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Abstract: Collaborative perception learns how to share information among mul-
tiple robots to perceive the environment better than individually done. Past re-
search on this has been task-specific, such as detection or segmentation. Yet this
leads to different information sharing for different tasks, hindering the large-scale
deployment of collaborative perception. We propose the first task-agnostic col-
laborative perception paradigm that learns a single collaboration module in a self-
supervised manner for different downstream tasks. This is done by a novel task
termed multi-robot scene completion, where each robot learns to effectively share
information for reconstructing a complete scene viewed by all robots. Moreover,
we propose a spatiotemporal autoencoder (STAR) that amortizes over time the
communication cost by spatial sub-sampling and temporal mixing. Extensive
experiments validate our method’s effectiveness on scene completion and col-
laborative perception in autonomous driving scenarios. Our code is available at
https://coperception.github.io/star/.
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1 Introduction

Single robot perception has been widely studied on tasks such as object detection [1] and semantic
segmentation [2]. However, it suffers from various challenges, such as occlusion and sparsity in
raw observations. Collaborative perception is promising to alleviate those issues. It provides more
environment observations from different perspectives by information sharing to improve perception
performance and robustness. Amongst different collaboration strategies, feature-level collabora-
tion [3, 4, 5] transmits the intermediate representations generated by deep neural networks (DNNs)
of each robot. Since these intermediate features are easy to compress and can preserve contextual
information of the scene, feature-level collaboration demonstrates better performance-bandwidth
trade-off compared to raw-data-level and output-level collaboration [6, 7].

However, existing feature-level collaboration methods [8, 4, 3] are fully supervised by task-specific
losses to learn the entire model, including a feature extractor, a collaboration module, and a decoder,
as shown in Fig. 1 (a). Such a task-specific framework requires re-training the whole model for
different perception tasks. Besides, existing collaborative perception requires training data record-
ings to be synchronized among all robots in time, which is more demanding than data collection in
single-robot perception. How can we design a collaborative perception framework (1) independent
from downstream tasks and (2) trainable from asynchronous datasets?

To answer this question, we propose a novel self-supervised learning task termed multi-robot scene
completion. It enables multiple robots to collaboratively use an autoencoder to reconstruct a com-
plete scene based on shared latent features. The completed scene could then be fed into various
∗indicates equal contribution.
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Figure 1: Task-specific vs Task-agnostic collaboration. Task-specific paradigm learns different
models with different losses for each task. Whereas for the task-agnostic paradigm, reconstruction
of the multi-robot scene is learned, which is independent of yet still usable by all downstream tasks.

downstream tasks without additional training, as shown in Fig. 1 (b). This allows us to decou-
ple the collaboration training from downstream task learning. Moreover, it seamlessly supports
synchronous and asynchronous training datasets with different learning objectives: complete scene
reconstruction if synchronous and individual view reconstruction if asynchronous.

Yet naive autoencoders are not designed to balance scene reconstruction performance and communi-
cation volume, which is an established criterion to evaluate collaborative perception. To address this
challenge, we further design a spatiotemporal autoencoder (STAR) inspired by the recent masked au-
toencoders (MAE) [9]. It reconstructs a scene using a spatiotemporal mixture of patch tokens: some
tokens are encoded from randomly sub-sampled patches in the current frame and others are cached
from the past. The sampling ensures that all patches in the mixture can jointly cover the whole spa-
tial region while being self-disjoint. This allows each robot to only transmit the sub-sampled tokens
in the current frame instead of the entire latent feature maps, leading to much lower communication
bandwidth than prior works. Our key insight behind such an amortized communication cost is that
features of many patches (e.g., static or nearly static) do not need to be shared in every frame.

In summary, our main contributions are threefold:
• We propose a brand-new task-agnostic collaborative perception framework based on multi-robot

scene completion, decoupling the collaboration learning from downstream tasks.
• We propose asynchronous training and synchronous inference with a shared autoencoder to solve

the proposed task, eliminating the need for synchronous data for collaboration learning.
• We develop a novel spatiotemporal autoencoder (STAR) that reconstructs scenes based on tempo-

rally mixed information. It amortizes the spatial communication volume over time to improve the
performance-bandwidth trade-off.

