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Abstract

Stochastic differential equations (SDEs) have been shown recently to well character-
ize the dynamics of training machine learning models with SGD. This provides two
opportunities for better understanding the generalization behaviour of SGD through
its SDE approximation. Firstly, viewing SGD as full-batch gradient descent with
Gaussian gradient noise allows us to obtain trajectories-based generalization bound
using the information-theoretic bound. Secondly, assuming mild conditions, we es-
timate the steady-state weight distribution of SDE and use the information-theoretic
bound to establish terminal-state-based generalization bounds.

1 Introduction
Recently, information-theoretic generalization bounds have been developed to analyze the expected
generalization error of a learning algorithm. The main advantage of such bounds is that they are not
only distribution-dependent, but also algorithm-dependent, making them an ideal tool for studying
the generalization behaviour of models trained with a specific algorithm, such as SGD. Mutual
information (MI) based bounds are first proposed by [44, 45, 61]. They are then strengthened by
additional techniques [4, 34, 9, 49, 15, 53]. Particularly, Negrea et al. [34] derive MI-based bounds
by developing a PAC-Bayes-like bounding technique, which upper-bounds the generalization error in
terms of the KL divergence between the posterior distribution of learned model parameter given by a
learning algorithm with respect to any data-dependent prior distribution. It is remarkable that the
application of these information-theoretic techniques usually requires the learning algorithm to be an
iterative noisy algorithm, such as stochastic gradient Langevin dynamics (SGLD) [43, 41], so as to
avoid the MI bounds becoming infinity, and can not be directly applied to SGD. In order to apply
such techniques to SGD, Neu et al. [35] and Wang and Mao [55] develop generalization bounds for
SGD via constructing an auxiliary iterative noisy process, so additional complexity must be dealt
with in that analysis.
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(a) VGG on (small) SVHN
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(b) VGG on CIFAR10
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(c) ResNet on CIFAR10
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(d) ResNet on CIFAR100

Figure 1: Performance of VGG-11 and ResNet-18 trained with SGD and SDE. Standard data
augmentation techniques are only used in (d).
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Recent research has suggested that the SGD dynamics can be well approximated by using stochastic
differential equations (SDEs), where the gradient signal in SGD is regarded as the full-batch gradient
perturbed with an additive Gaussian noise. Specifically, [30] and [22] model this gradient noise drawn
from a Gaussian distribution with a fixed covariance matrix, thereby viewing SGD as performing
variational inference. [63, 56, 58, 59] further model the gradient noise as dependent of the current
weight parameter and the training data. Modelling SGD in this way provide explanations as to when
SGD finds flat minima [63, 58] and sharp minima [64], and inspire some new training techniques
[56, 59]. Moreover, Li et al. [24, 25] and Wu et al. [56] prove that when the learning rate is
sufficiently small, the SDE trajectories are theoretically close to those of SGD (see Lemma A.1).
More recently, [27] has demonstrated that the SDE approximation well characterizes the optimization
and generalization behavior of SGD without requiring small learning rates.

In this work, we also empirically verify the consistency between the dynamics of SGD and its associ-
ated discrete SDE (i.e. Eq. (5)). As illustrated in Figure 1, the strong agreement in their performance
suggests that, despite the potential presence of non-Gaussian components in the SGD gradient noise,
analyzing its SDE through a Gaussian approximation suffices for exploring SGD’s generalization
behavior. Furthermore, under the SDE formalism of SGD, SGD becomes an iterative noisy algorithm,
on which the aforementioned information-theoretic bounding techniques can directly apply. In partic-
ular, we summarize our contributions below: (1) We obtain a generalization bound (Theorem 3.1)
in the form of a summation over training steps of a quantity that involves both the the population
gradient covariance and also the covariance of the gradient noise, and the generalization performance
of SGD depends on the alignment of these two matrices; (2) We also apply the information-theoretic
bound to obtain generalization upper bounds in terms of the KL divergence between the steady-state
weight distribution of SGD with respect to a distribution-dependent prior distribution. This gives
us a bound based on the alignment between the weight covariance matrix for each individual local
minimum and the weight covariance matrix for the average of local minima (Theorem 4.1). Under
mild assumptions, we can estimate the steady-state weight distribution of SDE (Lemma 4.1), leading
to a variant of Theorem 4.1 (Corollary 4.1) and a norm-based bound (Corollary 4.2).

Other Related Literature Information-theoretic generalization bounds are typically useful to noisy
iterative algorithms. For example, Pensia et al. [41] first apply the information-theoretic bound given
by Xu and Raginsky [61] to analyze the generalization property of SGLD. Since the noise used in
SGLD is usually an isotropic Gaussian, by utilizing the closed form of KL divergence between two
Gaussian distributions, the information-theoretic generalization bound for SGLD is shown to have a
tractable form. Their result is then improved by stronger bounds in [9, 34, 15, 55].

Recently, [46, 37, 47, 31, 14] challenge the traditional assumption that gradient noise is a Gaussian
and argue that the noise is heavy-tailed (e.g., Lévy noise). In contrast, Xie et al. [58] and Li et al. [27]
claim that non-Gaussian noise is not essential to SGD performance, and SDE with Gaussian gradient
noise can well characterize the behavior of SGD. They also argue that the empirical evidence shown
in [46] relies on a hidden strong assumption that gradient noise is isotropic and each dimension has
the same distribution. Other works on SGD and SDE, see [20, 60, 38, 56, 63, 26, 65].

