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ABSTRACT

We present a novel approach to Traffic Signal Control (TSC) in a multi-agent environment
by modeling communication among agents as a sequence problem, enabling intersections
within road networks to communicate with one another. Taking inspiration from point
cloud processing and graph neural networks, we make our architecture capable of handling
variable road network topologies, including differing numbers of intersections and intersec-
tion types, and demonstrate this by successfully training on real & randomly generated road
networks and traffic demands. Furthermore, we demonstrate that even utilizing minimal
state information can achieve competitive performance.

1 INTRODUCTION

When traffic lights are controlled effectively, the industry, the climate and the individual profits. Traffic
congestion causes 3.9B Euro in economic damages due to lost time each year in Germany alone (Inrix| [2022).
In stop-and-go traffic, emissions are 29 times higher than in free flowing traffic (Greenlight, [2024).

Due to these impacts, Traffic Signal Control (TSC) has become a crucial field of research. It involves using
traffic lights at intersections to manage traffic flow with the objective to reduce congestion and enhance safety.
However, these goals are not easily achieved due to the problem’s dynamic and unpredictable nature. Traffic
flow varies significantly throughout the day, influenced by factors such as rush hours, weather, accidents,
events, etc. that require real-time adaptive solutions. Additionally, traffic signals can not be managed as
stand-alone agents: intersections serve as nodes in a larger network, and traffic at one intersection will affect
the flow at others. Coordinating signals across multiple intersections is thus necessary. Different stakeholders
in TSC also have varying objectives that must be balanced. For instance, drivers want minimal waiting time,
pedestrians and cyclists prioritize safety, and city planners aim to reduce overall emissions and costs incurred
due to delays. Existing traffic infrastructures most commonly employ the usage of deterministic models such
as round-robin scheduling or predetermined phase periods which do not account for such objectives (Tomar
et al.|2022).

The hardware that a TSC scheme is deployed to also poses a barrier to the wide-spread implementation
of more advanced TSC algorithms. In German cities, a fair percentage of the traffic controllers found
at intersections cannot be dynamically controlled. In TSC algorithm implementation, these must also be
accounted for, e.g. through a one-time change of signal plans which best support the dynamically controlled
traffic lights. Faulty traffic sensor data or low sensor coverage further limit applicability, and historical data
from sensors may be hard to acquire on a large scale. Thus, an approach that does not require large amounts
of real data for training is beneficial.

In this work, we use the SUMO simulation environment (Lopez et al.,|2018a)) to simulate generated road
networks. Our architecture for TSC, covered in takes lane-level observations such as number of
vehicles on the lane and current traffic signal status as input. It then uses a Transformer to allow lanes to
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attend to one other and projects their observations into a hidden representation. These are pooled and fed into
a fixed-sized MLP, forcing the model to compress the information into a size which is the same for any road
network, independent of the number of lanes. This allows our model to be capable of handling changing road
networks, as is often the case due to road closures, construction, accidents etc.

Our aim with this work was to address the problems outlined above. We focused on employing the most
recent advances in the existing literature, and tackle the problem of TSC in a novel manner. The following are
our main contributions:

* We built an automated pipeline of dataset generation. This is a significant contribution, as we have
addressed the need of large amounts of data to train the transformer model effectively without
reliance on limited real-world data. Our pipeline is not only able to produce varying complexity road
networks (from a simple ring network to a large scale city network), but it can also produce complex
and dynamic traffic flows.

* We treat inter-agent’s spatial dependencies as a 2D sequence problem and utilize the powerful
transformer architecture to model this sequence. This approach is our primary novelty as it differs
from existing literature which use transformer models to encode the state history |Chen et al.| (2021}

* Due to our novel modeling approach, our pipeline is capable of handling variable input sizes - both in
the number of intersections in a road network and the intersection sizes. This alleviates the problem
of fixed input sizes prevalent in other model architectures. Our model can thus be easily transferred
and deployed regardless of the training environment setup.

* Finally, with extensive experiments, we show that usage of minimal state information — available
using tools such as Google Maps — is sufficient to achieve competitive performance. This contribution
serves as an important breakthrough, suggesting that reliance on expensive sensor technology might
not be necessary.

1.1 RELATED WORKS

shows an overview of important RL aspects of the architectures covered in this section.

A well defined evaluation framework can be found in the RESCO benchmark (Ault & Sharon, 2021)), which
evaluated IDQN, IPPO, MPLight and FMA2C on simulations of varying excerpts of two German cities,
Cologne and Ingolstadt. Short summaries of these four methods can be found in the RESCO paper, and one
key difference to ours is the network independence we built into the architecture. Additionally, only FMA2C
uses a multi-agent reinforcement learning (MARL) approach, while the agents of the other three architectures
are independent. MARL is a scalable approach to controlling larger-sized network, while independent agents
seem to reach a limit in effectiveness (Shi et al., [2023)).

Both IG-RL and MuJAM from Devailly et al.| (2022} 2024) are also network-independent, with IG-RL using
a deep Q-learning approach similar to IDQN, IPPO and MPLight with vehicles as the nodes of the graph (the
state), while MuJAM uses a model-based RL approach of applying a world model for planning to the TSC
problem domain.

