
GraphMorph: Tubular Structure Extraction by
Morphing Predicted Graphs

Zhao Zhang1,5 Ziwei Zhao2 Dong Wang2 Liwei Wang3,4,B
1Center for Data Science, Peking University 2Yizhun Medical AI Co., Ltd

3State Key Laboratory of General Artificial Intelligence,
School of Intelligence Science and Technology, Peking University

4Center for Machine Learning Research, Peking University 5Pazhou Laboratory (Huangpu)
zhangzh@stu.pku.edu.cn ziwei.zhao@yizhun-ai.com
dong.wang@yizhun-ai.com wanglw@pku.edu.cn

Abstract

Accurately restoring topology is both challenging and crucial in tubular structure
extraction tasks, such as blood vessel segmentation and road network extraction.
Diverging from traditional approaches based on pixel-level classification, our pro-
posed method, named GraphMorph, focuses on branch-level features of tubular
structures to achieve more topologically accurate predictions. GraphMorph com-
prises two main components: a Graph Decoder and a Morph Module. Utilizing
multi-scale features extracted from an image patch by the segmentation network,
the Graph Decoder facilitates the learning of branch-level features and generates
a graph that accurately represents the tubular structure in this patch. The Morph
Module processes two primary inputs: the graph and the centerline probability
map, provided by the Graph Decoder and the segmentation network, respectively.
Employing a novel SkeletonDijkstra algorithm, the Morph Module produces a
centerline mask that aligns with the predicted graph. Furthermore, we observe
that employing centerline masks predicted by GraphMorph significantly reduces
false positives in the segmentation task, which is achieved by a simple yet effective
post-processing strategy. The efficacy of our method in the centerline extraction
and segmentation tasks has been substantiated through experimental evaluations
across various datasets. Source code will be released soon.

1 Introduction
Extraction of tubular structures is an essential step in many computer vision tasks [39, 13, 1, 27].
In medical applications, accurate segmentation of retinal vessels can provide crucial insights into
various cardiovascular and ophthalmologic diseases [8]. In the field of urban planning and geographic
information systems, the precise extraction of road networks aids in traffic management, urban devel-
opment, and emergency response planning [28]. Existing deep learning-based methods model tubular
structure extraction as a pixel-level classification task [34] or point set prediction task [40], without
explicitly predicting the topological structures. To focus more on topology, some advanced methods
design novel backbones or modules [36, 23, 33], or introduce new loss functions from the topological
perspective [14, 37, 25]. However, they are still limited to the framework of pixel-level prediction.

We argue that most pixel-level frameworks have not effectively exploited the nature of tubular
structures, which are inherently composed of several branches that are interconnected in complex
ways. Specifically, pixel-level loss functions, like softDice Loss [26] and Focal Loss [20], struggle
with subtle inaccuracies and are particularly ineffective at addressing complex topological errors.
Under the pixel-level frameworks, despite attempts to pay more attention to fine branches [37, 25] or

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) Image

(b) Label (c) DiceLoss (d) clDiceLoss (e) GraphMorph

  82.72, 92.03

G
raph

Prediction

84.98, 95.17 87.39, 97.83Dice, clDice     :
,                : 4, 5 0, 1 0, 0

Figure 1: Illustrating the impact of topological feature utilization on segmentation accuracy. (a) An
input neuron image. Column (b) Ground truth with segmented membranes (white) and its centerline
(blue lines); the constructed graph (nodes in red, edges in green). Column (c) and (d) Predictions
of two methods [26, 37] without explicit topological learning, highlighting broken branches (false
negatives in yellow), redundant branches (false positives in green), and topological errors (in red).
Column (e) Our GraphMorph guarantees topological accuracy by learning explicit branch-level
features. Details of skeletonization and graph construction are given in Appendix B. Evaluation
metrics: Dice and clDice (higher is better), β0 error and χ error (lower is better).

topological features [14, 33], they still struggle with fully capturing the complex topological nature
of tubular structures. We demonstrate this deficiency by providing an example in Figure 1. For a
systematic understanding of the issues of pixel-level frameworks, we summarize them into three
categories: (1) Broken branches or false negatives (FNs). (2) Redundant branches or false positives
(FPs). (3) Topological errors (TEs). Therefore, understanding tubular structure extraction solely from
a pixel-level perspective is fundamentally flawed.

Recognizing these limitations, we shift our focus to branch-level features, which are more essential
for accurately capturing the nuances of tubular structures. Any complex tubular structure can be
broken down into several branches, which distinguishes it from non-tubular objects. This perspective
inspires us to extract tubular structures in two steps: (1) predicting the location of the two endpoints of
each branch; (2) finding the optimal path between the two endpoints of each branch. Such a solution
is intuitively aligned with human perception, and able to offer several advantages. Specifically,
if the endpoints of branches are accurately predicted in the first step, redundant branches (FPs)
are then potentially reduced; and the second step ensures that there is a path connecting the two
endpoints of each branch, so that broken branches (FNs) and TEs are effectively suppressed. Besides,
learning branch-level features during training elevates the model’s focus on topology, which implicitly
improves topological accuracy.

To effectively utilize branch-level features of tubular structures, we propose GraphMorph, a pipeline
for obtaining topologically accurate centerline masks. GraphMorph consists of a Graph Decoder
and a training-free Morph Module, which corresponds to the two steps of our solution respectively.
The Graph Decoder, given multi-scale features extracted from an image patch by a segmentation
network, predicts the graph G of the tubular structure. G is defined by a node set V = {(xi, yi)}Ni=1,
which contains the coordinates of all critical points vital for maintaining topology, and an adjacency
matrix A ∈ {0, 1}N×N , which encodes the connectivity among nodes. Each pair of connected
nodes in the graph corresponds to two endpoints of a branch of the tubular structure, thus the Graph
Decoder takes full advantage of branch-level features through this graph representation. Technically,
the prediction of V is addressed as a set prediction problem, solvable by our modified version of
Deformable DETR [49]. To efficiently obtain the adjacency matrix A, we design a lightweight link
prediction module that capitalizes on the extracted node features. Concretely, since the number of
nodes in each tubular structure may be different, we generate linear weights and biases dynamically
conditioned on node features, and the adjacency list of each node is obtained from its corresponding
linear parameters (See Figure 2).

The Morph Module, a core contribution of this work, is intended to obtain topologically accurate
centerline masks. While studies in the image-to-graph task [38, 32] also utilize graph representation,

2



they struggle to directly obtain accurate centerline masks due to the curved nature of tubular objects.
In contrast, our Morph Module generates topologically accurate centerline masks via a novel
SkeletonDijkstra algorithm. Specifically, a centerline probability map Pm, together with the graph
G, output by the segmentation network and the Graph Decoder respectively, serve as the input to the
Morph Module. Afterwards, considering the skeleton property of centerlines, our SkeletonDijkstra
algorithm finds the optimal path between each pair of connected nodes. In particular, during path
finding from the start point to the end point, we always restrict the path to a single pixel width to
satisfy the skeleton property of centerlines. Consequently, the topology of the resulting centerline
mask is guaranteed by G, leading to a reduction in TEs. This method also minimizes the occurrence
of broken branches (FNs) and redundant branches (FPs), which is a significant improvement over
direct pixel-level operations on Pm, such as thresholding.

We conduct the experiments by beginning with the centerline extraction task to verify the effects of
the two components of GraphMorph. Experimentally, serveing as an auxiliary training module to
learn the graph representation, the Graph Decoder enhances the segmentation network’s focus on
branch-level features, thus both volumetric metrics and topological metrics are boosted. Furthermore,
employing the Morph Module at inference stage considerably improves topological metrics. For
the segmentation task, we develop a streamlined post-processing strategy to refine segmentation
masks via the topologically accurate centerline masks output by the Morph Module, significantly
suppressing false positives of segmentation results. To verify the effectiveness of GraphMorph and
the post-processing strategy, we conduct extensive experiments across four typical tubular structure
extraction datasets. We have applied our methodology on three powerful backbones and achieved
consistent improvements in all metrics. Moreover, compared with the state-of-the-art methods, our
approach achieves the best results across all datasets.

In a nutshell, our contributions can be summarized as the following: (1) We introduce GraphMorph,
an innovative framework specifically tailored for tubular structure extraction. Based on the proposed
Graph Decoder and Morph Module, the branch-level features are fully exploited and the topologically
accurate centerline masks are derived naturally. (2) For the segmentation task, an efficient post-
processing strategy significantly suppresses false positives via the centerline masks predicted by
GraphMorph, ensuring that the segmentation results are more closely aligned with the predicted
graphs. (3) Experimental results on three medical datasets and one road dataset underscore the
effectiveness of our method. For both centerline extraction and segmentation tasks, GraphMorph has
achieved remarkable improvements across all metrics, especially in topological metrics.

2 Related Work
Image segmentation of tubular structures. Deep learning-based methods have achieved impressive
results in segmentation tasks [21, 34, 5]. To further enhance the segmentation performance of tubular
structures, novel network architectures [16, 22, 36, 41, 23, 45, 40, 33] and topology-preserving
loss functions [14, 29, 37, 25, 33] have been proposed. For example, in terms of network architec-
ture, DSCNet [33] utilizes dynamic snake convolution to capture fine and tortuous local features;
PointScatter [40] explores the point set representation of tubular structures and introduces a novel
greedy-based region-wise bipartite matching algorithm to improve training efficiency. In terms
of loss functions, clDice [37] proposes a differentiable soft skeletonization method and achieves
loss calculation at centerline level, which implicitly helps model focus more on the fine branches;
TopoLoss [14] and TCLoss [33] measure the topological similarity of the ground truth and the predic-
tion via persistent homology. Despite these advancements, all of the above methods are still confined
to the framework of pixel-level classification and can not entirely overcome their inherent limitations.
Our method attempts to morph the predicted graphs of tubular structures to let the network focus
more on branch-level features, thus ensuring the topological accuracy of predictions.

