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Abstract

In this article, we utilize an explainable AI approach, the Explainable
Boosting Machine (EBM), to perform feature analysis on an extensive
Internet of Things (IoT) dataset collected from real-world devices. Af-
ter feature selection and data processing, our training dataset includes
2.88 million traffic data instances, categorized into six classes (DDoS,
DoS, Mirai, Recon, Spoofing, and Benign). The EBM trained on this
dataset achieved a impressive accuracy rate of 99.4% and an F1 score of
92.8%. Using the resultant model, we interpreted its predictions based
on feature importance. The identified feature importance aligned well
with established cybersecurity principles, indicating the model’s poten-
tial. However, our analysis revealed that the machine learning model’s
predictions were strongly tied to the specific characteristics of the train-
ing IoT dataset, thereby raising concerns about the model’s reliability
when applied to real-world attack detection. Future research could ex-
plore the use of more diverse and balanced datasets or the applicability of
the machine learning model in different IoT contexts, aiming to enhance
the model’s generalizability and practical relevance.
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the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Machine learning is progressively becoming a fundamental component of intru-
sion detection systems for the Internet of Things (IoT). Although numerous
studies have shown promising results using machine learning, a common limi-
tation is the lack of depth in explaining their methodologies, posing concerns
about these methods’ real-world applicability. In this article, we harness the
power of explainable Al specifically the Explainable Boosting Machine (EBM),
to demystify the predictions made by our machine learning model. The EBM
was selected for its robust performance, superior interpretability, and effective
visualization capabilities. EBM, which combines the simplicity of linear or deci-
sion tree models with the precision of complex models like gradient boosting or
random forests, functions as a "glass box" model, allowing both its predictions
and its decision-making processes to be interpretable by humans.

We utilized a comprehensive IoT dataset as our training data[7]. Upon
training the EBM on this dataset, we achieved an impressive accuracy rate
of 99.4% and an F1 score of 92.8%. The feature importance produced by the
EBM facilitated the interpretation of the model’s predictions.

The major contributions of our work are:

e The decision-making of the machine learning model, trained on the IoT
dataset, was interpreted using Explainable AI techniques (EBM).

e We cross-referenced the decisions made by our machine learning model
to verify their alignment with fundamental cybersecurity principles.

e After thorough validation, we underscored the limitations of the machine
learning model, particularly when trained on a specific dataset.

2 Related Work

The detection of malicious activity through internet traffic data remains a com-
pelling avenue in cybersecurity research, with numerous explorations spanning
several years. The evolving complexity of IoT systems has led to an increased
adoption of machine learning techniques in the creation of Intrusion Detection
Systems. The IoTIDs (2020) study assessed the efficacy of diverse traditional
machine learning models, such as Linear Regression (LR), K-Nearest Neigh-
bors (KNN), Decision Tree (DT), Random forest (RF), Support vector machine
(SVM), and Naive Bayes (NB), using IoT datasets[4]. In another work[1], the
researchers developed an advanced deep neural network that outperformed Re-
stricted Boltzmann machine (RBM), Sparse Autoencoder (SAE), and Stacked
Denoising Autoencoder (SDAE) frameworks on an IoT dataset.

Despite extensive research into acquiring comprehensive data from IoT de-
vices and the development of robust machine learning models, a thorough
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analysis of the trained models is frequently absent. For instance, the authors
of the Edge-IToTset (2021) ranked the importance of features for each class
without providing any explanatory commentary[3]. The researchers behind
WUSTL-IIOT (2021) determined feature importance based on their impact on
the model’s accuracy rate[12]. Yet, this traditional method’s interpretability
remains somewhat restricted. In another study[6], the authors concentrated
on using feature importance to eliminate redundant features rather than inter-
preting the model.

3 Methodology

3.1 Explainable Boosting Machine

To comprehend the underpinnings of EBM, we first inspect the standard math-
ematical form of Generalized Additive Models (GAM)[5]:

9(Ely]) = Bo+ Y f;()) (1)

EBM can be viewed as an extension of the GAM, where the prediction is
obtained by summing up individual feature functions, f;. Feature functions
encapsulate each feature’s contribution to the overall prediction. In contrast
to models like logistic regression, which presumes linear relationships, EBM
capture non-linear associations, offering superior performance with complex
datasets. Furthermore, by plotting the feature functions, f;, we can identify
and visualize the importance of each feature involved in the prediction[5].