2 Preliminaries
Unless otherwise noted, a random variable will be denoted by a capitalized letter, and its realization
by the corresponding lower-case letter. The distribution of a random variable X is denoted by PX (or
QX ), and the conditional distribution of X given Y is denoted by PX|Y . When conditioning on a
specific realization y, we use the shorthand PX|Y=y or simply PX|y . Denote by EX expectation over
X ∼ PX , and by EX|Y=y (or Ey

X ) expectation over X ∼ PX|Y=y. We may omit the subscript of
the expectation when there is no ambiguity. The KL divergence of probability distribution Q with
respect to P is denoted by DKL(Q||P ). The mutual information (MI) between random variables X
and Y is denoted by I(X;Y ), and the conditional mutual information between X and Y given Z is
denoted by I(X;Y |Z). In addition, for a matrix A ∈ Rd×d, we let tr {A} denote the trace of A and
we use tr {logA} to indicate

∑d
k=1 logAk,k

Expected Generalization Error Let Z be the instance space and let µ be an unknown distribution
on Z , specifying random variable Z. We let W ⊆ Rd be the space of hypotheses. In the information-
theoretic analysis framework, there is a training sample S = {Z1, Z2, . . . , Zn}ni=1 drawn i.i.d.
from µ and a stochastic learning algorithm A takes the training sample S as its input and outputs
a hypothesis W ∈ W according to some conditional distribution QW |S . Given a loss function
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ℓ : W ×Z → R+, where ℓ(w, z) measures the “unfitness” or “error” of any z ∈ Z with respect to
a hypothesis w ∈ W . The goal of learning is to find a hypothesis w that minimizes the population
risk, and for any w ∈ W , the population risk is defined as Lµ(w) ≜ EZ∼µ[ℓ(w,Z)]. In practice,
since µ is only partially accessible via the sample S, we instead turn to use the empirical risk,
defined as LS(w) ≜ 1

n

∑n
i=1 ℓ(w,Zi). Then, the expected generalization error of A is defined as

Eµ(A) ≜ EW,S [Lµ(W )− LS(W )], where the expectation is taken over (S,W ) ∼ µn ⊗QW |S .

Throughout this paper, we assume that ℓ is differentiable almost everywhere with respect to w. In
some cases we will assume that ℓ(w,Z) is R-subgaussian for any w ∈ W . Note that a bounded loss
is guaranteed to be subgaussian. We will denote ℓ(w,Zi) by ℓi when there is no ambiguity.

SGD and SDE At each time step t, given the current state Wt−1 = wt−1, let Bt be a random subset
that is drawn uniformly from {1, 2, . . . , n} and |Bt| = b is the batch size. Let G̃t ≜ 1

b

∑
i∈Bt

∇ℓi
be the mini-batch gradient. The SGD updating rule with learning rate η is then

Wt = wt−1 − ηG̃t. (1)

The full batch gradient is Gt ≜ 1
n

∑n
i=1 ∇ℓi. It follows that

Wt = wt−1 − ηGt + ηVt, (2)

where Vt ≜ Gt−G̃t is the mini-batch gradient noise. Since EBt
[Vt] = 0, G̃t is an unbiased estimator

of the full batch gradient Gt. Moreover, the single-draw (i.e. b = 1) SGD gradient noise covariance
(GNC) and the mini-batch GNC are Σt = 1

n

∑n
i=1 ∇ℓi∇ℓTi − GtG

T
t and Ct = n−b

b(n−1)Σt,
respectively. If n ≫ b, then Ct = 1/bΣt. Notice that Σt (or Ct) is state-dependent, i.e. it depends
on wt−1. If t is not specified, we use Σw (or Cw) to represent its dependence on w. In addition, the
population GNC at time t is

Σµ
t ≜EZ

[
∇ℓ(wt−1, Z)∇ℓ(wt−1, Z)T

]
− EZ [∇ℓ(wt−1, Z)]EZ

[
∇ℓ(wt−1, Z)T

]
. (3)

We assume that the initial parameter W0 is independent of all other random variables, and SGD stops
after T updates, outputting WT as the learned parameter.

We now approximate Vt up to its second moment, e.g., Vt ∼ N (0, Ct), then we have the following
continuous-time evolution, i.e. Itô SDE:

dω = −∇LS(ω)dt+ [ηCω]
1
2 dθt, (4)

where Cω is the GNC at ω and θt is a Wiener process. Furthermore, the Euler-Maruyama discretiza-
tion, as the simplest approximation scheme to Itô SDE in Eq. (4), is

Wt = wt−1 − ηGt + ηC
1/2
t Nt, (5)

where Nt ∼ N (0, Id) is the standard Gaussian random variable.

Validation of SDE It is important to understand how accurate of SDE in Eq. (4) for approximating
the SGD process in Eq. (1). Previous research, such as [24, 25], has provided theoretical evidence
supporting the idea that SDE can approximate SGD in a “weak sense”. That is, the SDE processes
closely mimic the original SGD processes, not on an individual sample path basis, but rather in terms
of their distributions (see Lemma A.1 for a formal result).

Additionally, concerning the validation of the discretization of SDE in Eq. (5), Wu et al. [56,
Theorem 2] has proved that Eq. (5) is an oder 1 strong approximation to SDE in Eq. (4). Moreover, we
direct interested readers to the comprehensive investigations carried out by [56, 27], where the authors
empirically verify that SGD and Eq. (5) can achieve the similar testing performance, suggesting that
non-Gaussian noise is not essential to SGD performance. In other words, studying Eq. (5) is arguably
sufficient to understand generalization properties of SGD. In Figure 1, we also empirically verify
the approximation of Eq. (5), and show that it can effectively capture the behavior of SGD.

SGD and SDE Training Dynamics We implement the SDE training by following the same
algorithm given in [56, Algorithm 1]. Our experiments involved training a VGG-11 architecture
without BatchNormalization on a subset of SVHN (containing 25k training images) and CIFAR10.
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Additionally, we trained a ResNet-18 on both CIFAR10 and CIFAR100. Data augmentation is only
used in the experiments related to CIFAR100. We ran each experiment for ten different random seed,
maintaining a fixed initialization of the model parameters. Further details about the experimental setup
can be found in the Appendix. The results are depicted in Figure 1. As mentioned earlier, SDE exhibits
a performance dynamics akin to that of SGD, reinforcing the similarities in their training behaviors.

Information-Theoretic Bound The original version of mutual information based bound is a
sample-based MI bound whose main component is the mutual information between the output W
and the entire input sample S. This result is given as follows:
Lemma 2.1 (Xu and Raginsky [61, Theorem 1.]). Assume the loss ℓ(w,Z) is R-subGaussian for

any w ∈ W , then |Eµ(A)| ≤
√

2R2

n I(W ;S).