Image to graph. There are two mainstream subtasks in this area: road network graph detection [11,
43, 38, 44, 12] and scene graph generation [17, 19]. These tasks usually entail detecting key
components as nodes (i.e., key points in roads, objects in scenes) and determining their interrelations
as edges (i.e., connectivity in roads, interactions in scenes). Our work differs from these approaches in
three ways. Firstly, we use only junctions and endpoints as nodes, which allows for explicit semantic
characterization of nodes in our graph representation, unlike road network detection tasks where path
points may also be regarded as nodes. Secondly, considering the curved nature of tubular objects, we
propose Morph Module to obtain topologically accurate centerline masks, a goal that is not addressed

3



Transformer
Encoder

B
ipartite m

atching Loss

Pixel-wise Loss

weighted-BCE Loss

Condition MLP

Value MLP

Condition weights & bias

Linear &
Sigmoid

0.87  0.52  0.11  0.36
0.57  0.43  0.94  0.75
0.08  0.88  0.64  0.23
0.39  0.78  0.31  0.89

Ground truthProbability map

Link prediction
module

Link prediction module

G
raph construction

Adjacency matrices
Position encoding

Filter

Coordinate
head

Class head

Coords & Probs

Coords & Probs

Coords & Probs

Transformer
Decoder

...

...

...

Output queries

...

Node queries

Matched queries

Multi-scale feature tokens

Input image

Modified Deformable DETR

Graph Decoder

Segmentation network

ROI Align

... ...

... ...

... ...

Figure 2: Overview of the training process. Given an image, the segmentation network outputs a
probability map of the centerline or segmentation and produces multi-scale feature maps. Then, R
regions of interest (ROIs) are randomly sampled from the image, and their corresponding features are
fed into the Graph Decoder, which predicts the nodes within these ROIs using a modified Deformable
DETR and outputs the adjacency matrices utilizing the proposed link prediction module.

by these works. Finally, our dynamic link prediction module is time-efficient, compared with
elaborate and time-consuming designs in these works, such as [rln]-token in RelationFormer [38].
For a clear understanding, we experimentally compare the differences between our approach and
RelationFormer in Appendix C. These distinctions make our model not only time-efficient but also
applicable to the task of tubular structure extraction with more complex topology.

3 Method
This section provides a detailed description of the training and inference procedures of GraphMorph.
Figure 2 illustrates the training process of our approach, where the segmentation network and Graph
Decoder are included. We detail these two components in Section 3.1 and 3.2, respectively. The
training details are given in Section 3.3. Section 3.4 introduces the algorithmic flow of the Morph
Module, followed by the inference processes for the centerline extraction and segmentation tasks.

3.1 Segmentation Network

The segmentation network processes an input image I with shape H×W. It serves two purposes: (1)
outputting a probability map of tubular structures; (2) providing multi-scale features for the Graph
Decoder. For training efficiency, we randomly sample R regions of interest (ROIs) with size H ×H
in the feature maps (R = 3 in Figure 2 for illustration). The ROI is defined as any region containing
centerline points. The adoption of ROIs brings two key benefits: it reduces the model’s learning
complexity due to simpler topological structures within each ROI, and improves training efficiency
by decreasing the number of feature tokens processed in the transformer. Technically, We adopt ROI
Align [10] to extract multi-scale ROI features. Note that the generality of GraphMorph allows it to be
adapted to any type of segmentation network. In the experimental part, we validate the enhancement
of GraphMorph on a variety of segmentation networks.

3.2 Graph Decoder

The Graph Decoder is intended to predict the graph for each ROI. Specifically, the modified De-
formable DETR [49] is responsible for detecting the nodes, while the link prediction module handles
predicting the connectivity among these nodes. In the following, we will dissect each component to
elucidate their roles.

4



Modified Deformable DETR. We have made two adjustments to the standard Deformable DETR [49].
Firstly, since the targets are nodes with only 2-dimensional coordinates, we replace the original box
head with a coordinate head that outputs 2-dimensional vectors. Secondly, considering the typically
small size of ROIs, we reduce the number of layers in the transformer encoder to three while keep the
decoder at six layers. Note that each ROI is treated as an independent sample and different ROIs will
not interact with each other in the whole training process. Formally, the process of node prediction
can be expressed as follows:

F̂ r = TransformerEncoder (F r, PE) (1)

Q̂r = TransformerDecoder
(
F̂ r, Q

)
(2)

ŝr = Sigmoid
(
ClassHead

(
Q̂r

))
, v̂r = Sigmoid

(
CoordHead

(
Q̂r

))
(3)

where r = 1, 2, ..., R. F r ∈ RL×C denotes the multi-scale features of the r-th ROI, and Q ∈ RK×C

is the initial node queries, where L and K are the scale of feature maps and the number of node
queries respectively. PE is the multi-scale sinusoidal positional encoding used in [49]. ClassHead
is a single linear layer, and CoordHead is a 3-layer multilayer perceptron (MLP). ŝr ∈ RK and
v̂r ∈ RK×2 are the classification scores and coordinates of the nodes for the r-th ROI respectively.

Link prediction module. Since the number of nodes for each ROI may be different, we design
a dynamic module generating linear weights and biases conditioned on node features to directly
predict the adjacency matrix A. For the r-th ROI sample, Q̂r ∈ RK×C is the output queries of the
Transformer decoder. The queries matched with the ground truth nodes (the number is denoted as
Pr) during the bipartite matching process are preserved, and the rest queries are filtered out. We
denote the kept queries as Q̃r ∈ RPr×C . As depicted in Figure 2, the matched queries Q̃r will be
fed into two MLPs. The ConditionMLP generates a (C + 1)-dimensional vector for each matched
query, which serves as the weights and biases of the condition linear layer. The ValueMLP maps
the queries to a value space. With the values as input, the condition linear layer of the p-th query
generates the adjacency list of it. The process can be formulated as follows:

W r
p = ConditionMLP(Q̃r

p) ∈ RC+1, V r = ValueMLP(Q̃r) ∈ RPr×C (4)

Ãr
p = Sigmoid([W r

p ]1:C · V r + [W r
p ]C+1) ∈ RPr (5)

Ãr = [(Ãr
1)

T , (Ãr
2)

T , ..., (Ãr
Pr
)T ]T ∈ RPr×Pr (6)

where p = 1, 2, ..., Pr. Here, Q̃r
p denotes the p-th item of Q̃r, and C is its dimension. W r

p refers to
the linear parameters conditioned on the p-th matched query. Ãr

p represents the predicted adjacency
list for the p-th matched query, and the concatenation of all lists forms the final adjacency matrix Ãr.

3.3 Training Details

Graph construction. To train the Graph Decoder, we represent the ground truth of each ROI as a
graph (see Figure 2). The detailed graph construction process can be found in Appendix B.

Label assignment based on bipartite matching. Bipartite matching is widely used in solving set
prediction problems [2, 49, 40]. As in [49], we first calculate the cost between the predicted and
ground truth nodes. The predicted nodes are denoted as ŷ = {(ŝk, v̂k)}Kk=1, where we omit the index
r of the ROI sample for simplicity. Under the general assumption that K is larger than the number of
ground truth nodes Pr, thus we pad the set of ground truth nodes with ∅ (no node) to achieve a size
of K. The ground truth set can be denoted as y = {(ci, vi)}Ki=1, where ci is the target class label and
vi ∈ [0, 1]2 is the coordinate of the node. For a permutation σ ∈ SK , where ŷσ(i) is assigned to yi
(i = 1, 2, ..,K), we define the cost between yi and ŷσ(i) as:

Lmatch(yi, ŷσ(i)) = λclass · 1{ci ̸=∅}Lclass(ŝσ(i)) + λcoord · 1{ci ̸=∅}Lcoord(vi, v̂σ(i)) (7)

where λclass and λcoord are hyperparameters. Lclass(ŝσ(i)) = Lfocal(ŝσ(i), 1) − Lfocal(ŝσ(i), 0),
Lfocal(s, c) is defined as −α · (1 − s)γ log(s) if c = 1, and −(1 − α) · sγ log(1 − s) if c = 0,
where α and γ are hyperparameters. Lcoord is commonly used ℓ1 loss. The optimal σ̂ is defined as

σ̂ = argmin
σ∈SK

K∑
i=1

Lmatch

(
yi, ŷσ(i)

)
(8)

5



This optimal assignment can be efficiently obtained by Hungarian algorithm [18].

Loss functions. To train the Graph Decoder, the overall loss function is comprised of three compo-
nents: pixel-wise loss LPixel between the probability map and the ground truth binary mask (in this
work, we use softDice [26] and clDice [37]), Hungarian bipartite matching loss LHungarian between the
predicted and ground truth nodes, weighted-BCE loss LAdjacency between the predicted and ground
truth adjacency matrices of the matched queries. For an image with R ROI samples, the last two loss
functions are defined as:

LHungarian(y, ŷ) =

R∑
r=1

K∑
i=1

[
λclass · Lfocal(ŝ

r
σ̂(i), c

r
i ) + λcoord · 1{cri ̸=∅}Lcoord

(
v̂rσ̂(i), v

r
i

)]
, (9)

LAdjacency(y, ŷ) =

R∑
r=1

{ 0.5

Npos

Pr∑
i̸=j

Pr∑
j=1

(Ar
ij log Ã

r
ij) +

0.5

Nneg

Pr∑
i̸=j

Pr∑
j=1

[(1−Ar
ij) log(1− Ãr

ij)]}, (10)

where Npos is the total number of positive locations in ground truth {Ar}Rr=1, and Nneg is the total
number of negative locations. Thus, the overall loss function is Ltotal = LPixel +LHungarian +LAdjacency.

