

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYSICS-INFORMED DISTILLATION OF DIFFUSION MODELS FOR PDE-CONSTRAINED GENERATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Modeling physical systems in a generative manner offers several advantages, including the ability to handle partial observations, generate diverse solutions, and address both forward and inverse problems. Recently, diffusion models have gained increasing attention in the modeling of physical systems, particularly those governed by partial differential equations (PDEs). However, diffusion models only access noisy data  $\mathbf{x}_t$  at intermediate steps, making it infeasible to directly enforce constraints on the clean sample  $\mathbf{x}_0$  at each noisy level. As a workaround, constraints are typically applied to the *expectation* of clean samples  $\mathbb{E}[\mathbf{x}_0|\mathbf{x}_t]$ , which is estimated using the learned score network. However, imposing PDE constraints on the expectation does not strictly represent the one on the true clean data, known as *Jensen's Gap*. This gap creates a trade-off: enforcing PDE constraints may come at the cost of reduced accuracy in generative modeling. To address this, we propose a *simple* yet *effective* post-hoc distillation approach, where PDE constraints are not injected directly into the diffusion process, but instead enforced during a post-hoc distillation stage. We term our method as **Physics-Informed Distillation of Diffusion Models** (PIDDM). This distillation not only facilitates single-step generation with improved PDE satisfaction, but also support both forward and inverse problem solving and reconstruction from randomly partial observation. Extensive experiments across various PDE benchmarks demonstrate that PIDDM significantly *both* improves PDE satisfaction and generative modeling over several recent and competitive baselines, such as PIDM (3), DiffusionPDE (22), and ECI-sampling (8), while achieving lower computational overhead and avoiding extensive hyperparameter tuning. Our approach can shed light on more efficient and effective strategies for incorporating physical constraints into diffusion models.

## 1 INTRODUCTION

Solving partial differential equations (PDEs) underpins innumerable applications in physics, biology, and engineering, spanning fluid flow (11), heat transfer (25), elasticity (64), electromagnetism (26), and chemical diffusion (10). Classical discretisation schemes such as finite-difference (57), and finite-element methods (33) provide reliable solutions, but their computational cost grows sharply with mesh resolution, dimensionality, and parameter sweeps, limiting their practicality for large-scale or real-time simulations (24). This bottleneck has fuelled a surge of learning-based solvers that approximate or accelerate PDE solutions, from early physics-informed neural networks (PINNs) (51) to modern operator-learning frameworks such as DeepONet (43), Fourier Neural Operators (35) and Physics-informed Neural Operator (36), offering faster inference, uncertainty quantification, and seamless integration into inverse or data-driven tasks.

Among these learning based solvers, diffusion models (20; 61) provide a promising framework for generative modeling of physical systems. For PDEs, a diffusion model can learn the joint distribution of solution and coefficient fields,  $\mathbf{x}_0 = (\mathbf{u}, \mathbf{a})$ , from data, where  $\mathbf{a}$  denotes input parameters that satisfy the boundary operator  $\mathcal{B}$  (for example, material properties or initial conditions) and  $\mathbf{u}$  is the corresponding solution that satisfies the PDE operator  $\mathcal{F}$ . After training, the model can sample  $(\mathbf{u}, \mathbf{a})$  from this learned distribution, enabling forward simulation (sample  $\mathbf{u}$  given  $\mathbf{a}$ ), inverse recovery (sample  $\mathbf{a}$  given  $\mathbf{u}$ ), and conditional reconstruction (complete missing components of  $\mathbf{u}$  or  $\mathbf{a}$ ) *within a single framework*, which prior non-diffusion approaches (35; 43; 51) *do not provide*. However, while

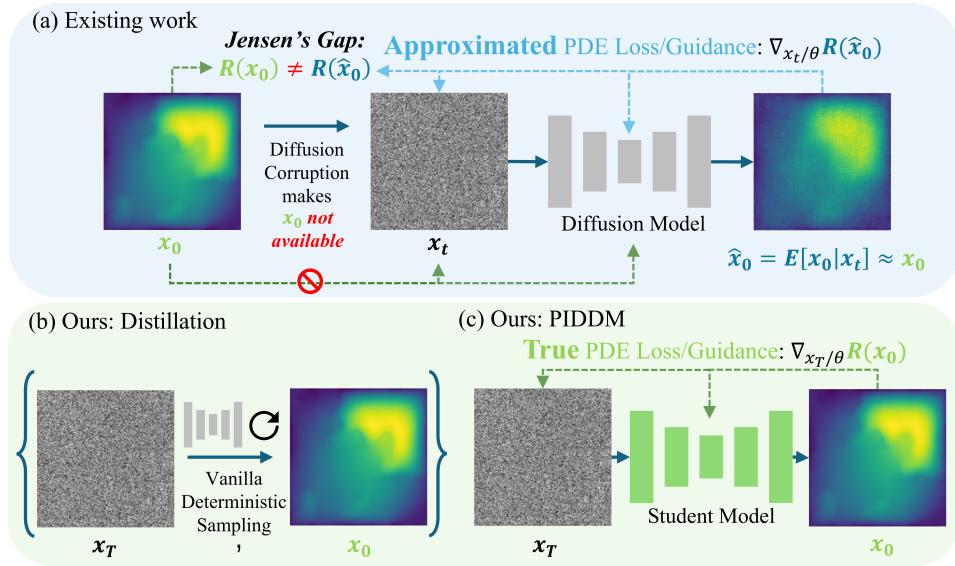


Figure 1: **Illustration of physics-constrained diffusion generation and our proposed framework.** (a) Existing methods (22; 8; 3; 27) impose PDE losses or guidance on the posterior mean  $\mathbb{E}[x_0|x_t]$  in diffusion training and sampling, introducing Jensen’s Gap. (b) We propose to train and sample diffusion model using vanilla methods to generate a noise-image data paired dataset for distillation. (c) Our proposed framework distills the teacher diffusion model and directly enforces physical constraints on the final generated sample  $x_0$ , avoiding Jensen’s Gap .

diffusion models perform well under soft, high level constraints (53; 16; 21; 9; 4), PDE applications often require strict, low level constraints dictated by  $\mathcal{F}$  and  $\mathcal{B}$ .

Enforcing such PDE constraints within diffusion models is nontrivial. A core difficulty is that, at individual noise level  $t$ , diffusion models operate on noisy variables  $x_t$  rather than the clean physical field  $x_0$ , where constraints such as  $\mathcal{F}[x_0] = 0$  are defined. To address this, one option is to reconstruct  $x_0$  by running the full deterministic sampling trajectory, but this is computationally expensive since it requires many forward passes, and enforcing constraints through backpropagation often causes gradient issues. (3). A more common alternative is to approximate  $x_0$  with the posterior mean  $\mathbb{E}[x_0|x_t]$ , which can be efficiently computed via Tweedie’s formula (3; 22; 8; 27; 29; 68; 76; 71; 59; 62; 23) (see right part of Fig. 1 (a)). However, this introduces a theoretical inconsistency: enforcing constraints on the posterior mean,  $\mathcal{F}[\mathbb{E}[x_0|x_t]]$ , is not equivalent to enforcing the expected constraint,  $\mathbb{E}[\mathcal{F}[x_0]|x_t]$ , due to Jensen’s inequality. This mismatch, known as the *Jensen’s Gap* (3), can lead to degraded physical fidelity.

**Contributions.** We propose a simple yet effective framework that enforces PDE constraints in diffusion models via post-hoc distillation, enabling reliable and efficient generation under physical laws. As shown in Fig. 1 (c), our method sidesteps the limitations of existing constraint-guided diffusion-based approaches by decoupling physics enforcement from the diffusion trajectory. Our main contributions are:

- **Empirical confirmation of Jensen’s Gap:** We provide the first explicit empirical demonstration and quantitative analysis of the *Jensen’s Gap*, a fundamental discrepancy that arises when PDE constraints are imposed on the posterior mean  $\mathbb{E}[x_0|x_t]$ , rather than the final clean sample  $x_0$ .
- **Theoretically sound:** Our method bypasses the Jensen’s Gap by enforcing PDE constraints on the final generated samples via distillation. Unlike posterior-mean-based methods that trade distributional fidelity for constraint satisfaction, our method achieves both physical accuracy and generative fidelity without extensive hyperparameter tuning.
- **Versatile and efficient inference:** The distilled student model preserves the full generative capabilities of the teacher, supporting physical simulation, reconstruction, and unified forward and inverse PDE solving within *a single model*, while enabling one step generation for fast inference. Experiments across diverse PDEs show that PIDDM surpasses posterior-mean-based methods (22; 8; 3; 27) in both generation quality and constraint satisfaction.

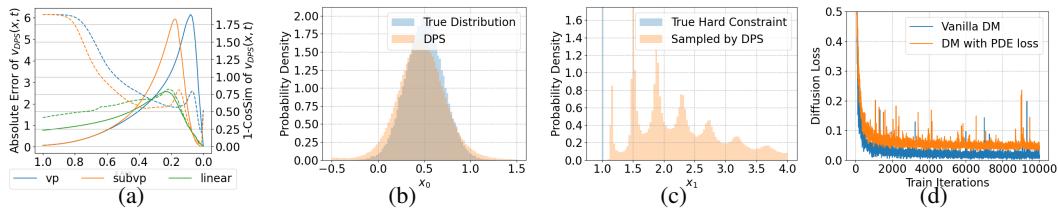


Figure 2: **Empirical illustration of the Jensen’s Gap in physics-constrained diffusion models.** (a) Absolute velocity error and angular discrepancy ( $1 - \cos(\theta)$ ) between Diffusion Posterior Sampling (DPS) and the ground-truth conditional ODE velocity on the MoG dataset. (b) and (c) Histograms comparing the first (unconstrained) and second (hard-constrained) dimensions of DPS-sampled MoG data against the ground truth MoG. (d) Training-time manifestation: diffusion loss comparison between vanilla training and PIDM on a Stokes Problem dataset.

## 2 PROBLEM SETUP: JENSEN’S GAP IN DIFFUSION MODEL WITH PDE CONSTRAINTS

In scientific machine learning, there exist many *hard* and *low-level* constraints that are mathematically strict and non-negotiable (34; 19; 48; 54). In this section, we will discuss how existing works impose these constraints in diffusion-generated data, and the Jensen’s Gap (17; 3; 22) it introduces.

### 2.1 PRELIMINARIES ON PHYSICS CONSTRAINTS

Physics constraints are typically expressed as a *partial differential equation (PDE)*  $\mathcal{F}$  defined over a solution domain  $\Omega \subset \mathbb{R}^d$ , together with a *boundary condition* operator  $\mathcal{B}$  defined on the coefficient domain  $\Omega'$ :

$$\mathcal{F}[\mathbf{u}(\xi)] = 0 \text{ for } \xi \in \Omega, \quad \mathcal{B}[\mathbf{a}(\xi')] = 0 \text{ for } \xi' \in \Omega'. \quad (1)$$

In practice, the domain  $\Omega$  and  $\Omega'$  is discretized into a uniform grid, typically of size  $H \times W$ , and the field  $\mathbf{u}$  and  $\mathbf{a}$  are evaluated at those grid points to produce the observed data  $\mathbf{x}_0 = (\mathbf{u}, \mathbf{a})$ , where diffusion models are trained to learn the joint distribution  $p(\mathbf{x}_0) = p((\mathbf{u}, \mathbf{a}))$ . While PINNs (51) model the mapping  $\xi, \xi' \mapsto (\mathbf{u}(\xi), \mathbf{a}(\xi'))$  with differentiable neural networks to enable automatic differentiation (50; 1), grid-based approaches commonly approximate the differential operators in  $\mathcal{F}$  via finite difference methods (57; 33). To quantify the extent to which a generated sample  $\mathbf{x}_0$  violates the physical constraints, the *physics residual error* in often defined by:

$$\mathcal{R}(\mathbf{x}_0) = \mathcal{R}((\mathbf{u}, \mathbf{a})) := [\mathcal{F}[\mathbf{u}], \mathcal{B}[\mathbf{a}]]^\top \quad (2)$$

Here,  $\mathcal{R}(\mathbf{x})$  measures the discrepancy between the sample  $\mathbf{x}$  and the expected PDE  $\mathcal{F}$  and boundary conditions  $\mathcal{B}$ . The *physics residual loss* is often defined by the squared norm of this physics residual error, i.e.,  $\|\mathcal{R}(\mathbf{x})\|^2$ .