3 Generalization Bounds Via Full Trajectories

We now discuss the generalization of SGD under the approximation of Eq. (5). In particular, we let
Ĝt = −Gt + C

1/2
t Nt. We first have the following lemma.

Lemma 3.1. I(Ĝt;S|Wt−1) = EWt−1

[
infPĜt|Wt−1

EWt−1

S

[
DKL(QĜt|S,Wt−1

||PĜt|Wt−1
)
]]

,
where the infimum is achieved when the prior distribution PĜt|wt−1

= QĜt|wt−1
for any t.

Lemma 3.1 suggests that every choice of PĜt|Wt−1
gives rise to an upper bound of the MI of interest

via I(Ĝt;S|Wt−1) ≤ EWt−1

[
EWt−1

S

[
DKL(QĜt|S,Wt−1

||PĜt|Wt−1
)
]]

. The closer is PĜt|Wt−1
to

QĜt|Wt−1
, the tighter is the bound.

While choosing the isotropic Gaussian prior is common in the GLD or SGLD setting, given that
we already know Ct is an anisotropic covariance, one can select an anisotropic prior to better
incorporate the geometric structure in the prior distribution. A natural choice of the covariance is a
scaled population GNC, namely c̃tΣ

µ
t , where c̃t is some positive state dependent scaling factor. By

optimizing over ct, we have the bound below.
Theorem 3.1. Under the conditions of Lemma 2.1 and assume Ct and Σµ

t are positive-definite

matrices, then Eµ(A) ≤
√

R2

n

∑T
t=1 EWt−1,S

[
tr
{
log

Σµ
t C

−1
t

b

}]
.

Remark 3.1. If we let the diagonal element of Σµ
t in dimension k be αt(k) and let the corresponding

diagonal element of Σt be βt(k), and assume n ≫ b (so Σt = bCt), then tr
{
log(Σµ

t C
−1
t /b)

}
=∑d

k=1 log
αt(k)
βt(k)

. Thus, Theorem 3.1 implies that a favorable alignment between the diagonal values
of Σt and Σµ

t will positively impact generalization performance.

Theorem 3.1 emphasizes the significance of gradient-related information along entire trajectories in
comprehending the generalization dynamics of understanding the generalization of SGD. In Figure 2,
we visually show that some key gradient-based measures during SDE training closely mirror the
dynamics observed in SGD.

4 Generalization Bounds Via Terminal State

In this section, we directly bound the generalization error by the properties of the terminal state
instead of using the full training trajectory information. Particularly, we will first use the stationary
distribution of weights at the end of training as QWT |S .

Let w∗
s be a local minimum for a given training sample S = s, then the classical result of Mandt

et al. [30] shows that the posterior QW |s around w∗
s is a Gaussian distribution N (w∗

s ,Λw∗
s
), where

Λw∗ ≜ E
[
(W − w∗)(W − w∗)T

]
is the covariance of the stationary distribution.

We are ready to give the terminal state-dependent bounds.
Theorem 4.1. Under the conditions in Lemma 2.1. Let w∗

µ = E [W ∗
S ] and let Λw∗

µ
=

E
[(
WT − w∗

µ

) (
WT − w∗

µ

)T]
, then Eµ(A) ≤ R√

2n

√
ES,W∗

S

[
tr
{
log
(
Λ−1
W∗

S
Λw∗

µ

)}]
.
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Note that Λw∗
µ
= E

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T]
+ E

[
ΛW∗

S

]
. By Jensen’s inequality, we can bring

the expectation over W ∗
s inside the logarithmic function. Additionally, if EW∗

s

[
Λ−1
W∗

s
E
[
ΛW∗

s

]]
is close to the identity matrix—especially evident in scenarios where each s has only one mini-

mum, as in convex learning—we obtain the upper bound O
(√

E
[
d2M
(
W ∗

S , w
∗
µ; ΛW∗

S

)]
/n
)
, where

dM (x, y; Σ) ≜
√
(x− y)TΣ−1(x− y) is the Mahalanobis distance. Intuitively, this quantity mea-

sures the sensitivity of a local minimum to the combined randomness introduced by both the algorithm
and the training sample, relative to its local geometry.

In practice, one can estimate Λw∗
µ

and Λw∗
s

by repeatedly conducting training processes and storing
numerous checkpoints at the end of each training run. As an alternative strategy, one may leverage
the analytical expression available for Λw∗

s
.

Lemma 4.1. Let Hw∗ be the Hessian matrix of s at w∗. If Ls(w) ≈ Ls(w
∗)+ 1

2 (w−w∗)THw∗(w−
w∗) holds when w is close to any local minimal w∗, then in the long term limit, we have

Λw∗Hw∗ +Hw∗Λw∗ − ηHw∗Λw∗Hw∗ = ηCT .

Moreover, consider the conditions: (i) Hw∗ and Λw∗ commute; (ii) H−1
w∗ ΣT ≈ Id; (iii) 2

η ≫ λ1

where λ1 is the top-1 eigenvalue of Hw∗ . Under (i), we have Λw∗ =
[
Hw∗

(
2
η Id −Hw∗

)]−1

CT ;

under (i-ii), we have Λw∗ = ( 2η Id −Hw∗)−1; under (i-iii), we have Λw∗ = η
2b Id.

Notably, all the conditions in Lemma 4.1 are only discussed in the context of the terminal state of SGD
training. Regarding the condition (ii), as being widely used in the literature [22, 63, 26, 58, 59, 28],
Hessian is proportional to the GNC near local minima when the loss is the negative log likelihood,
i.e. cross-entropy loss. For condition (iii), the initial learning rate is typically set at a high value,
and this condition may not be satisfied until the learning rate undergoes decay in the later stages of
SGD training. This observation is evident in Figure 4a-4b, where the condition becomes easily met
at the terminal state following the learning rate decay. Moreover, the interplay between 2

η and λ1 is
extensively explored in the context of the edge of stability [57, 10, 3], which suggests that during
the training of GD, λ1 approaches 2

η and hovers just above it in the “edge of stability” regime. In
this case, as indicated by Lemma 4.1, the diagonal elements of Λw∗

s
tend to be close to zero before

reaching the “edge of stability”. Consequently, the bound presented in Theorem 4.1 diverges to
infinity. This aligns with the fact that I(W ;S) may approach infinity for deterministic algorithms,
e.g., GD with a fixed initialization.

