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ABSTRACT

Domain Adaptation of Black-box Predictors (DABP) aims to learn a model on an
unlabeled target domain supervised by a black-box predictor trained on a source
domain. It does not require access to both the source-domain data and the predictor
parameters, thus addressing the data privacy and portability issues of standard
domain adaptation methods. Existing DABP approaches mostly rely on knowledge
distillation (KD) from the black-box predictor, i.e., training the model with its noisy
target-domain predictions, which however inevitably introduces the confirmation
bias accumulated from the prediction noises and leads to degrading performance.
To mitigate such bias, we propose a new strategy, divide-to-adapt, that purifies
cross-domain knowledge distillation by proper domain division. This is inspired by
an observation we make for the first time in domain adaptation: the target domain
usually contains easy-to-adapt and hard-to-adapt samples that have different levels
of domain discrepancy w.r.t. the source domain, and deep models tend to fit easy-
to-adapt samples first. Leveraging easy-to-adapt samples with less noise can help
KD alleviate the negative effect of prediction noises from black-box predictors. In
this sense, the target domain can be divided into an easy-to-adapt subdomain with
less noise and a hard-to-adapt subdomain at the early stage of training. Then the
adaptation is achieved by semi-supervised learning. We further reduce distribution
discrepancy between subdomains and develop weak-strong augmentation strategy
to filter the predictor errors progressively. As such, our method is a simple yet
effective solution to reduce error accumulation in cross-domain knowledge distil-
lation for DABP. Moreover, we prove that the target error of DABP is bounded
by the noise ratio of two subdomains, i.e., the confirmation bias, which provides
the theoretical justifications for our method. Extensive experiments demonstrate
our method achieves state of the art on all DABP benchmarks, outperforming the
existing best approach by 9.5% on VisDA-17, and is even comparable with the
standard domain adaptation methods that use the source-domain data1.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) (Pan & Yang, 2009) aims to transfer knowledge from a
labeled source domain to an unlabeled target domain and has wide applications (Tzeng et al., 2015;
Hoffman et al., 2018; Zou et al., 2021). However, UDA methods require to access the source-
domain data, thus raising concerns about data privacy and portability issues. To solve them, Domain
Adaptation of Black-box Predictors (DABP) (Liang et al., 2022) was introduced recently, which aims
to learn a model with only the unlabeled target-domain data and a black-box predictor trained on the
source domain, e.g., an API in the cloud, to avoid the privacy and safety issues from the leakage of
data and model parameters.

∗Equal contribution (yang0478@ntu.edu.sg, xiangyupeng@comp.nus.edu.sg).
1Codes are available at https://github.com/xyupeng/BETA
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A few efforts have been made to solve the DABP problem. One of them is to leverage knowledge
distillation (Hinton et al., 2015) and train the target model to imitate predictions from the source
predictor (Liang et al., 2022). Another one is to adopt learning with noisy labels (LNL) methods to
select the clean samples from the noisy target-domain predictions for model training (Zhang et al.,
2021). Though inspiring, they have the following limitations. (i) Learning the noisy pseudo labels
for knowledge distillation inevitably leads to confirmation bias (Tarvainen & Valpola, 2017), i.e.,
accumulated model prediction errors. (ii) The LNL-based methods aims to select a clean subset of
the target domain to train the model, which would limit the model’s performance due to a decreased
amount of usable data for model training. (iii) Existing DABP methods lack theoretical justifications.

To address the aforementioned issues, this work proposes a simple yet effective strategy, divide-to-
adapt, which suppresses the confirmation bias by purifying cross-domain knowledge distillation.
Intuitively, the divide-to-adapt strategy divides the target domain into an easy-to-adapt subdomain
with less prediction noise and a hard-to-adapt subdomain. This is inspired by a popular observation:
deep models tend to learn clean samples faster than noisy samples (Arpit et al., 2017). For domain
adaptation, we make a similar discovery: deep models tend to learn easy-to-adapt samples faster than
hard-to-adapt samples, and thus we can leverage the loss distribution of cross-domain knowledge
distillation at the early stage for subdomain division. By taking the easy-to-adapt subdomain as a
labeled set and the hard-to-adapt subdomain as an unlabeled set, we can solve DABP problem via
leveraging prevailing semi-supervised learning methods (Berthelot et al., 2019; Sohn et al., 2020).
The divide-to-adapt strategy purifies the target domain progressively for knowledge distillation while
fully utilizing all the target dataset without wasting any samples.

To implement the above strategy, this paper proposes Black-Box ModEl AdapTation by DomAin
Division (BETA) that introduces two key modules to suppress the confirmation bias progressively.
Firstly, we divides the target domain into an easy-to-adapt and hard-to-adapt subdomains by fitting the
loss distribution into a Gaussian Mixture Model (GMM) and setting a threshold. The easy-to-adapt
samples with less noise help purify the cross-domain knowledge distillation for DABP. Secondly,
we propose mutually-distilled twin networks with weak-strong augmentation on two subdomains to
progressively mitigate error accumulation. The distribution discrepancy between two subdomains is
further aligned by an adversarial regularizer to enable the prediction consistency on the target domain.
A domain adaptation theory is further derived to provide justifications for BETA.

We make the following contributions. (i) We propose a novel BETA framework for the DABP problem
that iteratively suppresses the error accumulation of model adaptation from the black-box source-
domain predictor. To the best of our knowledge, this is the first work that addresses the confirmation
bias for DABP. (ii) We theoretically show that the error of the target domain is bounded by the
noise ratio of the hard-to-adapt subdomain, and empirically show that this error can be suppressed
progressively by BETA. (iii) Extensive experiments demonstrate that our proposed BETA achieves
state-of-the-art performance consistently on all benchmarks. It outperforms the existing best method
by 9.5% on the challenging VisDA-17 and 2.0% on DomainNet.

2 RELATED WORK

Unsupervised Domain Adaptation. Unsupervised domain adaptation aims to adapt a model
from a labeled source domain to an unlabeled target domain. Early UDA methods rely on feature
projection (Pan et al., 2010a) and sample selection (Sugiyama et al., 2007) for classic machine
learning models. With the development of deep representation learning, deep domain adaptation
methods yield surprising performances in challenging UDA scenarios. Inspired by two-sample test,
discrepancy minimization of feature distributions (Koniusz et al., 2017; Yang et al., 2021b; Xu
et al., 2022a) is proposed to learn domain-invariant features (Cui et al., 2020a) based on statistic
moment matching (Tzeng et al., 2014; Sun & Saenko, 2016). Domain adversarial learning further
employs a domain discriminator to achieve the same goal (Ganin et al., 2016; Zou et al., 2019;
Yang et al., 2020b) and achieves remarkable results. Other effective techniques for UDA include
entropy minimization (Grandvalet & Bengio, 2005; Xu et al., 2021), contrastive learning (Kang
et al., 2019), domain normalization (Wang et al., 2019; Chang et al., 2019), semantic alignment (Xie
et al., 2018; Yang et al., 2021a), meta-learning (Liu et al., 2020), self-supervision (Saito et al., 2020),
semi-supervsed learning (Berthelot et al., 2021) curriculum learning (Zhang et al., 2017; Shu et al.,
2019), intra-domain alignment (Pan et al., 2020), knowledge distillation (Yang et al., 2020a) and
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self-training (Chen et al., 2020; Zou et al., 2018). Despite their effectiveness, they require access to
the source domain data and therefore invoke privacy and portability concerns.