### 2.2 IMPOSING PDE CONSTRAINTS IN DIFFUSION MODELS

The physical constraints  $\mathcal{R}$  are often defined on the clean field  $\mathbf{x}_0$ , while during training or sampling of the diffusion model, the model only observes the noisy state  $\mathbf{x}_t$ . Therefore, it is intractable to make direct optimization or controlled generation based on the physical residual loss  $\mathcal{R}(\mathbf{x}_0)$ . A practical workaround, therefore, is to evaluate the constraint on an estimate of  $\mathbf{x}_0$  from  $\mathbf{x}_t$ , and a common choice is to use the estimated *posterior mean*:  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  based on the score network in diffusion model (3; 22). As a simplified example, consider the forward process defined as  $\mathbf{x}_t = \mathbf{x}_0 + \sigma_t \epsilon$ , where  $\sigma_t$  denotes the noise level at time  $t$  and  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$  is standard Gaussian noise. Then, the posterior mean can be efficiently estimated via Tweedie’s formula:

$$\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t) := \mathbf{x}_t + \sigma_t^2 s_\theta(\mathbf{x}_t, t) \approx \mathbf{x}_t + \sigma_t^2 \nabla \log p(\mathbf{x}_t) \approx \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t], \quad (3)$$

where  $s_\theta$  is a learned score function approximating the gradient of the log-density (see Appendix B.2 for the derivations for the general diffusion process). Leveraging this approximation, several existing works incorporate PDE constraints by evaluating the PDE residual operator  $\mathcal{R}$  on  $\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t)$ . For instance, **PIDM** (3) integrates PDE constraints into diffusion model *at training time* by augmenting the standard diffusion objective with an additional PDE residual loss  $\mathcal{R}(\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t))$ . Similarly, *at*

162 *inference time*, **DiffusionPDE** (22) and **CoCoGen** (27) employ diffusion posterior sampling (DPS)  
 163 (9), guiding each intermediate sample  $\mathbf{x}_t$  using the gradient  $\nabla_{\mathbf{x}} \mathcal{R}(\hat{\mathbf{x}}_{\theta}(\mathbf{x}_t, t))$ . On the other hand;  
 164 **ECI-sampling** (8) directly projects hard constraints onto the posterior mean at each DDIM step using  
 165 a correction operator (more detailed discussion on their implementations can be found in Appendix  
 166 D.4). Beyond PDE applications, constrained diffusion models for image inverse problems also rely  
 167 on posterior-mean approximations for true posterior estimation. Representative examples include  
 168 DDRM (29), DDNM (68), LGD (59), DPG (62), SCG (23), DCDPM (13), mid-point guidance (47),  
 169 DiffPIR (76), and DAPS (71) (see Appendix A.2 for details). While these pioneering methods have  
 170 been demonstrated to be effective in enforcing PDE constraints within diffusion models, they still  
 171 suffer a theoretical inconsistency: PDE constraints are enforced on the posterior mean approximation  
 172  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ , which is not equivalent to the constraints on the true generated data  $\mathbf{x}_0$  due to Jensen’s  
 173 inequality:

$$\mathcal{R}(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]) \neq \mathbb{E}[\mathcal{R}(\mathbf{x}_0) | \mathbf{x}_t]. \quad (4)$$

174 This discrepancy is commonly referred to as the *Jensen’s Gap* (3; 22; 17). To mitigate this issue,  
 175 PIDM and DiffusionPDE heuristically down-weight PDE constraints at early denoising steps (large  
 176  $t$ ) in training and sampling, respectively, where Jensen’s Gap is pronounced, and emphasize them  
 177 near  $t \rightarrow 0$ , where the posterior mean approximation improves. ECI-sampling introduces stochastic  
 178 resampling steps (66) to project theoretically inconsistent intermediate samples back toward their  
 179 correct distribution. Many other methods for image inverse problems also provide partial improvements  
 180 to reduce approximation error (59; 62; 23; 13; 47) (Appendix A.2). However, they merely mitigate  
 181 the Jensen’s Gap rather than fundamentally resolving it.

### 183 2.3 DEMONSTRATION OF THE JENSEN’S GAP

184 To better illustrate the presence of Jensen’s gap and its negative effect, we conduct experiments on  
 185 two synthetic datasets: a Mixture-of-Gaussians (MoG) dataset and a Stokes Problem dataset.

186 **Sampling-time Jensen’s Gap.** We demonstrate the sampling-time Jensen’s Gap using the Mixture-  
 187 of-Gaussians (MoG) dataset, where the score function is analytically tractable, allowing us to isolate  
 188 the effect of the diffusion process without interference from training error. The MoG is constructed in  
 189 2D: the first dimension follows a bimodal Gaussian distribution, while the second dimension encodes  
 190 a discrete latent variable that serves as a hard constraint. Concretely, the joint distribution is defined  
 191 as a mixture of two Gaussians, each supported on a distinct horizontal line:

$$p(\mathbf{x}_0) = 0.5 \cdot \mathcal{N}(x_1; -1, \sigma^2) \cdot \delta(x_2 + 1) + 0.5 \cdot \mathcal{N}(x_1; +1, \sigma^2) \cdot \delta(x_2 - 1), \quad (5)$$

192 where  $\delta(\cdot)$  denotes the Dirac delta function and  $\sigma = 0.2$ . To examine the impact of Jensen’s Gap  
 193 during sampling, we compare Diffusion Posterior Sampling (DPS) (9) which uses a latent code to  
 194 guide the generation, with the ground-truth conditional ODE trajectory derived analytically. We  
 195 evaluate three representative diffusion processes: Variance-Preserving (VP) (20), Sub-VP (61), and  
 196 Linear (38), and compare their velocity field during the inference for characterizing Jensen’s Gap. To  
 197 quantify amplitude errors, we compute the mean absolute error (MAE) and angular error between  
 198 the DPS-predicted velocity field  $v_{\text{DPS}}(x, t)$  and the ground-truth velocity  $v_{\text{GT}}(x, t)$ : We observe that  
 199 both of these errors of DPS are significantly elevated at intermediate timesteps and only diminish as  
 200  $t \rightarrow 0$ , as shown in Fig. 2a. Although DPS achieves accurate sampling in the unconstrained dimension  
 201 (Fig. 2b), it fails to respect the hard constraint in the constrained dimension (Fig. 2c).

202 **Training-time Jensen’s Gap.** We examine the Jensen’s Gap during training using the synthetic Stokes  
 203 dataset with target distribution  $p_{\text{Stokes}}$ . The diffusion model  $v_{\theta}$  adopts a Fourier Neural Operator (FNO)  
 204 (35) architecture and follows a standard linear noise schedule (37; 39; 40). Dataset and training details  
 205 are given in Appendices C and D. We take PIDM (3) as a representative method, which augments the  
 206 diffusion loss with a PDE residual term  $\mathcal{R}(\hat{\mathbf{x}}_{\theta}(\mathbf{x}_t, t))$ , and compare its performance with standard  
 207 diffusion training. To assess generative quality, we monitor the diffusion loss, which theoretically  
 208 corresponds to the evidence lower bound (ELBO) (20; 32; 12; 52; 15). The comparison results are  
 209 shown in Fig. 2d, revealing a significant increase in diffusion loss when the PDE residual loss is  
 210 incorporated. This suggests that the PDE residual loss does not help better shape the data distribution  
 211 that satisfies the PDE constraints. This observation also corroborates findings from PIDM (3), which  
 212 identified that residual supervision on the posterior mean can create “a conflicting objective between  
 213 the data and residual loss”, where the data loss represents the original diffusion training objective.  
 214 These results provide further evidence for the existence of the Jensen’s Gap in training, as enforcing  
 215 constraints on  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  may interfere with maximizing the likelihood of the true data distribution.

**Algorithm 1** PIDDM Training: Physics-Informed Distillation.

**Require:** Teacher Model  $v_\theta(x, t)$ , Student Model  $d_{\theta'}$ , Batch Size  $B$ , Steps  $N_s$ , Step Size  $dt=1/N_s$ , Physics Residual Error  $\mathcal{R}$ , Loss Weight  $\lambda_{\text{train}}$ , Learning Rate  $\eta_{\text{train}}$

```

1: repeat
2:   Sample  $\epsilon_{1:B} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I})$ ;  $\mathbf{x}_T \leftarrow \epsilon_{1:B}$ 
3:   For  $t = T - dt, \dots, 0$   $\mathbf{x}_t \leftarrow \mathbf{x}_{t+dt} - \mathbf{v}_\theta(\mathbf{x}_{t+dt}, t+dt) dt$  ▷ Sampling Phase
4:    $\mathbf{x}_{\text{pred}} \leftarrow d_{\theta'}(\epsilon_{1:B})$ 
5:    $\mathcal{L} \leftarrow \frac{1}{B} (\|\mathbf{x}_{\text{pred}} - \mathbf{x}_0\|^2 + \lambda_{\text{train}} \|\mathcal{R}(\mathbf{x}_{\text{pred}})\|^2)$  ▷ Distillation Phase
6:    $\theta' \leftarrow \theta' - \eta_{\text{train}} \nabla_{\theta'} \mathcal{L}$ 
7: until Converged

```

**Algorithm 2** PIDDM Inference: Physics Data Simulation

- 1: **Input** Student Model  $d_{\theta'}$ , Physics Residual Error  $\mathcal{R}$ , Refinement Step Number  $N_f$ , Refinement Step Size  $\eta_{\text{ref}}$ , Latent Noise  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
- 2: **For**  $i = 1, \dots, N_f$  :  $\epsilon \leftarrow \epsilon - \eta_{\text{ref}} \nabla_{\epsilon} \|\mathcal{R}(d_{\theta'}(\epsilon))\|^2$  ▷ PDE refinement step (optional).
- 3: **Output**  $d_{\theta'}(\epsilon)$

**Algorithm 3** PIDDM Inference for Forward/Inverse/Reconstruction

```

1: Input Student Model  $d_{\theta'}$ , Physics Residual Error  $\mathcal{R}$ , Optimization Iteration  $N_o$ , Step Size  $\eta_{\text{infer}}$ ,  

   Observation  $\mathbf{x}'$ , Observation Mask  $M$ , Loss Weight  $\lambda_{\text{infer}}$ , Latent Noise  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
2: for  $i = 1, \dots, N_o$  do
3:    $\mathbf{x}_{\text{mix}} \leftarrow \mathbf{x}' \odot M + d_{\theta'}(\epsilon) \odot (1 - M)$ 
4:    $\epsilon \leftarrow \epsilon - \eta_{\text{infer}} \nabla_{\epsilon} [\| (d_{\theta'}(\epsilon) - \mathbf{x}') \odot M \|^2 + \lambda_{\text{infer}} \|\mathcal{R}(\mathbf{x}_{\text{mix}})\|^2]$ 
5: end for
6:  $\mathbf{x} \leftarrow \mathbf{x}' \odot M + d_{\theta'}(\epsilon) \odot (1 - M)$ 
7: Output  $\mathbf{x}$ 

```

### 3 METHOD: PHYSICS-INFORMED DISTILLATION OF DIFFUSION MODELS

In the previous Section 2, we have demonstrated the existence of the Jensen’s Gap when incorporating physical constraints into diffusion training and sampling, as observed in prior works. To address this issue, we propose a distillation-based framework that theoretically bypasses the Jensen’s Gap. In specific, instead of enforcing constraints on the posterior mean during the diffusion process which introduces a trade-off with generative accuracy, we apply physical constraints directly to the final generated samples in a post-hoc distillation stage.

### 3.1 DIFFUSION TRAINING

To decouple physical constraint enforcement from the diffusion process itself, we first conduct *standard* diffusion model training using its original denoising objective, without adding any constraint-based loss. To achieve smoother sampling trajectory which benefits later noise-data distillation (39; 40), we adopt a linear diffusion process and apply the  $v$ -prediction parameterization (39; 37; 40; 8; 16), which is commonly referred to as a flow model. In specific, the training objective is defined as:

$$\mathcal{L}(\theta) = \mathbb{E}_{t \sim U(0,1), x_0 \sim p(x_0), \epsilon \sim cN(\mathbf{0}, \mathbf{I})} \|(\mathbf{v}_\theta(x_t, t) - (\epsilon - x_0)\|^2, \quad x_t = (1-t)x_0 + t\epsilon, \quad (6)$$

where  $p(\mathbf{x}_0)$  is the distribution of joint data containing both solution and coefficient fields  $\mathbf{x} = (\mathbf{u}, \mathbf{a})$ ,  $\epsilon$  is sampled from a standard Gaussian distribution, and  $v_\theta$  is the neural network as the diffusion model. This formulation allows the model to learn to reverse the diffusion process without entangling it with physical supervision, thereby preserving generative fidelity.