The following results can be obtained by combining Theorem 4.1 and Lemma 4.1.

Corollary 4.1. Under (i,iii) in Lemma 4.1, then Eµ(A) ≤ R√
nη

√
E
[
tr
{
log
([

Hw∗C−1
T

]
Λw∗

µ

)}]
.

Corollary 4.2. Under (i-iii) in Lemma 4.1, then Eµ(A) ≤
√

dR2

n log
(

2b
ηdE||W

∗
S − w∗

µ||2 + 1
)

.

By log(x+ 1) ≤ x, the bound in Corollary 4.2 is dimension-independent if the weight norm does
not grow with d. Furthermore, the information-theoretic bound becomes a norm-based bound in
Corollary 4.2, which is widely studied in the generalization literature [5, 36]. In fact, w∗

µ can be
replaced by any data-independent vector, for example, the initialization, w0 (see Corollary D.1). In
this case, the corresponding bound suggests that generalization performance can be characterized
by the “distance from initialization”. Nagarajan and Kolter [32] also derived a “distance from
initialization” based generalization bound by using Rademacher complexity, and Hu et al. [21] use
“distance from initialization” as a regularizer to improve the generalization performance on noisy data.

5 Concluding Remarks

In this paper, we invoke the SDE approximation of SGD so that information-theoretic generalization
bounds are directly applicable to SGD with two opportunities. First, dynamics characterized by SDE
enable us to obtain trajectories-based bounds by the step-wise analysis of mutual information. In
addition, with some mild assumptions, we also obtain some new bounds based on the terminal state
of SGD. More theoretical and empirical results can be found in Appendix.
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A Additional Background

Lemma A.1 (Li et al. [24, Theorem 1]). Let η ∈ (0, 1), T > 0 and N = ⌊T/η⌋. Let F be
the set of functions of polynomial growth, i.e. f ∈ F , if there exists constants K,κ > 0 s.t.
|f(x)| < K(1 + |x|κ). Assume ∇ℓ is Lipschitz continuous, has at most linear asymptotic growth and
has sufficiently high derivatives belonging to F , then SDE in Eq. (4) is an order 1 weak approximation
of the SGD in Eq. (1). Or equivalently, for every f ∈ F , there exists C > 0, independent of η, s.t. for
all k = 0, 1, . . . , N , |E [f(ωkη)]− E [f(Wk)]| < Cη.

Lemma 2.1 is further improved by a data-dependent prior based bound. Following the setup in
Negrea et al. [34], let J be a random subset uniformly drawn from {1, . . . , n} and |J | = m > b. Let
SJ = {Zi}i∈J . Typically, we choose m = n− 1, then the following result is known.
Lemma A.2 (Negrea et al. [34, Theorem 2.5]). Assume the loss ℓ(w,Z) is bounded in [0,M ], then
for any PW |SJ

, Eµ(A) ≤ M√
2
ES,J

√
DKL(QW |S ||PW |SJ

).

Note that J is drawn before the training starts and is independent of {Wt}Tt=0. We use the subset SJ

to conduct a parallel SGD training process based to obtain a data-dependent prior (PW |SJ
). When

m = n− 1, we call this prior process the leave-one-out (LOO) prior.

B Some Useful Lemmas

We present the variational representation of mutual information below.
Lemma B.1 (Polyanskiy and Wu [42, Corollary 3.1.]). For two random variables X and Y , we have

I(X;Y ) = inf
P

EX

[
DKL(QY |X ||P )

]
,

where the infimum is achieved at P = QY .

The following lemma is inspired by the classic Log sum inequality in Cover and Thomas [12,
Theorem 2.7.1].
Lemma B.2. For non-negative numbers {ai}ni=1 and {bi}ni=1,

n∑
i=1

bi log
ai
bi

≤

(
n∑

i=1

bi

)
log

∑n
i=1 ai∑n
i=1 bi

,

with equality if and only if ai

bi
= const.

Proof. Since log is a concave function, according to Jensen’s inequality, we have
n∑

i=1

αi log(xi) ≤ log(

n∑
i=1

αixi),

where
∑n

i=1 αi = 1.

Let αi =
bi∑n
i=1 bi

and xi =
ai

bi
, and plugging them into the inequality above, we have

n∑
i=1

bi∑n
i=1 bi

log(
ai
bi
) ≤ log

(
n∑

i=1

bi∑n
i=1 bi

ai
bi

)
= log

(∑n
i=1 ai∑n
i=1 bi

)
,

which implies
n∑

i=1

bi log(
ai
bi
) ≤

(
n∑

i=1

bi

)
log

(∑n
i=1 ai∑n
i=1 bi

)
.

This completes the proof.

Below is the KL divergence between two Gaussian distributions p = N (µp,Σp) and q = N (µq,Σq),
where µp, µq ∈ Rd and Σp,Σq ∈ Rd×d.

DKL(p||q) =
1

2

[
log

det(Σq)

det(Σp)
− d+ (µp − µq)

TΣ−1
q (µp − µq) + tr

{
Σ−1

q Σp

}]
. (6)
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C Omitted Proofs and Additional Results in Section 3

C.1 Lemma C.1: Unrolling Mutual Information

We first unroll the terminal parameters’ mutual information I(WT ;S) to the full trajectories’ mutual
information via the lemma below.

Lemma C.1. I(WT ;S) ≤
∑T

t=1 I(−Gt + C
1/2
t Nt;S|Wt−1).

This lemma can be proved by recurrently applying the data processing inequality (DPI) and chain
rule of the mutual information [42].