• We conduct extensive experiments to verify our method’s effectiveness for scene completion and
downstream perception in autonomous driving scenarios.

2 Related Works

Collaborative perception. Collaborative perception has been proposed to improve individual per-
ception’s flexibility, resilience, and efficiency [10, 11, 12]. With recent advances in deep learning,
researchers have developed feature-level collaborative perception in which intermediate representa-
tions produced by deep neural networks (DNNs) from multiple viewpoints are propagated in a team
of robots, e.g., a swarm of drones [8, 3] or a group of vehicles [4, 6]. Existing works commonly
consider a specific downstream task and use the corresponding loss function to learn a collabora-
tion module such as a graph neural network (GNN) [4, 3], a Transformer [13, 14], and a convo-
lutional neural network [5, 15]. Several downstream tasks have been investigated in collaborative
scenarios, such as object detection [4], semantic segmentation [8], and depth estimation [3]. Un-
like the existing task-specific collaborative perception sharing task-dependent representations, we
define task-agnostic 3 collaborative perception as the feature-level collaborative perception sharing
task-independent representations amongst multiple robots.

3Herein ”task” denotes the downstream perception task such as object detection and semantic segmentation.
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Scene completion. Autonomous navigation [16] requires robots to understand the geometry and
semantics of 3D scenes. However, vision sensors only capture partial observations because of a
limited field of view and sparse sensing, leading to an incomplete spatial representation. Therefore,
scene completion (SC) has been proposed to infer the complete 3D scene geometry given sparse
2D/3D observations [17, 18, 19]. Following scene completion, semantic scene completion (SSC)
has been introduced to jointly estimate both geometry and semantic information based on partial
observation [2, 20, 21, 22]. On the one hand, single robot scene completion can rely on prior
semantic knowledge to complete the partially-observed objects. On the other hand, it is unrealistic to
see through full occlusions. Unlike single robot scene completion depending on prior knowledge, the
multi-robot scene completion task utilizes information shared by teammates for scene completion.

Self-supervised representation learning. Self-supervised representation learning (SSRL) aims to
provide powerful features without the need for massive annotated datasets [23]. SSRL is generally
composed of: (1) task-agnostic pre-training via carefully-designed self-supervised pretext tasks such
as contrastive learning [24, 25] or autoencoding [26, 27, 9], and (2) task-specific adaptation to fine-
tune the pre-trained model on the downstream tasks such as object detection or image classification.
Masked autoencoder (MAE) achieves great performance with a simple reconstruction objective [9].
It employs an asymmetric architecture with a large encoder that only processes unmasked patches
and a lightweight decoder that reconstructs the masked patches from the latent representation. Re-
cent works extend MAE into multimodal representation learning [28, 29], video [30, 31], and 2D
image completion [32]. In this work, we employ similar autoencoding to learn the shared repre-
sentations and enable quick adaptation to the downstream perception: the reconstructions could be
seamlessly utilized by off-the-shelf individual perception model trained on single-view data without
any fine-tuning, bridging the gap between collaborative perception and individual perception.

3 Multi-Robot Scene Completion: Motivation, Formulation, and Evaluation

Motivation. Even though single-robot data already requires arduous annotations like 3D bounding
boxes and pixel-wise semantic labeling, multi-robot data even demands multiple times as much
work. To relax the task-dependent supervision for collaboration learning, we propose multi-robot
scene completion to enable task-agnostic collaborative perception. It can utilize self-supervision to
learn shared representations instead of expensive task-dependent supervision. We will introduce its
overall workflow, training objective, and evaluation metrics hereafter.

Problem setup. We consider N robots in the same geographical location simultaneously perceiving
the 3D environment, such as a fleet of autonomous vehicles located at a crossroad. These robots
communicate with each other about their observations to better understand the surrounding envi-
ronment. Each robot indexed by i is equipped with a 3D sensor such as a LiDAR to generate a
binary occupancy grid map Mi ∈ {0, 1}H×W×C defined in its local coordinate, where H , W , and
C respectively denote the length, width, and height resolution.