Unsupervised Model Adaptation and DABP. Without accessing the source domain, unsupervised
model adaptation, i.e., source-free UDA, has attracted increasing attention since it loosens the
assumption and benefits more practical scenarios (Guan & Liu, 2021). Early research provides a
theoretical analysis of hypothesis transfer learning (Kuzborskij & Orabona, 2013), which motivates
the existence of deep domain adaptation without source data (Liang et al., 2020a; Huang et al., 2021;
Li et al., 2020; Xu et al., 2022b). Liang et al. propose to train the feature extractor by self-supervised
learning and mutual information maximization with the classifier frozen (Liang et al., 2020a). This
paper deals with a more challenging problem: only leveraging the labels from the model trained in
the source domain for model adaptation. Few works have been conducted in this field. (Zhang et al.,
2021) proposes a noisy label learning method by sample selection, while (Liang et al., 2022) uses
knowledge distillation with information maximization. Whereas, we propose to perform domain
division and suppress confirmation bias for cross-domain knowledge distillation.

Confirmation Bias in Semi-Supervised Learning. Confirmation bias refers to the noise accumu-
lation when the model is trained using incorrect predictions for semi-supervised or unsupervised
learning (Tarvainen & Valpola, 2017). Such bias can cause the model to overfit the noisy feature space
and then resist new changes (Arazo et al., 2020). In UDA, pseudo-labeling (Saito et al., 2017; Gu
et al., 2020; Morerio et al., 2020) and knowledge distillation (Liang et al., 2020a; Kundu et al., 2019;
Zhou et al., 2020) are effective techniques but can be degraded due to confirmation bias. Especially
for the transfer task with a distant domain, the pseudo labels for the target domain are very noisy and
deteriorate the subsequent epochs of training. To alleviate the confirmation bias, several solutions
are proposed including co-training (Qiao et al., 2018; Li et al., 2019), Mixup (Zhang et al., 2018;
Chen et al., 2019), and data-augmented unlabeled examples (Cubuk et al., 2019). Our paper proposes
BETA which is the first work that formulates and addresses the confirmation bias for DABP.

3 METHODOLOGY

The idea of our proposed BETA is to mitigate the confirmation bias for DABP by dividing the target
domain into two subdomains with different adaptation difficulties. As shown in Figure 1, BETA relies
on two designs to suppress error accumulation, including a domain division module that purifies
the target domain into a cleaner subdomain and transfers DABP to a semi-supervised learning task,
and a two-networks mechanism (i.e., mutually-distilled twin networks) that further diminishes the
self-training errors by information exchange. We firstly introduce the problem formulation and the
key modules, and then make the algorithmic instantiation with more details.

3.1 PROBLEM FORMULATION

For domain adaptation of black-box predictors, the model has access to a black-box predictor hs

trained by a source domain {(xs
i , y

s
i )}

Ns
i=1 with Ns labeled samples where xs

i ∈ Xs, y
s
i ∈ Ys, and

an unlabeled target domain {xt
i}

Nt
i=1 with Nt unlabeled samples where xt

i ∈ Xt. Assume that the
label spaces are the same across two domains, i.e., Ys = Yt, while the inputs data have different
distributions, i.e. xs

i ∼ DS and xt
i ∼ DT . In other words, there exists a domain shift (Ben-David

et al., 2007) between DS and DT . The objective is to learn a mapping model Xt → Yt. Different
from standard UDA (Pan et al., 2010b; Tzeng et al., 2014; Long et al., 2017), DABP prohibits the
model from accessing the source-domain data Xs,Ys, and the parameters of the source model hs.
Only a black-box predictor trained on the source domain, i.e., an API, is available. Confront these
constraints, we can only resort to the hard predictions of the target domain from the source predictor,
i.e., Ỹt = hs(Xt), in the DABP setting.

3.2 DOMAIN DIVISION

Different from the strategy of directly utilizing Xt, Ỹt for knowledge distillation (Liang et al., 2022),
we propose to divide the target domain Xt into an easy-to-adapt subdomain X e

t ∼ De and a hard-
to-adapt subdomain X h

t ∼ Dh, with Xt = Xe ∪ Xh. Previous studies show that deep models are
prone to fitting clean examples faster than noisy examples (Arpit et al., 2017). In domain adaptation,
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Figure 1: The mutually-distilled twin networks in BETA are initialized by the predictions from the
source API. Then the divide-to-adapt strategy is applied for domain division, and the two subdomains
with augmentation are leveraged for semi-supervised learning (MSE and CE loss) and domain
adaptation (DA Loss, i.e., Ladv and Lmi).

the target domain consists of samples that have different similarities to the source-domain samples,
and we find that deep models are prone to fitting easy-to-adapt samples first that are more similar
to the source domain. Based on the observation, we can obtain the two subdomains with different
domain discrepancy by training loss. For example in Figure 2, it is seen that two peaks appear in the
loss distribution on the target domain data, and each peak corresponds to one subdomain. We further
calculate the A-distance (Ben-David et al., 2010) (dA) between the two subdomains and the source
domain, and the result shows that De has less domain discrepancy than Dh. This can be observed
more intuitive by the subdomain samples in the appendix.

Easy-to-adapt

Subdomain 𝒟𝑒

Hard-to-adapt
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Source

domain 𝒟𝑆
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𝑑𝐴 𝒟𝑆, 𝒟ℎ = 1.88

Figure 2: The loss distribution on A→W (Office-31).

Inspired by this observation, we first warm up
the network, e.g., a CNN, for several epochs,
and then obtain the loss distribution by calcu-
lating the per-sample cross-entropy loss for a
K-way classification problem as

Lce(x
t
i) = −

K∑
k=1

ỹki log(h
k
t (x

t
i)), (1)

where hk
t is the softmax probability for class k

from the target model. As shown in Figure 1,
the loss distribution appears to be bimodal and
two peaks indicate the clean and noisy clusters,
which can be fitted by a GMM using Expec-
tation Maximization (EM) (Li et al., 2019).
In noisy label learning, the clean and noisy
subset division is achieved by a Beta Mixture
Model (BMM) (Arazo et al., 2019). However, in DABP, the noisy pseudo labels obtained by hs

are dominated by asymmetric noise (Kim et al., 2021), i.e., the noisy samples that do not follow a
uniform distribution. In this case, the BMM leads to undesirable flat distributions and cannot work
effectively for our task (Song et al., 2022). Asymmetric noise in Ỹt also causes the model to perform
confidently and generate near-zero losses, which hinders the domain division of GMM. To better fit
the losses of the target domain with asymmetric noise, the negative entropy is used as a regularizer in
the warm-up phase, defined as:

Lne =

K∑
k=1

hk
t (x

t
i) log(h

k
t (x

t
i)). (2)

After fitting the loss distribution to a two-component GMM via the Expectation-Maximization
algorithm, the clean probability ϱci is equivalent to the posterior probability p(c|li(xt

i)) where c is the
Gaussian component with smaller loss and li(x

t
i)) is the cross-entropy loss of xt

i. Then the clean and
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noisy subdomains are divided by setting a threshold τ based on the clean probabilities:

Xe = {(xi, ỹi)|(xi, ỹi) ∈ (Xt, Ỹt), ϱ
c
i ≥ τ}, (3)

Xh = {(xi, p̃i)|xi ∈ Xt, ϱ
c
i < τ}, (4)

where p̃i = hs(x
t
i) is the softmax probabilities. Intuitively, the clean subdomain consists of easy-to-

adapt samples, while the noisy subdomain consists of hard-to-adapt samples. The semi-supervised
learning methods (Berthelot et al., 2019) can be directly applied with Xe used as the labeled set and Xh

as the unlabeled set. Compared to sample selection (Zhang et al., 2021) and single distillation (Liang
et al., 2022), domain division enables the utilization of all accessible samples by semi-supervised
learning and dilutes the risk of the confirmation bias by leveraging cleaner signals of supervision for
model adaptation.