Proof. Recall the SDE approximation of SGD, i.e., Eq (5), we then have,

I(WT ;S) = I(WT−1 − ηGT + ηC
1/2
T NT ;S)

≤ I(WT−1,−ηGT + ηC
1/2
T NT ;S) (7)

= I(WT−1;S) + I(−ηGT + ηC
1/2
T NT ;S|WT−1) (8)

...

≤
T∑

t=1

I(−ηGt + ηC
1/2
t Nt;S|Wt−1)

=

T∑
t=1

I(−Gt + C
1/2
t Nt;S|Wt−1).

where Eq. (7) is by the data processing inequality (e.g., Z − (X,Y ) − (X + Y ) form a markov
chain then I(X + Y, Z) ≤ I(X,Y ;Z)), Eq. (8) is by the chain rule of the mutual information, and
learning rate η is dropped since mutual information is scale-invariant.

C.2 Proof of Lemma 3.1

Proof. For any t ∈ [T ], similar to the proof of Lemma B.1 in [42]:

I(−Gt + C
1/2
t Nt;S|Wt−1 = wt−1)

= Ewt−1

S

[
DKL(QĜt|wt−1,S

||QĜt|wt−1
)
]

= Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)−DKL(QĜt|wt−1

||PĜt|wt−1
)
]

≤ Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]
, (9)

where Eq. (9) is due to the fact that KL divergence is non-negative, and the equality holds when
PĜt|wt−1

= QĜt|wt−1
for Wt−1 = wt−1.

Thus, we conclude that

I(Ĝt;S|Wt−1 = wt−1) = inf
PĜt|wt−1

Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]
.

Taking expectation over Wt−1 for both side above, we have

I(Ĝt;S|Wt−1) = EWt−1

[
inf

PĜt|Wt−1

EWt−1

S

[
DKL(QĜt|Wt−1,S

||PĜt|Wt−1
)
]]

.

This completes the proof.
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C.3 Proof of Theorem 3.1

Proof. Recall Lemma 3.1, we have

I(−Gt + C
1/2
t Nt;S|Wt−1 = wt−1)

≤ inf
c̃t

Ewt−1

S

[
DKL(QĜt|wt−1,S

||PĜt|wt−1
)
]

= inf
c̃t

Ewt−1

S

[
1

2

[
log

det(c̃tΣ
µ
t )

det(Ct)
− d+

1

c̃t
((Gt − g̃t)

T (Σµ
t )

−1
(Gt − g̃t)) +

1

c̃t
tr
{
(Σµ

t )
−1

Ct

}]]
=
1

2
inf
c̃t

1

c̃t
tr
{
(Σµ

t )
−1 Ewt−1

S

[
(Gt − g̃t)((Gt − g̃t)

T
]}

+
1

c̃t
tr
{
(Σµ

t )
−1 Ewt−1

S [Ct]
}
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d

=
1

2
inf
c̃t

1

c̃tn
tr
{
(Σµ

t )
−1

Σµ
t

}
+

n− b

c̃tbn
tr
{
(Σµ

t )
−1

Σµ
t

}
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d

(10)

=
1

2
inf
c̃t

d

c̃tn
+

(n− b)d

c̃tbn
+ tr

{
log Σµ

t − Ewt−1

S [logCt]
}
+ d log c̃t − d

=
1

2
inf
c̃t

d

bc̃t
+ d log c̃t + tr

{
log Σµ

t − Ewt−1

S [logCt]
}
− d

=
d

2
log

1

b
+

1

2
tr
{
log Σµ

t − Ewt−1

S [logCt]
}
,

where the last equality hold when c̃∗t = 1/b and Eq. (10) is by

Ewt−1

S

[
(Gt − g̃t)((Gt − g̃t)

T
]
=

1

n
Σµ

t , and

Ewt−1

S [Ct] =
n− b

b(n− 1)
Ewt−1

S [Σt] =
n− b

b(n− 1)

n− 1

n
Σµ

t =
n− b

bn
Σµ

t .

This completes the proof.

D Omitted Proofs, Additional Results and Discussions in Section 4

In fact, this section provides a PAC-Bayes type analysis. The connection between information-
theoretic bounds and PAC-Bays bounds have already been discussed in many previous works [6, 19, 2].
Roughly speaking, the most significant component of a PAC-Bayes bound is the KL divergence
between the posterior distribution of a randomized algorithm output and a prior distribution, i.e.
DKL(QWT |S ||PN ) for some prior PN . In essence, information-theoretic bounds can be view as
having the same spirit. For concreteness, in Lemma 2.1, I(WT ;S) = ES [DKL(QWT |S ||PWT

)], in
which case the marginal PWT

is used as a prior of the algorithm output. Furthermore, by using Lemma
B.1, we have I(WT ;S) ≤ infPN

ES [DKL(QWT |S ||PN )]. Hence, Lemma 2.1 can be regarded as a
PAC-Bayes bound with the optimal prior. In addition, the PAC-Bayes framework is usually used to
provide a high-probability bound, while information-theoretic analysis is applied to bounding the
expected generalization error. In this sense, information-theoretic framework is closer to another
concept called MAC-Bayes [13].

D.1 Proof of Lemma 4.1

Proof. When w is close to any local minimum w∗, we can use a second-order Taylor expansion to
approximate the value of the loss at w,

Ls(w) ≈ Ls(w
∗) +

1

2
(w − w∗)THw∗(w − w∗). (11)

Then, when wt → w∗, we have Gt = ∇Ls(wt) = Hw∗ (wt − w∗). Recall Eq. (2), then
wt =wt−1 − ηGt + ηVt

=wt−1 − ηHw∗ (wt−1 − w∗) + ηVt.
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Let W ′
t ≜ Wt − w∗. Thus, as T → ∞,

EW ′
T

[
W ′

TW
′
T
T
]

=EW ′
T−1,VT

[(
W ′

T−1 − ηHw∗W ′
T−1 + ηVt

) (
W ′

T−1 − ηHw∗W ′
T−1 + ηVt

)T]
=EW ′

T−1

[
W ′

T−1W
′T
T−1 − ηHw∗W ′

T−1W
′T
T−1 − ηW ′

T−1W
′T
T−1Hw∗ + η2Hw∗W ′

T−1W
′T
T−1Hw∗

]
+ η2EVT

[
VTVT

T
]
,

where the last equation is by EwT−1

VT
[VT ] = 0.