Feature extraction. We employ intermediate collaboration with better performance-bandwidth
trade-off [5]. Each robot encodes its observation into a feature map denoted by Fi = Θ(Mi),
where Θ is a feature extractor. Now Fi ∈ RH̄×W̄×C̄ has lower spatial resolution H̄ × W̄ , while
keeping a higher feature dimension C̄ compared to the original map Mi. Then, each robot will
broadcast Fi to its peers as well as its pose ξi ∈ se(3) defined in the global coordinate.

Feature decoding. The robot i receives the messages from the neighboring robots {Fj , ξj}j 6=i, and
then uses a decoder Φ and a pose-aware aggregatorA for fusion, and output a completed occupancy
grid map Ŷi = Φ(A(Fi, ξi, {Fj , ξj}j 6=i)), where Ŷi has the same dimension and describe the
same spatial range as Mi yet is a more comprehensive spatial representation for the scene. The
pose-aware aggregator A transforms the feature maps of robot j(j 6= i) into the coordinate of the
target robot i, then sums all the coordinate-synchronized feature maps:

A(Fi, ξi, {Fj , ξj}j 6=i) = Fi +

N−1∑
j=1

Γj→i(Fj), (1)

where Γj→i ∈ SE(3) is the transformation from robot j’s coordinate to i’s, obtained by the expo-
nential map of poses ξj and ξi. Bi-linear interpolation is used to transform a discrete map, and the
positions out of the spatial range H̄ × W̄ after transformation are padded with zero.
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Training loss. We treat the scene completion task as a binary classification problem and use cross-
entropy loss to train a neural network composed of Θ and Φ. Specifically, the ground-truth Yi ∈
{0, 1}H×W×C defined in the coordinate of robot i represents a multi-view occupancy voxel grid
with two classes, i.e., free and occupied. Therefore, the loss can be computed by:

L = −
N−1∑
i=0

L−1∑
k=0

1∑
c=0

yi,k,clog(
eŷi,k,c∑
c e

ŷi,k,c
), (2)

where i is the robot index, k is the voxel index, L is the total number of the voxel (L = H×W ×C),
c is the number of class (2 in our case), ŷi,k,c is the predicted logits for the k-th voxel belonging
to class c, yi,k,c is the k-th element of Yi and is a one-hot vector (yi,k,c = 1 if voxel k of robot
i belongs to class c). Here we show the training objective using synchronous multi-robot data
created by aggregating multi-robot observations based on robots’ poses similar to Eq. (1): Yi =
A(Mi, ξi, {Mj , ξj}j 6=i) (j < M), where M is the number of robots for the ground truth generation.
Note that Θ and Φ can also be trained by individual view reconstruction on asynchronous data as
shown in Eq. (3), while being deployed on synchronous data for inference as discussed in Section 4.
Hallucinating the invisible scene is possible if the ground-truth Yi is generated with more robots
than those involved in the training phase, i.e., M >N . Yet only synchronous training can achieve
this because the ground truth requires aggregation of different viewpoints obtained synchronously.

Evaluation metrics. We follow the evaluation protocol in single-robot scene completion [19, 33],
which uses the voxel-level intersection over union (IoU) between predicted voxel labels Ŷi and
ground truth labels Yi for each robot. Note that only non-empty voxels are evaluated.

4 STAR: Spatiotemporal Autoencoder

In addition to the multi-robot scene completion task, we also propose a novel architecture called
Saptiotemporal autoencoder (STAR) to tackle this problem. We will present our key design moti-
vation, detailed modules, training, and inference procedures.

4.1 Design rationale

Partially broadcasting. Inspired by the idea of ”masking” in MAE [9], we employ a similar asym-
metric design as MAE yet with different purposes: MAE is to design a nontrivial self-supervisory
task for pre-training via randomly masking, while the goal of STAR is to reduce the communica-
tion volume in multi-robot systems via partial broadcasting. More specifically, STAR deploys an
encoder at the sender robot to map the entire observation to an intermediate feature representation
that is selectively transmitted to lower the bandwidth. Meanwhile, STAR deploys a decoder at the
receiver robot that reconstructs the original observation from the received partial representation.