### 3.2 IMPOSING PDE CONSTRAINTS IN DISTILLATION

After training the teacher diffusion model using the standard denoising objective, we proceed to the distillation stage, where we transfer its knowledge to a student model designed for efficient one-step

Table 1: Generative metrics on various PDE problems. The PDE error means the MSE of the evaluated physics residual error. The best results are in **bold** and the second best are underlined.

| Dataset | Metric                         | PIDDM-1      | PIDDM-ref    | ECI   | DiffusionPDE | D-Flow | PIDM  | Teacher |
|---------|--------------------------------|--------------|--------------|-------|--------------|--------|-------|---------|
| Darcy   | MMSE ( $\times 10^{-2}$ )      | <u>0.112</u> | <b>0.037</b> | 0.153 | 0.419        | 0.129  | 0.515 | 0.108   |
|         | SMSE ( $\times 10^{-2}$ )      | <u>0.082</u> | <b>0.002</b> | 0.103 | 0.163        | 0.085  | 0.368 | 0.069   |
|         | PDE Error ( $\times 10^{-4}$ ) | <u>0.226</u> | <b>0.148</b> | 1.582 | 1.071        | 0.532  | 1.236 | 1.585   |
|         | FPD                            | <u>0.754</u> | <b>0.385</b> | 0.921 | 1.437        | 0.995  | 1.983 | 0.782   |
|         | NFE ( $\times 10^3$ )          | <b>0.001</b> | <u>0.080</u> | 0.500 | 0.100        | 5.000  | 0.100 | 0.100   |
| Poisson | MMSE ( $\times 10^{-2}$ )      | <u>0.162</u> | <b>0.113</b> | 0.183 | 0.861        | 0.172  | 0.948 | 0.150   |
|         | SMSE ( $\times 10^{-2}$ )      | <u>0.326</u> | <b>0.274</b> | 0.291 | 0.483        | 0.475  | 0.701 | 0.353   |
|         | PDE Error ( $\times 10^{-9}$ ) | <u>0.073</u> | <b>0.050</b> | 2.420 | 1.270        | 0.831  | 1.593 | 2.443   |
|         | FPD                            | <u>1.281</u> | <b>0.659</b> | 1.532 | 1.835        | 1.677  | 2.358 | 1.342   |
|         | NFE ( $\times 10^3$ )          | <b>0.001</b> | <u>0.080</u> | 0.500 | 0.100        | 5.000  | 0.100 | 0.100   |
| Burger  | MMSE ( $\times 10^{-2}$ )      | <u>0.152</u> | <b>0.012</b> | 0.294 | 0.064        | 0.305  | 0.948 | 0.264   |
|         | SMSE ( $\times 10^{-2}$ )      | <u>0.133</u> | <b>0.101</b> | 0.105 | 0.103        | 0.207  | 0.701 | 0.114   |
|         | PDE Error ( $\times 10^{-3}$ ) | <u>0.466</u> | <b>0.174</b> | 1.572 | 1.032        | 0.730  | 1.593 | 1.334   |
|         | FPD                            | <u>0.129</u> | <b>0.054</b> | 0.387 | 1.133        | 0.695  | 1.437 | 0.118   |
|         | NFE ( $\times 10^3$ )          | <b>0.001</b> | <u>0.080</u> | 0.500 | 0.100        | 5.000  | 0.100 | 0.100   |

generation. Crucially, this post-hoc distillation stage is where we impose PDE constraints, thereby avoiding the Jensen’s Gap observed in prior works that apply constraints during diffusion training or sampling. This distillation process is guided by two complementary objectives: (1) learning to map a noise sample to the final generated output predicted by the teacher model, and (2) enforcing physical consistency on this output via PDE residual minimization. Concretely, we begin by sampling a noise input  $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$  and generate a target sample  $x_0$  using the pre-trained teacher model via deterministic integration of the reverse-time ODE:

$$\mathbf{x}_{t-dt} = \mathbf{x}_t - \mathbf{v}_\theta(\mathbf{x}_t, t) dt, \quad (7)$$

which proceeds from  $t = 1$  to  $t = 0$  using a fixed step size  $dt$ . This yields a paired noise-data dataset  $\mathcal{D} = \{\varepsilon, \mathbf{x}_0\}$  for distillation, as shown in Fig. 1 (b). Then a student model  $d_{\theta'}(\varepsilon)$  is trained to predict  $\mathbf{x}_0$  in one step, as shown in Fig. 1 (c). Meanwhile, to enforce physical consistency, we evaluate the physics residual error on the output  $\mathbf{x} = d_{\theta'}(\varepsilon)$ , i.e.,  $\|\mathcal{R}(\mathbf{x})\|^2$ . The overall training objective is:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{PDE}} + \lambda \mathcal{L}_{\text{sample}} = \mathbb{E}_{(\varepsilon, \mathbf{x}_0) \sim \mathcal{D}} [\|d_{\theta'}(\varepsilon) - \mathbf{x}_0\|^2] + \lambda_{\text{train}} \|\mathcal{R}(\mathbf{x})\|^2, \quad (8)$$

where  $\lambda_{\text{train}}$  balances generative fidelity and physical constraint satisfaction. Unlike prior work (3; 22), this  $\lambda_{\text{train}}$  is relatively easy to tune because we mitigate Jensen’s Gap by enforcing the PDE directly on samples  $x_0 \sim p(x_0 | x_t)$  rather than on the posterior mean  $\mathbb{E}[x_0 | x_t]$  (see Table 3). Training is repeated until convergence (Algorithm 1). This noise-sample distillation is often difficult to learn due to the high curvature of sampling trajectories, yielding noise–data pairs that are far apart in Euclidean space (40). To reduce curvature and improve learnability, we adopt linear-flow distillation (37; 39), and we further evaluate Distribution Matching Distillation (DMD) (70), Rectified Flow (39) and consistency model (60) to strengthen coupling and distribution alignment. These choices produce consistent gains (Table 3).

### 3.3 DOWNSTREAM TASKS

Our method naturally supports one-step generation of physically-constrained data, jointly producing both coefficient and solution fields. Beyond this intrinsic functionality, it also retains the flexibility of the teacher diffusion model, enabling various downstream tasks such as forward and inverse problem solving, and reconstruction from partial observations. Compared to the teacher model, our method achieves these capabilities with improved computational efficiency and stronger physical alignment.

**Generative Modeling.** We aim to sample physically consistent pairs  $\mathbf{x}_0 = (\mathbf{u}, \mathbf{a})$  from a learned distribution that satisfies the governing PDE system. The student model supports this via efficient one-step generation: given  $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$ , it outputs  $\mathbf{x}_0 = d_{\theta'}(\varepsilon)$ , approximating a valid solution–coefficient pair. We further provide an optional refinement stage based on constraint-driven

324 optimization (Algorithm 2), which reduces the physics residual by updating  $\epsilon$  with gradient descent.  
 325 This design is inspired by noise prompting methods (4; 18) that optimize the final sample with respect  
 326 to the initial noise. However, in contrast to those prior work which backpropagate through an entire  
 327 sampling trajectory and incur high cost and unstable gradients, our refinement operates in a one-step  
 328 setting. While optional, it offers additional control that is useful in scientific applications requiring  
 329 strict physical consistency (34; 19; 48; 54).

330 **Forward/Inverse Problem and Reconstruction.** PIDDM handles all downstream problems as  
 331 conditional generation over the joint field  $\mathbf{x} = (\mathbf{u}, \mathbf{a})$ . Forward inference draws  $\mathbf{u}$  from known  $\mathbf{a}$ ;  
 332 inverse inference recovers  $\mathbf{a}$  from observed  $\mathbf{u}$ ; reconstruction fills in missing entries of  $(\mathbf{u}, \mathbf{a})$  given  
 333 a partial observation  $\mathbf{x}'$ . We solve this via optimization-based inference on the latent variable  $\epsilon$ ,  
 334 using the same student model  $d_{\theta'}$  as in generation, as described in Algorithm. 3.. Let  $\mathbf{x} = d_{\theta'}(\epsilon)$   
 335 denote the generated sample, and let  $M$  be a binary observation mask indicating the known entries in  
 336  $\mathbf{x}'$  with respect to  $\mathbf{x}$ . To ensure hard consistency with observed values (e.g., boundary conditions  
 337  $\mathcal{B}$ ), we define a mixed sample by injecting observed entries into the generated output, following  
 338 ECI-sampling (8) and then update  $\epsilon$  by descending the gradient of a combined objective:

$$339 \quad \mathcal{L}_{\text{total}} = \|(\mathbf{x} - \mathbf{x}') \odot M\|^2 + \lambda \|\mathcal{R}(\mathbf{x}_{\text{mix}})\|^2, \quad \mathbf{x}_{\text{mix}} = \mathbf{x}' \odot M + \mathbf{x} \odot (1 - M). \quad (9)$$

341 Interestingly, we also find that applying this masking not only enhances hard constraints on  $\mathcal{B}$ , but  
 342 also improves satisfaction of  $\mathcal{F}$ , as demonstrated in our ablation study in Table 3. Classical inverse  
 343 solvers (35; 36; 43; 51) learn a deterministic map  $\mathbf{u} \mapsto \mathbf{a}$  and therefore require full observations of  
 344  $\mathbf{a}$  to evaluate  $\mathcal{F}[\mathbf{u}, \mathbf{a}] = 0$ , a condition rarely met in practice. DiffusionPDE (22) relaxes this by  
 345 sampling missing variables, but enforces physics on the posterior mean, i.e.  $\mathcal{F}[\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]]$ , and thus  
 346 suffers from the Jensen’s Gap. Our method avoids this inconsistency by imposing constraints directly  
 347 on the final sample  $\mathcal{F}[\mathbf{x}_0]$ , yielding more reliable and physically consistent inverse solutions.

## 348 4 EXPERIMENTS

351 **Experiment Setup.** We consider three widely used PDE benchmarks in main text: Darcy flow,  
 352 Poisson equation, and Burger’s equation. All of these data are readily accessible from FNO (35) and  
 353 DiffusionPDE (22). We also provide results on other benchmarks in Appendix. E. We consider ECI  
 354 (8), DiiffsionPDE (22), D-Flow (8; 4), PIDM (3) and vanilla teacher diffusion models as baseline  
 355 methods, where we put the detailed implementation in Appendix. D.4. We follow ECI-sampling (8)  
 356 to use FNO as both of the teacher diffusion models and the student distillation model. We put full  
 357 specification of our experiment setup in Appendix. D.

358 To quantitatively evaluate generative performance, we report MMSE, SMSE, FPD and PDE error  
 359 following prior work (8; 30; 3; 27): MMSE measures the mean squared error of the sample mean;  
 360 SMSE evaluates the error of the sample standard deviation; FPD evaluates Frechet distance between  
 361 the hidden representations extracted by the pre-trained PDE foundation model; PDE Error quantifies  
 362 the violation of physical constraints using the physics residual error  $|\mathcal{R}(\mathbf{x})|^2$ . The number of function  
 363 evaluations (NFE) reflects computational cost during inference. For downstream tasks, we further  
 364 report MSE on solution, or coefficient fields, or both of them, depending on the problem setting,  
 365 reflecting the accuracy of PDE solving.

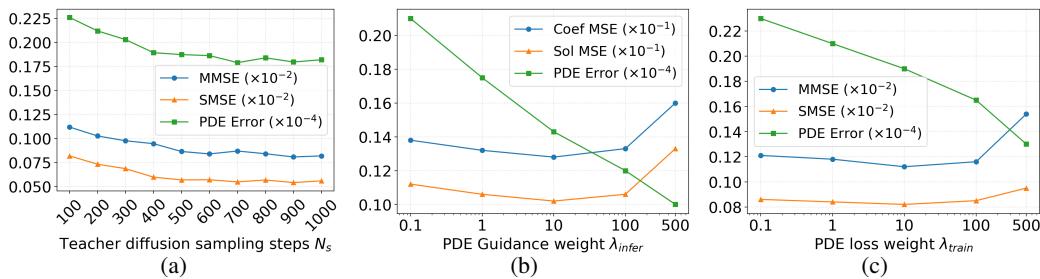
### 366 4.1 EMPIRICAL EVALUATIONS

368 PIDDM samples the joint field  $(\mathbf{u}, \mathbf{a})$ , enabling forward  $(\mathbf{u} | \mathbf{a})$ , inverse  $(\mathbf{a} | \mathbf{u})$ , and reconstruction  
 369 (partial  $\mathbf{u}, \mathbf{a}$ ) tasks (Sec. 3.3). DiffusionPDE (22) reports only reconstruction MSE, while ECI-  
 370 sampling (8) and PIDM (3) cover at most one task, limited to either unconditional generation or  
 371 forward solving. For a fair comparison, we evaluate all methods on all three tasks, providing a unified  
 372 view of generative quality and physical fidelity.