Recall that EVT

[
VTVT

T
]
= CT and notice that EW ′

T

[
W ′

TW
′
T
T
]
= EW ′

T−1

[
W ′

T−1W
′
T−1

T
]
=

Λw∗ when T → ∞ (i.e. ergodicity), we have

Λw∗Hw∗ +Hw∗Λw∗ − ηHw∗Λw∗Hw∗ = ηCT .

Furthermore, if Hw∗ and Λw∗ commute, namely Λw∗Hw∗ = Hw∗Λw∗ , we have

[Hw∗ (2Id − ηHw∗)] Λw∗ = ηCT ,

which will give use Λw∗ = η [Hw∗ (2Id − ηHw∗)]
−1

CT .

This completes the proof.

D.2 Theorem D.1: A General Bound

The following bound can be easily proved by using Eq. 6.

Theorem D.1. Under the same conditions in Lemma 2.1 and Lemma 4.1, then for any PWT
=

N
(
w̃, Λ̃

)
, where w̃ and Λ̃ are independent of S, we have

Eµ(A) ≤

√√√√√R2

2n
inf
w̃,Λ̃

ES,W∗
S

log det
(
Λ̃
)

det
(
ΛW∗

S

) + tr
{
Λ̃−1ΛW∗

S
− Id

}
+ d2M

(
W ∗

S , w̃; Λ̃
),

where dM (x, y; Σ) ≜
√
(x− y)TΣ−1(x− y) is the Mahalanobis distance.

D.3 Proof of Theorem 4.1

Proof. Let PWT
= N

(
w∗

µ,Λw∗
µ

)
, then

ES,W∗
S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+
(
W ∗

S − w∗
µ

)T
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

)
=ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+ tr

{
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T}
=ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

)
+ tr

{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Id + Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T ]}
.

(12)

Denote Σ̃µ ≜ ES,W∗
S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T ]
= EW∗

S

[
W ∗

SW
∗
S
T
]
− w∗

µw
∗
µ
T .
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Notice that

ES,W∗
S

[
ΛW∗

S

]
=ES,W∗

S ,WT

[
(WT −W ∗

S) (WT −W ∗
S)

T
]

=EWT

[
WTWT

T
]
− EW∗

S

[
W ∗

SW
∗
S
T
]

=EWT

[
WTWT

T
]
− w∗

µw
∗
µ
T −

(
EW∗

S

[
W ∗

SW
∗
S
T
]
− w∗

µw
∗
µ
T
)

=Λw∗
µ
− Σ̃µ.

Therefore,

tr
{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Id + Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T ]}
=tr

{
Λ−1
w∗

µ
ES,W∗

S

[
ΛW∗

S

]
− Λ−1

w∗
µ
Λw∗

µ
+ Λ−1

w∗
µ
EW∗

S

[(
W ∗

S − w∗
µ

) (
W ∗

S − w∗
µ

)T ]}
=tr

{
Λ−1
w∗

µ

(
ES,W∗

S

[
ΛW∗

S

]
− Λw∗

µ
+ Σ̃µ

)}
=0.

Plugging this into Eq. (12), we have

ES,W∗
S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

) + tr
{
Λ−1
w∗

µ
ΛW∗

S
− Id

}
+
(
W ∗

S − w∗
µ

)T
Λ−1
w∗

µ

(
W ∗

S − w∗
µ

)
= ES,W∗

S

log det
(
Λw∗

µ

)
det
(
ΛW∗

S

)
 = ES,W∗

S

[
tr
{
log
(
Λ−1
W∗

S
Λw∗

µ

)}]
.

Finally, applying Theorem D.1 will conclude the proof.

D.4 Proof of Corollary 4.1

Proof. The proof is straightforward by plugging Λw∗ =
[
Hw∗

(
2
η Id

)]−1

CT in Theorem 4.1.

D.5 Proof of Corollary 4.2

Proof. By Lemma B.2, it’s easy to obtain the following bound according to Theorem 4.1.

Eµ(A) ≤

√√√√R2d

2n
log

(
E
[
d2M
(
W ∗

S , w
∗
µ;E

[
ΛW∗

S

])]
d

+ 1

)
+ E

[
tr
{
log
(
Λ−1
W∗

S
E
[
ΛW∗

S

])}]
.

Then, plugging ΛW∗
S
= η

2b Id will conclude the proof.

D.6 Corollary D.1: Distance to Initialization

Corollary D.1. Under (i-iii) in Lemma 4.1, then Eµ(A) ≤
√

dR2

n log
(

2b
ηdE||W

∗
S −W0||2 + 1

)
.

In this case, the corresponding bound suggests that generalization performance can be characterized
by the “distance from initialization”. Nagarajan and Kolter [32] also derived a “distance from
initialization” based generalization bound by using Rademacher complexity, and Hu et al. [21] use
“distance from initialization” as a regularizer to improve the generalization performance on noisy
data.
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Proof. Notice that I(WT ;S) ≤ ESDKL(QWT |S ||PWT
) holds for any σ > 0, then for a given w̃, we

have

I(WT ;S) = inf
PWT

ES

[
DKL(QWT |S ||PWT

)
]

≤ inf
σ

ES

[
DKL(PW∗

S+
√

η
2bN,W∗

S |S ||Pw̃+σN )
]

(13)

= inf
σ

ES,W∗
S

[
DKL(PW∗

S+
√

η
2bN,|S,W∗

S
||Pw̃+σN )

]
= inf

σ

1

2
ES,W∗

S

[
1

σ2
(W ∗

S − w̃)T (W ∗
S − w̃) + log

σ2d

(η/2b)d
+ tr{ η

2bσ2
Id} − d

]
=

1

2
inf
σ

1

σ2
ES,W∗

S

[
||W ∗

S − w̃||2 + ηd

2b

]
+ d log σ2 + d log

2b

η
− d

=
1

2
d log

(
2b

ηd
ES,W∗

S

[
||W ∗

S − w̃||2
]
+ 1

)
, (14)

where Eq. (13) is by the chain rule of KL divergence, and the optimal σ∗ =√
ES,W∗

S

[
||W ∗

S − w̃||2/d+ η
2b

]
. Let w̃ = W0 will conclude the proof.