3.3 MUTUALLY-DISTILLED TWIN NETWORKS WITH SUBDOMAIN AUGMENTATION

The easy-to-adapt subdomain is purified by domain division but still has inevitable wrong labels.
Overfitting to these wrong labels enforces the model to generate fallacious low losses for domain
division, and hence accumulates the wrong predictions iteratively, which is the confirmation bias.
Apart from domain division, we propose Mutually-distilled Twin Networks (MTN) to further mitigate
such bias, inspired by the two-networks design in (Qiao et al., 2018; Li et al., 2019) where the
confirmation bias of self-training can be diminished by training two networks to decontaminate the
noise for each other. Specifically, we employ two identical networks initialized independently, where
one network performs semi-supervised learning according to the domain division and pseudo labels
of the other network. In this fashion, two networks are trained mutually and receive extra supervision
to filter the error.

In BETA, we further revamp this design by subdomain augmentation to increase the divergence
of domain division, enabling two networks to obtain sufficiently different supervisions from each
other. Suppose that two networks hθ1

t , hθ2
t where θ1, θ2 are parameters generate two sets of domain

division {X 1
e ,X 1

h} and {X 2
e ,X 2

h}, respectively. We take hθ2
t and {X 1

e ,X 1
h} for example. Two

augmentation strategies are tailored: the weak augmentation (e.g., random cropping and flipping),
and the strong augmentation (i.e., RandAugment (Cubuk et al., 2020) and AutoAugment (Cubuk
et al., 2019). The samples from the easy-to-adapt subdomain are mostly correct, so we augment them
using two strategies and obtain their soft pseudo labels by the convex combination of averaging all
augmentations and the pseudo label according to the clean probability ϱci . Whereas, the hard-to-adapt
subdomain is noisy, so we only apply the weak augmentation to update their pseudo labels but use
strong augmentations in the subsequent learning phase. Furthermore, we employ the co-guessing
strategy (Li et al., 2019) to refine the pseudo labels for Xh. The refined subdomains are derived as:

X̂ 1
e =

{
(xi, ỹ

′
i)|ỹ′i = ϱci ỹi + (1− ϱci )

1

M

M∑
m=1

[hθ2
t (Am

w/s(xi))], (xi, ỹi) ∈ X 1
e

}
, (5)

X̂ 1
h =

{
(xi, p̃

′
i)|p̃′i =

1

2M

2M∑
m=1

[hθ1
t (Am(xi)) + hθ2

t (Am
w (xi))], (xi, p̃i) ∈ X 1

h

}
, (6)

where Am
w/s(·) denotes the m-th weak and strong augmentation function, and M denotes the total

number of augmentation views.

3.4 ALGORITHMIC INSTANTIATION

After the warm-up, domain division, and subdomain augmentation, we detail the algorithmic choices
of other modules and the learning objectives of our framework.

Hard knowledge distillation. For each epoch, we first perform knowledge distillation from the
predictions of the source model hs by the relative entropy, i.e., the Kullback–Leibler divergence

Lkd = Ext∈Xt
D(ỹt||ht(xt)), (7)

where DKL(·||·) denotes the KL-divergence, and the pseudo label ỹt is obtained by the EMA
prediction of hs(xt). Different from DINE (Liang et al., 2022) that uses source model probabilities,
we only leverage the hard pseudo labels that are more ubiquitous for API services.
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Mutual information maximization. To circumvent the model to show partiality for categories with
more samples during knowledge distillation, we maximize the mutual information as

Lmi = H(Ex∈Xt
ht(x))− Ex∈Xt

H(ht(x)), (8)

where H(·) denotes the information entropy. This loss works jointly with Lkd. Besides, after the
semi-supervised learning, we use this loss to fine-tune the model to enforce the model to comply with
the cluster assumption (Shu et al., 2018; Liang et al., 2022; Grandvalet & Bengio, 2005).

Domain division enabled semi-supervised learning. We choose MixMatch (Berthelot et al., 2019)
as the semi-supervised learning method since it includes a mix-up procedure (Zhang et al., 2018) that
can further diverge the two networks while refraining from overfitting. The mixed sets Ẍe, Ẍh are
obtained by Ẍe = Mixup(X̂e, X̂e ∪ X̂h) and Ẍh = Mixup(X̂h, X̂e ∪ X̂h). Then the loss functions is
written as

Ldd = Lce(Ẍe) + Lmse(Ẍh) + Lreg, (9)
where Lce denotes the cross-entropy loss, Lmse denotes the mean squared error, and the regularizer
Lreg uses a uniform distribution πk to eliminate the effect of class imbalance, written as

Lreg =
∑
k

πk log

(
πk

/
1

|Ẍe|+ |Ẍh|

∑
x∈Ẍe+Ẍh

ht(x)

)
. (10)

Subdomain alignment. We assume that there exists a distribution discrepancy between the easy-
to-adapt and the hard-to-adapt subdomains, which leading to the performance gap between them.
Regarding this gap, we add an adversarial regularizer by introducing a domain discriminator Ω(·):

Ladv = Ex∈Ẍe
log

(
Ω(ht(x))

)
+ Ex∈Ẍh

log
(
1− Ω(ht(x))

)
. (11)

Overall objectives. Summarizing all the losses, the overall objectives are formulated as

L = (Lkd − Lmi︸ ︷︷ ︸
step 1

) + (Ldd − γLadv︸ ︷︷ ︸
step 2

), (12)

where γ is a hyper-parameter that is empirically set to 0.1. In step 1, we perform distillation for two
networks independently to form tight clusters by maximizing mutual information, while in step 2, the
proposed BETA revises their predictions by mitigating the confirmation bias in a synergistic manner.
The domain division is performed between two steps.

3.5 THEORETICAL JUSTIFICATIONS

Existing theories on UDA error bound (Ben-David et al., 2007) are based on the source-domain data,
so they are not applicable to DABP models (Liang et al., 2022), which hinders understanding of
these models. To better explain why BETA contributes to DABP, we derive an error bound based
on the existing UDA theories (Ben-David et al., 2010). Let h denote a hypothesis, ye, yh and ŷe, ŷh
denote the ground truth labels and the pseudo labels of Xe,Xh, respectively. As BETA is trained on a
mixture of the two subdomains with pseudo labels, the error of BETA can be formulated as a convex
combination of the errors of the easy-to-adapt subdomain and the hard-to-adapt subdomain:

ϵα(h) = αϵe(h, ŷe) + (1− α)ϵh(h, ŷh), (13)

where α is the trade-off hyper-parameter, and ϵe(h, ŷe), ϵh(h, ŷh) represents the expected error of the
two subdomains. We derive an upper bound of how the error ϵα(h) is close to an oracle error of the
target domain ϵt(h, yt) where yt is the ground truth labels of the target domain.