3.4 Morph Module and Inference

The Morph Module is used to get topologically accurate centerline masks, by morphing the predicted
graphs from the Graph Decoder. In this subsection, we first introduce the Morph Module, followed
by the inference processes for the centerline extraction and segmentation tasks.

Morph Module. We present the algorithmic flow in Algorithm 1. In particular, G = {V,E}
is the graph of an image patch (same size as an ROI sample), and Pm is the probability map of
centerlines obtained from the segmentation network. We iterate over each edge and use our proposed
SkeletonDijkstra algorithm to find the optimal path with minimum cost. The union of these paths
forms the final centerline mask.

SkeletonDijkstra is modified from Dijkstra algorithm [7]. We have made two key adaptations for
centerline extraction: (1) To restrict the path to a single pixel width, ensuring the property of the
skeleton, we mandate that all path points, except for the start and end points, satisfy N = 2 (where N
is the number of centerline points in its eight neighbours, see Appendix B). (2) To suppress potential
false-positive edges from the Graph Decoder, we exclude the paths with an average cost exceeding a
threshold pthresh. These refinements optimize the algorithm to yield topologically accurate centerline
masks. The detailed algorithmic flow of SkeletonDijkstra can be seen in Algorithm 2 in Appendix D.

Algorithm 1 Morph Module

Input: Node set V , Edge set E, Probability map Pm

Output: Centerline mask M
Initialize M as a zero matrix with the same size as Pm

Initialize Cm where Cm[i][j] = 1− Pm[i][j] for each element
for all edges (u, v) in E do
path← SkeletonDijkstra(u, v, Cm, pthresh)
for all points p in path do

Set M [p.x][p.y] = 1
end for

end for
return M

Inference of centerline extraction. As depicted in Figure 3, the centerline extraction process begins
with generating a centerline probability map via the segmentation network. Then, sliding window
inference is employed across the entire image in Graph Decoder to obtain graphs for all split patches.
Finally, the Morph Module produces the centerline mask for each patch, and the combination of these
masks forms the complete centerline mask of the entire image.

Inference of segmentation. Since the segmentation probability map Sm can not be used directly by
the Morph Module, we first threshold Sm to obtain segmentation mask S′

m and skeletonize it into a
centerline mask P ′

m. The distance from each pixel to the nearest centerline point in P ′
m is calculated

6



Input image

Threshold

Graph
Decoder

Morph
Module

Centerline probability 

Predicted graphs Final prediction

Segmentation network

Multi-scale features

Ground truth

Threshold-only result
(for comparison)

G
ra

ph
M

or
ph

FN

Figure 3: Inference process of centerline extraction. First, the segmentation network generates a
centerline probability map Pm along with multi-scale image features. Subsequently, the Graph
Decoder utilizes the image features to predict graphs G via sliding window inference. Finally, the
Morph Module employs Pm to find the optimal path between each pair of connected nodes in G,
resulting in a final centerline mask. This approach achieves higher topological accuracy compared to
direct thresholding of Pm.

and normalized to create a distance map D. Then the centerline probability map Pm is obatined by
Pm = Sm × (1−D). Employing the Morph Module on Pm yields a topologically precise mask M .
To suppress false positives in S′

m (especially isolated regions), a post-processing strategy is initiated
from M0 = M ⊙ S′

m. This strategy involves iteratively expanding M0 within the boundaries of
S′
m until stabilization. The stabilized mask MT is then taken as the final output. This approach, as

confirmed by experiments, effectively diminishes false positives and enhances topological accuracy.
The above-mentioned soft skeletonization method (from Sm to Pm) and post-processing strategy
introduce minimal time cost and are straightforward to implement, with detailes in Appendix E.1 and
Appendix E.2.

4 Experiments
4.1 Experimental Setup

Datasets. We evaluate GraphMorph on three medical datasets and one road dataset. DRIVE [39] and
STARE [13] are retinal vessel datasets commonly used in medical image segmentation. ISBI12 [1]
contains 30 Electron Microscopy images to segment membranes. The Massachusetts Roads (Mass-
Road) dataset contains 1171 aerial images for road network extraction. We use the data splits for
DRIVE and STARE provided in MMSegmentation [6]. For ISBI12, following previous works [35, 29],
we split it into 15 images for training and 15 for testing. For MassRoad, we follow [40] to construct
the training set, and the total 63 images of the official validation set and test set are used for testing.

Baselines. We adopt affluent baselines for comparison, including UNet [34], ResUNet [47], CS-
Net [30], DC-UNet [22], TransUNet [4], DSCNet [33] and PointScatter [40]. Particularly, we use
LinkNet34 [3] and D-Linknet34 [48] as baselines for the MassRoad dataset. In addition, we compare
with TopoLoss [14], which is a topology-based loss function.

Metrics. For the centerline extraction task, we use Dice [50], Accuracy (ACC) and AUC as volumetric
metrics. For robust evaluation, we give a tolerance of a 5-pixel region around the ground truth
centerline mask following [9]. We compute topological metrics following [40], including the mean
absolute errors of β0, β1 and the Euler characteristic. To compare fairly, we skeletonize the prediction
before evaluation. For the segmentation task, we adopt Dice, clDice [37] and ACC as volumetric
metrics and the same topological metrics as the centerline extraction task. Moreover, ARI (Adjusted
Rand Index) [15] and VOI (Variation of Information) [24] are used to evaluate clustering similarity.

Implementation Details. For three medical datasets, we use randomly cropped 384×384 images for
training. The size of ROI samples H is 32 and the stride of sliding window used in inference process
is 30. For MassRoad dataset, the cropped size is 768 × 768, H = 48 and the stride is 45. For all
experiments, we use 64 ROI samples per image (R = 64) to train the Graph Decoder, and the number
of node queries in the modified Deformable DETR is set to 100 (K = 100). According to previous

7



experiences [38], the default hyperparameters used in loss functions are as follows: λclass = 0.2,
λcoord = 0.5, α = 0.6, γ = 2. We use α = 0.75 for MassRoad due to the sparse nature of the road
networks. For all types of segmentation networks, we use multi-scale features ranging from the
lowest resolution to the 4× downsampling of the original image as input of the Graph Decoder. More
implementation details are introduced in Appendix A.

Table 1: Centerline extraction performance on four public datasets based on UNet.
Dataset Method Volumetric metrics (↑) Topological metrics (↓)

Dice AUC ACC β0 error β1 error χ error

DRIVE

softDice [26] 0.7353 ± 0.0127 0.9333 ± 0.0089 0.9768 ± 0.0013 2.169 ± 0.112 1.590 ± 0.107 2.537 ± 0.139
PointScatter [40] 0.7381 ± 0.0133 0.9401 ± 0.0078 0.9775 ± 0.0013 3.259 ± 0.153 2.080 ± 0.120 3.500 ± 0.176

softDice [26] + Graph Decoder 0.7506 ± 0.0127 0.9481 ± 0.0082 0.9783 ± 0.0012 1.552 ± 0.094 1.382 ± 0.106 1.899 ± 0.125
softDice [26] + Graph Decoder + Morph Module 0.7496 ± 0.0118 / 0.9776 ± 0.0012 0.555 ± 0.038 1.074 ± 0.073 0.893 ± 0.061

ISBI12

softDice [26] 0.6428 ± 0.0104 0.8937 ± 0.0063 0.9737 ± 0.0013 4.045 ± 0.191 2.696 ± 0.112 4.294 ± 0.205
Pointscatter [40] 0.6546 ± 0.0089 0.9104 ± 0.0057 0.9747 ± 0.0013 6.398 ± 0.277 3.156 ± 0.124 6.548 ± 0.290

softDice [26] + Graph Decoder 0.6486 ± 0.0095 0.9240 ± 0.0061 0.9742 ± 0.0012 4.013 ± 0.179 2.732 ± 0.110 4.249 ± 0.193
softDice [26] + Graph Decoder + Morph Module 0.6687 ± 0.0092 / 0.9742 ± 0.0014 0.665 ± 0.049 1.207 ± 0.070 0.858 ± 0.059

STARE

softDice [26] 0.7119 ± 0.0392 0.9290 ± 0.0283 0.9889 ± 0.0012 1.874 ± 0.139 1.209 ± 0.112 2.063 ± 0.162
Pointscatter [40] 0.7224 ± 0.0414 0.9494 ± 0.0179 0.9896 ± 0.0012 2.080 ± 0.149 1.365 ± 0.116 2.213 ± 0.166

softDice [26] + Graph Decoder 0.7298 ± 0.0428 0.9506 ± 0.0208 0.9898 ± 0.0011 1.467 ± 0.113 1.074 ± 0.104 1.654 ± 0.132
softDice [26] + Graph Decoder + Morph Module 0.7291 ± 0.0387 / 0.9894 ± 0.0011 0.482 ± 0.042 0.799 ± 0.077 0.653 ± 0.059

MassRoad

softDice [26] 0.6339 ± 0.0169 0.9718 ± 0.0047 0.9942 ± 0.0009 1.672 ± 0.056 1.627 ± 0.087 1.968 ± 0.097
Pointscatter [40] 0.6405 ± 0.0149 0.9694 ± 0.0042 0.9942 ± 0.0009 3.333 ± 0.124 1.553 ± 0.086 3.429 ± 0.149

softDice [26] + Graph Decoder 0.6289 ± 0.0175 0.9731 ± 0.0045 0.9941 ± 0.0009 1.933 ± 0.065 1.729 ± 0.088 2.229 ± 0.105
softDice [26] + Graph Decoder + Morph Module 0.6388 ± 0.0168 / 0.9942 ± 0.0009 0.620 ± 0.021 1.355 ± 0.083 1.122 ± 0.075

4.2 Main Results

We first verify the effectiveness of GraphMorph on the centerline extraction task. Then, considerable
experiments are conducted on the more common segmentation task, demonstrating the powerful
topological modelling capability of GraphMorph.