373 **Generative Tasks.** We first evaluate the generative performance of our method across three repre-  
 374 sentative PDE systems: Darcy, Poisson, and Burgers’ equations. As shown in Table 1, our one-step  
 375 model (*PIDDM-1*) achieves competitive MMSE and SMSE scores while maintaining extremely low  
 376 computational cost (1 NFE). Notably, *PIDDM-1* already surpasses all prior methods that incorporate  
 377 physical constraints during training or sampling, such as PIDM and DiffusionPDE, ECI-sampling,  
 which suffer from the Jensen’s Gap and only exhibit marginal improvements over vanilla diffusion

378  
 379 Table 2: Evaluation on various downstream tasks on Darcy Datasets. The PDE error means the MSE  
 380 of the evaluated physics residual error. The best results are in **bold**.

| 381 | Task        | Metric                         | <b>PIDDM</b> | ECI   | DiffusionPDE | D-Flow | PIDM  |
|-----|-------------|--------------------------------|--------------|-------|--------------|--------|-------|
| 383 | Forward     | MSE ( $\times 10^{-1}$ )       | <b>0.316</b> | 0.776 | 0.691        | 0.539  | 0.380 |
|     |             | PDE Error ( $\times 10^{-4}$ ) | <b>0.145</b> | 1.573 | 1.576        | 0.584  | 1.248 |
|     |             | NFE ( $\times 10^3$ )          | <b>0.080</b> | 0.500 | 0.100        | 5.000  | 0.100 |
| 386 | Inverse     | MSE ( $\times 10^{-1}$ )       | <b>0.236</b> | 0.545 | 0.456        | 0.428  | 0.468 |
|     |             | PDE Error ( $\times 10^{-4}$ ) | <b>0.126</b> | 1.505 | 1.402        | 0.438  | 1.113 |
|     |             | NFE ( $\times 10^3$ )          | <b>0.080</b> | 0.500 | 0.100        | 5.000  | 0.100 |
| 389 | Reconstruct | Coef MSE ( $\times 10^{-1}$ )  | <b>0.128</b> | 0.395 | 0.240        | 0.158  | 0.179 |
|     |             | Sol MSE ( $\times 10^{-1}$ )   | <b>0.102</b> | 0.219 | 0.143        | 0.125  | 0.147 |
|     |             | PDE Error ( $\times 10^{-4}$ ) | <b>0.143</b> | 1.205 | 1.239        | 0.605  | 1.240 |
|     |             | NFE ( $\times 10^3$ )          | <b>0.080</b> | 0.500 | 0.100        | 5.000  | 0.100 |



404 Figure 3: Ablation studies on the effect of several factors on the performance of PIDDM on Darcy  
 405 dataset. (a), (b) and (c) refer to the effect of the  $N_s$ ,  $\lambda_{\text{train}}$  and  $\lambda_{\text{infer}}$ , respectively.

406  
 407 baselines. Our optional refinement stage (PIDDM-ref) further reduces both statistical errors and  
 408 physical PDE residuals, outperforming all baselines. Meanwhile, ECI—which only enforces hard  
 409 constraints on boundary conditions—achieves moderate improvements but remains less effective  
 410 on field-level physical consistency. Although D-Flow theoretically enforces physical constraints  
 411 throughout the trajectory, it requires thousands of NFEs and often suffers from gradient instability.

412 **Forward/Inverse Solving and Reconstruction.** We further demonstrate the versatility of our  
 413 method in forward and inverse problem solving on the Darcy dataset. Since the original PIDM (3)  
 414 implementation addresses only unconditional generation, we pair it with Diffusion Posterior Sampling  
 415 (DPS) (9) to extend it to downstream tasks (forward, inverse, and reconstruction). Following the  
 416 test protocol of D-Flow, we apply inference-time optimization over the initial noise to match given  
 417 observations while satisfying physical laws. As shown in Table 2, *our method (PIDDM) achieves*  
 418 *the best results across all metrics*, including MSE and PDE error, while being significantly more  
 419 efficient than D-Flow, which requires 5000 function evaluations. Compared to ECI and DiffusionPDE,  
 420 our method yields lower residuals and better predictive accuracy, reflecting its superior handling of  
 421 physical and observational constraints jointly.

## 4.2 ABLATION STUDIES

424 To better understand the effect of key design choices in PIDDM, we perform ablations on five  
 425 factors: teacher sampling steps  $N_s$ ; distillation weight  $\lambda_{\text{train}}$ ; inference weight  $\lambda_{\text{infer}}$ ; diffusion  
 426 schedule (VP, sub-VP, linear); and advanced distillation variants (Rectified Flow, DMD, Consistency  
 427 Model). Figure 3 presents three key ablation studies on the Darcy dataset. Panel (a) shows that  
 428 increasing the teacher model’s sampling steps  $N_s$  consistently improves both generative quality and  
 429 physical alignment, as reflected by lower MMSE, SMSE, and PDE residuals of the distilled student,  
 430 highlighting the importance of high-fidelity supervision. Panels (b) and (c) examine the impact of  
 431 the PDE loss weight during distillation and inference, respectively. Panels (b) and (c) analyze the  
 effect of the PDE loss weight during inference and distillation, respectively. We observe that across a

432 Table 3: Evaluation on various downstream tasks on Darcy Datasets on different PIDDM settings.  
 433 PIDDM: raw method, +RF-1: reflowing (40) for once, +RF-2: reflowing (40) for twice, +DMD:  
 434 (70), and +CM: (60). –HC refers to the ablation study when not using hard-constraints 3.3 in PIDDM  
 435 inference. VP and sub-VP refers the ablation study on vp and sub-vp diffusion process. The PDE  
 436 error means the MSE of the evaluated physics residual error. The best results are in **bold**.

| Task        | Metric                         | PIDDM | +RF-1 | +RF-2        | +DMD  | +CM          | –HC   | VP    | sub-VP |
|-------------|--------------------------------|-------|-------|--------------|-------|--------------|-------|-------|--------|
| Forward     | MSE ( $\times 10^{-1}$ )       | 0.316 | 0.278 | <b>0.127</b> | 0.255 | 0.283        | 0.705 | 0.398 | 0.372  |
|             | PDE Error ( $\times 10^{-4}$ ) | 0.145 | 0.129 | 0.098        | 0.134 | <b>0.083</b> | 0.354 | 0.154 | 0.157  |
| Inverse     | MSE ( $\times 10^{-1}$ )       | 0.236 | 0.195 | <b>0.136</b> | 0.188 | 0.182        | 0.503 | 0.284 | 0.271  |
|             | PDE Error ( $\times 10^{-4}$ ) | 0.115 | 0.126 | <b>0.079</b> | 0.121 | 0.109        | 0.321 | 0.143 | 0.139  |
| Reconstruct | Coef MSE ( $\times 10^{-1}$ )  | 0.128 | 0.107 | 0.091        | 0.095 | <b>0.085</b> | 0.294 | 0.133 | 0.138  |
|             | Sol MSE ( $\times 10^{-1}$ )   | 0.102 | 0.084 | <b>0.063</b> | 0.073 | 0.072        | 0.239 | 0.127 | 0.119  |
|             | PDE Error ( $\times 10^{-4}$ ) | 0.143 | 0.118 | 0.085        | 0.104 | <b>0.83</b>  | 0.464 | 0.159 | 0.158  |

448 wide range of weights, all metrics achieve strong performance. In particular, compared with baselines  
 449 in Table 2, the PDE error is reduced by an order of magnitude. This improvement arises because  
 450 enforcing PDE constraints on the true posterior  $x_0 \sim p(x_0 | x_t)$  is fundamentally more accurate than  
 451 on the posterior mean  $\mathbb{E}[x_0 | x_t]$ , thereby theoretically bypassing Jensen’s Gap.

452 We also explore whether more sophisticated distillation strategies can improve the quality of the  
 453 student model. As shown in Table 3, advanced techniques such as Rectified Flow (RF-1, RF-  
 454 2), Distribution Matching Distillation (DMD), and Consistency Model yield better MMSE and  
 455 SMSE than the our raw method, while maintaining competitive PDE residuals. This indicates that  
 456 tighter coupling between noise and data trajectories during distillation facilitates noise–data learning.  
 457 Besides, we analyze the effect of imposing hard constraints during downstream inference. Following  
 458 the strategy inspired by ECI-sampling, we directly replace the masked entries in the generated sample  
 459 with observed values before computing the PDE residual. This ensures that the known information  
 460 is preserved when evaluating physical consistency. As shown in Table 3 –HC, cancelling this hard  
 461 constraint replacement significantly degrades PDE residual across all tasks. We also validate our  
 462 design on using linear diffusion process in Table 3 VP and sub-VP.

## 463 5 CONCLUSION AND LIMITATION

464 **Method.** We introduce **PIDDM**, a lightweight yet effective *post-hoc* distillation framework that  
 465 enables diffusion models for physics-constrained generation. Concretely, we first train a standard  
 466 diffusion model and then distill it into a student model by *directly* enforcing PDE constraints on the  
 467 *final* output. In contrast to existing methods that impose constraints on the posterior mean  $\mathbb{E}[x_0 | x_t]$ ,  
 468 leading to a mismatch known as the *Jensen’s Gap* which leads to a trade-off between generative  
 469 quality and constraint satisfaction, PIDDM applies constraints on the actual sample  $x_0$ , ensuring  
 470 physics consistency without sacrificing distributional fidelity.

471 **Empirical Findings.** We provide the first empirical illustrations of the Jensen’s Gap in both diffusion  
 472 training and sampling, demonstrating its impact on constraint satisfaction. Our experiments show  
 473 that PIDDM improves both of the physical and distributional fidelity in downstream tasks such as  
 474 forward, inverse, and partial reconstruction problems with a wide range of hyperparameter choice.  
 475 Moreover, the student model enables one-step physics simulation, achieving substantial improvements  
 476 in efficiency while maintaining high physical alignment.

477 **Limitations.** Our approach assumes access to a well-trained teacher model and a reliable PDE residual  
 478 operator, which can be difficult to construct, particularly when relying on coarse or low-accuracy  
 479 finite difference schemes. Moreover, while the one-step student model enables fast inference, its  
 480 performance may deteriorate if the teacher is poorly calibrated or lacks sufficient trajectory diversity.  
 481 Although a wide range of PDE loss weights in distillation yields state-of-the-art performance,  
 482 achieving optimal results still requires tuning. Addressing these limitations is an important direction  
 483 for future work.

486 

## 6 REPRODUCIBILITY STATEMENT

488 We have taken several steps to ensure the reproducibility of our results. The full source code,  
 489 including training and evaluation scripts, is provided in the anonymous supplementary material.  
 490 Details of the datasets are described in Appendix C, while the training configurations, architectures,  
 491 and hyperparameters are documented in Appendix D. In addition, we include pseudocode for our  
 492 proposed algorithms in Alg. 1,2 , and 3 to further clarify the implementation.

494 

## REFERENCES

496 [1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu  
 497 Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for  
 498 {Large-Scale} machine learning. In *12th USENIX symposium on operating systems design and  
 499 implementation (OSDI 16)*, pages 265–283, 2016.

500 [2] Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their  
 501 Applications*, 12(3):313–326, 1982.

502 [3] Jan-Hendrik Bastek, WaiChing Sun, and Dennis Kochmann. Physics-informed diffusion models.  
 503 In *The Thirteenth International Conference on Learning Representations*, 2025.

505 [4] Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:  
 506 Differentiating through flows for controlled generation. *arXiv preprint arXiv:2402.14017*, 2024.

508 [5] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel  
 509 Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure  
 510 time-distillation. *arXiv preprint arXiv:2303.04248*, 2023.

511 [6] Gabriel Cardoso, Yazid Janati el idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo  
 512 guided denoising diffusion models for bayesian linear inverse problems. In *The Twelfth Interna-  
 513 tional Conference on Learning Representations*, 2024.

515 [7] Changgu Chen, Libing Yang, Xiaoyan Yang, Lianggangxu Chen, Gaoqi He, Changbo Wang,  
 516 and Yang Li. Find: Fine-tuning initial noise distribution with policy optimization for diffusion  
 517 models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages  
 6735–6744, 2024.

519 [8] Chaoran Cheng, Boran Han, Danielle C. Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W.  
 520 Mahoney, and Bernie Wang. Gradient-free generation for hard-constrained systems. In *The  
 521 Thirteenth International Conference on Learning Representations*, 2025.

523 [9] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-  
 524 sion posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*,  
 525 2022.

526 [10] John Crank. *The Mathematics of Diffusion*. Oxford University Press, 2 edition, 1975.

527 [11] Peter A. Davidson. *Turbulence: An Introduction for Scientists and Engineers*. Oxford University  
 528 Press, 2015.

530 [12] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz  
 531 machine. *Neural computation*, 7(5):889–904, 1995.

532 [13] Yue-Jiang Dong, Hubery Yin, Fangyikang Wang, Yizhe Zhao, Chao Zhang, Chen Li, and  
 533 Song-Hai Zhang. DC-DPM: A divide-and-conquer approach for diffusion reverse process,  
 534 2024.

535 [14] Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving:  
 536 A filtering perspective. In *The Twelfth International Conference on Learning Representations*,  
 537 2024.

539 [15] Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical  
 540 Association*, 106(496):1602–1614, 2011.

540 [16] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,  
 541 Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-  
 542 ers for high-resolution image synthesis. In *Forty-first International Conference on Machine  
 543 Learning*, 2024.