Theorem 1 Let h be a hypothesis in class H. Then

|ϵα(h)− ϵt(h, yt)| ≤ α(dH△H(De,Dh) + λ+ λ̂) + ρh, (14)

where the ideal risk is the combined error of the ideal joint hypothesis λ = ϵe(h
∗) + ϵh(h

∗), the
distribution discrepancy dH△H(De,Dh) = 2 suph,h′∈H |Ex∼Dc

[h(x) ̸= h′(x)] − Ex∼Dn
[h(x) ̸=

h′(x)]|, and ρh denotes the pseudo label rate of ŷh. The ideal joint hypothesis is given by h∗ =
argminh∈H(ϵe(h) + ϵh(h)), deriving the ideal risk λ = ϵe(h

∗) + ϵh(h
∗) and the pseudo risk

λ̂ = ϵe(h
∗, ŷe) + ϵh(h

∗, ŷh).
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Table 1: Accuracies (%) on Office-31 for black-box model adaptation. H. Avg. denotes the average
accuracy of the hard tasks whose source-only accuracies are below 65%.

Method Publication DABP A→D A→W D→A D→W W→A W→D Avg. H. Avg.

ResNet-50 - - 79.9 76.6 56.4 92.8 60.9 98.5 77.5 58.7
LNL-OT ICLR-19 ! 88.8 85.5 64.6 95.1 66.7 98.7 83.2 65.7
LNL-KL BMVC-21 ! 89.4 86.8 65.1 94.8 67.1 98.7 83.6 66.1
HD-SHOT TPAMI-21 ! 86.5 83.1 66.1 95.1 68.9 98.1 83.0 67.5
SD-SHOT TPAMI-21 ! 89.2 83.7 67.9 95.3 71.1 97.1 84.1 69.5
DINE CVPR-22 ! 91.6 86.8 72.2 96.2 73.3 98.6 86.4 72.8

BETA (Ours) - ! 93.6 88.3 76.1 95.5 76.5 99.0 88.2 76.3

BSP+DANN ICML-19 % 93.0 93.3 73.6 98.2 72.6 100.0 88.5 73.1
MDD ICML-19 % 93.5 94.5 74.6 98.4 72.2 100.0 88.9 73.4
ATDOC CVPR-21 % 94.4 94.3 75.6 98.9 75.2 99.6 89.7 75.4

Table 2: Accuracies (%) on Office-Home for black-box model adaptation. (‘:’ denotes ‘transfer to’)

Method DABP Ar:Cl Ar:Pr Ar:Re Cl:Ar Cl:Pr Cl:Re Pr:Ar Pr:Cl Pr:Re Re:Ar Re:Cl Re:Pr Avg. H. Avg.

ResNet-50 - 44.1 66.9 74.2 54.5 63.3 66.1 52.8 41.2 73.2 66.1 46.7 77.5 60.6 50.4
LNL-OT ! 49.1 71.7 77.3 60.2 68.7 73.1 57.0 46.5 76.8 67.1 52.3 79.5 64.9 55.6
LNL-KL ! 49.0 71.5 77.1 59.0 68.7 72.9 56.4 46.9 76.6 66.2 52.3 79.1 64.6 55.4
HD-SHOT ! 48.6 72.8 77.0 60.7 70.0 73.2 56.6 47.0 76.7 67.5 52.6 80.2 65.3 55.9
SD-SHOT ! 50.1 75.0 78.8 63.2 72.9 76.4 60.0 48.0 79.4 69.2 54.2 81.6 67.4 58.1
DivideMix ! 51.7 74.7 78.5 61.8 72.4 73.3 59.8 48.0 82.9 68.0 56.4 81.6 67.4 58.4
DINE ! 52.2 78.4 81.3 65.3 76.6 78.7 62.7 49.6 82.2 69.8 55.8 84.2 69.7 60.4

BETA (Ours) ! 57.2 78.5 82.1 68.0 78.6 79.7 67.5 56.0 83.0 71.9 58.9 84.2 72.1 64.4

BSP+CDAN % 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3 58.1
MDD % 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 60.2
CST % 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0 65.3

In the above theorem, the error is bounded by the distribution discrepancy between two subdomains,
the noise ratio of Xh, and the risks. The ideal risk λ is neglectly small (Ganin et al., 2016), and the
pseudo risk λ̂ is bounded by ρh as shown in the appendix. Hence, the subdomain discrepancy and
ρh dominate the error bound. Empirical results show that dH△H(De,Dh) is usually small for the
two subdomains, and ρh keeps dropping during training as shown in Figure 3(a), which tightens the
upper bound consequently. The proof with detailed analytics is in the appendix.

4 EXPERIMENTS

4.1 SETUP

Datasets. Office-31 (Saenko et al., 2010) is the most common benchmark for UDA, which consists
of three domains (Amazon, Webcam, DSLR) in 31 categories. Office-Home (Venkateswara et al.,
2017) consists of four domains (Art, Clipart, Product, Real World) in 65 categories, and the distant
domain shifts render it more challenging. VisDA-17 (Peng et al., 2017) is a large-scale benchmark
for synthetic-to-real object recognition, with a source domain with 152k synthetic images and a
target domain with 55k real images from Microsoft COCO. DomainNet (Peng et al., 2019) is the
largest DA dataset containing 345 classes in 6 domains: Clipart (clp), Infograph (inf), Painting (pnt),
Quickdraw (qdr), Real (rel), Sketch (skt).

Implementation details. We implement our method via PyTorch (Paszke et al., 2019), and report
the average accuracies among three runs. To show the capacity of handling the confirmation bias,
we further report the average accuracies across hard tasks whose source-only accuracies are below
65% (H. Avg.). We employ ResNet-50 for Office-31, Office-Home, and DomainNet, and ResNet-101
for VisDA-17 as the backbones (He et al., 2016), and add a new MLP-based classifier, which is
commonly used in existing UDA works (Long et al., 2017; Chen et al., 2019; Liang et al., 2022;
Saito et al., 2018). The domain discriminator consists of fully-connected layers (2048-256-2) that
perform a binary subdomain classification (Long et al., 2018). The ImageNet pre-trained model is
utilized as initialization. The model is optimized by mini-batch SGD with the learning rate of 1e-3
for CNN layers and 1e-2 for the MLP classifier. Following DINE (Liang et al., 2022), we use the
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Table 3: Accuracies (%) on VisDA-17 for black-box model adaptation.

Method DABP plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class H. Avg.