Centerline Extraction. In our experiments with UNet and softDice loss on four public datasets,
detailed in Table 1, the inclusion of the Graph Decoder during training enables the network to
learn branch-level features, leading to enhanced performance in both volumetric and topological
metrics. During inference, the utilization of Morph Module results in a slight decrease in volumetric
metrics; however, there is a notable enhancement in topological metrics, confirming that our network
has effectively captured branch-level features of tubular structures. Overall, the combined use of
the Graph Decoder and Morph Module showcases the ability to refine the segmentation network’s
performance, particularly in preserving the crucial topological characteristics. Our methods also beat
previous SOTA Pointscatter [40] by a large margin..

Table 2: Segmentation performance based on different segmentation networks.
Dataset Backbone Method Volumetric metrics (↑) Distribution metrics Topological metrics (↓)

Dice clDice ACC ARI(↑) VOI(↓) β0 error β1 error χ error

UNet [34] softDice [26] 0.8148 ± 0.0093 0.8128 ± 0.0169 0.9535 ± 0.0023 0.767 ± 0.011 0.348 ± 0.012 1.191 ± 0.069 1.078 ± 0.074 1.467 ± 0.083
softDice+Ours 0.8238 ± 0.0091 0.8278 ± 0.0166 0.9557 ± 0.0023 0.778 ± 0.011 0.336 ± 0.012 0.692 ± 0.047 0.932 ± 0.068 0.951 ± 0.062

DRIVE ResUNet [47] softDice [26] 0.8183 ± 0.0094 0.8183 ± 0.0178 0.9543 ± 0.0022 0.771 ± 0.011 0.342 ± 0.011 1.110 ± 0.066 1.059 ± 0.073 1.379 ± 0.079
softDice+Ours 0.8233 ± 0.0095 0.8273 ± 0.0172 0.9555 ± 0.0022 0.777 ± 0.011 0.336 ± 0.011 0.723 ± 0.047 0.986 ± 0.071 0.993 ± 0.063

CS-Net [30] softDice [26] 0.8089 ± 0.0123 0.8073 ± 0.0185 0.9527 ± 0.0027 0.761 ± 0.014 0.350 ± 0.011 1.211 ± 0.072 1.096 ± 0.076 1.491 ± 0.085
softDice+Ours 0.8223 ± 0.0088 0.8253 ± 0.0171 0.9554 ± 0.0021 0.776 ± 0.010 0.336 ± 0.011 0.680 ± 0.044 0.990 ± 0.070 0.929 ± 0.059

UNet [34] softDice [26] 0.8043 ± 0.0092 0.9295 ± 0.0078 0.9146 ± 0.0060 0.653 ± 0.018 0.785 ± 0.040 0.569 ± 0.046 0.616 ± 0.047 0.738 ± 0.052
softDice+Ours 0.8216 ± 0.0091 0.9449 ± 0.0069 0.9211 ± 0.0057 0.678 ± 0.018 0.745 ± 0.039 0.361 ± 0.034 0.520 ± 0.043 0.488 ± 0.041

ISBI12 ResUNet [47] softDice [26] 0.8061 ± 0.0093 0.9307 ± 0.0086 0.9153 ± 0.0055 0.655 ± 0.017 0.781 ± 0.037 0.572 ± 0.045 0.588 ± 0.048 0.710 ± 0.050
softDice+Ours 0.8166 ± 0.0105 0.9405 ± 0.0087 0.9194 ± 0.0055 0.671 ± 0.018 0.756 ± 0.037 0.395 ± 0.037 0.576 ± 0.046 0.518 ± 0.043

CS-Net [30] softDice [26] 0.8163 ± 0.0118 0.9391 ± 0.0092 0.9194 ± 0.0075 0.671 ± 0.023 0.754 ± 0.049 0.451 ± 0.040 0.596 ± 0.046 0.622 ± 0.047
softDice+Ours 0.8282 ± 0.0118 0.9469 ± 0.0081 0.9243 ± 0.0068 0.690 ± 0.022 0.722 ± 0.045 0.342 ± 0.034 0.501 ± 0.043 0.452 ± 0.040

UNet [34] softDice [26] 0.8170 ± 0.0402 0.8526 ± 0.0306 0.9749 ± 0.0044 0.781 ± 0.042 0.276 ± 0.033 0.786 ± 0.064 0.653 ± 0.072 0.960 ± 0.079
softDice+Ours 0.8210 ± 0.0464 0.8578 ± 0.0372 0.9756 ± 0.0045 0.786 ± 0.049 0.271 ± 0.033 0.545 ± 0.046 0.618 ± 0.067 0.691 ± 0.059

STARE ResUNet [47] softDice [26] 0.7982 ± 0.0628 0.8343 ± 0.0512 0.9735 ± 0.0055 0.761 ± 0.065 0.282 ± 0.036 0.770 ± 0.067 0.707 ± 0.073 0.915 ± 0.079
softDice+Ours 0.8151 ± 0.0513 0.8522 ± 0.0404 0.9752 ± 0.0047 0.779 ± 0.053 0.273 ± 0.034 0.582 ± 0.054 0.623 ± 0.068 0.743 ± 0.065

CS-Net [30] softDice [26] 0.7785 ± 0.0615 0.8173 ± 0.0474 0.9715 ± 0.0056 0.739 ± 0.063 0.294 ± 0.037 0.871 ± 0.071 0.803 ± 0.081 1.049 ± 0.087
softDice+Ours 0.7968 ± 0.0612 0.8351 ± 0.0483 0.9733 ± 0.0059 0.760 ± 0.064 0.282 ± 0.039 0.579 ± 0.049 0.685 ± 0.071 0.724 ± 0.062

UNet [34] softDice [26] 0.7808 ± 0.0146 0.8768 ± 0.0159 0.9780 ± 0.0036 0.750 ± 0.017 0.239 ± 0.033 0.479 ± 0.020 0.798 ± 0.076 0.777 ± 0.072
softDice+Ours 0.7849 ± 0.0139 0.8816 ± 0.0151 0.9783 ± 0.0035 0.754 ± 0.016 0.237 ± 0.033 0.386 ± 0.016 0.754 ± 0.076 0.672 ± 0.070

MassRoad ResUNet [47] softDice [26] 0.7730 ± 0.0152 0.8663 ± 0.0162 0.9773 ± 0.0036 0.742 ± 0.017 0.245 ± 0.033 0.799 ± 0.030 0.902 ± 0.078 1.089 ± 0.076
softDice+Ours 0.7755 ± 0.0150 0.8707 ± 0.0162 0.9775 ± 0.0036 0.744 ± 0.017 0.243 ± 0.033 0.587 ± 0.023 0.869 ± 0.078 0.869 ± 0.073

CS-Net [30] softDice [26] 0.7770 ± 0.0147 0.8716 ± 0.0163 0.9779 ± 0.0035 0.746 ± 0.016 0.240 ± 0.032 0.487 ± 0.020 0.796 ± 0.075 0.784 ± 0.072
softDice+Ours 0.7789 ± 0.0149 0.8756 ± 0.0163 0.9779 ± 0.0035 0.748 ± 0.017 0.240 ± 0.033 0.399 ± 0.017 0.772 ± 0.076 0.682 ± 0.070

Segmentation. In the initial phase of our segmentation experiments, we assessed the effectiveness of
our method across different segmentation networks and datasets. As detailed in Table 2, enhancements
were evident in various metrics for all dataset and network combinations. The improvements in

8



Table 3: Comparison with SOTA methods on the segmentation task. Best results are in bold;
second-best are underlined. Our approach secures all leading scores and most secondary peaks.

Dataset Backbone Method Volumetric metrics (↑) Distribution metrics Topological metrics (↓)

Dice clDice ACC ARI(↑) VOI(↓) β0 error β1 error χ error

DRIVE

UNet softDice [26] 0.8148 ± 0.0093 0.8128 ± 0.0169 0.9535 ± 0.0023 0.767 ± 0.011 0.348 ± 0.012 1.191 ± 0.069 1.078 ± 0.074 1.467 ± 0.083
UNet clDice [37] 0.8150 ± 0.0078 0.8322 ± 0.0163 0.9520 ± 0.0021 0.765 ± 0.009 0.357 ± 0.012 0.910 ± 0.056 0.998 ± 0.070 1.181 ± 0.071
UNet Pointscatter [40] 0.8155 ± 0.0081 0.8277 ± 0.0179 0.9525 ± 0.0020 0.766 ± 0.009 0.353 ± 0.010 1.360 ± 0.080 1.276 ± 0.083 1.663 ± 0.094
UNet TopoLoss [14] 0.8187 ± 0.0075 0.8194 ± 0.0160 0.9540 ± 0.0020 0.771 ± 0.009 0.345 ± 0.010 0.821 ± 0.050 0.997 ± 0.072 1.100 ± 0.067

DSCNet [33] softDice 0.8118 ± 0.0083 0.8107 ± 0.0172 0.9527 ± 0.0021 0.763 ± 0.010 0.352 ± 0.011 1.267 ± 0.075 1.110 ± 0.076 1.550 ± 0.087
TransUNet [4] softDice 0.8153 ± 0.0094 0.8139 ± 0.0182 0.9538 ± 0.0020 0.768 ± 0.010 0.344 ± 0.009 1.125 ± 0.066 1.184 ± 0.082 1.420 ± 0.082
DC-UNet [22] softDice 0.8086 ± 0.0103 0.8018 ± 0.0163 0.9526 ± 0.0024 0.760 ± 0.012 0.351 ± 0.011 1.227 ± 0.074 1.061 ± 0.074 1.499 ± 0.087