Spatiotemporal amortization. Simply applying random masking to a complete observation is not
a good idea. Unlike MAE mainly for object-level recognition, we aim at large-scale dynamic scene
modeling. Once objects are completely masked during encoding, the decoder cannot hallucinate the
corresponding objects without such knowledge. Therefore, we propose to exploit historical tokens
to replace mask tokens during decoding. In this way, we can amortize the communication cost over
the temporal domain by spatial sub-sampling and temporal mixing. Specifically, at the sender’s side,
a part of the spatial patches are sampled from the entire observation in each timestamp. Only the
features of these subsampled spatial patches are communicated with the teammates. Upon receiving
the transmitted patch features, the receiver’s decoder combines these features with the historical
patch features and reconstructs an entire observation. Since the patches are subsampled in a spatially
complementary manner, the temporally mixed patches jointly cover the whole spatial region.

Synchronization-free training. Traditional collaborative perception approaches consider a syn-
chronization training strategy that requires synchronous (potentially with a slight temporal latency)
multi-robot recordings to train a feature-space collaboration strategy with task-specific loss func-
tions [4, 5]. In this work, we try to relax the requirement that multiple robots simultaneously capture
perception data by using single-view observations as the supervision during the training phase. We
will describe this in detail in section 4.3.
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Figure 2: Asynchronous training and synchronous inference. In the top right, asynchronous train-
ing does not require communication between robots. In contrast, in the bottom right, synchronous
training requires communication and optimization w.r.t. each specific task loss. The synchronous
inference is illustrated on the left. The sender transmit encoded representations to the receiver.
The receiver uses a mixture of spatiotemporal tokens to complete the scene observation. S: spatial
sub-sampling. T: temporal mixing.

4.2 Architecture

We consider a set of robots deploying the same neural network following [4, 5]. Each robot serves
as both message sender and receiver during collaboration and is equipped with an encoder for ob-
servation abstraction and a decoder for view reconstruction.

STAR encoder. Different from MAE [9], the STAR encoder uses a vision transformer (ViT) [34]
backbone, which operates on all patches yet only sends out a subset (spatial sub-sampling). Specif-
ically, the entire grid map for robot i at time t denoted by Mi,t is divided into multiple patches,
and each patch is encoded with a linear projection with additional positional embedding, and then
processed using a series of Transformer blocks to generate the final message Fi,t. Note that we
adopt a complementary transmission strategy in the temporal domain regarding the patch index (i.e.,
the observed spatial locations) to avoid the loss of information for the dynamic scenes.

STAR decoder. Different from MAE which uses mask tokens to replace the missed patch embed-
dings, robot i as a receiver aggregates the historic tokens Fj,t−1 and the current tokens Fj,t from
robot j (temporal mixing), which approximately form a complete observation towards the entire spa-
tial range. Temporal embeddings are added to the tokens from the respective timestamps to enhance
the temporal awareness before feeding them into Transformer blocks. Note that here we use two-
timestamp t and t−1 as an example for a simple explanation. The STAR decoder is also able to pro-
cess more historical timestamps. After decoding all robots’ views {M̂j,t}j 6=i, the ultimate prediction
of the complete view is computed by coordinate synchronization: Ŷi = A(Mi,t, ξi, {M̂j,t, ξj}j 6=i),
and its calculation process is similar to Eq. (1).

4.3 Training and inference

Asynchronous training. The model is trained with single view ground-truth Mi, and adopt cross-
entropy loss during training:

L = −
N−1∑
i=0

L−1∑
k=0

1∑
c=0

mi,k,clog(
em̂i,k,c∑
c e

m̂i,k,c
), (3)

where i is the robot index, k is the voxel index, L is the total number of the voxels, c = 2 is
number of class, mi,k,c denotes the k-th element of Mi and is a one-hot vector same as yi,k,c in
Eq. 2, m̂i,k,c is the prediction for the k-th voxel belonging to class c. Note that the training loss
is calculated voxel-wise with respect to the self-supervision signal from each robot’s single-view
observation. This design decouples the training phase from communication with other robots: the
model on each robot does not require synchronous observations from neighbor robots in the training
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phase, making the training asynchronous (asynchronous training in Fig. 2). This is greatly different
from the training framework in previous collaborative perception works such as [5] (synchronous
training in Fig. 2). Our training framework can relax the need for the carefully-collected and hard-
to-annotate multi-robot dataset and can exploit a large amount of single-robot data to learn powerful
as well as compact feature representations.