In the mathematical formulation below[5], the algorithm for EBM is further
improved to detect the pairwise interaction between features (i, j):

9(EW]) =B+ fila) + > fijlzi,z)) (2)

3.2 Procedure and Evaluation

This study employs a comprehensive IoT dataset, obtained from real-world
devices within a complex network topology|7]. Following feature selection and
data processing, our training dataset comprises 2.88 million traffic data entries,
spanning six classes: DDoS, DoS, Mirai, Recon, Spoofing, and Benign traffic.
We used the utils class from Scikit-learn[8] to calculate the balanced class
weight for each class, incorporating these weights into the EBM’s parameters.

The processed dataset was then classified by the EBM. Table 1 presents
the performance metrics of the resulting EBM model. The model showcased
exemplary performance, achieving an impressive accuracy rate of 99.4% and
a commendable F1 score of 92.8%. The recall and precision rates generally
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Table 1: Results of multi-class classification using EBM

Metric Explainable Boosting Machine

Accuracy 0.9940481456770219

Recall 0.9367583492627487
Precision 0.9204079536958586
F1-score 0.9276943954810214

maintained equilibrium, attributable to our effective data balance methods.
These scores highlight superior predictive capabilities and overall efficiency. A
thorough analysis of feature importance based on the EBM’s outputs will be
presented in the subsequent sections.

4 Results and Discussion

EBM evaluates feature importance through a raw score. In a classification con-
text, the raw score serves as a measure of the evidence supporting a particular
class. A high raw score implies strong evidence in favor of that class, while
a lower score may indicate weaker support. To comprehend the nuances of
feature importance, we must delve into the plots associated with each feature,
taking advantage of EBM’s data visualization tools. In Figure 1, the vertical
axis denotes the raw score, while the horizontal axis represents the feature’s
value. The description of each curve’s color can be found below Figure 1. We
will assess features that significantly influence the model’s prediction.

4.1 Inter-Arrival Times (IATS)

A crucial feature in the dataset, IATSs, measures the time difference between
two packets. Our testing designates this as a significant feature, demonstrating
that its removal could reduce the machine learning model’s accuracy by 15%.
The first plot on the left in Figure 1 illustrates the feature importance of IATs.
Data predominantly cluster around three intervals: 0Os to 0.04s, 0.0829s to
0.0838s, and 0.1664s to 0.1669s. The first interval, from Os to 0.04s, can be
analyzed without the need to zoom in on the plot. The DoS attack class scores
the highest, with scores fluctuating between 2.5 and 4, followed by Benign,
with scores approximately 1.4. DDoS and Mirai are the least likely classes,
with scores ranging from -0.8 to -2.2. Feature importance in the 0s to 0.04s
interval is relatively insignificant for the remaining attacks. The second and
third plots on the left in Figure 1 offer a detailed view of the IATs feature
within the second and third intervals. In the 0.0829s to 0.0838s interval, we
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observe a rising trend in scores for Mirai attacks and consistently high scores
for DDoS. Due to the negative feature importance, the machine learning model
is less likely to predict DoS attacks within this interval. Lastly, the third plot
on the left in Figure 1 shows a declining trend for the scores of DDoS, DoS,
and Mirai attacks within the 0.1664s to 0.1669s interval.

These findings can be corroborated with fundamental cybersecurity princi-
ples. During DDoS or DoS attacks, attackers aim to overload a network with
internet traffic, typically involving sending a large volume of packets in a short
span of time. Hence, the IATs during an attack would be exceedingly low,
often nearing zero. Mirai attacks involve remote control and device utilization
in DDoS attacks, implying similar traffic characteristics to DDoS[2]. Given
that these attacks are characterized by shorter IATs, it is improbable for them
to reach a duration of 0.16s. This explains why the DoS class has the highest
score in the lowest interval (0s to 0.04s) and why there are strong positive
scores for DDoS and Mirai attacks from 0.0829s to 0.0838s.

Furthermore, in the second plot on the left in Figure 1, both Benign and
Spoofing exhibit a similar pattern of negative feature importance in the 0.0829s
to 0.0838 interval. Conversely, strong positive feature importance for Recon
suggests a high likelihood of the model predicting this class. In a Recon attack,
the attacker might generate noticeable patterns in the network’s IATs during
scanning. Hence, it is expected to observe high feature importance associated
with certain intervals of IATs. In general, IATs analysis can yield valuable
insights into understanding the decision-making process of the model.