ResNet-101 - 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9 35.2
LNL-OT ! 82.6 84.1 76.2 44.8 90.8 39.1 76.7 72.0 82.6 81.2 82.7 50.6 72.0 71.1
LNL-KL ! 82.7 83.4 76.7 44.9 90.9 38.5 78.4 71.6 82.4 80.3 82.9 50.4 71.9 70.8
HD-SHOT ! 75.8 85.8 78.0 43.1 92.0 41.0 79.9 78.1 84.2 86.4 81.0 65.5 74.2 74.4
SD-SHOT ! 79.1 85.8 77.2 43.4 91.6 41.0 80.0 78.3 84.7 86.8 81.1 65.1 74.5 74.8
DINE ! 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6 74.3

BETA (Ours) ! 94.9 90.2 85.4 61.1 95.5 93.1 85.0 83.8 92.9 91.9 91.1 55.0 85.1 85.9

SAFN % 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1 70.9
CDAN+E % 94.3 60.8 79.9 72.7 89.5 86.8 92.4 81.4 88.9 72.9 87.6 32.8 78.3 74.7
DTA % 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5 78.7

Table 4: Accuracies (%) on DomainNet for black-box model adaptation. The row indicates the source
domain while the column indicates the target domain.

ResNet clp inf pnt qdr rel skt Avg. DINE clp inf pnt qdr rel skt Avg. BETA clp inf pnt qdr rel skt Avg.

clp - 16.5 36.0 10.1 52.8 41.8 31.4 clp - 12.1 29.6 11.1 60.4 37.3 29.4 clp - 13.4 41.2 13.0 61.8 41.1 34.1
inf 32.1 - 32.0 2.7 47.4 26.4 28.1 inf 29.5 - 37.6 3.4 53.8 26.5 30.1 inf 34.9 - 41.6 3.7 56.8 30.7 33.6
pnt 29.6 23.2 - 4.9 36.7 27.8 24.4 pnt 37.3 12.9 - 4.2 60.5 34.7 29.9 pnt 47.3 18.4 - 3.2 62.5 41.9 34.7
qdr 11.2 1.1 1.9 - 4.3 7.7 5.3 qdr 9.4 0.7 3 - 8.3 6.6 5.6 qdr 11.7 0.9 2.1 - 9.1 8.1 6.4
rel 48.2 19.6 47.9 4.3 - 35.6 31.1 rel 45.1 14.4 49.7 5.5 - 35.0 29.9 rel 46.5 15.8 50.9 5.6 - 37.7 31.3
skt 49.1 13.5 35.5 11.5 47.1 - 31.3 skt 43.3 10.0 39.3 11.6 57.2 - 32.2 skt 47.3 12.3 42.3 14.8 59.9 - 35.3

Avg. 34.0 14.8 30.7 6.7 37.7 27.9 25.3 Avg. 32.9 10.0 31.8 7.2 48.0 28.0 26.2 Avg. 37.5 12.2 35.6 8.1 50.0 31.9 28.2

suggested training strategies including the momentum (0.9), batch size (64), and weight decay (1e-3).
The number of epochs for warm-up is empirically set to 3, and the training epoch is 50 except 10
for VisDA-17. The hyper-parameters of MixMatch are kept as same as the original paper (Berthelot
et al., 2019), attached in the appendix. As two networks of MTN perform similarly, we report the
accuracy of the first network.

Baselines. For a fair comparison, we follow the protocol and training strategy for the source domain in
DINE (Liang et al., 2022), and compare our BETA with state-of-the-art DABP methods. Specifically,
LNL-KL (Zhang et al., 2021), LNL-OT (Asano et al., 2019), and DivideMix (Li et al., 2019) are
noisy label learning methods. HD-SHOT and SD-SHOT obtain the model using pseudo labels and
apply SHOT (Liang et al., 2020a) by self-training and the weighted cross-entropy loss, respectively.
We also show state-of-the-art standard UDA methods for comparison, including CDAN (Long et al.,
2018), MDD (Zhang et al., 2019), BSP (Chen et al., 2019), CST (Liu et al., 2021), SAFN (Xu et al.,
2019), DTA (Lee et al., 2019), ATDOC (Liang et al., 2021), MCC (Jin et al., 2020), BA3US (Liang
et al., 2020b) and JUMBOT (Fatras et al., 2021).

4.2 RESULTS

Performance comparison. We show the results on Office-31, Office-Home, VisDA-17, and Domain-
Net in Table 1, 2, 3, and 4 respectively. The proposed BETA achieves the best performances on all
benchmarks. On average, our method outperforms the state-of-the-art methods by 1.8%, 2.4%, 9.5%,
and 2.0% on Office-31, Office-Home, VisDA-17, and DomainNet, respectively. The improvement is
marginal for Office-31 as it is quite simple. Whereas, for the challenging VisDA-17, the BETA gains
a huge improvement of 9.5%, even outperforming standard UDA methods, e.g., CDAN, BSP, SAFN,
MDD. This demonstrates that the suppression of confirmation bias by BETA can be as effective as
the domain alignment techniques.

Hard transfer tasks with distant domain shift. Since our method effectively mitigates the confir-
mation bias, it works more effectively for the hard tasks with extremely noisy pseudo labels from the
source-only model. For the hard tasks with lower than 65% source-only accuracy (i.e., H. Avg.), it is
observed that the BETA outperforms the second-best method by 3.5%, 4.0%, and 11.6% on Office-31,
Office-Home, and VisDA-17, respectively, which beats the normal UDA methods. For DomainNet,
the source-only model produces less than 50% accuracy for all of the transfer tasks, which leads to
negative transfer for DINE, e.g., qdr→skt. Whereas, BETA achieves robust improvement for most
tasks, outperforming DINE by 2.0% in average. This demonstrates that our method can deal with
transfer tasks with distant shifts and BETA can alleviate the negative effect of error accumulation
caused by source-only models with poor performance.

8



Published as a conference paper at ICLR 2023

Table 5: Ablation studies of learning objectives and MTN on Office-Home.

Ldd Lkd Lmi Ladv MTN Ar→Cl Cl→Ar Cl→Pr Pr→Ar Pr→Cl Re→Cl H. Avg.

44.1 54.5 63.3 52.8 41.2 46.7 50.4
✓ 55.5 65.4 76.5 64.4 50.7 58.1 61.8

✓ 54.6 63.8 75.3 62.3 48.0 55.7 60.0
✓ ✓ 56.6 65.0 76.7 64.1 51.6 60.4 62.4
✓ ✓ ✓ 55.4 67.6 78.4 65.4 54.5 58.5 63.3
✓ ✓ ✓ ✓ 56.8 68.1 78.7 67.3 55.3 59.2 64.2
✓ ✓ ✓ ✓ ✓ 57.2 68.0 78.6 67.5 56.0 58.9 64.4
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Figure 3: Quantitative results on the estimated confirmation bias, and hyper-parameter sensitivity.

4.3 ANALYSIS

Ablation study. We study the effectiveness of key components in BETA, with results shown in
Table 5. It is seen that the semi-supervised loss enabled by domain division significantly improves
the source-only model by 11.4%. The mutual twin networks, knowledge distillation, and mutual
information contribute to 0.6%, 1.1%, and 0.9% improvements, respectively. As the two subdomains
drawn from the target domain are quite similar, the distribution discrepancy is not always effective.