Additionally, Corollary D.1 can be used to recover a trajectory-based bound.

Corollary D.2. Let WT = W ∗
s , w̃ = 0 and W.L.O.G, assume W0 = 0, then

Eµ(A) ≤

√√√√dR2

n
log

(
4bTη

d

T∑
t=1

E [||Gt||2 + tr{Ct}] + 1

)
,

Proof. When W0 = 0, we notice that

WT =

T∑
t=1

−ηGt + ηNCt
,

where NCt
= C

1/2
t Nt.

Thus,

||WT ||2 = ||
T∑

t=1

−ηGt + ηNCt
||2 ≤ 2Tη2

T∑
t=1

||Gt||2 + ||NCt
||2

Let w̃ = 0, recall the bound in Corollary D.1 and plugging the inequality above, we have

Eµ(A) ≤

√
R2

n
d log

(
2b

ηd
ES,WT

[||WT − w̃||2] + 1

)

≤

√√√√dR2

n
log

(
4bTη/dES,W0:T−1,NC0:t−1

[
T∑

t=1

||Gt||2 + ||NCt
||2
]
+ 1

)

=

√√√√dR2

n
log

(
4bTη

d

T∑
t=1

ES,Wt−1 [||Gt||2 + tr{Ct}] + 1

)

This concludes the proof.
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D.7 Proof of Theorem E.1

Proof. Let PWT |SJ=sj = N (W ∗
sj ,

η
2b Id), then

DKL(QWT |S=s||PWT |SJ=sj ) = DKL(QW∗
s +

√
η
2bN |S=s

||P
W∗

sj
+
√

η
2bN |SJ=sj

)

≤ DKL(QW∗
s +

√
η
2bN,W∗

s |S=s
||P

W∗
sj

+
√

η
2bN,W∗

sj
|SJ=sj

) (15)

= EW∗
s ,W∗

sj

[
DKL(QW∗

s +
√

η
2bN |W∗

s ,S=s
||P

W∗
sj

+
√

η
2bN |W∗

sj
,SJ=sj

)

]
= EW∗

s ,W∗
sj

[
b

η
||W ∗

s −W ∗
sj ||

2

]
, (16)

where Eq. (15) is by the chain rule of KL divergence. Plugging the Eq. (16) into Lemma A.2 will
obtain the final result.

E Additional Result: Data-Dependent Prior

In the sequel, we use the data-dependent prior bound, namely, Lemma A.2, to derive new results.

Let PWT |SJ=sj = N (W ∗
sj ,Λ(W

∗
sj )) where W ∗

sj is the local minimum found by the LOO training.

Theorem E.1. Under the same conditions in Lemma A.2 and (i-iii) in Lemma 4.1, assuming Λ(W ∗
sj )

is close to Λ(W ∗
s ) for a given s, then Eµ(A) ≤ ES,J

√
M2b
2η ES,J

W∗
S ,W∗

SJ

||W ∗
S −W ∗

SJ
||2.

This bound implies a strong connection between generalization and the algorithmic stability exhibited
by SGD. Specifically, if the hypothesis output does not change much (in the squared L2 distance sense)
upon the removal of a single training instance, the algorithm is likely to generalize effectively. In fact,
ES,J
W∗

S ,W∗
SJ

||W ∗
S −W ∗

SJ
||2 can be regarded as an average version of squared argument stability [29].

Moreover, stability-based bounds often demonstrate a fast decay rate in the convex learning cases
[17, 7]. It is worth noting that if argument stability achieves the fast rate, e.g., sups,j ||w∗

s − w∗
sj || ≤

O(1/n), then Theorem E.1 can also achieve the same rate. In addition, note that the stability-based
bound usually contains a Lipshitz constant, while the bound in Theorem E.1 discards such undesired
constant.

Ideally, to estimate the distance of ||w∗
s − w∗

sj ||
2, one can utilize the influence function [16, 11, 23],

namely w∗
sj − w∗

s ≈ 1
nH

−1
W∗

s
∇ℓ(w∗

s , zi), where i is the instance index that is not selected in j.
However, for deep neural network training, the approximation made by influence function is often
erroneous [8]. While this presents a challenge, it motivates further exploration and refinement,
seeking to enhance the practical application of Theorem E.1 in the context of deep learning.

F Additional Result: Inverse Population FIM as both Posterior and Prior
Covariance

Inspired by some previous works of [1, 18, 54], we can also select the inverse population Fisher
information matrix Fµ

w∗ = EZ

[
∇ℓ(w∗, Z)∇ℓ(w∗, Z)T

]
as the posterior covariance. Then, the

following theorem is obtained.
Theorem F.1. Under the same conditions in Theorem E.1, and assume the distribution PW∗

SJ
|SJ

is
invariant of J , then

Eµ(A) ≤ M

2n
ES

[√
ES
W∗

S

[
tr{H−1

W∗
S
Fµ
W∗

S
}
]]

.

Remark F.1. Notice that Fµ
W∗

S
≈ Hµ

W∗
S

≈ Σµ(W ∗
S) near minima [40, Chapter 8], then

tr{H−1
W∗

S
Σµ(W ∗

S)} is very close to the Takeuchi Information Criterion [50]. In addition, our bound
in Theorem F.1 is similar to Singh et al. [48, Theorem 3.] with the same convergence rate, although
strictly speaking, their result is not a generalization bound. Moreover, as also pointed out in [48],
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here H−1
W∗

S
is evaluated on the training sample, unlike other works that evaluates the inverse Hessian

on the testing sample (e.g., Thomas et al. [51]).