Synchronous inference. During inference, each robot is equipped with the same model. The sender
robots’ encoders will encode and broadcast a subset of their current timestamp’s observation. Then,
the decoders on the receiver side will leverage the transmitted intermediate representation along
with the pose information to reconstruct the corresponding view, optionally with historical features
as described above. Then, the receivers use corresponding pose information to aggregate the single
observations into a multi-view completed scene. We illustrate the pipeline on the left side of Fig. 2.

5 Experimental Results

5.1 Experimental setup

Dataset. We conduct experiments on the V2X-Sim Dataset [15], a large-scale dataset that simulates
urban multi-vehicle driving scenes with CARLA [35]. We use 80 scenes for training and ten scenes
for testing. The dataset is sampled at 5 Hz. We pre-process the voxels grids with range [−32m, 32m]
in the x and y-axis and [−3m, 2m] in the z-axis. Finally, we can get the voxel grids with a spatial
resolution of 256× 256× 13.

Baselines. The lower-bound refers to a single-robot perception model trained and tested using
only individual observations. The task-specific models all optimize the collaboration based on
the specific perception head. When2com [8] uses the attention mechanism to fuse the collaborators’
information. Who2com [36] employs a handshake mechanism. The V2VNet [4] trains a graph
neural network to propagate the agent’s information. DiscoNet [5] selectively fuse messages from
the informative regions. For task-agnostic models, we use a modified FaFNet [37] backbone as the
CNN baseline and substitute the detection head with a classification head that outputs the logits for
binary classification. VQ-VAE [26] learns a variational autoencoder to reconstruct the scene and
employs a vector quantization technique to reduce communication costs.

Implementation details. A 6-block ViT encoder with hidden dimension 384 is used for the STAR
encoder. Then an MLP is used to compress the intermediate representations to 32 dimensions and
feed them to the decoder, where they are projected back to 256 dimensions and sent to a 4-layer
transformer decoder. An FaFNet [37] is used for single-robot object detection. A UNet [38] serves
the same purpose for the semantic segmentation task. Note that all the perception models take the
three-dimensional voxel grids as input and output results in bird’s eye view (BEV), such as bounding
boxes and semantic labels. Our models are all trained on single-view data.

Evaluation metrics. For the scene completion task, we measure the completion quality using the
intersection-over-union (IoU) at three different scales by down-sampling the voxels accordingly.
For the perception task, we report the average precision (AP) at thresholds 0.5 and 0.7 for vehicle
detection, IoU for the vehicle category, and the overall mIoU for semantic segmentation.

5.2 Quantitative results on scene completion

We present the quantitative results of the multi-robot scene completion task in Table 1, measured by
IoU at different scales and the corresponding communication bandwidth.

Spatial resolution. Among the three tested resolutions, we can see that, in general, a higher spatial
resolution leads to a better completion quality: the spatial resolution 32× 32 which has a patch size
of 8 achieves the best performance.

Timestamps. Our method allows the multi-robot system to amortize the spatial communication
bandwidth over the temporal domain. From Table 1, we can see that from timestamps 1 to 4, the
performance only varies slightly while largely reducing the bandwidth.

Bandwidth. Bandwidth is calculated to reflect the required data volume for communication per
second. A trade-off between performance and communication is clear. The CNN baseline requires
much higher bandwidth because multiple feature maps are transmitted during communication due
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Timestamp IoU scale 1:1 IoU scale 1:2 IoU scale 1:4 Communication Bandwidth
32x32 16x16 8x8 32x32 16x16 8x8 32x32 16x16 8x8 32x32 16x16 8x8

STAR TS1 55.13 53.11 50.79 77.40 72.16 66.55 83.28 79.30 73.33 1.3MB/s 320.0KB/s 80.0KB/s
STAR TS2 54.93 52.07 50.40 75.71 69.63 64.86 82.51 76.24 70.81 640.0KB/s 160.0KB/s 40.0KB/s
STAR TS3 53.35 51.56 50.39 72.52 68.19 64.75 79.20 74.51 70.55 427.0KB/s 106.7KB/s 26.7KB/s
STAR TS4 53.65 51.64 49.69 72.98 68.15 63.39 79.73 74.36 68.98 320.0KB/s 80.0 KB/s 20.0KB/s

CNN backbone 55.37 77.17 83.51 155.0MB/s

Table 1: Quantitative results on scene completion. Results across different spatial resolutions and
timestamps are presented. Note TSX means fusing temporal information across X TimeStamps.