Confirmation bias. We study the confirmation bias using the noise ratio of the two subdomains in
terms of knowledge distillation (K.D.) and BETA on Office-Home (Ar→Cl) to show the effectiveness
of the domain division and MTN. As shown in Figure 3(a), the error rate of K.D. only drops for the
first a few epochs and then stops decreasing. Whereas, the error rate of BETA keeps decreasing for
about 20 epochs since the confirmation bias is iteratively suppressed. The error gap between K.D.
and ours on the hard-to-adapt and easy-to-adapt subdomain reaches around 10% and 3%, respectively,
validating that our method reduces the error rate ρh and minimizes the target error in Theorem 1.

Hyper-parameter sensitivity and MTN. We study the hyper-parameter τ on Office-Home (Cl→Pr)
across three runs. We choose τ ranging from 0.3 to 0.9, as too small τ leads to noisy domain division
while very large τ leads to a very small number of samples at the easy-to-adapt subdomain. As
shown in Figure 3(b), the accuracies of BETA range from 78.2% to 78.8%, and the best result
is achieved at 0.8. For the MTN module, it is observed that the two networks of BETA achieve
similar trends over different τ , and one network slightly outperforms another consistently. We
further plot the Intersection over Union (IoU) between two easy-to-adapt clean subdomains X 1

e ,X 2
e

generated by domain division, and it decreases as τ gets greater, which means that a larger τ leads
to more difference of the domain division. The diverged domain division can better mitigate the
error accumulation for MTN. Thus, the best result at τ = 0.8 is a reasonable trade-off between the
divergence of two domain divisions and the sample number of the easy-to-adapt clean subdomain.

5 CONCLUSION

In this work, we propose to suppress confirmation bias for DABP. This is achieved by domain
division that purifies the noisy labels in cross-domain knowledge distillation. We further develop
mutually-distilled twin networks with subdomain augmentation and alignment to mitigate the error
accumulation. Besides, we derive a theorem to show why mitigating confirmation bias helps DABP.
Extensive experiments over different backbones and learning setups show that BETA effectively
suppresses the noise accumulation and achieves state-of-the-art performance on all benchmarks.
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A APPENDIX

A.1 PROOF OF THEOREM 1

We prove the Theorem 1 which extends the learning theories of domain adaptation (Ben-David et al.,
2010) for the black-box domain adaptation and provides theoretical justifications for our method.

Denote Xt ∼ DT as the target domain with its sample distribution. Xe ∼ De and Xh ∼ Dh denote
the easy-to-adapt clean subdomain and the hard-to-adapt noisy subdomain with their corresponding
sample distributions, respectively. Denote ye, yh and ŷe, ŷh as the ground truth labels and the pseudo
labels of Xe,Xh, respectively. Let h denote a hypothesis. As our method performs training on
a mixture of the clean set and the noisy set with pseudo labels, the error of our method can be
formulated as a convex combination of the errors of the clean set and the noisy set:

ϵα(h) = αϵe(h, ŷe) + (1− α)ϵh(h, ŷh), (15)

where α is the trade-off hyper-parameter, and ϵe(h, ŷe), ϵh(h, ŷh) represents the expected error of the
easy-to-adapt clean set Xe and the hard-to-adapt noisy set Xh, respectively, defined by

ϵe(h, ŷe) = Ex∼De [|h(x)− ŷe|] (16)
ϵh(h, ŷh) = Ex∼Dh

[|h(x)− ŷh|]. (17)

We use the shorthand ϵe(h) = ϵe(h, fe) in the proof.

Then, we derive an upper bound of how the error ϵα(h) is close to an oracle error of the target domain
ϵt(h, yt) where yt is the ground truth labels of the target domain, which is illustrated in Theorem 1:

Theorem 2 Let h be a hypothesis in class H. Then

|ϵα(h)− ϵt(h, yt)| ≤ α(dH△H(De,Dh) + λ+ λ̂) + ρh, (18)

where the ideal risk is the combined error of the ideal joint hypothesis λ = ϵe(h
∗) + ϵh(h

∗), the
distribution discrepancy dH△H(De,Dh) = 2 suph,h′∈H |Ex∼De

[h(x) ̸= h′(x)] − Ex∼Dh
[h(x) ̸=

h′(x)]|, and ρh denote the pseudo label rate of ŷh. The ideal joint hypothesis is given by h∗ =
argminh∈H(ϵe(h) + ϵh(h)), deriving the ideal risk λ = ϵe(h

∗) + ϵh(h
∗) and the pseudo risk

λ̂ = ϵe(h
∗, ŷe) + ϵh(h

∗, ŷh).

Proof:

|ϵα(h)− ϵt(h, yt)|
= |αϵe(h, ŷe) + (1− α)ϵh(h, ŷh)− αϵe(h, ye)− (1− α)ϵh(h, yh)| (19)
≤ α(|ϵe(h, ye)− ϵh(h, yh)|+ |ϵe(h, ŷe)− ϵh(h, ŷh)|) + |ϵh(h, ŷh)− ϵh(h, yh)| (20)
= α(ϵa + ϵb) + ϵc (21)

Then we seek the upper bound of ϵa, ϵb, ϵc by applying the triangle inequality for classification errors
(Crammer et al., 2008) as stated in Lemma 1.

Lemma 1 For any hypotheses f1, f2, f3 in class H,

ϵ(f1, f2) ≤ ϵ(f1, f3) + ϵ(f2, f3). (22)

For ϵa,

ϵa = |ϵe(h, ye)− ϵh(h, yh)|
≤ |ϵe(h, ye)− ϵe(h, h

∗)|+ |ϵe(h, h∗)− ϵh(h, h
∗)|+ |ϵh(h, h∗)− ϵh(h, yh)| (23)

≤ ϵe(h
∗) + |ϵe(h, h∗)− ϵh(h, h

∗)|+ ϵh(h
∗) (24)

≤ 1

2
dH△H(De,Dh) + λ (25)
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For ϵb,
ϵb = |ϵe(h, ŷe)− ϵh(h, ŷh)|
≤ ϵe(h

∗, ŷe) + |ϵe(h, h∗)− ϵh(h, h
∗)|+ ϵh(h

∗, ŷh) (26)

≤ 1

2
dH△H(Dc,Dn) + (ϵe(h

∗, ŷe) + ϵh(h
∗, ŷh)) (27)

≤ 1

2
dH△H(De,Dh) + λ̂ (28)

(29)

For ϵc,
ϵc = |ϵh(h, ŷh)− ϵh(h, yh)| ≤ |ϵh(ŷh, yh)| = ρh

By summarizing ϵa, ϵb, ϵc, we yield the inequality in Theorem 1:
|ϵα(h)− ϵt(h, yt)| (30)

≤ α[(
1

2
dH△H(De,Dh) + λ) + (

1

2
dH△H(De,Dh) + λ̂)] + ρh (31)

= α(dH△H(De,Dh) + λ+ λ̂) + ρh (32)
□

Furthermore, the pseudo risk is bounded by the ideal risk, the pseudo rate of the clean set ρe and the
noisy set ρh, derived as follows:

λ̂ = ϵe(h
∗, ŷe) + ϵh(h

∗, ŷh) (33)
≤ (ϵe(h

∗, ye) + ϵe(ye, ŷe)) + (ϵh(h
∗, yh) + ϵh(yh, ŷh)) (34)

= λ+ ϵe(ye, ŷe) + ϵh(yh, ŷh) (35)
= λ+ ρe + ρh (36)

Given a constant λ, when the easy-to-adapt subdomain is mostly correct, i.e., ρe ≈ 0, the pseudo risk
is bounded by the pseudo rate of the noisy set ρh.