544 [17] Xiang Gao, Meera Sitharam, and Adrian E Roitberg. Bounds on the jensen gap, and implications  
 545 for mean-concentrated distributions. *arXiv preprint arXiv:1712.05267*, 2017.

547 [18] Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu Yang, and Di Huang. Initno:  
 548 Boosting text-to-image diffusion models via initial noise optimization. In *Proceedings of the  
 549 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9380–9389, 2024.

550 [19] Derek Hansen, Danielle C Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W Mahoney.  
 551 Learning physical models that can respect conservation laws. In *International Conference on  
 552 Machine Learning*, pages 12469–12510. PMLR, 2023.

554 [20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances  
 555 in neural information processing systems*, 33:6840–6851, 2020.

556 [21] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

558 [22] Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. DiffusionPDE: Generative  
 559 PDE-solving under partial observation. In *The Thirty-eighth Annual Conference on Neural  
 560 Information Processing Systems*, 2024.

561 [23] Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli S  
 562 Sastry, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with  
 563 non-differentiable rule guided diffusion, 2024.

564 [24] Thomas JR Hughes. *The finite element method: linear static and dynamic finite element analysis*.  
 565 Courier Corporation, 2003.

567 [25] Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, and Adrienne S. Lavine. *Funda-  
 568 mentals of Heat and Mass Transfer*. John Wiley & Sons, 7 edition, 2011.

570 [26] John David Jackson. *Classical Electrodynamics*. John Wiley & Sons, 3 edition, 1998.

571 [27] Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically-consistent and  
 572 conditioned score-based generative models for forward and inverse problems, 2024.

574 [28] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space  
 575 of diffusion-based generative models. *Advances in neural information processing systems*,  
 576 35:26565–26577, 2022.

577 [29] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration  
 578 models, 2022.

580 [30] Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional flow matching. *arXiv  
 581 preprint arXiv:2305.17209*, 2023.

582 [31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint  
 583 arXiv:1412.6980*, 2014.

585 [32] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

586 [33] Randall J LeVeque. *Finite difference methods for ordinary and partial differential equations:  
 587 steady-state and time-dependent problems*. SIAM, 2007.

589 [34] Randall J LeVeque and Randall J Leveque. *Numerical methods for conservation laws*, volume  
 590 132. Springer, 1992.

591 [35] Zongyi Li, Nikola Kovachki, Kamyr Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,  
 592 Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-  
 593 tial equations. *arXiv preprint arXiv:2010.08895*, 2020.

[36] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamvar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential equations. *ACM/JMS Journal of Data Science*, 1(3):1–27, 2024.

[37] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023.

[38] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.

[39] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.

[40] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference on Learning Representations*, 2023.

[41] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural Information Processing Systems*, 35:5775–5787, 2022.

[42] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*, 2022.

[43] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. *arXiv preprint arXiv:1910.03193*, 2019.

[44] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.

[45] Jiafeng Mao, Xuetong Wang, and Kiyoharu Aizawa. The lottery ticket hypothesis in denoising: Towards semantic-driven initialization. In *European Conference on Computer Vision*, pages 93–109. Springer, 2024.

[46] Dimitra Maoutsas, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker–planck equations through gradient–log–density estimation. *Entropy*, 22(8):802, 2020.

[47] Badr Moufad, Yazid Janati, Lisa Bedin, Alain Durmus, Randal Douc, Eric Moulines, and Jimmy Olsson. Variational diffusion posterior sampling with midpoint guidance, 2024.

[48] S Chandra Mouli, Danielle C Maddix, Shima Alizadeh, Gaurav Gupta, Andrew Stuart, Michael W Mahoney, and Yuyang Wang. Using uncertainty quantification to characterize and improve out-of-domain learning for pdes. *arXiv preprint arXiv:2403.10642*, 2024.

[49] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pages 8162–8171. PMLR, 2021.

[50] A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint arXiv:1912.01703*, 2019.

[51] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.

[52] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *International conference on machine learning*, pages 1278–1286. PMLR, 2014.

648 [53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF*  
650 *conference on computer vision and pattern recognition*, pages 10684–10695, 2022.

651 [54] Nadim Saad, Gaurav Gupta, Shima Alizadeh, and Danielle C Maddix. Guiding continuous  
652 operator learning through physics-based boundary constraints. *arXiv preprint arXiv:2212.07477*,  
653 2022.

654 [55] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling  
655 of diffusion models. *Advances in Neural Information Processing Systems*, 36, 2024.

656 [56] Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-  
657 fidelity flow field reconstruction. *Journal of Computational Physics*, 478:111972, 2023.

658 [57] Gordon D Smith. *Numerical solution of partial differential equations: finite difference methods*.  
659 Oxford university press, 1985.

660 [58] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In  
661 *International Conference on Learning Representations*, 2021.

662 [59] Jiaming Song, Qingsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,  
663 Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable  
664 generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan  
665 Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on*  
666 *Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 32483–  
667 32498. PMLR, 23–29 Jul 2023.

668 [60] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023.

669 [61] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and  
670 Ben Poole. Score-based generative modeling through stochastic differential equations. In  
671 *International Conference on Learning Representations*, 2020.

672 [62] Haoyue Tang, Tian Xie, Aosong Feng, Hanyu Wang, Chenyang Zhang, and Yang Bai. Solving  
673 general noisy inverse problem via posterior sampling: A policy gradient viewpoint, 2024.

674 [63] Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo  
675 Kim, and Chang D Yoo. Physics informed distillation for diffusion models. *arXiv preprint*  
676 *arXiv:2411.08378*, 2024.

677 [64] Stephen P. Timoshenko and James N. Goodier. *Theory of Elasticity*. McGraw-Hill, 3 edition,  
678 1970.

679 [65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
680 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*  
681 *processing systems*, 30, 2017.

682 [66] Hao Wang, Weihua Chen, Chenming Li, Wenjian Huang, Jingkai Zhou, Fan Wang, and Jianguo  
683 Zhang. Noise re-sampling for high fidelity image generation, 2025.

684 [67] Ruoyu Wang, Huayang Huang, Ye Zhu, Olga Russakovsky, and Yu Wu. The silent  
685 prompt: Initial noise as implicit guidance for goal-driven image generation. *arXiv preprint*  
686 *arXiv:2412.05101*, 2024.

687 [68] Yinhui Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion  
688 null-space model, 2022.

689 [69] Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine L. Bouman.  
690 Principled probabilistic imaging using diffusion models as plug-and-play priors, 2024.

691 [70] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T  
692 Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In  
693 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages  
694 6613–6623, 2024.

702 [71] Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang  
703 Song. Improving diffusion inverse problem solving with decoupled noise annealing. In  
704 *2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, page  
705 20895–20905. IEEE, June 2025.

706 [72] Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy T. Feng,  
707 Caifeng Zou, Yu Sun, Nikola Kovachki, Zachary E. Ross, Katherine L. Bouman, and Yisong  
708 Yue. Inversebench: Benchmarking plug-and-play diffusion priors for inverse problems in  
709 physical sciences, 2025.

710 [73] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.  
711 Fast sampling of diffusion models via operator learning. In *International conference on machine  
712 learning*, pages 42390–42402. PMLR, 2023.

713 [74] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion  
714 models in around 5 steps. In *Proceedings of the IEEE/CVF Conference on Computer Vision  
715 and Pattern Recognition*, pages 7777–7786, 2024.

716 [75] Zikai Zhou, Shitong Shao, Lichen Bai, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden noise for  
717 diffusion models: A learning framework. *arXiv preprint arXiv:2411.09502*, 2024.

718 [76] Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van  
719 Gool. Denoising diffusion models for plug-and-play image restoration, 2023.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK  
757758 A.1 DIFFUSION MODEL  
759

760 Diffusion models (61; 20; 28) learn a score function,  $\nabla \log p(\mathbf{x}_t)$ , to reverse a predefined diffusion  
761 process, typically of the form  $\mathbf{x}_t = \mathbf{x}_0 + \sigma_t \mathbf{\epsilon}$ . A key characteristic of diffusion models is that  
762 sampling requires iteratively reversing this process over a sequence of timesteps. This iterative  
763 nature presents a challenge for controlled generation: to guide the sampling trajectory effectively, we  
764 often need to first estimate the current denoised target  $\mathbf{x}_0$  in order to determine the correct guidance  
765 direction. In other words, *to decide how to get there, we must first understand where we are*. However,  
766 obtaining this information through full iterative sampling is computationally expensive and often  
767 impractical in optimization regime.  
768

769 A practical workaround is to leverage an implicit one-step data estimate provided by diffusion models  
770 via the Tweedie’s formula (15), which requires only a single network forward pass:

$$771 \hat{\mathbf{x}}_0 \approx \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \mathbf{x}_t + \sigma_t^2 \nabla \log p(\mathbf{x}_t),$$

772 where  $\hat{\mathbf{x}}_0$  denotes the final denoised sample from  $\mathbf{x}_t$  using deterministic sampler. This gap is bridged  
773 when  $t \rightarrow 0$ . Although this posterior mean  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  is not theoretically equivalent to the final  
774 sample obtained after full denoising, in practice, this estimate serves as a useful proxy for the  
775 underlying data and enables approximate guidance for controlled generation, without the need to  
776 complete the entire sampling trajectory.  
777

## A.2 CONSTRAINED GENERATION FOR PDE SYSTEMS

778 Diffusion models have demonstrated strong potential for physical-constraint applications due to their  
779 generative nature. This generative capability naturally supports the trivial task of simulating physical  
780 data and also extends to downstream applications such as reconstruction from partial observations and  
781 solving both forward and inverse problems. However, many scientific tasks require strict adherence  
782 to physical laws, often expressed as PDE constraints on the data. These constraints, applied at the  
783 sample level  $\mathbf{x}$ , are not easily enforced within diffusion models, which are trained to model the data  
784 distribution  $p(\mathbf{x})$ . To address this, prior works have proposed three main strategies for incorporating  
785 physical constraints into diffusion models.  
786

**Training-time Loss Injection.** PG-Diffusion (56) employs Classifier-Free Guidance (CFG), where a  
787 conditional diffusion model is trained using the PDE residual error as a conditioning input. How-  
788 ever, CFG is well known to suffer from theoretical inconsistencies—specifically, the interpolated  
789 conditional score function does not match the true conditional score—which limits its suitability for  
790 enforcing precise physical constraints. To avoid this issue, PIDM (3) introduces a loss term based on  
791 the residual evaluated at the posterior mean,  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ . While this approach avoids the theoretical  
792 pitfalls of CFG, the constraint is still not imposed on the actual sample  $\mathbf{x}_0$ , leading to what PIDM  
793 identifies as the *Jensen’s Gap*.  
794

**Sampling-time Guidance.** Diffusion Posterior Sampling (DPS), used in DiffusionPDE (22) and  
795 CoCoGen (27), applies guidance during each sampling step by using the gradient of the PDE residual  
796 evaluated on the posterior mean  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ . Therefore, they inherit the Jensen’s Gap issue, as the  
797 guidance operates on an estimate of the final sample rather than the sample itself. Moreover, DPS  
798 assumes that the residual error follows a Gaussian distribution—a condition that may not hold in  
799 real-world PDE systems. Meanwhile, to support hard constraints, ECI-sampling (8) directly modifies  
800 the posterior mean  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  using known boundary conditions.  
801

**Noise Prompt.** Another stream of research—often called *noise prompting* or *golden-noise optimisation*—directly tunes the *initial* noise so that the resulting sample satisfies a target constraint (4; 18; 75; 67; 45; 7). In the physics domain, this idea is used to minimise the true PDE residual  
802  $R(\mathbf{x})$  evaluated on the *final* sample, rather than the surrogate residual  $R(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t])$ . Because the  
803 constraint is imposed on the actual output, noise prompting sidesteps the Jensen’s Gap altogether  
804 and therefore serves as a strong baseline in ECI-sampling (8) and PIDM (3). The main drawback  
805 is efficiency: optimising the noise requires back-propagating through the entire sampling trajectory,  
806 which is computationally expensive and prone to gradient instability.  
807

808 Recently, diffusion-based techniques for solving image inverse problems have demonstrated competi-  
809 tive performance (72). However, a common limitation is that they rely on the posterior mean, i.e.,  
810

$\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ , as a surrogate for the true posterior. For example, DDRM (29) and DDNM (68) exploit singular value decomposition (SVD) and pseudo-inverse operations to fill in the missing components of  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  during sampling, which is conceptually similar to ECI-sampling. Likewise, methods such as DiffPIR (76) and DAPS (71) optimize or run Langevin MCMC updates on the posterior mean in order to enforce observation consistency. Another line of work approximates the likelihood  $p(\mathbf{y} | \mathbf{x}_t)$ . For instance, DPS (9) treats  $p(\mathbf{x}_0 | \mathbf{x}_t)$  as a point mass centered at  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$ , while LGD (59) and DPG (62) use a Gaussian distribution with mean  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  for approximation. To reduce this approximation error, some methods trade off computational cost: Monte Carlo-based approaches (14; 6; 23) and variational inference-based approaches (69) avoid the direct mean approximation, but they either require simulating a large number of samples or solving intermediate optimization problems during sampling, both of which are computationally expensive. Finally, there are methods that explicitly aim to reduce the Jensen’s Gap by modifying the sampling dynamics. Examples include mid-point schemes (47) and user-defined intermediate potentials (13). While these approaches can shorten the gap, they still rely on  $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$  for posterior estimation, and moreover, they often incur high computational cost due to additional variational inference or Langevin MCMC steps.