Timestamp All Partial

1 65.19 -
2 64.68 61.36
3 64.53 63.77

(a) Patches to encode. All: encodes all. Partial:
only encodes those patches being transmitted.

Timestamp Multi Single

1 65.19 -
2 64.68 52.07
3 64.53 51.97

(b) Timestamps to decode. For timestamp 1, de-
coding a single timestamp is equivalent to multi.

Timestamp Temporal Emb.
w/ w/o

2 64.68 64.29
3 64.53 61.83

(c) Temporal embedding. W/ means temporal
embeddings are added. W/o means not.

Strategy Timestamp
2(50%) 3(66%) 4(75%)

random 50.88 52.36 52.14
compl. 64.45 64.20 63.27

(d) Masking strategy. The ratio of random mask-
ing is set equivalent to complementary masking.

Table 2: Ablation studies. The performance is reported in IoU 1:2 for the spatial resolution 16x16.
The observations under other settings are consistent.

to the skip connections in the model. STAR requires much lower bandwidth. A finer-grained spatial
resolution with better performance requires a higher bandwidth.

5.3 Ablation studies on scene completion

We conduct several ablation studies to investigate the effectiveness of the key components in our
method. Results are presented in Table 2 and are discussed in detail below.

Patches to encode. As shown in Table 2a, only encoding the patches that will be transmitted can re-
sult in a minor drop in performance. Yet it can reduce some computations for computation-restricted
robotic systems.

Timestamps to decode. We investigate the effect of whether the decoder incorporates previous
timestamps or just the current single timestamp combined with learnable mask tokens. Results in
Table 2b indicate that historical information is essential.

Temporal embedding. In the STAR decoder, we add temporal embedding to the patches of different
timestamps, similar to the approach in [30, 31]. The ablation study in Table 2c shows that adding
temporal embedding is beneficial.

Masking strategy. We compared our complementary masking strategy with the random masking
strategy proposed in MAE [9] in Table 2d. Results show that switching from complementary to
random masking leads to a degradation in the completion performance.

5.4 Quantitative results on downstream perception

We directly feed the single-view to the single-robot perception model termed lower-bound without
any fine-tuning, and the results are shown in Table 3. Our best STAR method improves the lower-
bound by 25.9% and 22.8% in object detection (AP@IoU=0.7) and semantic segmentation (IoU
of vehicle) respectively. Achieved by simply combining the completion model with off-the-shelf
single-robot perception models, these improvements are promising because our framework: (1) has
no knowledge about downstream tasks (task-agnostic); (2) does not require synchronous data in the
training phase (synchronization-free); (3) is learned without manual annotations (self-supervised).
We also investigated the single-robot perception model directly taking ground truth multi-view mea-
surements without additional training, termed upper-bound, and find that it can achieve nearly com-
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Paradigm Method Detection Semantic Segmentation
AP@IoU=0.5 AP@IoU=0.7 Vehicle mIoU

Single-robot perception Lower-bound 49.90 44.21 45.93 36.64

Task-specific multi-robot perception

When2com [8] 44.02 39.89 47.87 34.49
Who2com [36] 44.02 39.89 47.84 34.49

V2VNet [4] 68.35 62.83 58.35 41.17
DiscoNet [5] 69.03 63.44 55.84 41.34

Task-agnostic multi-robot perception
STAR TS1 62.84 57.22 56.41 39.09
STAR TS2 61.48 55.75 56.13 38.97
VQ-VAE 60.27 54.08 55.40 38.48

CNN baseline 59.85 54.05 54.61 38.32
Upper-bound 65.09 60.26 60.34 40.45

Table 3: Quantitative results on downstream tasks. The task-specific methods achieve excellent
results via elaborate supervised learning with synchronous multi-robot recordings. The task-agnostic
methods use single-robot perception models with reconstructed observations.

parable performance with DiscoNet [5] and V2VNet [4], both trained with full supervision using
synchronous data for specific tasks. This demonstrates the potential of our proposed task: when the
completions approach the ground truth scenes, it can perform similarly to the upper bound on many
downstream tasks. Moreover, using a stronger single-robot perception model can further enhance
the final performance.