UNet softDice+Ours 0.8238 ± 0.0091 0.8278 ± 0.0166 0.9557 ± 0.0023 0.778 ± 0.011 0.336 ± 0.012 0.692 ± 0.047 0.932 ± 0.068 0.951 ± 0.062
UNet clDice+Ours 0.8168 ± 0.0076 0.8467 ± 0.0146 0.9520 ± 0.0021 0.767 ± 0.009 0.357 ± 0.012 0.619 ± 0.043 0.924 ± 0.065 0.857 ± 0.056

ISBI12

UNet softDice [26] 0.8043 ± 0.0092 0.9295 ± 0.0078 0.9146 ± 0.0060 0.653 ± 0.018 0.785 ± 0.040 0.569 ± 0.046 0.616 ± 0.047 0.738 ± 0.052
UNet clDice [37] 0.8103 ± 0.0099 0.9353 ± 0.0084 0.9163 ± 0.0064 0.660 ± 0.020 0.775 ± 0.042 0.422 ± 0.038 0.563 ± 0.045 0.576 ± 0.043
UNet Pointscatter [40] 0.8192 ± 0.0101 0.9406 ± 0.0077 0.9189 ± 0.0063 0.672 ± 0.020 0.758 ± 0.042 0.456 ± 0.041 0.568 ± 0.046 0.587 ± 0.047
UNet TopoLoss [14] 0.8104 ± 0.0090 0.9324 ± 0.0074 0.9167 ± 0.0058 0.661 ± 0.017 0.773 ± 0.039 0.516 ± 0.041 0.642 ± 0.052 0.669 ± 0.049

DSCNet [33] softDice 0.8152 ± 0.0087 0.9366 ± 0.0078 0.9191 ± 0.0054 0.669 ± 0.016 0.757 ± 0.037 0.450 ± 0.040 0.567 ± 0.045 0.581 ± 0.044
TransUNet [4] softDice 0.8056 ± 0.0080 0.9289 ± 0.0075 0.9148 ± 0.0055 0.654 ± 0.016 0.784 ± 0.037 0.636 ± 0.049 0.576 ± 0.047 0.757 ± 0.053
DC-UNet [22] softDice 0.8150 ± 0.0089 0.9366 ± 0.0084 0.9196 ± 0.0063 0.671 ± 0.019 0.753 ± 0.043 0.511 ± 0.043 0.586 ± 0.046 0.652 ± 0.047

UNet softDice+Ours 0.8216 ± 0.0091 0.9449 ± 0.0069 0.9211 ± 0.0057 0.678 ± 0.018 0.745 ± 0.039 0.361 ± 0.034 0.520 ± 0.043 0.488 ± 0.041
UNet clDice+Ours 0.8223 ± 0.0086 0.9459 ± 0.0066 0.9213 ± 0.0056 0.679 ± 0.017 0.744 ± 0.038 0.353 ± 0.034 0.539 ± 0.043 0.482 ± 0.040

STARE

UNet softDice [26] 0.8170 ± 0.0402 0.8526 ± 0.0306 0.9749 ± 0.0044 0.781 ± 0.042 0.276 ± 0.033 0.786 ± 0.064 0.653 ± 0.072 0.960 ± 0.079
UNet clDice [37] 0.8212 ± 0.0386 0.8579 ± 0.0319 0.9752 ± 0.0041 0.785 ± 0.040 0.276 ± 0.032 0.571 ± 0.049 0.629 ± 0.069 0.743 ± 0.065
UNet Pointscatter [40] 0.8171 ± 0.0395 0.8533 ± 0.0331 0.9743 ± 0.0041 0.780 ± 0.041 0.285 ± 0.031 0.844 ± 0.070 0.781 ± 0.080 0.997 ± 0.086
UNet TopoLoss [14] 0.8175 ± 0.0449 0.8506 ± 0.0339 0.9750 ± 0.0045 0.781 ± 0.047 0.276 ± 0.033 0.659 ± 0.056 0.615 ± 0.068 0.806 ± 0.069

DSCNet [33] softDice 0.7988 ± 0.0420 0.8341 ± 0.0348 0.9723 ± 0.0052 0.759 ± 0.045 0.296 ± 0.037 0.823 ± 0.068 0.707 ± 0.072 0.988 ± 0.080
TransUNet [4] softDice 0.8046 ± 0.0474 0.8428 ± 0.0370 0.9737 ± 0.0047 0.767 ± 0.049 0.284 ± 0.034 0.728 ± 0.061 0.723 ± 0.076 0.884 ± 0.078
DC-UNet [22] softDice 0.7936 ± 0.0547 0.8300 ± 0.0426 0.9728 ± 0.0052 0.755 ± 0.057 0.288 ± 0.034 0.834 ± 0.071 0.721 ± 0.075 0.975 ± 0.082

UNet softDice+Ours 0.8210 ± 0.0464 0.8578 ± 0.0372 0.9756 ± 0.0045 0.786 ± 0.049 0.271 ± 0.033 0.545 ± 0.046 0.618 ± 0.067 0.691 ± 0.059
UNet clDice+Ours 0.8283 ± 0.0371 0.8747 ± 0.0284 0.9757 ± 0.0040 0.792 ± 0.039 0.274 ± 0.032 0.450 ± 0.042 0.582 ± 0.065 0.598 ± 0.055

MassRoad

UNet softDice [26] 0.7808 ± 0.0146 0.8768 ± 0.0159 0.9780 ± 0.0036 0.750 ± 0.017 0.239 ± 0.033 0.479 ± 0.020 0.798 ± 0.076 0.777 ± 0.072
UNet clDice [37] 0.7788 ± 0.0143 0.8773 ± 0.0156 0.9775 ± 0.0037 0.747 ± 0.016 0.244 ± 0.033 0.512 ± 0.022 0.964 ± 0.090 0.962 ± 0.086
UNet Pointscatter [40] 0.7787 ± 0.0142 0.8750 ± 0.0156 0.9778 ± 0.0035 0.748 ± 0.016 0.242 ± 0.033 0.620 ± 0.027 0.800 ± 0.076 0.908 ± 0.074
UNet TopoLoss [14] 0.7797 ± 0.0150 0.8758 ± 0.0164 0.9781 ± 0.0035 0.749 ± 0.017 0.238 ± 0.032 0.439 ± 0.018 0.780 ± 0.076 0.727 ± 0.071

TransUNet [4] softDice 0.7620 ± 0.0169 0.8588 ± 0.0182 0.9766 ± 0.0038 0.730 ± 0.019 0.248 ± 0.034 0.734 ± 0.027 0.933 ± 0.079 1.017 ± 0.075
LinkNet34 [3] softDice 0.7752 ± 0.0151 0.8747 ± 0.0161 0.9775 ± 0.0036 0.744 ± 0.017 0.243 ± 0.033 0.489 ± 0.021 0.773 ± 0.076 0.771 ± 0.072

D-Linknet34 [48] softDice 0.7752 ± 0.0149 0.8743 ± 0.0161 0.9775 ± 0.0036 0.744 ± 0.017 0.244 ± 0.033 0.504 ± 0.022 0.765 ± 0.075 0.777 ± 0.072
UNet softDice+Ours 0.7849 ± 0.0139 0.8816 ± 0.0151 0.9783 ± 0.0035 0.754 ± 0.016 0.237 ± 0.033 0.386 ± 0.016 0.754 ± 0.076 0.672 ± 0.070
UNet clDice+Ours 0.7851 ± 0.0137 0.8844 ± 0.0148 0.9779 ± 0.0036 0.754 ± 0.016 0.241 ± 0.033 0.393 ± 0.018 0.879 ± 0.085 0.784 ± 0.082

volumetric and distribution metrics underscore our method’s effectiveness in the precision and
reliability in segmenting and clustering accuracy. Most notably, the substantial advancements in
topological metrics, particularly in the β0 error, highlight our method’s proficiency in capturing the
intricate branch-level features of tubular structures.

Moreover, the comprehensive comparisons presented in Table 3 across various datasets underscore the
superiority of our method over current state-of-the-art techniques. The results unequivocally illustrate
that our approach excels in all evaluated metrics, outstripping other methodologies. The crux of this
advancement lies in the exploitation of branch-level features. Compared to our approach, traditional
pixel-level classification strategies, whether employing grid representations like softDice [26] or
clDice [37], or point representations akin to Pointscatter [40], inherently lack in capturing the essential
branch-level features. Innovatively, Our method incorporates the graph representation to capture
explicit branch-level features, and morphs the predicted graphs to topologically accurate centerline
masks, which are subsequently utilized for post-processing. The excellent performance of various
metrics, especially topological metrics, proves the validity of our approach.

4.3 Ablation Study

Size of ROI (H). See Table 4, the experimental results on the DRIVE dataset suggest that a default ROI
size of H = 32 provides a favorable balance across the evaluation metrics. Specifically, when H is
reduced, an increase in β0 error is observed, indicating diminished topological accuracy. Conversely,
increasing H does not offer substantial metric improvements and leads to higher computational
demands. Hence, H = 32 is adopted as the default ROI size for all three medical datasets. Similarly,
the default ROI size for the MassRoad dataset has been determined to be H = 48.

Threshold in the Morph Module (pthresh). We conduct experiments on the centerline extraction
task. A smaller value of pthresh denotes a more stringent selection criterion, with pthresh = 1.0
indicating that all paths are considered without any selection filter. As detailed in Table 5, the best
results were achieved at pthresh = 0.5, which is adopted as the default setting across all experiments.