### A.3 DISTILLATION OF DIFFUSION MODEL

Sampling in diffusion models involves integrating through a reverse diffusion process, which is computationally expensive. Even with the aid of high-order ODE solvers (46; 58; 41; 42; 74), parallel sampling (55) and better training schedule (28; 49; 38; 39; 40), the process remains iterative and typically requires hundreds of network forward passes. To alleviate this inefficiency, distillation-based methods have been developed to enable one-step generation by leveraging the deterministic nature of samplers (e.g., DDIM), where the noise–data pairs become fixed. The most basic formulation, Knowledge Distillation (44), trains a student model to replicate the teacher’s deterministic noise-to-data mapping. However, subsequent studies have shown that directly learning this raw mapping is challenging for neural networks, as the high curvature of sampling trajectories often yields noise–data pairs that are distant in Euclidean space, making the regression task ill-conditioned and hard to generalize.

To address this, recent research has proposed three complementary strategies. (1) Noise–data coupling refinement: Rectified Flow (39) distills the sampling process into a structure approximating optimal transport, where the learned mapping corresponds to minimal-cost trajectories between noise and data. InstaFlow (40) further demonstrates that such near-optimal-transport couplings significantly ease the learning process for student models. (2) Distribution-level distillation: Rather than matching individual noise–data pairs, DMD (70) trains the student via score-matching losses that align the overall data distributions, thereby bypassing the need to regress complex mappings directly. (3) Trajectory distillation: Instead of only supervising on initial ( $\mathbf{x}_T$ ) and final ( $\mathbf{x}_0$ ) states, this approach provides supervision at intermediate states  $\mathbf{x}_t$  along the ODE trajectory (5; 73; 60; 63). This decomposition allows the student model to learn the generative process in a piecewise manner, which improves stability and sample fidelity. We note that among existing approaches, Physics-Informed Distillation (PID) (63) bears a similar name to our method but differs fundamentally in both objective and methodology. Specifically, PID distills ODE trajectories from teacher models using a PINN-like strategy, whereas our method distills diffusion models for PDE-constrained generation by applying physical supervision directly to the final samples.

## B MIXTURE-OF-GAUSSIANS (MoG) DATASET

To study the sampling-time behavior of constrained diffusion models, we design a synthetic 2D Mixture-of-Gaussians (MoG) dataset with analytical score functions. Each sample  $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$  consists of a data dimension  $x_1$  and a fixed latent code  $x_2$  that serves as a hard constraint.

Specifically, we define a mixture model where  $x_1$  is sampled from a Gaussian mixture conditioned on the latent code  $z \in \{-1, +1\}$ , and  $x_2$  is deterministically set to  $z$ . The full distribution is:

$$x_2 = z \in \{-1, +1\}, \quad x_1 \sim \mathcal{N}(\mu_z, \sigma^2), \quad (10)$$

with  $\mu_{-1} = -1$ ,  $\mu_{+1} = +1$ , and fixed variance  $\sigma^2 = 0.1$ . The full 2D data point is thus given by:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \text{with } x_1 \sim \mathcal{N}(\mu_{x_2}, \sigma^2), \quad x_2 \in \{-1, +1\}. \quad (11)$$

864 The resulting joint density  $p(x)$  is a mixture of two Gaussians supported on parallel horizontal lines:  
 865

$$866 p(x) = \frac{1}{2} \mathcal{N}(x_1; -1, \sigma^2) \cdot \delta(x_2 + 1) + \frac{1}{2} \mathcal{N}(x_1; +1, \sigma^2) \cdot \delta(x_2 - 1), \quad (12)$$

868 where  $\delta(\cdot)$  denotes the Dirac delta function. In our experiment comparing DPS in Sec. 2.3, we tune  
 869 the weight of DPS guidance to be 0.035, since it gives satisfying performance.  
 870

### 871 B.1 DERIVATION OF SCORE FUNCTION OF THE MoG DATASET

872 Note that for any MoG, they provide analytical solution of diffusion objectives. In specific, if we  
 873 consider a MoG with the form:  
 874

$$875 \mathbf{x}_0 \sim \frac{1}{K} \sum_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k, \sigma_k^2 \cdot \mathbf{I}),$$

878 where  $K$  is the number of Gaussian components,  $\boldsymbol{\mu}_k$  and  $\sigma_k^2$  are the means and variances of the  
 879 Gaussian components, respectively. Suppose the solution of the diffusin process follows:  
 880

$$881 \mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \cdot \xi \quad \text{where } \xi \sim \mathcal{N}(0, \mathbf{I}).$$

882 Since  $\mathbf{x}_0$  and  $\xi$  are both sampled from Gaussian distributions, their linear combination  $\mathbf{x}_t$  also forms  
 883 a Gaussian distribution, i.e.,  
 884

$$885 \mathbf{x}_t \sim \frac{1}{K} \sum_{k=1}^K \mathcal{N}(\alpha_t \boldsymbol{\mu}_k, (\sigma_k^2 \alpha_t^2 + \sigma_t^2) \cdot \mathbf{I}).$$

887 Then, we have  
 888

$$889 \nabla p_t(\mathbf{x}_t) = \frac{1}{K} \sum_{i=1}^K \nabla_{\mathbf{x}_t} \left[ \frac{1}{2} \left( \frac{1}{\sqrt{2\pi\sigma_i^2\alpha_t^2 + \sigma_t^2}} \right) \cdot \exp\left(-\frac{1}{2} \left( \frac{\mathbf{x}_t - \boldsymbol{\mu}_i \alpha_t}{\sigma_i^2 \alpha_t^2 + \sigma_t^2} \right)^2\right) \right]$$

$$890 = \frac{1}{K} \sum_{i=1}^K p_i(\mathbf{x}_t) \cdot \nabla_{\mathbf{x}_t} \left[ -\frac{1}{2} \left( \frac{\mathbf{x}_t - \boldsymbol{\mu}_i \alpha_t}{\sigma_i^2 \alpha_t^2 + \sigma_t^2} \right)^2 \right]$$

$$891 = \frac{1}{K} \sum_{i=1}^K p_i(\mathbf{x}_t) \cdot \frac{-(\mathbf{x}_t - \boldsymbol{\mu}_i \alpha_t)}{\sigma_i^2 \alpha_t^2 + \sigma_t^2}.$$

892 We can also calculate the score of  $\mathbf{x}_t$ , i.e.,  
 893

$$900 \nabla \log p_t(\mathbf{x}_t) = \frac{\nabla p_t(\mathbf{x}_t)}{p_t(\mathbf{x}_t)} = \frac{1/K \cdot \sum_{i=1}^K p_i(\mathbf{x}_t) \cdot \left( \frac{-(\mathbf{x}_t - \boldsymbol{\mu}_i \alpha_t)}{\sigma_i^2 \alpha_t^2 + \sigma_t^2} \right)}{1/K \cdot \sum_{i=1}^K p_i(\mathbf{x}_t)}.$$

### 903 B.2 DEVIATION OF VELOCITY FIELD OF REVERSE ODE AND DPS

904 Diffusion models define a forward diffusion process to perturb the data distribution  $p_{data}$  to a  
 905 Gaussian distribution. Formally, the diffusion process is an Itô SDE  $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t) + g(t)d\mathbf{w}$ ,  
 906 where  $d\mathbf{w}$  is the Brownian motion and  $t$  flows forward from 0 to  $T$ . The solution of this diffusion  
 907 process gives a transition distribution  $p_t(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$ , where  $\alpha_t = e^{\int_0^t f(s)ds}$  and  
 908  $\sigma_t^2 = 1 - e^{-\int_0^t g(s)^2 ds}$ . Specifically in linear diffusion process,  $\alpha_t = t$ , and  $\beta_t = 1 - t$ . To sample  
 909 from the diffusion model, a typical approach is to apply a reverse-time SDE which reverses the  
 910 diffusion process (2):  
 911

$$912 d\mathbf{x}_t = [\mathbf{f}(\mathbf{x}_t) - g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)] dt + d\bar{\mathbf{w}},$$

913 where  $d\bar{\mathbf{w}}$  is the Brownian motion and  $t$  flows forward from  $T$  to 0. For all reverse-time SDE, there  
 914 exists corresponding deterministic processes which share the same density evolution, i.e.,  $\{p_t(x_t)\}_{t=0}^T$   
 915 (61). In specific, this deterministic process follows an ODE:  
 916

$$917 d\mathbf{x}_t = [\mathbf{f}(\mathbf{x}_t) - \frac{1}{2} g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)] dt,$$

918 where  $t$  flows backwards from  $T$  to 0. The deterministic process defines a velocity field,  
 919

$$920 \quad v_{\text{GT}}(\mathbf{x}, t) = [\mathbf{f}(\mathbf{x}_t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)].$$

$$921$$

922 Here, we also define the velocity field by  $v(\mathbf{x}_t, t) = \mathbf{f}(\mathbf{x}_t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ .  
 923

924 The posterior mean can be estimated from score by:  
 925

$$926 \quad \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t + \sigma_t^2 \nabla \log p_t(\mathbf{x}_t)}{\alpha_t}.$$

$$927$$

$$928$$

929 The posterior mean can be also estimated from velocity field by:  
 930

$$931 \quad \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\dot{\sigma} \mathbf{x}_t - \sigma_t v(\mathbf{x}_t, t)}{\alpha_t \dot{\sigma}_t + \sigma_t \dot{\alpha}_t}.$$

$$932$$

## 933 C DATASETS

$$934$$

### 935 C.1 DARCY FLOW

$$936$$

937 We adopt the Darcy Flow setup introduced in DiffusionPDE (22) and the dataset is released from  
 938 FNO (35). For completeness, we describe the generation process here. In specific, we consider  
 939 the steady-state Darcy flow equation on a 2D rectangular domain  $\Omega \subset \mathbb{R}^2$  with no-slip boundary  
 940 conditions:  
 941

$$-\nabla \cdot (a(c) \nabla u(c)) = q(c), \quad c \in \Omega, \quad u(c) = 0, \quad c \in \partial\Omega.$$

942 Here,  $a(c)$  is the spatially varying permeability field with binary values, and  $q(c)$  is set to 1 for  
 943 constant forcing. The  $(u, a)$  is jointly modeled by diffusion model.  
 944

### 945 C.2 INHOMOGENEOUS HELMHOLTZ EQUATION AND POISSON EQUATION

$$946$$

947 We adopt the setup introduced in DiffusionPDE (22) and the dataset is released from FNO (35). For  
 948 completeness, we describe the generation process here. As a special case of the inhomogeneous  
 949 Helmholtz equation, the Poisson equation is obtained by setting  $k = 0$ :  
 950

$$\nabla^2 u(c) = a(c), \quad c \in \Omega, \quad u(c) = 0, \quad c \in \partial\Omega.$$

952 Here,  $a(c)$  is a piecewise constant forcing function. The  $(u, a)$  is jointly modeled by diffusion model.  
 953

### 954 C.3 BURGERS' EQUATION

$$955$$

956 We adopt the Burgers' Equation setup introduced in DiffusionPDE (22) and the dataset is released  
 957 from FNO (35). For completeness, we describe the generation process here. We study the 1D viscous  
 958 Burgers' equation with periodic boundary conditions on a spatial domain  $\Omega = (0, 1)$  and temporal  
 959 domain  $\tau \in (0, T]$ :  
 960

$$961 \quad \partial_\tau u(c, \tau) + \partial_c \left( \frac{u^2(c, \tau)}{2} \right) = \nu \partial_{cc}^2 u(c, \tau), \quad u(c, 0) = a(c), \quad c \in \Omega.$$

$$962$$

963 In our experiments, we set  $\nu = 0.01$ . Specifically, we use 128 temporal steps, where each trajectory  
 964 has shape  $128 \times 128$ . The  $(u, a)$  is jointly modeled by diffusion model.  
 965

### 966 C.4 STOKES PROBLEM

$$967$$

968 We adopt the Stokes problem setup introduced in ECI-Sampling (8) and use their released generation  
 969 code. For completeness, we describe the generation process below.  
 970