5.5 Qualitative results on scene completion and downstream perception

We present a few qualitative results on the scene completion and the downstream tasks in Figure 3.
Due to the limited space, more visualizations can be found in the appendix.

True Observation Completed Observation

True Segmentation Predicted Segmentation

DifferenceTrue Observation 

True Observation 

Completed Observation

Completed Observation Detection
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(C) Semantic Segmentation

Figure 3: Qualitative results. (a), (b) and (c) each presents a qualitative example of the scene comple-
tion, detection, and segmentation tasks respectively. Refer to the appendix for more visualizations.

6 Limitation

There is still a performance gap between our method and the upper bound on the downstream per-
ception due to the non-perfect scene completion. We believe when trained with more single-robot
recordings, our method is able to achieve comparable performance to task-specific approaches while
maintaining excellent flexibility. Currently the spatial tokens are sub-sampled randomly at individ-
ual timestamp, and we believe this could be improved in the future. We also inherit the common
limitation in most existing collaborative perception works: all experiments are on simulated datasets
due to the lack of public real-world datasets. We further ignore the influence of pose noises, although
previous works [5] already revealed reasonable robustness.

7 Conclusion

We propose the first task-agnostic collaborative perception paradigm, where a single collaboration
module is learned and can be transferred to different downstream tasks. Our key observation is that
we can move communication between robots to the temporal domain, which achieves an excellent
performance-bandwidth trade-off. Also, our self-supervised learning method sheds new light on
collaborative perception that reduces the importance of human annotations.

8



Acknowledgments

We thank the anonymous reviewers for their valuable comments in revising this paper. This work
was supported by the NSF CPS Program under Grant CMMI-1932187 and CNS-2121391.

References
[1] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon. Detr3d: 3d object

detection from multi-view images via 3d-to-2d queries. In Conference on Robot Learning,
pages 180–191. PMLR, 2021.

[2] R. Cheng, C. Agia, Y. Ren, X. Li, and L. Bingbing. S3cnet: A sparse semantic scene comple-
tion network for lidar point clouds. In Conference on Robot Learning, 2020.

[3] Y. Zhou, J. Xiao, Y. Zhou, and G. Loianno. Multi-robot collaborative perception with graph
neural networks. IEEE Robotics and Automation Letters, 2022.

[4] T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, and R. Urtasun. V2vnet: Vehicle-
to-vehicle communication for joint perception and prediction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 605–621, 2020.

[5] Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang. Learning distilled collaboration graph
for multi-agent perception. In Advances in Neural Information Processing Systems, volume 34,
2021.

[6] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception for connected au-
tonomous vehicles based on 3d point clouds. In IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 514–524, 2019.

[7] E. Arnold, M. Dianati, R. de Temple, and S. Fallah. Cooperative perception for 3d object
detection in driving scenarios using infrastructure sensors. IEEE Transactions on Intelligent
Transportation Systems, 2020.

[8] Y.-C. Liu, J. Tian, N. Glaser, and Z. Kira. When2com: multi-agent perception via communi-
cation graph grouping. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4106–4115, 2020.

[9] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vi-
sion learners. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

[10] Y. Hu, S. Fang, Z. Lei, Y. Zhong, and S. Chen. Where2comm: Communication-efficient collab-
orative perception via spatial confidence maps. In Advances in neural information processing
systems, 2022.

[11] Z. Lei, S. Ren, Y. Hu, W. Zhang, and S. Chen. Latency-aware collaborative perception. In
Proceedings of the European Conference on Computer Vision (ECCV), 2022.

[12] S. Su, Y. Li, S. He, S. Han, C. Feng, C. Ding, and F. Miao. Uncertainty quantification of
collaborative detection for self-driving. arXiv preprint arXiv:2209.08162, 2022.

[13] R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma. Cobevt: Cooperative bird’s eye view
semantic segmentation with sparse transformers. In 6th Annual Conference on Robot Learning.