A.2 HYPER-PARAMETER SETTINGS

We show the hyper-parameters utilized in our experiments in Table 6, including τ for domain division,
α for MixUp, λmse that controls the weight of Lmse and the sharpening factor T . In semi-supervised
learning, to prevent the noisy samples to cause error accumulation, we set λmse to be 0. The Mixup
follows a Beta distribution with α = 1.0. The sharpening factor T = 0.5. We use τ = 0.8 for
Office-31 and Office-Home. In VisDA-17, since the model may not perform confidently for the large
challenging dataset, we set τ = 0.5 to ensure sufficient samples in the easy-to-adapt subdomain.

Hyper-parameter\Dataset Office-Home Office-31 VisDA-17

τ 0.8 0.8 0.5

α 1.0 1.0 1.0

λmse 0. 0. 0.

T 0.5 0.5 0.5

Table 6: Hyper-parameters for different datasets.

A.3 CONVERGENCE OF LOSSES

Figure 4 shows the convergence of the losses of BETA during the training procedure. The adversarial
loss keeps small since the two subdomains are all drawn from the same domain and thus the
distribution divergence between the two subdomains should be small. The mutual information is
maximized as shown in the curve of Lmi. The semi-supervised loss Ldd fluctuates while decreasing
since two networks utilize the subdomains obtained by each other for semi-supervised learning,
which decreases error accumulation.
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Figure 4: The training procedure of the method.

Table 7: Accuracies (%) on Office-Home for partial-set model adaptation. (‘:’ denotes ‘transfer to’.)

Method DABP Ar:Cl Ar:Pr Ar:Re Cl:Ar Cl:Pr Cl:Re Pr:Ar Pr:Cl Pr:Re Re:Ar Re:Cl Re:Pr Avg. H. Avg.

ResNet-50 - 44.9 70.5 80.7 57.5 61.3 67.2 60.9 40.8 76.0 70.9 47.6 76.9 62.9 52.2
LNL-OT ! 42.7 64.2 71.7 57.2 58.5 64.5 56.7 41.6 67.5 64.2 45.1 69.0 58.6 50.3
LNL-KL ! 38.9 53.8 60.5 49.2 50.5 55.9 50.0 38.9 58.0 57.0 41.7 59.6 51.2 44.9
HD-SHOT ! 51.2 76.2 85.7 68.8 70.6 77.5 69.2 49.6 81.4 75.9 54.1 80.7 70.1 60.6
SD-SHOT ! 54.2 81.8 88.9 74.8 76.5 81.0 73.5 50.6 84.2 79.8 58.4 83.7 74.0 64.7
DINE ! 58.1 83.4 89.2 78.0 80.0 80.6 74.2 56.6 85.9 80.6 62.9 84.8 76.2 68.3

BETA (Ours) ! 61.7 88.5 91.6 77.7 80.1 86.3 75.2 58.4 87.0 81.1 61.5 86.7 78.0 69.1

BA3US % 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 67.5
MCC % 63.1 80.8 86.0 70.8 72.1 80.1 75.0 60.8 85.9 78.6 65.2 82.8 75.1 67.8
JUMBOT % 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5 69.0

A.4 APPLICATIONS TO MORE UDA SCENARIOS.

Apart from closed-set UDA, we also demonstrate the effectiveness of our method for partial-set
UDA tasks. To this end, we select the first 25 classes in alphabetical order as the target domain from
Office-Home. As shown in Table 7, it is seen that LNL-OT and LNL-KL lead to negative transfer due
to the label shift. Compared to existing state-of-the-art methods, the proposed BETA achieves the
best accuracy of 78.0%, and even outperforms some standard UDA methods (Fatras et al., 2021; Jin
et al., 2020). The improvements for partial-set tasks are not large, as BETA is not tailored to address
the label shift.

Moreover, the proposed BETA can be easily extended to the semi-supervised domain adaptation
and multi-source domain adaptation. For the semi-supervised domain adaptation, we just add the
labeled samples in the target domain to the easy-to-adapt subdomain, which enables BETA in a
semi-supervised manner (Berthelot et al., 2021). The labeled samples help BETA build a cleaner
division for DABP problem. For the multi-source domain adaptation, we can just change the source
API to an average prediction or voting of multiple source APIs.

A.5 EXPERIMENTS UNDER CHALLENGING SCENARIOS.

As the proposed method is partially based on the semi-supervised learning and self-training, there are
two factors that might hinder the adaptation capacity of BETA: the number of training samples and
the noise ratio. To study if BETA can lead to improvement in the extreme situations, we choose four
hard tasks Ar→Cl (44.1%), Cl→Ar (54.5%), Pr→Ar (52.8%), Re→Cl (46.7%), and only choose
a super small subset (30 samples per class) of the original domain as the unlabeled target domain
data. The results have been shown in Table 8, which demonstrates that our method still brings a
large improvement using only a limited number of unlabeled samples with a super low noise ratio.
However, the improvement margin is less than that of the original setting (with more samples).
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Method Ar→Cl Cl→Ar Pr→Ar Re→Cl Average

Source-only 46.97 51.65 52.00 47.28 49.48
BETA 53.79 60.32 61.10 54.26 57.37

Table 8: Accuracy (%) on Office-Home for challenging situations.

A.6 ABLATION STUDY ON VISDA-17.

To demonstrate the effectiveness of the proposed design Ldd, we further supplement the ablation
study on VisDA-17. Note that MTN is applied to all runs in the ablation study. The results are
shown in Table 9. It is shown that each loss brings some improvement, but the largest improvement
is brought by Ldd. The combination of Lkd and Ldd lead to a small decreasing accuracy, due to
the very noisy label of the source model that hinders the knowledge distillation. Surprisingly, we
find that only our proposed Ldd and information maximization can achieve a new state-of-the-art
(SOTA) performance of 85.1% on VisDA-17, outperforming existing SOTA method (DINE) by 9.5%.
Previously in the manuscript, all the four losses were leveraged for all datasets and experiments.
Through this ablation, we can see that the proposed Ldd brings the largest improvement of 36.2%
against the source-only model. The performances of BETA can be further improved if we fine-tune
the hyper-parameters.

Table 9: Ablation study of four learning objectives on VisDA-17.

Task plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

Source-only 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9
Lkd 67.9 66.2 71.4 85.9 77.6 0.0 64.4 60.8 86.1 71.4 87.7 22.9 63.5
Lkd + Lmi 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6
Ldd + Lmi 94.9 90.2 85.4 61.1 95.5 93.1 85 83.8 92.9 93.9 91.1 55 85.1
Lkd + Lmi + Ldd 94.8 84.1 79.9 70.1 94.3 83.7 83.3 82.8 92.4 88.6 88.2 45.4 82.3
Lkd + Lmi + Ldd + Ladv 96.2 83.9 82.3 71.0 95.3 73.1 88.4 80.6 95.5 90.9 88.3 45.1 82.6

A.7 HYPER-PARAMETER SENSITIVITY ON VISDA-17.

