLinear under Different Window Lengths
	Proofs of IB
	Proof of Eq. 8
	Proof of Eq. 9

	Experiments settings
	Mamba vs Transformer