971 The 1D Stokes problem is governed by the heat equation:  
 972

$$u_t = \nu u_{xx}, \quad x \in [0, 1], \quad t \in [0, 1],$$

972 with the following boundary and initial conditions:  
 973

$$974 \quad u(x, 0) = Ae^{-kx} \cos(kx), \quad x \in [0, 1], \quad a(t) := u(0, t) = A \cos(\omega t), \quad t \in [0, 1],$$

975  
 976 where  $\nu \geq 0$  is the viscosity,  $A > 0$  is the amplitude,  $\omega$  is the oscillation frequency, and  $k = \sqrt{\omega/(2\nu)}$   
 977 controls the spatial decay. The analytical solution is given by:

$$978 \quad u_{\text{exact}}(x, t) = Ae^{-kx} \cos(kx - \omega t).$$

980 In our experiments, we set  $A = 2$ ,  $k = 5$  and take  $a := \omega \sim \mathcal{U}[2, 8]$  as the coefficient field to jointly  
 981 model with  $u$ .  
 982

### 983 C.5 HEAT EQUATION

985 We adopt the heat equation setup introduced in ECI-Sampling (8) and use their released generation  
 986 code. For completeness, we describe the generation process below.  
 987

988 The 1D heat (diffusion) equation with periodic boundary conditions is defined as:

$$989 \quad u_t = \alpha u_{xx}, \quad x \in [0, 2\pi], t \in [0, 1],$$

991 with the initial and boundary conditions:

$$993 \quad a(x) := u(x, 0) = \sin(x + \varphi), \quad a(t) := u(0, t) = u(2\pi, t).$$

994 Here,  $\alpha$  denotes the diffusion coefficient and  $\varphi$  controls the phase of the sinusoidal initial condition.  
 995 The exact solution is:

$$996 \quad u_{\text{exact}}(x, t) = e^{-\alpha t} \sin(x + \varphi).$$

998 In our experiments, we set  $\alpha = 3$  and take  $a := \varphi \sim \mathcal{U}[0, \pi]$  as the coefficient to jointly model with  
 999  $u$ .  
 1000

### 1001 C.6 NAVIER–STOKES EQUATION

1003 We adopt the 2D Navier–Stokes (NS) setup from ECI-Sampling (8) and use their released generation  
 1004 code. The NS equation in vorticity form for an incompressible fluid with periodic boundary conditions  
 1005 is given as:

$$1006 \quad \partial_t w(x, t) + u(x, t) \cdot \nabla w(x, t) = \nu \Delta w(x, t) + f(x), \quad x \in [0, 1]^2, t \in [0, T],$$

$$1008 \quad \nabla \cdot u(x, t) = 0, \quad x \in [0, 1]^2, t \in [0, T],$$

$$1009 \quad w(x, 0) = w_0(x), \quad x \in [0, 1]^2.$$

1010 Here,  $u$  denotes the velocity field and  $w = \nabla \times u$  is the vorticity. The initial vorticity  $w_0$  is sampled  
 1011 from  $\mathcal{N}(0, 7^{3/2}(-\Delta + 49I)^{-5/2})$ , and the forcing term is defined as  $f(x) = 0.1\sqrt{2} \sin(2\pi(x_1 +$   
 1012  $x_2) + \phi)$ , where  $\phi \sim U[0, \pi/2]$ . We take  $a := w_0$  as the coefficient to jointly model with  $u$ .  
 1013

### 1014 C.7 POROUS MEDIUM EQUATION

1016 We use the Porous Medium Equation (PME) setup provided by ECI-Sampling (8), with zero initial  
 1017 and time-varying Dirichlet left boundary conditions:

$$1019 \quad u_t = \nabla \cdot (u^m \nabla u), \quad x \in [0, 1], t \in [0, 1],$$

$$1020 \quad (x, 0) = 0, \quad x \in [0, 1],$$

$$1022 \quad u(0, t) = (mt)^{1/m}, \quad t \in [0, 1],$$

$$1023 \quad u(1, t) = 0, \quad t \in [0, 1].$$

1024 The exact solution is  $u_{\text{exact}}(x, t) = (m \cdot \text{ReLU}(t - x))^{1/m}$ . The exponent  $m$  is sampled from  $U[1, 5]$ .  
 1025 We take  $a := m$  as the coefficient to jointly model with  $u$ .  
 1026

1026 C.8 STEFAN PROBLEM  
10271028 We also adopt the Stefan problem configuration from ECI-Sampling (8), which is a nonlinear case of  
1029 the Generalized Porous Medium Equation (GPME) with fixed Dirichlet boundary conditions:

1030 
$$u_t = \nabla \cdot (k(u) \nabla u), \quad x \in [0, 1], t \in [0, T],$$
  
1031 
$$a(x, 0) := u(x, 0) = 0, \quad x \in [0, 1],$$
  
1032 
$$a(0, t) := u(0, t) = 1, \quad t \in [0, T],$$
  
1033 
$$a(1, t) := u(1, t) = 0, \quad t \in [0, T],$$
  
1034

1035 where  $k(u)$  is a step function defined by a shock value  $u^*$ :

1036 
$$k(u) = \begin{cases} 1, & u \geq u^*, \\ 0, & u < u^*. \end{cases}$$
  
1037

1038 The exact solution is:

1039 
$$u_{\text{exact}}(x, t) = \mathbb{1}_{[u \geq u^*]} \left( 1 - (1 - u^*) \frac{\text{erf}(x/(2\sqrt{t}))}{\text{erf}(\alpha)} \right),$$
  
1040

1041 where  $\alpha$  satisfies the nonlinear equation  $(1 - u^*)/\sqrt{\pi} = u^* \text{erf}(\alpha) \alpha \exp(\alpha^2)$ . We follow ECI-  
1042 Sampling to take  $a := u^* \sim U[0.55, 0.7]$  as the coefficient to jointly model with  $u$ .  
10431044 D EXPERIMENTAL SETUP  
10451046 This section provides details on the model architecture, training configurations for diffusion and  
1047 distillation, evaluation protocols, and baseline methods.  
10481049 D.1 MODEL STRUCTURE  
10501051 We follow ECI-sampling (8) and adopt the Fourier Neural Operator (FNO) (35) as both the teacher  
1052 diffusion model and the student distillation model. A sinusoidal positional encoding (65) is appended  
1053 as an additional input dimension. Specifically, we use a four-layer FNO with a frequency cutoff of  
1054  $32 \times 32$ , a time embedding dimension of 32, a hidden channel width of 64, and a projection dimension  
1055 of 256.  
10561057 D.2 DIFFUSION AND DISTILLATION TRAINING SETUP  
10581059 For diffusion training, we employ a standard linear noise schedule (39; 38; 37; 40) with a batch size  
1060 of 128 and a total of 10,000 iterations. The model is optimized using Adam (31) with a learning rate  
1061 of  $3 \times 10^{-2}$ .  
10621063 During distillation, we use Euler’s method with 100 uniformly spaced timesteps from  $t = 1$  to  $t = 0$   
1064 for sampling. Every 100 epochs, we resample 1024 new noise–data pairs for supervision. Distillation  
1065 is trained for 2000 epochs using Adam (learning rate  $3 \times 10^{-2}$ ), with early stopping based on the  
1066 squared norm of the observation loss, i.e.,  $\|s_{\theta'}(\varepsilon) - x\|^2$ .  
10671068 The physics constraint weight  $\lambda_{\text{train}}$  is set to 10 for Darcy Flow, Burgers’ Equation, Stokes Flow, Heat  
1069 Equation, Navier–Stokes, Porous Medium Equation, and Stefan Problem. For Helmholtz and Poisson  
1070 equations, we increase  $\lambda_{\text{train}}$  to  $10^6$  due to the stiffness of these PDEs. All experiments are conducted  
1071 on an NVIDIA RTX 4090 GPU.  
10721073 D.3 EVALUATION SETUP  
10741075 For physics-based data simulation, we evaluate models with and without physics refinement: the  
1076 number of gradient-based refinement steps  $N$  is set to 0 or 50. The step size  $\eta$  is aligned with the  
1077 dataset-specific  $\lambda_{\text{train}}$  used during distillation.  
10781079 In forward and inverse problems, the observation mask  $M$  defines the known entries. For forward  
1080 problems, the mask has ones at boundary entries. For partial reconstruction, the mask is sampled  
1081 randomly with 20% of entries set to 1 (observed), and the rest to 0 (missing). All evaluations are  
1082 conducted on an NVIDIA RTX 4090 GPU.  
1083

1080 D.4 BASELINE METHODS  
1081

1082 We describe the configurations of all baseline methods used for comparison. Where necessary,  
1083 we adapt our diffusion training and sampling codebase to implement their respective constraint  
1084 mechanisms.

1085 **ECI-sampling.** We follow the approach of directly substituting hard constraints onto the posterior  
1086 mean  $\mathbb{E}[x_0 | x_t]$  based on a predefined observation mask. Specifically, we project these constraints at  
1087 each DDIM step (58) using a correction operator  $C$ :

$$1088 \quad \mathbf{x}_{t-dt} = C(\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t)) \cdot (1 - t + dt) + (\mathbf{x}_t - \hat{\mathbf{x}}_\theta(\mathbf{x}_t, t)) \cdot (t - dt), \quad (13)$$

1090 where  $t$  flows backward from 1 to 0, and  $\hat{\mathbf{x}}_\theta$  denotes the posterior mean estimated using Tweedie's  
1091 formula.

1092 **DiffusionPDE.** This method employs diffusion posterior sampling (DPS) (9), where each intermediate  
1093 sample  $\mathbf{x}_t$  is guided by the gradient of the PDE residual evaluated on the posterior mean:

$$1095 \quad \mathbf{x}_{t-dt} = \mathbf{x}_t + v_\theta(\mathbf{x}_t, t) \cdot dt - \eta_t \nabla_{\mathbf{x}_t} \|\mathcal{R}(\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t))\|^2, \quad (14)$$

1096 where  $v_\theta(\mathbf{x}_t, t)$  is the learned velocity field from the reverse-time ODE sampler, and  $\eta_t$  is a hyperpa-  
1097 rameter. In our experiments, we set  $\eta_t$  equal to  $\lambda_{\text{train}}$  for each dataset.

1099 **PIDM.** This method incorporates an additional residual loss into the diffusion training objective,  
1100 evaluated on the posterior mean  $\mathbb{E}[x_0 | x_t]$ . Specifically, PIDM (3) augments the standard diffusion  
1101 loss with a physics-based term:

$$1102 \quad \mathcal{L}_{\text{PIDM}} = \mathcal{L}_{\text{diffusion}} + \lambda_t \|\mathcal{R}(\hat{\mathbf{x}}_\theta(\mathbf{x}_t, t))\|^2, \quad (15)$$

1104 where  $\mathcal{L}_{\text{diffusion}}$  is the original diffusion training loss, and  $\lambda_t$  is the residual loss weight. In our  
1105 experiment, we set  $\lambda_t$  to be  $\lambda_{\text{train}}$  for each dataset since it gives satisfying performance.

1106 **D-Flow.** For this standard method (4), We build on the official implementation of ECI-sampling  
1107 (8) and introduce an additional PDE residual loss evaluated on the final sample. The weighting  
1108  $\lambda_{\text{train}}$  is aligned with our setup across datasets. Specifically, the implementation follows the D-Flow  
1109 setup in ECI-sampling (8): we discretize the sampling trajectory into 100 denoising steps and  
1110 perform gradient-based optimization on the input noise over 50 iterations to minimize the physics  
1111 residual loss. At each iteration, gradients are backpropagated through the entire 100-step trajectory,  
1112 resulting in a total of 50,000 function evaluations (NFE) per sample. This leads to significantly higher  
1113 computational cost compared to our one-step method.

1114 **Teacher.** This baseline refers to sampling directly from the trained teacher diffusion model without  
1115 incorporating any PDE-based constraint or guidance mechanism.