To further validate the hyper-parameter sensitivity, we conduct an additional experiment on VisDA-17.
Similarly, we vary τ from [0.4, 0.7], and the results have been in Table 10. From the results, it
is observed that with varying hyper-parameters τ , the proposed method can still achieve signifi-
cant improvements against the source-only model and the existing state-of-the-art method (DINE).
Even the worst case (τ=0.4) brings an improvement of 32.9% against the source-only model, and
outperforms the existing state-of-the-art model (DINE) by 6.2%. In real-world applications, we
recommend directly using the empirical value (0.6±0.2) that can perform well on all the datasets in
this paper. Note that τ cannot be set to a very large value, as this could lead to a limited number of
the easy-to-adapt subdomain. It cannot be set to a very small value, as this could lead to a very noisy
split of two subdomains.

Table 10: Sensitivity study of hyper-parameter τ on VisDA-17.

Method plane bcycl bus car horse knife mcycle person plant sktbrd train truck Per-class

Source-only 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9
DINE 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6
BETA (τ=0.4) 95.1 83.0 81.8 70.4 94.5 72.6 87.7 79.4 95.0 90.5 87.6 44.5 81.8
BETA (τ=0.5) 96.2 83.9 82.3 71.0 95.3 73.1 88.4 80.6 95.5 90.9 88.3 45.1 82.6
BETA (τ=0.6) 95.3 83.4 81.5 70.8 94.6 72.2 88.5 80.3 94.6 90.7 88.2 45.3 82.1
BETA (τ=0.7) 94.3 82.3 80.7 70.1 93.8 72.1 87.1 79.9 94.2 89.8 87.2 44.3 81.3
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A.8 COMPARISON TO ADAMATCH, INTRADA, DIVIDEMIX, AND CURRICULUM LEARNING

We compare our method with existing works that may share partial similar ideas. Semi-supervised
learning for domain adaptation is proposed in AdaMatch (Berthelot et al., 2021) and IntraDA (Berth-
elot et al., 2021) proposes to reduce intra-domain discrepancy for semantic segmentation. The
differences with these methods lie in the problem formulation, motivation, and the framework design.
In this paper, we aim to deal with DABP problem where the model cannot access the source-domain
data and model parameters, while these works highly rely on the source data. Without any labeled
data, our method is motivated by a new observation, and performs domain division to generate two
subdomains. Then we design the twin network structures to further mitigate the confirmation bias
during self-training.

We also see some works that proposes easy-to-hard strategy (Cui et al., 2020b; Shin et al., 2020; Shu
et al., 2019). However, all of these works require the source domain data for training, and thus these
papers cannot be used in our scenario. Besides, these works rely on intermediate domain generation
or curriculum learning, none of which leverages our observation and idea, “deep models tend to fit
easy-to-adapt samples”. We further compare our method with the DivideMix (Li et al., 2019) that
draws the similar observation in noisy-label learning.

Table 11: The differences between our method and DivideMix.

BETA DivideMix

Task Domain Adaptation of Black-box Predictior (DABP). the
noise of the target domain in DABP is caused by domain
shift between two different domains.

Learning with Noisy
Labels (LNL). The
noise of LNL is ran-
domly added.

Method (a) BETA uses GMM to divide the target domain and Mix-
Match with different augmentation for semi-supervised
learning. (similar) (b) BETA applies knowledge distilla-
tion between models in parallel to the semi-supervised
learning, which is purified by the subdomain division to
suppress error accumulation during distillation. (c) Subdo-
main alignment is proposed to align the internal domain
shift. (d) Subdomain augmentation is proposed to en-
hance structural regularization (i.e., mutual information
and mix-up). Strong-weak augmentation fully utilizes the
high-confidence samples in Xe and single weak augmen-
tation does not introduce more noise to Xh. This process
enhances the Lmi in Eq.(8) that encourages the model to
better comply with the cluster assumption and prevent the
partiality for categories.

DivideMix uses
GMM to divide the
data and then use
MixMatch for semi-
supervised learning.

Theory BETA analyzes the algorithm design theoretically and its
connection with the learning shift of DABP. A new bound
of DABP is derived to explain the rationale behind the
optimization.

N.A.

Experiments Experiments on Office-Home demonstrate that BETA out-
performs DivideMix by 4.7% on average. For the hard
tasks with distant domain shift, BETA outperforms Di-
videMix by 6.0% on average.

Experiments are
conducted on LNL
benchmarks.

A.9 STANDARD DEVIATION

For the experimental results in this paper, we run the codes for 3 time using random seeds. Due to
the page limit, we only report the mean accuracy in the paper. Here we further provide the standard
deviation (std) in Table 12, which shows that our method can achieve a robust improvement in these
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Figure 5: The t-SNE visualization of the target domain on the VisDA-17 dataset at the 1st, 3rd, and
10th training epoch (left to right). Each color indicates one category of VisDA-17.

datasets. We show the std values for all tasks in Office-Home, Office-31 and VisDA-17, and the
average std for DomainNet.

Table 12: Standard deviation of the results on all benchmarks.

Office-31

A→D A→W D→A D→W W→A W→D Avg.
0.1 0.3 0.3 0.2 0.1 0.2 0.2

Office-Home
Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

0.3 0.5 0.2 0.3 0.3 0.2 0.3 0.1 0.5 0.2 0.3 0.3 0.3

VisDA-17: 0.5, DomainNet: 0.3

A.10 T-SNE VISUALIZATION OF BETA.

Figure 5 shows the feature distribution of the target domain at the 1st, 3rd, and 10th training epoch,
and the color indicates the category of VisDA. It is observed that the clusters get tighter with clearer
boundaries during training, though there still exists some intrinsic confusion among some classes that
remains to be tackled in the future.

A.11 CODES AND DATASETS

We have attached the codes in the supplementary materials. The README.md introduces the two
steps: (i) train a source-only model, and (ii) train the BETA using the hard predictions of the source-
only model. The datasets should be prepared in the data folder using the official websites and their
licenses should be followed (Saenko et al., 2010; Venkateswara et al., 2017; Peng et al., 2017).

A.12 EFFECTIVENESS OF DOMAIN DIVISION

In Figure 6, we show the domain division results at the first epoch (after the warm-up) on Office-
Home (Art→Clipart). The three rows contain three categories: alarm clocks, candles, and TV
(monitors). The domain shift is very large between Art and Clipart, and the source-only accuracy is
only 44.1%. Even so, the domain division module still accurately divides the clean easy-to-adapt
subdomain and the hard-to-adapt subdomain. In the easy-to-adapt subdomain, the contours of objects
are similar to those of the source domain, such as the alarm clock. The domain shift between the
easy-to-adapt subdomain and the source domain is smaller, as shown in the candle samples with a
black background. For the TV, the easy-to-adapt samples have very clear contours and are easy to
recognize. In comparison, the hard-to-adapt subdomain is more challenging in terms of shape, color,
and style. Our domain division strategy outputs an AUC of 0.814 for the binary classification of
clean samples and noisy samples whose pseudo labels are generated by the source-only model, which
enables the semi-supervised learning in BETA to be reasonable. During the training, the AUC keeps
increasing to 0.828 and further mitigates the confirmation bias progressively.
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(a) Source domain (Art)

(b) Easy-to-adapt subdomain (Clipart)

(c) Hard-to-adapt subdomain (Clipart)

Figure 6: The domain division results on Office-Home (Art→Clipart).
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