4.2 The Coefficient of Determination (R?)

The first and second plots on the right in Figure 1 illustrate the feature impor-
tance of R?. This feature evaluates the coefficient of determination between
the lengths of incoming and outgoing packets within a flow. It assesses the cor-
relation between these packet lengths and can yield a value ranging between 0
and 1. During standard network operations, the sizes of incoming and outgo-
ing packets often display a certain correlation. This correlation may, however,
change significantly during an internet attack.

The first plot on the right in Figure 1 shows that DDoS, DoS, and Mirai
attacks exhibit similar correlations. The feature importance remains consis-
tently high, around 3.5, when R? is between 0 and 0.97, but abruptly falls to
-14 when R? is above 0.97. The model also suggests that a DDoS attack is less
likely if the coefficient of determination exceeds 0.97. This observation aligns
with basic cybersecurity principles. During DoS, DDoS flooding, the correla-
tion between incoming and outgoing packet sizes may decline as the network
becomes inundated with unwanted packets[10].

The second plot on the right in Figure 1 displays the feature importance
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for Recon and Spoofing attacks. Neglecting the outliers, the peak feature
importance of 1.1 for Recon appears when R? lies between 0.9 and 0.97. Recon
attacks typically involve gathering information about a target system, often as a
precursor to a more direct assault. An adept attacker might endeavor to imitate
the standard packet size distribution of the network to evade detection[9]. This
scenario explains why the feature importance escalates as the coefficient of
determination approaches 1. In the case of Spoofing, the feature importance
score ranges between -4 and -2 when the R? value is between 0.9 and 0.97. The
correlation between incoming and outgoing packet sizes is not apparent in such
attacks. The machine learning model’s generated negative feature importance
aligns with this observation. In general, R? serves as a strong indicator for
the machine learning model to distinguish DDoS, DoS, and Mirai attacks from
Recon, Spoofing, and benign traffic.

4.3 TCP Flags (ACK flag and SYN flag)

Transmission Control Protocol (TCP) flags, despite their eight different types,
are not all reliable indicators of attacks. Upon analyzing their influence on our
model’s accuracy, we discovered that the acknowledgment (ACK) and Synchro-
nisation (SYN) flags played a more significant role. The SYN flag, typically
used to establish connections, can also be exploited in certain forms of cyberat-
tacks. The third plot on the right in Figure 1 presents the feature importance
of the SYN flag for each attack. As a categorical variable, the SYN flags are
either 0 for unset (on the left of the plot) or 1 for set (on the right). For the
Mirai attack, a set SYN flag signifies a strong negative feature importance,
approximately -28. The SYN flag’s relevance to Mirai hinges on the types of
DDoS attacks the Mirai botnet implements. Our dataset solely contains three
forms of Mirai attacks - GRE IP Flood, GRE Ethernet Flood, and UDP Plain
attacks. These attacks operate on the Generic Routing Encapsulation (GRE)
and User Datagram Protocol (UDP), which belong to a different layer than
TCP and do not utilize the SYN flag. Additionally, we observe that Benign
and Spoofing also show negative feature importance, with scores of -4.5 and -
2.7, respectively. Similar to Mirai, neither Address Resolution Protocol (ARP)
nor Domain Name Service (DNS) Spoofing involves the SYN flag. In terms of
benign traffic, a high count of SYN packets might suggest malicious activity.
The negative feature importance for Benign is likely due to the interaction the
model identified between the SYN and ACK flags.

The fourth plot on the right in Figure 1 reveals the feature importance of
the total ACK count for each class. Unlike the former feature, the ACK count
measures the total number of ACK flags in a flow and is thus a continuous
variable. The ACK flag is predominantly used in benign traffic to signal the ac-
knowledgment of packet receipt. Both the fourth and fifth graphs demonstrate
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a positive correlation between feature importance and benign traffic. During a
DDoS attack, the attacker inundates the target’s network with excessive inter-
net traffic. Yet, DDoS attacks frequently involve a large quantity of spoofed
SYN packets as opposed to ACK packets. A negative feature importance for a
DDoS attack is expected for high values of ACK count. As mentioned earlier,
DoS and Mirai attacks bear similarities to DDoS attacks; thus, these types
of attacks exhibit similar patterns of feature importance[2]. Regarding Recon
attacks, ACK flags can be employed in various network scans, such as TCP
ACK scanning. The plot also reveals a positive correlation between the ACK
flag feature importance and Recon attacks. Lastly, given that our dataset
does not include instances of ACK Spoofing, we anticipate a negative feature
importance for Spoofing.