[14] R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma. V2x-vit: Vehicle-to-everything
cooperative perception with vision transformer. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022.

[15] Y. Li, D. Ma, Z. An, Z. Wang, Y. Zhong, S. Chen, and C. Feng. V2x-sim: Multi-agent col-
laborative perception dataset and benchmark for autonomous driving. IEEE Robotics and
Automation Letters, 7(4):10914–10921, 2022.

9



[16] S. Garg, N. Sünderhauf, F. Dayoub, D. Morrison, A. Cosgun, G. Carneiro, Q. Wu, T.-J. Chin,
I. Reid, S. Gould, et al. Semantics for robotic mapping, perception and interaction: A survey.
Foundations and Trends® in Robotics, 8(1–2):1–224, 2020.

[17] J. Davis, S. R. Marschner, M. Garr, and M. Levoy. Filling holes in complex surfaces using
volumetric diffusion. In Proceedings. First International Symposium on 3D Data Processing
Visualization and Transmission, pages 428–441. IEEE, 2002.

[18] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow. Structured prediction of unobserved
voxels from a single depth image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5431–5440, 2016.

[19] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic scene com-
pletion from a single depth image. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1746–1754, 2017.

[20] L. Roldao, R. de Charette, and A. Verroust-Blondet. Lmscnet: Lightweight multiscale 3d
semantic completion. In 2020 International Conference on 3D Vision (3DV), pages 111–119.
IEEE, 2020.

[21] C. B. Rist, D. Emmerichs, M. Enzweiler, and D. M. Gavrila. Semantic scene completion using
local deep implicit functions on lidar data. IEEE transactions on pattern analysis and machine
intelligence, 44(10):7205–7218, 2021.

[22] X. Yan, J. Gao, J. Li, R. Zhang, Z. Li, R. Huang, and S. Cui. Sparse single sweep lidar point
cloud segmentation via learning contextual shape priors from scene completion. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 3101–3109, 2021.

[23] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales. Self-supervised representation learn-
ing: Introduction, advances, and challenges. IEEE Signal Processing Magazine, 39(3):42–62,
2022.

[24] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729–9738, 2020.

[25] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good views
for contrastive learning? In Advances in Neural Information Processing Systems, volume 33,
pages 6827–6839, 2020.

[26] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. In Advances in
neural information processing systems, volume 30, 2017.

[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[28] R. Bachmann, D. Mizrahi, A. Atanov, and A. Zamir. Multimae: Multi-modal multi-task
masked autoencoders. arXiv preprint arXiv:2204.01678, 2022.

[29] X. Geng, H. Liu, L. Lee, D. Schuurams, S. Levine, and P. Abbeel. Multimodal masked autoen-
coders learn transferable representations. arXiv preprint arXiv:2205.14204, 2022.

[30] Z. Tong, Y. Song, J. Wang, and L. Wang. Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. In Advances in neural information processing
systems, 2022.

[31] C. Feichtenhofer, H. Fan, Y. Li, and K. He. Masked autoencoders as spatiotemporal learners.
In Advances in neural information processing systems, 2022.

[32] C. Zheng, T.-J. Cham, and J. Cai. Tfill: Image completion via a transformer-based architecture.
arXiv preprint arXiv:2104.00845, 2021.

[33] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. Se-
mantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 9297–9307, 2019.

10



[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference on Learning Representations,
2020.

[35] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[36] Y.-C. Liu, J. Tian, C.-Y. Ma, N. Glaser, C.-W. Kuo, and Z. Kira. Who2com: Collaborative
perception via learnable handshake communication. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 6876–6883, 2020.

[37] W. Luo, B. Yang, and R. Urtasun. Fast and furious: Real time end-to-end 3d detection, tracking
and motion forecasting with a single convolutional net. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 3569–3577, 2018.

[38] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

11


	Introduction
	Related Works
	Multi-Robot Scene Completion: Motivation, Formulation, and Evaluation
	STAR: Spatiotemporal Autoencoder
	Design rationale
	Architecture
	Training and inference

	Experimental Results
	Experimental setup
	Quantitative results on scene completion
	Ablation studies on scene completion
	Quantitative results on downstream perception
	Qualitative results on scene completion and downstream perception

	Limitation
	Conclusion