Post-processing on the Segmentation Task. As shown in Table 6, incorporating post-processing
has led to a slight improvement in volumetric metrics and a significant elevation in topological
metrics. Notably, the substantial enhancement in the β0 metric primarily results from the successful
suppression of false positives, which aligns with our initial hypothesis. For a qualitative demonstration,
we direct the reader to the visual comparisons presented in the Appendix G.2.

9



Table 4: Effect of ROI size H on two tasks.

Dataset H
Segmentation Centerline Extraction

Dice clDice β0 error Dice β0 error

DRIVE

16 82.61 82.96 0.763 74.36 0.771
32 82.44 82.78 0.692 74.97 0.555
48 82.43 82.78 0.676 74.90 0.492
64 82.44 82.63 0.666 74.72 0.540

MassRoad

16 78.16 87.66 0.457 61.36 2.265
32 78.33 87.90 0.414 62.90 0.944
48 78.53 88.16 0.386 63.59 0.620
64 78.35 87.93 0.396 63.27 0.539

Table 5: Effect of pthresh.

Dataset p_thresh Dice ACC β0 error β1 error χ error

DRIVE

0.25 70.90 97.67 0.815 1.528 1.121
0.5 74.97 97.76 0.555 1.074 0.893

0.75 74.97 97.71 0.572 1.221 1.025
1.0 74.80 97.68 0.604 1.270 1.069

Table 6: Effect of post-processing.
Dataset Method Dice clDice β0 error β1 error χ error

DRIVE softDice+Ours 82.44 82.78 0.692 0.932 0.951
w.o. Post-processing 82.41 82.68 0.932 0.932 1.199

MassRoad softDice+Ours 78.44 87.88 0.374 0.756 0.655
w.o. Post-processing 78.45 87.83 0.480 0.757 0.757

4.4 Qualitative Results

We qualitatively analyze the role of GraphMorph in reducing FNs, FPs, and TEs on the segmentation
and centerline extraction tasks, as detailed in Figure 4. The results show that our method can
effectively reduce the three types of errors in both tasks. This is due to the utilization of branch-level
features during training and the effective design of inference process. Furthermore, we visualize
the graphs predicted by the Graph Decoder as well as the role of the Morph Module in suppressing
various errors in Appendix G.1.

Image softDice clDice GraphMorphLabel softDice GraphMorphLabel
Segmentation Centerline Extraction

Figure 4: Visual comparison for our GraphMorph with other methods (zoom for details). Areas
indicated by yellow arrows show false negatives (FNs), areas pointed by green arrows demonstrate
false positives (FPs), and regions highlighted by red arrows are topological errors (TEs) identifiable
in other methods but are accurately resolved by our approach.

5 Conclusion
This paper introduces GraphMorph, a framework that diverges from traditional pixel-level prediction
methods in tubular structure extraction. By integrating two core components, the Graph Decoder and
the Morph Module, GraphMorph adaptly captures and leverages branch-level features. Equipped
with our proposed link predcition module and SkeletonDijkstra algorithm, the training and inference
processes of the network are efficiently carried out. For the segmentation task, it further employs
a straightforward yet effective post-processing strategy that substantially reduces false positives in
the predictions. Extensive evaluations across various datasets for medical image segmentation and
road network extraction have demonstrated the superiority of GraphMorph over existing methods,
particularly in terms of topological metrics. This breakthrough not only boosts precision in application-
specific tasks but also sets a robust foundation for future research in tubular structure extraction.

10



Acknowledgements
This work is supported by National Key R&D Program of China (2022ZD0114900) and National
Science Foundation of China (NSFC62276005).

References
[1] Ignacio Arganda-Carreras, Srinivas C Turaga, Daniel R Berger, Dan Cireşan, Alessandro Giusti,

Luca M Gambardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh Dwivedi, Joachim M
Buhmann, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics.
Frontiers in neuroanatomy, 9:152591, 2015.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[3] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder representations for
efficient semantic segmentation. In 2017 IEEE visual communications and image processing
(VCIP), pages 1–4. IEEE, 2017.

[4] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306, 2021.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 801–818, 2018.

[6] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

[7] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1959.

[8] Muhammad Moazam Fraz, Paolo Remagnino, Andreas Hoppe, Bunyarit Uyyanonvara, Alicja R
Rudnicka, Christopher G Owen, and Sarah A Barman. Blood vessel segmentation methodologies
in retinal images–a survey. Computer methods and programs in biomedicine, 108(1):407–433,
2012.

[9] Pedro Guimaraes, Jeffrey Wigdahl, and Alfredo Ruggeri. A fast and efficient technique for the
automatic tracing of corneal nerves in confocal microscopy. Translational vision science &
technology, 5(5), 2016.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[11] Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, Mohamed M Elshrif, Samuel Madden, and Mohammad Amin Sadeghi. Sat2graph:
Road graph extraction through graph-tensor encoding. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pages
51–67. Springer, 2020.

[12] Congrui Hetang, Haoru Xue, Cindy Le, Tianwei Yue, Wenping Wang, and Yihui He. Segment
anything model for road network graph extraction. arXiv preprint arXiv:2403.16051, 2024.

[13] AD Hoover, Valentina Kouznetsova, and Michael Goldbaum. Locating blood vessels in retinal
images by piecewise threshold probing of a matched filter response. IEEE Transactions on
Medical imaging, 19(3):203–210, 2000.

[14] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. Advances in neural information processing systems, 32, 2019.

[15] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218,
1985.

11

https://github.com/open-mmlab/mmsegmentation


[16] Qiangguo Jin, Zhaopeng Meng, Tuan D Pham, Qi Chen, Leyi Wei, and Ran Su. Dunet: A
deformable network for retinal vessel segmentation. Knowledge-Based Systems, 178:149–162,
2019.

[17] Siddhesh Khandelwal and Leonid Sigal. Iterative scene graph generation. Advances in Neural
Information Processing Systems, 35:24295–24308, 2022.

[18] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[19] Sanjoy Kundu and Sathyanarayanan N Aakur. Is-ggt: Iterative scene graph generation with
generative transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6292–6301, 2023.

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[22] Ange Lou, Shuyue Guan, and Murray Loew. Dc-unet: rethinking the u-net architecture with
dual channel efficient cnn for medical image segmentation. In Medical Imaging 2021: Image
Processing, volume 11596, pages 758–768. SPIE, 2021.

[23] Jie Mei, Rou-Jing Li, Wang Gao, and Ming-Ming Cheng. Coanet: Connectivity attention
network for road extraction from satellite imagery. IEEE Transactions on Image Processing, 30:
8540–8552, 2021.

[24] Marina Meilă. Comparing clusterings—an information based distance. Journal of multivariate
analysis, 98(5):873–895, 2007.

[25] Martin J Menten, Johannes C Paetzold, Veronika A Zimmer, Suprosanna Shit, Ivan Ezhov,
Robbie Holland, Monika Probst, Julia A Schnabel, and Daniel Rueckert. A skeletonization
algorithm for gradient-based optimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 21394–21403, 2023.

[26] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In 2016 fourth international conference
on 3D vision (3DV), pages 565–571. Ieee, 2016.

[27] Volodymyr Mnih. Machine learning for aerial image labeling. University of Toronto (Canada),
2013.

[28] Volodymyr Mnih and Geoffrey E Hinton. Learning to detect roads in high-resolution aerial
images. In Computer Vision–ECCV 2010: 11th European Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part VI 11, pages 210–223.
Springer, 2010.

[29] Agata Mosinska, Pablo Marquez-Neila, Mateusz Koziński, and Pascal Fua. Beyond the pixel-
wise loss for topology-aware delineation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3136–3145, 2018.

[30] Lei Mou, Yitian Zhao, Li Chen, Jun Cheng, Zaiwang Gu, Huaying Hao, Hong Qi, Yalin
Zheng, Alejandro Frangi, and Jiang Liu. Cs-net: Channel and spatial attention network for
curvilinear structure segmentation. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17,
2019, Proceedings, Part I 22, pages 721–730. Springer, 2019.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

12



[32] Chinmay Prabhakar, Suprosanna Shit, Johannes C Paetzold, Ivan Ezhov, Rajat Koner, Hongwei
Li, Florian Sebastian Kofler, and Bjoern Menze. Vesselformer: Towards complete 3d vessel
graph generation from images. In Medical Imaging with Deep Learning, pages 320–331. PMLR,
2024.

[33] Yaolei Qi, Yuting He, Xiaoming Qi, Yuan Zhang, and Guanyu Yang. Dynamic snake convolution
based on topological geometric constraints for tubular structure segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 6070–6079, 2023.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[35] Mojtaba Seyedhosseini, Mehdi Sajjadi, and Tolga Tasdizen. Image segmentation with cascaded
hierarchical models and logistic disjunctive normal networks. In Proceedings of the IEEE
international conference on computer vision, pages 2168–2175, 2013.

[36] Seung Yeon Shin, Soochahn Lee, Il Dong Yun, and Kyoung Mu Lee. Deep vessel segmentation
by learning graphical connectivity. Medical image analysis, 58:101556, 2019.

[37] Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger,
Andrey Zhylka, Josien PW Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel topology-
preserving loss function for tubular structure segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 16560–16569, 2021.

[38] Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes Paetzold, Ivan Ezhov, Hongwei
Li, Jiazhen Pan, Sahand Sharifzadeh, Georgios Kaissis, Volker Tresp, et al. Relationformer: A
unified framework for image-to-graph generation. In European Conference on Computer Vision,
pages 422–439. Springer, 2022.

[39] Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever, and Bram Van Gin-
neken. Ridge-based vessel segmentation in color images of the retina. IEEE transactions on
medical imaging, 23(4):501–509, 2004.