The invariance assumption is also used in Wang et al. [52]. In practice, n is usually very large, when
m = n− 1, this assumption indicates that replacing one instance in sj will not make PW∗

sj
|sj be too

different.

G Proof of Theorem F.1

Proof. We now use (Fµ
W∗

S
)−1 as both the posterior and prior covariance (again, we assume Fµ

W∗
S
≈

Fµ
W∗

Sj

for any j), then

Eµ(A) ≤ES

[√
M2

4
ES
J,W∗

S ,W∗
SJ

[(
W ∗

S −W ∗
SJ

)
Fµ
W∗

S

(
W ∗

S −W ∗
SJ

)T ]]

=
M

2n
ES

[√
ES
W∗

S ,W∗
Sj

[
tr
{
Fµ
W∗

S
H−1

W∗
S
H−1

W∗
S
EJ [∇ℓ(W ∗

S , Zi)∇ℓ(W ∗
S , Zi)T ]

}]]
=
M

2n
ES

[√
ES
W∗

S

[
tr
{
Fµ
W∗

S
H−1

W∗
S

}]]
,

which completes the proof.
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Figure 2: Gradient-related quantities of SGD or its discrete SDE approximation. In (d), since per-
sample gradient is ill-defined when BatchNormalization is used, we do not track tr
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t
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.
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Figure 3: Hessian-related quantities of SGD or its discrete SDE approximation.

H Empirical Study

In this section, we present some empirical results including tracking training dynamics of SGD and
SDE, along with the estimation of several obtained generalization bounds.

SGD and SDE Training Dynamics We implement the SDE training by following the same
algorithm given in [56, Algorithm 1]. Our experiments involved training a VGG-11 architecture
without BatchNormalization on a subset of SVHN (containing 25k training images) and CIFAR10.
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Figure 4: (a-b) The dynamics of η/2− λ1. Note that learning rate decays by 0.1 at the 40, 000th and
the 60, 000th iteration. (c-d) The distance of current model parameters from its initialization.
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Figure 5: (a-b) The dynamics of η/2− λ1. Note that learning rate decays by 0.1 at the 40, 000th and
the 60, 000th iteration. (c-d) The distance of current model parameters from its initialization.

Additionally, we trained a ResNet-18 on both CIFAR10 and CIFAR100. Data augmentation is only
used in the experiments related to CIFAR100. We ran each experiment for ten different random seed,
maintaining a fixed initialization of the model parameters. Further details about the experimental
setup can be found in the Appendix. The results are depicted in Figure 1. As mentioned earlier, SDE
exhibits a performance dynamics akin to that of SGD, reinforcing the similarities in their training
behaviors.

Evolution of Key Quantities for SGD and SDE We show ||Gt||2 and tr
{
log
(
Σ−1

t Σµ

)}
in

Figure 2. Recognizing the computational challenges associated with computing tr
{
log
(
Σ−1

t Σµ

)}
,

we opted to draw estimates based on 100 training and 100 testing samples. Notably, both SGD
and SDE exhibit similar behaviors in these gradient-based metrics. It is noteworthy that despite
the absence of the learning rate in the trajectories-based bounds, we observed that modifications to
the learning rate at the 40, 000th and 60, 000th steps had discernible effects on these gradient-based
quantities. Additionally, in Figure 3, we examine the trace of the Hessian and its largest eigenvalue
during training, leveraging the PyHessian library [62]. Note that we still use only 100 training data to
estimate the Hession for efficiency. Notice that the Hessian-related quantities of SGD and SDE are
nearly perfectly matched in the terminal state of training. Furthermore, Figures 4c-4d illustrate the
"distance to initialization," revealing a consistent trend shared by both SGD and SDE.
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Figure 6: Estimated trajectories-based bound and terminal-state based bound, with R excluded.
Zoomed-in figures of generalization error are given in Figure 7 in Appendix.

Bound Comparison We vary the size of the training sample and empirically estimate several
of our bounds in Figure 6, with the subgaussian variance proxy R excluded for simplicity. Thus,
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the estimated values in Figure 6 don’t accurately represent the true order of the bounds. Despite
the general unbounded nature of cross-entropy loss, common training strategies, such as proper
weight initialization, training techniques, and appropriate learning rate selection, ensure that the
cross-entropy loss remains bounded in practice. Therefore, it is reasonable to assume subgaussian
behavior of the cross-entropy loss under SGD training. In Figure 6a-6b, we compare our Theorem 3.1
with Wang and Mao [55, Theorem 2]. Since both bounds incorporate the same R, the results in
Figures6a to 6b show that our Theorem 3.1 outperforms Wang and Mao [55, Theorem2]. This aligns
with expectations, considering that the isotropic Gaussian used in the auxiliary weight process of
Wang and Mao [55, Theorem2] is suboptimal. Moreover, Figures 6c to 6d hint that norm-based
bounds Corollary 4.2 and Corollary D.1) exhibit growth with n, which are also observed in [33].
In contrast, Corollary 4.1 effectively captures the trend of generalization error, emphasizing the
significance of the geometric properties of local minima. Additionally, while trajectories-based
bounds may appear tighter, terminal-state-based bounds seem to have a faster decay rate.

I Experiment Details and Additional Results

The implementation in this paper is on PyTorch [39], and all the experiments are carried out on
NVIDIA Tesla V100 GPUs (32 GB). Most experiment settings follow [56], and the code is also based
their implementation, which is available at: https://github.com/uuujf/MultiNoise.

I.1 Hyperparameters

For CIFAR 10, the initial learning rates used for VGG-11 and ResNet-18 are 0.01 and 0.1, respectively.
For SVHN, the initial learning rate is 0.05. For CIFAR100, the initial learning rate is 0.1. The learning
rate is then decayed by 0.1 at iteration 40, 000 and 60, 000. If not stated otherwise, the batch size of
SGD is 100.

I.2 Additional Results
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Figure 7: Zoomed-in of generalization error.
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Figure 8: Estimated trajectories-based bound and terminal-state based bound, with R excluded.
Models trained on CIFAR 10.
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