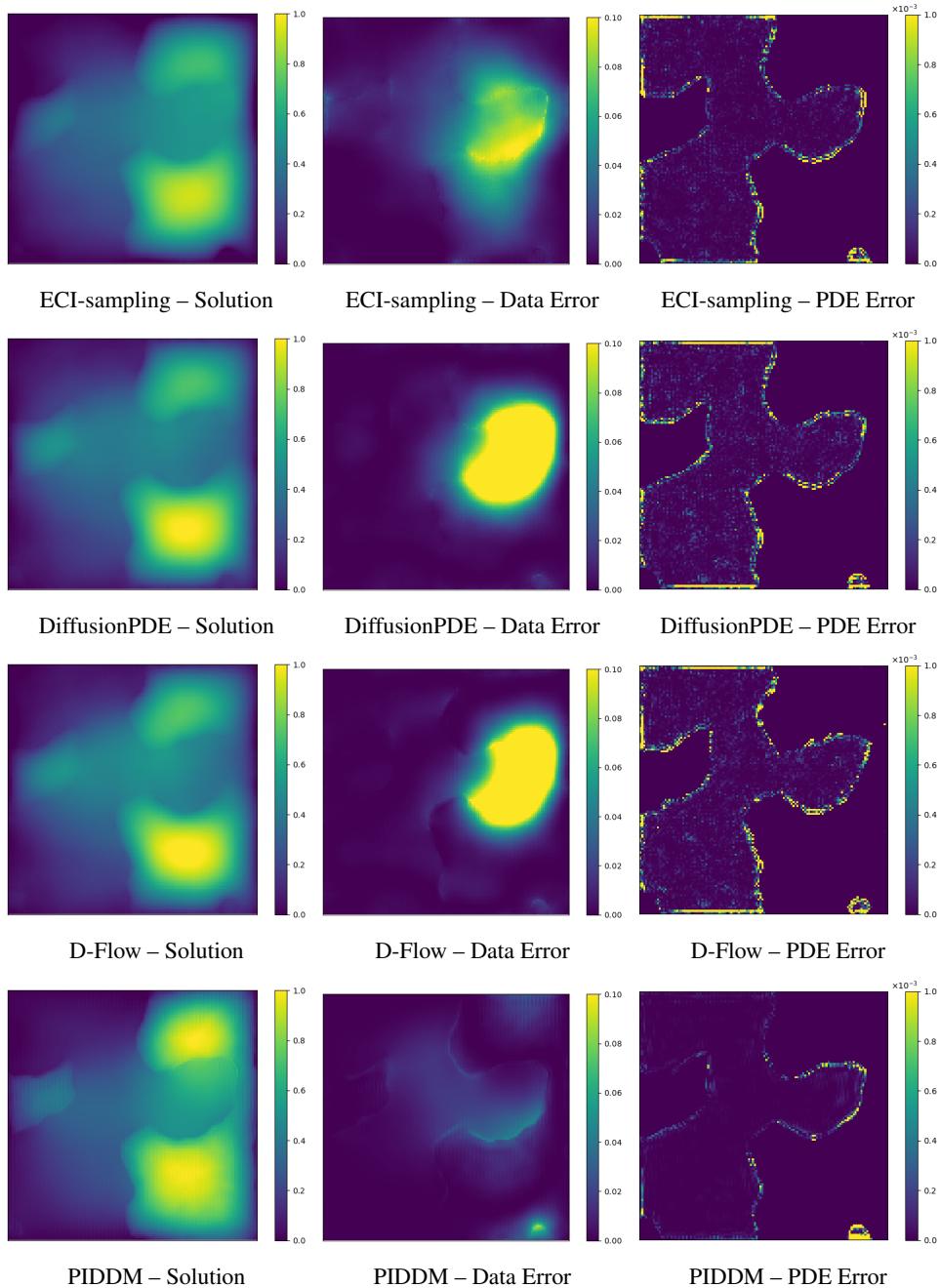
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

1134 E GENERATIVE EVALUATIONS ON MORE DATASETS  
11351136 In this section, we include the performance of our results on more datasets and comparisons to other  
1137 baseline methods, as shown in Table. 4. PIDDM marginally surpass all baseline especially in the  
1138 physics residual error.  
11391140 Table 4: Generative metrics on various constrained PDEs. The PDE error means the MSE of the  
1141 evaluated physics residual error. The best results are in **bold**.  
1142

| Dataset                       | Metric                         | PIDDM-1      | PIDDM-ref    | ECI   | DiffusionPDE | D-Flow | PIDM  | FM    |
|-------------------------------|--------------------------------|--------------|--------------|-------|--------------|--------|-------|-------|
| Helmholtz                     | MMSE ( $\times 10^{-1}$ )      | 0.265        | <b>0.185</b> | 0.318 | 0.335        | 0.140  | 0.352 | 0.296 |
|                               | SMSE ( $\times 10^{-1}$ )      | 0.195        | <b>0.169</b> | 0.289 | 0.301        | 0.106  | 0.325 | 0.210 |
|                               | PDE Error ( $\times 10^{-9}$ ) | 0.054        | <b>0.034</b> | 2.135 | 1.812        | 0.680  | 1.142 | 2.104 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |
| Stokes Problem                | MMSE ( $\times 10^{-2}$ )      | 0.298        | <b>0.182</b> | 0.335 | 0.342        | 0.301  | 0.361 | 0.310 |
|                               | SMSE ( $\times 10^{-2}$ )      | 0.425        | <b>0.312</b> | 0.455 | 0.469        | 0.441  | 0.484 | 0.430 |
|                               | PDE Error ( $\times 10^{-3}$ ) | 0.241        | <b>0.194</b> | 0.585 | 0.498        | 0.318  | 0.432 | 0.578 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |
| Heat Equation                 | MMSE ( $\times 10^{-3}$ )      | 0.901        | <b>0.845</b> | 4.620 | 4.600        | 1.452  | 4.580 | 4.544 |
|                               | SMSE ( $\times 10^{-2}$ )      | 0.816        | <b>0.790</b> | 1.612 | 1.598        | 0.892  | 1.587 | 1.565 |
|                               | PDE Error ( $\times 10^{-5}$ ) | 3.265        | <b>2.910</b> | 4.120 | 4.100        | 3.698  | 4.150 | 4.354 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |
| Navier–<br>Stokes<br>Equation | MMSE ( $\times 10^{-4}$ )      | 0.285        | <b>0.264</b> | 0.302 | 0.299        | 0.288  | 0.306 | 0.294 |
|                               | SMSE ( $\times 10^{-4}$ )      | 0.218        | <b>0.210</b> | 0.323 | 0.321        | 0.225  | 0.327 | 0.314 |
|                               | PDE Error ( $\times 10^{-5}$ ) | 3.184        | <b>2.945</b> | 6.910 | 6.740        | 3.200  | 6.950 | 7.222 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |
| Porous<br>Medium<br>Equation  | MMSE ( $\times 10^{-3}$ )      | 4.555        | <b>4.210</b> | 7.742 | 7.698        | 5.203  | 7.762 | 7.863 |
|                               | SMSE ( $\times 10^{-1}$ )      | 2.143        | <b>2.051</b> | 2.573 | 2.602        | 2.327  | 2.589 | 2.639 |
|                               | PDE Error ( $\times 10^{-5}$ ) | 3.412        | <b>3.110</b> | 4.982 | 4.945        | 3.548  | 4.917 | 5.523 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |
| Stefan Problem                | MMSE ( $\times 10^{-3}$ )      | 0.231        | <b>0.220</b> | 0.248 | 0.249        | 0.238  | 0.252 | 0.245 |
|                               | SMSE ( $\times 10^{-3}$ )      | 0.278        | <b>0.268</b> | 0.315 | 0.318        | 0.289  | 0.320 | 0.307 |
|                               | PDE Error ( $\times 10^{-2}$ ) | 0.081        | <b>0.070</b> | 0.410 | 0.398        | 0.095  | 0.405 | 0.458 |
|                               | NFE ( $\times 10^3$ )          | <b>0.001</b> | 0.100        | 0.500 | 0.100        | 5.000  | 0.100 | 0.100 |

1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

1188 **F QUALITATIVE RESULTS ON THE DARCY FORWARD PROBLEM**  
1189

1190 Figure 4 compares the predicted Darcy pressure fields and their corresponding data- and PDE-error  
1191 maps for each baseline and for our PIDDM. DiffusionPDE, and ECI reproduce the coarse flow pattern  
1192 but exhibit large point-wise errors and pronounced residual bands. In contrast, PIDDM produces the  
1193 visually sharpest solution and the lowest error intensities in both maps, confirming the quantitative  
1194 gains reported in the main text.  
1195

1239 Figure 4: Qualitative comparison on the Darcy *forward* problem. Each column shows (left) the  
1240 predicted solution field, (middle) point-wise data error, and (right) PDE residual error. Our PIDDM  
1241 (bottom row) delivers visibly lower data and PDE errors than other baselines while maintaining sharp  
1242 solution details.  
1243

1242 **G ADDITIONAL EXPERIMENTS**  
 1243

1244 We investigate a controlled Mixture-of-Gaussians (MoG) setting to evaluate constraint satisfaction in  
 1245 generative models. The target distribution is a correlated, two-component Gaussian mixture:  
 1246

$$1247 p_{\text{MoG}}(\mathbf{x}) = \frac{1}{2}, \mathcal{N}(\mathbf{x}; [-1, -1]^\top, \Sigma) + \frac{1}{2}, \mathcal{N}(\mathbf{x}; [+1, +1]^\top, \Sigma), \quad (16)$$

1248 where  $\Sigma = \sigma^2 [1 \ \rho \ \rho \ 1]$ ,  $\sigma^2 = 0.04$ ,  $\rho = 0.99999$ . The high correlation  $\rho = 0.99999$  ensures  
 1249 that the analytic score function  $\nabla_{\mathbf{x}} \log p_{\text{MoG}}(\mathbf{x})$  remains well-defined, despite the near-singular  
 1250 covariance. The physical constraint is defined as:  
 1251

$$1252 \mathcal{F}(\mathbf{x}) = |\mathbf{x}_0 - \mathbf{x}_1|^2 = 0. \quad (17)$$

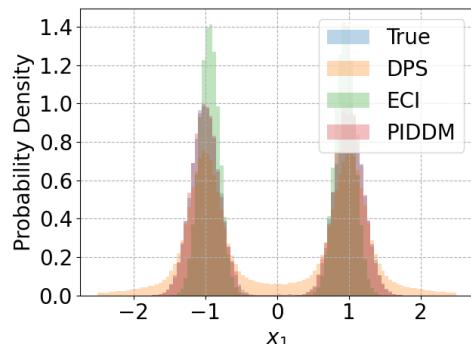
1253 **Baselines.** DPS and ECI both integrate the analytical score using 1000-step Euler discretization over  
 1254  $(0, 1)$ . DPS applies constraint guidance via gradient descent on  $\mathcal{F}(\mathbf{x})$  at each step, using a loss weight  
 1255 of 300. ECI enforces the constraint by directly projecting the posterior mean to satisfy  $\mathcal{F}(\mathbf{x}) = 0$ .  
 1256

1257 **PIDDM.** A teacher diffusion model is constructed using a probability-flow ODE with 100-step Euler  
 1258 integration, leveraging the analytic score. It generates 50,000 training pairs  $(\varepsilon, \mathbf{x}_0)$  which are used to  
 1259 train a one-step student model, a ReLU-activated MLP with two hidden layers (100 neurons each)  
 1260 via the loss:  
 1261

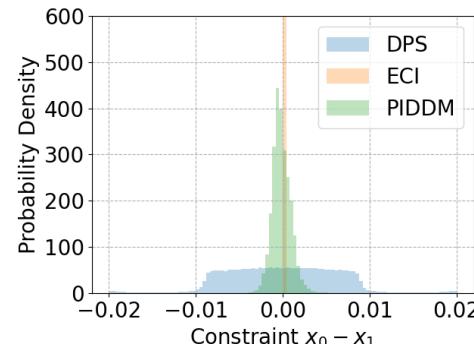
$$1262 \mathcal{L}_{\text{train}} = \frac{1}{N} \sum_{i=1}^N |d_{\theta}(\varepsilon_i) - \mathbf{x}_{0,i}|^2 + \lambda_{\text{train}} \mathcal{F}(d_{\theta}(\varepsilon_i)), \quad \lambda_{\text{train}} = 1. \quad (18)$$

1263 Training uses Adam optimizer ( $\text{lr} = 10^{-3}$ , batch size = 2048). During inference, latent noise  $\varepsilon$  is  
 1264 optimized via 80 steps of LBFGS with strong-Wolfe line search, learning rate  $3 \times 10^{-3}$ , and gradient  
 1265 tolerance  $10^{-7}$ , with  $\lambda_{\text{infer}} = 1$ .  
 1266

1267 **Results.** Figure 5(a) shows that all methods recover the bimodal structure of  $\mathbf{x}_1$ . However, as shown  
 1268 in Figure 5(b), DPS fails to fully satisfy the constraint, with  $\mathbf{x}_0 - \mathbf{x}_1$  spread over  $\pm 10^{-2}$ , while  
 1269 ECI enforces it exactly but distorts the marginal distribution. In contrast, PIDDM maintains both  
 1270 constraint satisfaction (standard deviation  $\approx 2 \times 10^{-3}$ ) and distributional fidelity.  
 1271



1272 (a) Marginal distribution over  $x_1$   
 1273



1274 (b) Constraint deviation  $x_0 - x_1$   
 1275

1276 Figure 5: Constraint satisfaction on correlated MoG. Comparison of generated samples using DPS,  
 1277 ECI, and PIDDM. PIDDM closely matches the target distribution while satisfying constraints.  
 1278

1279 **H USE OF LARGE LANGUAGE MODELS**  
 1280

1281 We used large language models (LLMs) solely as an assistive tool for polishing the writing and  
 1282 improving clarity of exposition. LLMs were not involved in research ideation, experiment design,  
 1283 implementation, or analysis.  
 1284

1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295