[40] Dong Wang, Zhao Zhang, Ziwei Zhao, Yuhang Liu, Yihong Chen, and Liwei Wang. Pointscatter:
Point set representation for tubular structure extraction. In European Conference on Computer
Vision, pages 366–383. Springer, 2022.

[41] Yan Wang, Xu Wei, Fengze Liu, Jieneng Chen, Yuyin Zhou, Wei Shen, Elliot K Fishman,
and Alan L Yuille. Deep distance transform for tubular structure segmentation in ct scans. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3833–3842, 2020.

[42] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

[43] Zhenhua Xu, Yuxuan Liu, Lu Gan, Yuxiang Sun, Xinyu Wu, Ming Liu, and Lujia Wang.
Rngdet: Road network graph detection by transformer in aerial images. IEEE Transactions on
Geoscience and Remote Sensing, 60:1–12, 2022.

[44] Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. Rngdet++: Road network
graph detection by transformer with instance segmentation and multi-scale features enhancement.
IEEE Robotics and Automation Letters, 2023.

[45] Ziyun Yang and Sina Farsiu. Directional connectivity-based segmentation of medical images.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11525–11535, 2023.

[46] Tongjie Y Zhang and Ching Y. Suen. A fast parallel algorithm for thinning digital patterns.
Communications of the ACM, 27(3):236–239, 1984.

[47] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net.
IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018.

13

https://github.com/facebookresearch/detectron2


[48] Lichen Zhou, Chuang Zhang, and Ming Wu. D-linknet: Linknet with pretrained encoder and
dilated convolution for high resolution satellite imagery road extraction. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages 182–186, 2018.

[49] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159,
2020.

[50] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany, Michael R Kaus,
Steven J Haker, William M Wells III, Ferenc A Jolesz, and Ron Kikinis. Statistical validation
of image segmentation quality based on a spatial overlap index1: scientific reports. Academic
radiology, 11(2):178–189, 2004.

14



Appendix

A Implementation Details
In this section, we provide more implementation details of GraphMorph.

For fair comparison to previous works like PointScatter [40], we use the ADAM optimizer with the
initial learning rate 1e-3 and cosine learning rate schedule with warm-up strategy to train the network.
The weight decay is set to be 1e-4 uniformly. We train the network for 3K iterations for the three
medical image datasets, and 10K for MassRoad. We use batchsize=4 for all datasets. We implement
GraphMorph based on PyTorch [31] and Detectron2 [42].

Our SkeletonDijkstra algorithm is designed to run solely on CPU due to its computational nature.We
use pthresh = 0.5 across all experiments. To enhance performance and efficiency, we have imple-
mented this algorithm in C++. For a detailed understanding of the algorithm, refer to the pseudo-code
provided in Appendix D.

B Graph Construction
The process of constructing a graph can be briefly summarized in three steps as follows: (1) Generate
the centerline mask of the tubular structure using skeletonization algorithm [46]; (2) Analyze each
centerline point P by counting the centerline points among its eight neighbors (denoted as N , not
including P ). Define P as a junction if N ≥ 3 and as an endpoint if N = 1. Points with N = 2
are path points and are not considered as nodes. Junctions and endpoints form the node set V of the
graph G. (3) If there is a pathway consisting of only path points between two nodes, then there is an
edge between them. All edges form the edge set E. We use publicly accessible implementations of
skeletonization1 and graph construction.2

However, the resultant graph may contain elements such as loops (closed paths where a node connects
back to itself) and multiple edges (more than one edge connecting the same pair of nodes). Addressing
both these elements is crucial; otherwise, reconstructing such structures during the inference process
would be challenging. As depicted in Figure 5, to manage these complexities, we introduce new
nodes in the following manner:

1. Loops: We insert new nodes at selected points within the loop to break the cycle.

2. Multiple edges: After resolving loops, we then add nodes along edges where multiple connections
exist between the same pair of nodes.

These modifications ensure that the graph structure is simplified and ready for more effective
processing during inference.

Loop

Multiple edges

(a)

Sum Sum

(b)

Figure 5: (a) Stages of graph construction from the binary mask of a road network. The first stage
demonstrates skeletonization process to a centerline mask. In the second image, we highlight the
endpoints in orange and junctions in purple. Adjacent junctions are merged and considered as a single
junction. Subsequent stages illustrate resolving Loops and reducing Multiple edges. (b) Example of
calculating N.

1skimage.morphology.skeletonize
2https://github.com/Image-Py/sknw

15

https://github.com/scikit-image/scikit-image/blob/v0.22.0/skimage/morphology/_skeletonize.py
https://github.com/Image-Py/sknw


Table 7: Comparison of [rln]-token and our dynamic module on the DRIVE and STARE datasets.
The "Time" metric represents the cumulative time required to process all sliding windows in the link
prediction phase for a single 384×384 image patch during inference.

Dataset Method Time/s Node Detection (↑) Edge Detection (↑) Volumetric metrics (↑) Topological metrics (↓)
AP@0.5 AR@0.5 AP@0.5 AR@0.5 Dice ACC β0 error β1 error χ error

DRIVE [rln]-token 0.2823 52.40 58.20 23.33 37.78 74.95 97.76 0.548 1.026 0.866
Dynamic 0.1582 52.30 58.11 23.25 37.89 74.97 97.76 0.555 1.074 0.893

STARE [rln]-token 0.1385 54.95 61.44 27.84 43.73 73.99 98.92 0.483 0.731 0.663
Dynamic 0.0754 55.06 61.90 27.80 43.62 74.25 98.94 0.482 0.799 0.653

C Link Prediction Module
To validate the effectiveness of our dynamic link prediction module, we compare it with the approach
used in RelationFormer [38].

RelationFormer learns an additional [rln]-token during the training of DETR to encode the relation-
ships between node queries. In the inference stage, to predict the connection between two nodes, the
method concatenates the features of the two nodes with the [rln]-token into a single vector. This
vector is then processed by a three-layer MLP to predict the probability of connection between the
nodes. Let us assume that there are P matched queries, denoted as Q̃r ∈ RP×C . In RelationFormer,
the connection probability for each node pair is computed individually, resulting in a computational
complexity of O(P 2 × C2). In contrast, our dynamic module achieves a complexity of O(P × C2)
(Equation (4) to (6)), reducing the computational burden.

Table 7 presents a comparison between the [rln]-token and our dynamic module on the task of
centerline extraction. The metrics "Node Detection" and "Edge Detection" are reproduced from
RelationFormer, which measure the accuracy of the nodes and edges extracted by the Graph De-
coder. Other metrics assess the accuracy of the centerline masks output by the Morph Module. All
experiments are based on UNet. The results demonstrate that both methods achieve comparable
performance. However, our method significantly reduces the computational complexity, thereby
shortening the inference time. This enhancement makes our approach more suitable for applications
requiring fast processing speeds without sacrificing performance.

D SkeletonDijkstra Algorithm
The pseudo-code of our SkeletonDijkstra algorithm is given in Algorithm 2, which finds the optimal
path satisfying the skeleton nature for two points.

E Details of Processing in Segmentation
E.1 Soft Skeletonization

See soft_skeleton function in Listing 1. In the segmentation task, the segmentation network outputs
the segmentation probability Sm, which we need to soft skeletonized into the centerline probability
Pm for input into the Morph Module.

E.2 Post-processing to Suppress False Postives

See dilate_with_seg_limit function in Listing 1. In the segmentation task, after obtaining topologi-
cally accurate centerline masks by the Morph Module, false positives can be greatly suppressed with
this post-processing strategy.

F Computational Resources
Hardware Configuration. Experiments were conducted using an NVIDIA GeForce RTX 3090 with
24 GB GPU memory. The CPU used was an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, which
features 28 cores.

Analysis of training process. Training on the DRIVE dataset with a UNet backbone and a batch size
of 4 using "SoftDice+Ours" method requires approximately 11.8 GB of GPU memory, compared

16



Algorithm 2 SkeletonDijkstra Algorithm

Input: Start point s, End point e, Cost map C, Path threshold pthresh
Output: Minimum cost path from s to e under threshold pthresh

Initialize priority queue Q with (0, [s])
Initialize visited set V is
while not Q empty do
(cost, path)← Q.pop()
curr← last element of path
Add curr to V is
if curr = e then

avg← cost/ length(path)
if avg > pthresh then

return ∅
end if
return path

end if
for each n in neighbors of curr do

if n in V is then
continue

end if
neis_in_path← count of n’s neighbors in path
if neis_in_path ≤ 1 then
path← path concatenated with [n]
cost← cost+ C[n.x][n.y]
Q.push((cost, path))

end if
end for

end while

to 5.4 GB of "SoftDice". More comparison between these two methods are show in Table 8. The
increase in parameters and FLOPs in our approach primarily stems from the integration of the Graph
Decoder featuring a DETR module. This component is crucial for predicting accurate topological
structures of the graphs. Advancements in transformer architectures that reduce computational
overhead could potentially enhance the efficiency of our model during training.

Inference time analysis. The inference times for each model component are summarized in Table 9.
The data presented in the table was obtained by processing a 384× 384 image patch from the DRIVE
dataset. ROI size is H = 32, with a sliding window stride of 30. As shown in the table, significant
time is concentrated on the Morph Module. The primary time expenditure currently arises from
processing the patches sequentially in our sliding window strategy. However, as each patch operates
independently, there is significant potential to enhance efficiency by parallelizing the computations of
all patches. Recognizing this opportunity, we plan to focus future work on optimizing the Morph
Module by implementing parallel processing techniques to accelerate inference.