In combination with R?, the SYN and ACK flags allow the machine learning
model to classify attacks more effectively. Based on previous features, the
model can segregate classes into two groups: DDoS, DoS, Mirai, and Recon
versus Spoofing and Benign. A set SYN flag eradicates the possibility of Mirai
in the first group and reduces the likelihood of Spoofing and Benign in the
second group. The ACK count assists in identifying DDoS and Recon attacks
while diminishing the chance of Spoofing.

4.4 Discussion

While the EBM yields an impressive accuracy rate of 99% and an F1 score
above 90%, our research still has several limitations and offers potential areas
for improvement. The dataset encompasses 105 IoT devices, which, although
considerable, might only be representative of specific types or categories of
IoT devices encountered in real-world scenarios. Furthermore, it includes only
specific instances of DoS, DDoS, Spoofing, Recon, and Mirai attacks. The
omission of other types of attacks from the dataset, such as Web-based and
BruteForce, could constrain the scope of cybersecurity threats that our research
is capable of addressing.

Additionally, the original dataset does not proportionally represent the in-
dividual methods employed in each attack, which could affect the feature im-
portance’s reliability. For instance, it houses 7 million instances of Internet
Control Message Protocol (ICMP) Flood for DDoS attacks, contrasted with
a scant 29 thousand instances of Hypertext Transfer Protocol (HTTP) Flood.
This unequal representation may skew the EBM’s feature importance, as it
tends to lean towards the majority group. We have ascertained that the spe-
cific characteristics of the dataset heavily influence the predictions made by
the EBM. For example, when examining the Mirai attacks, one feature, the
minimum packet length, has its feature importance peak at 501 to 591 bytes
(the fourth plot on the left in Figure 1). This peak is primarily because our
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dataset only includes three types of Mirai attacks—GRE IP Flood, Greeth
Flood, and UDP Plain—which all display packet sizes within the 554 to 592
bytes range[11]. Other variants of Mirai attacks, like the SYN Mirai attack,
which has a packet size of merely 74 bytes[11], are absent from our dataset.
As a result, the IoT analysis we suggested, based on feature importance, is
limited to the attack types included in our dataset. Encountering new attack
types may significantly undermine the machine learning model’s accuracy rate.
Future research should aim to obtain a sufficiently comprehensive dataset, fea-
turing the most prevalent internet attack forms while maintaining a balanced
representation for each class.

It’s also important to note that a machine learning-based Intrusion Detec-
tion System (IDS) for IoT should be deployed alongside other security mea-
sures, such as encryption, authentication, and access control mechanisms, to
provide a comprehensive security solution.

5 Conclusions and Future Scope

The utility of machine learning-based intrusion detection systems, while promis-
ing, requires careful implementation and evaluation. In our study, we trained
an EBM on an extensive IoT dataset to identify potential attacks. Through an
analysis of feature importance, we were able to interpret the decision-making
process of the machine learning model. Our validation process generally agreed
that the predictions made by the machine learning model align with fundamen-
tal cybersecurity principles. However, there were instances where the model’s
predictions were challenging to explain or did not conform with these principles.
Furthermore, we identified limitations regarding the model’s predictions. Our
analysis revealed that the machine learning model’s predictions were strongly
tied to the specific characteristics of the training IoT dataset, thereby rais-
ing concerns about the model’s reliability when applied to real-world attack
detection.

As we move forward in developing machine learning-based intrusion de-
tection systems, it is vital to ensure the training dataset meets three critical
criteria. Firstly, the network topology for IoT devices should be comprehensive,
mimicking real IoT operations closely. Secondly, the dataset should encompass
a wide variety of attack types, utilizing all prevalent tools and frameworks em-
ployed to execute these attacks. Lastly, the dataset should be balanced not only
across different attack types but also across the various instances of methods
used to execute such attacks. Despite satisfying these criteria, it is important
to understand the limitations of these models in real-world applications. The
system should ideally be applied only to a similar set of IoT devices as those in
the training set, and it should be recognized that attacks not included in the

64



training set may not be detected. By addressing these factors, we believe the
utility and reliability of machine learning-based intrusion detection systems for
IoT can be significantly improved.
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