Table 8: Comparison of required resources during training.
Method Params FLOPs Time per iteration (s) GPU Memory

SoftDice 39M 187G 0.203 5.4 GB
softDice+Ours 48M 268G 0.589 11.8 GB

Table 9: Inference timing for each Module.
Module Device Time (s)

Segmentation network GPU 0.0101
Deformable DETR GPU 0.1194

Link prediction module GPU 0.0379
Morph Module CPU 0.2933

(Segmentation) Post-processing CPU 0.0279

17



Listing 1 Python codes of the soft skeletonization operation and post-processing strategy during the
inference process of the segmentation task.

1 import numpy as np
2 import cv2
3 from skimage.morphology import skeletonize
4 from scipy.ndimage import distance_transform_edt
5
6 def soft_skeleton(seg_prob: np.ndarray):
7 '''
8 Generate centerline probability map from the segmentation probability map.
9 seg_prob: segmentation probability map output from the segmentation network.

10 '''
11 seg_mask = seg_prob > 0.5
12 ske = skeletonize(seg_mask)
13 distmap = distance_transform_edt (~ske.astype(np.bool_))
14 distmap = np.clip(distmap , 0, 64) / 64
15 cline_prob = seg_prob * (1 - distmap)
16 return cline_prob
17
18 def dilate_with_seg_limit(cline_mask , seg_mask , kernel_size =3):
19 '''
20 Post process in the segmentation task to suppress false postives.
21 cline_mask: centerline mask output from the Morph module.
22 seg_mask: segmentation mask thresholded from the segmentation probability map.
23 kernel_size: kernel size of the dilation operation.
24 '''
25 kernel = np.ones(( kernel_size , kernel_size), np.uint8)
26 res = np.minimum(cline_mask , seg_mask)
27 while True:
28 dilated_cline_mask = cv2.dilate(res , kernel , iterations =1)
29 dilated_res = dilated_cline_mask - res
30 dilated_res = np.minimum(dilated_res , seg_mask)
31 dilated_cline_mask = res + dilated_res
32 if np.array_equal(dilated_cline_mask , res):
33 break
34 res = dilated_cline_mask
35 return dilated_cline_mask

G More Visualization Results
G.1 Visualization of Predicted Graphs

We visualize the graphs predicted by the Graph Decoder within the context of the centerline extraction
task and analyze the role of the Morph Module. As shown in Figure 6, the first four rows illustrate
the Graph Decoder’s robust capability to predict graphs. By comparing the final predicted results
obtained through the Morph Module (last column) with those obtained by thresholding Pm at 0.5
(fourth column), it is evident that issues such as redundant and broken branches are effectively
mitigated. However, the Morph Module also has limitations. Notably, the setting of pthresh might lead
to overlooking some true-positive edges due to inaccuracies in Pm, which is illustrating in the last
two rows in Figure 6. This highlights areas for future improvement.

G.2 Visualization of Effect of Post-processing on the Segmentation Task

Figure 7 showcases the impact of post-processing in mitigating false positives within segmentation
tasks, a procedure fully elaborated in Appendix E.2. This figure clearly reveals the elimination of
isolated regions, originally predicted by the segmentation networks, across all datasets. Notably, the
excision of such regions—often minute in scale—exerts a nominal effect on volumetric metrics while
markedly bolstering topological metrics. This enhancement in the integrity of topological metrics
through post-processing is substantiated by the data in Table 6.

H Limitations
Despite the advancements offered by GraphMorph, the method exhibits certain limitations. First,
the reliance on post-processing for the segmentation task indicates a potential underutilization of
branch-level features. Although false postives are significantly suppressed, segmentation results
are not always topologically aligned with predicted graphs, suggesting room for improvement in

18



D
R

IV
E

D
R

IV
E

ST
A

R
E

IS
B

I1
2

IS
B

I1
2

M
as

sR
oa

d

Image Patch Centerline GT Probability(      ) Thresholded Predicted Graph GraphMorph

Figure 6: Visualization of intermediate results in the centerline extraction task. The results in the
fourth column are obtained by thresholding Pm at 0.5. Comparisons across the first four rows
illustrate that GraphMorph achieves improved results through morphing predicted graphs. The last
two rows demonstrate how the settings of pthresh in the Morph Module may lead to concessions to
Pm, resulting in false negatives.

segmentation performance. Additionally, the necessity to train on relatively small ROIs, due to
the complex nature of tubular structures, requires sliding window technique during inference. This
technique may not fully capture comprehensive branch-level details and the global context of the
entire tubular structure. Based on the limitations, future developments will aim to refine segmentation
algorithms to utilize predicted graphs directly, thereby reducing dependency on post-processing.
Concurrently, efforts will also focus on the capability of processing larger fields of view in a single
analysis, thus preserving global context and enhancing feature consistency across the entire structure.

I Additional Experiments on 3D Dataset
The application of GraphMorph to 3D medical datasets can be initially explored for its clinical
significance. Thus, we have extended GraphMorph to use the 3D UNet architecture and tested it on
the pulmonary arterial vascular segmentation dataset from the PARSE challenge, which includes 100
annotated 3D CT scans. These cases were divided in a 7:1:2 ratio for training, validation, and testing.

The preliminary results, as detailed in Table 10, show that our method consistently outperforms
existing baselines across all metrics, mirroring the success we observed with 2D data. This alignment

19



Image w.o. Post GraphMorphLabel

D
R

IV
E

ST
A

R
E

IS
B

I1
2

M
as

sR
oa

d

Figure 7: Visualization of the effect of the post-processing in the segmentation task across four
datasets. Columns represent, from left to right: original images, ground truth segmentation labels,
thresholded output from the segmentation network (w.o. Post), and results with post-processing.
Green arrows highlight areas where false positives have been successfully suppressed.

Label SoftDice GraphMorph

Figure 8: Visual comparison for our GraphMorph with baseline on the segmentation task. Areas
indicated by yellow arrows show false negatives (FNs) and areas pointed by green arrows demonstrate
false positives (FPs) appear in baseline but are accurately predicted by our approach.

20



between 2D and 3D results not only underlines the effectiveness of our method but also its adaptability
to 3D vessel segmentation task, which indicates the potential of GraphMorph in clinical diagnosis.
Moreover, Figure I demonstrates that GraphMorph effectively suppresses false positives (FPs) and
false negatives (FNs) in fine structures. Further attempts on 3D datasets will be made to validate its
effectiveness.

Table 10: Segmentation performance of GraphMorph on PARSE dataset.

Backbone Method
Volumetric metrics (↑) Distribution metrics Topological metrics (↓)

Dice clDice ACC ARI(↑) VOI(↓) β0 error χ error

UNet
softDice 0.7968 ± 0.0166 0.8350 ± 0.0152 0.9878 ± 0.0021 0.779 ± 0.017 0.134 ± 0.019 1.087 ± 0.078 1.130 ± 0.082

softDice+Ours 0.8196 ± 0.0138 0.8730 ± 0.0111 0.9901 ± 0.0015 0.805 ± 0.014 0.115 ± 0.015 0.536 ± 0.039 0.602 ± 0.045

J Broader Impacts
In this work, we present GraphMorph, a framework aimed at improving the extraction of tubular
structures in medical image analysis, such as blood vessels and other elongated anatomical features.
Fine-scale structures often consist of interconnected branches forming cohesive networks critical to
physiological functions. By enhancing topological accuracy, GraphMorph provides more coherent
and precise representations of these structures. These improved predictions with better topology
in medical diagnostic scenarios related to tubular structures may assist clinical diagnosis. While
our results are promising, they are based on publicly available datasets that may not fully capture
the complexity and variability of real-world clinical data; therefore, further validation on more 3D
datasets is necessary to confirm its applicability in clinical settings. At the present stage, we do not
foresee any potential negative societal impacts arising from our work. Our goal is to contribute a
useful tool for the medical imaging community, supporting efforts to improve segmentation accuracy
and ultimately aiding in better healthcare outcomes.

21



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The last sentence in Abstract; the last two paragraphs of Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The validity of the method is demonstrated primarily through experiments.

22



Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the model architecture in Section 3,
including figures, textual descriptions, and algorithmic flows. Hyperparameters are mainly
provided in the "Implementation Details" paragraph of Section 4.1. There are also some
details although described in detail in the main text, we provide the algorithmic flow and
codes in Appendix D to ensure the reproducibility of the methodology.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: However, we provide training and infernece details exhaustively in Section 3
and 4.1. Additionally, codes of processes in segmentation are supplied in Appendix E. The
information we have provided is sufficient to reproduce our work. The complete code will
be made publicly available soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental setup in this study involved extensive testing across multiple
datasets and with various types of backbone networks, consistently demonstrating improve-
ments through our method. This extensive validation across diverse conditions ensures the
reproducibility and reliability of the results. Additionally, the sheer volume of experiments
conducted makes the computation of error bars highly time-consuming and computationally
expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not violate the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix J analyzes the positive impacts. We observe that there are no
significant negative effects of the methodology.

25

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is proposing an AI algorithm for medical assistance that does not
run such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used in the paper have been cited in their original literature. For
the utilization of publicly available code the source is also indicated.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

26



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code and model are not publicly available at this time. We will make them
available later.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28


	Introduction
	Related Work
	Method
	Segmentation Network
	Graph Decoder
	Training Details
	Morph Module and Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Qualitative Results

	Conclusion
	 Appendix
	Implementation Details
	Graph Construction
	Link Prediction Module
	SkeletonDijkstra Algorithm
	Details of Processing in Segmentation
	Soft Skeletonization
	Post-processing to Suppress False Postives

	Computational Resources
	More Visualization Results
	Visualization of Predicted Graphs
	Visualization of Effect of Post-processing on the Segmentation Task

	Limitations
	Additional Experiments on 3D Dataset
	Broader Impacts