RGLight (Shi et al.||2023)) uses a policy ensemble of graph convolutional networks (GCNs), allowing for a
zero-shot transfer to other road networks, as do IG-RL and MuJAM.

A recently published preprint, CityLight (Zeng et al.| [2024), comes closest to our architecture, using Multi-
Agent PPO as the RL foundation and a network independent representation of observations, which however
are at the intersection level.
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Paper Method Actions  State Reward Benchmarks Eval.
IG-RL De+ | Deep Q-Learning; Binary Demand at Neg. Small syn- Change
vailly et al.|| vehicles, lanes, traf- hold or the vehicle sum of thetic & large in de-
(2022) fic lights as nodes; switch (speed, po- queue scale Manhat- lay
zero-shot transfer phase sition on lengths tan (ca. 4k
to large network lane) and TSCs)

lane  level

(#vehicles,

avg. speed),

connectivity
MuJAM Model-based RL, Select Graph (ve- Neg. Small  syn- Change
Devailly planing by model- phase  hicle posi- sum of thetic & large in de-

et al. | ing the dynamics tions/speeds queue  scale Manhat- lay
(2024) of the environment & controller lengths tan (ca. 4k
states) TSCs)
RGLight Distributional RL, Binary Status of Neg. Synthetic Travel
Shi et all| GCN as policy holdor controller, sum of from IG-RL time,
(2023)) network. Improve- switch connectivity, queue & Manhattan queue
ment to zero-shot phase  vehicles and lengths (75 TSCs, 550 length,
transfer  through lanes intersections), delay
policy ensemble Luxembourg
(22 TSCs, 482
intersections)
CityLight | Multi-agent PPO, Select  Vehicle Avg. Large scale through-
Zeng et al|| neighborhood rep- phase  queues for queue  Chinese cities put,
(2024) resentation fusion each phase, lengths (97 to 13952 avg.
connectivity  in TSCs) travel
neigh- time
bour-
hood

Table 1: Related works

2 METHODOLOGY

2.1 PROBLEM FORMULATION

We model the TSC optimization in a multi-agent environment as an MDP involving agents i € {1,..., N} —
the intersections and associated traffic signals — where agents can take actions in their respective action space
a' € A. The joint action space is denoted A = A* x --- x AN, and the agents’ actions lead to a global
reward r € R. The global state s € S of the MDP is assumed to be unknown, instead each agent ¢ has access
to a subset of the global state s° € S¢ C S, mainly consisting of observations in its proximity, and

N
St C Uskgs. (1)

k=1

The shared policy 7, (a’|s?), determining each agent’s action, and the value function V[ (s) both depend on
estimates of the state, which is why robust state estimates are crucial for finding optimal policies and value
functions. This motivates the generation of an enriched agent’s state 5* € St O S’ by letting agents exchange
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state information over a communication channel
fo:STx - xSV 58 x ... xSV )

which we parameterize by two different neural network architectures in this work. We optimize for 17*(3)
and 7*(a"|$") by sampling state-action traces 7 and jointly maximizing the expected discounted cumulative
reward for optimal parameters ©* = {6*, ¢*, ¢*} through Proximal Policy Optimization (PPO)|Schulman
et al.[(2017).

2.1.1 ACTIONS & REWARDS

Actions a’: The action for our agents is to change their traffic light phase, which is selected from the set of
all possible phases for the intersection, i.e. A (red/ yellow/ green for traffic flow control). Since
the cardinality |.A¢| is not the same for all 4, we pad the action space of all agents and in case of an
invalid phase assignment, the agent remains in the current phase. In order to enhance the learning
of the admissible actions, we additionally condition the policy on the action space. We also define
minimum phase times ;”,fgse and maximum phase times ¢;37%  to prohibit the agent from getting
stuck in local optima.

a' ~ (|8 thhase: tphaser A') 3)

Reward r: We use difference in vehicle waiting time as the reward function, a commonly used reward
function in the literature and the default reward function in our framework. |Alegre|(2019); Reza
et al.

N
r=> Wi, -Ww; (4)
=1

2.1.2 VARYING STATE INFORMATION

We differentiate between three different sources of state observations, sorted by cost of implementation in
a real world scenario: 1. traffic information that the agent has on itself, 2. traffic information that can be
gathered from cloud providers, 3. information that requires expensive sensory infrastructure. The first source
of information applies agent-wide, while sources 2 & 3 are available on lane-level, which is why we denote
agent 7’s lane count as L°. In our pipeline, agent i can be enabled to have access to three different levels of
observing s’, progressively incorporating the sources of state observation from above.

No Traffic Observation In this scenario, agent ¢ only receives information related to its own traffic lights.
The specific state vector components are s, = {number of traffic light phases, lane position,
current phase, min. green signal time, remaining time in current green phase, timer, lane angles, lane
max speed, action space, turning options}. Features like angles, position, and turningoptions
are provided to learn the spatial network setup. The feature timer counts repeatedly from 1 to 100

to help the agents calibrate their behavior, like green waves engineered by city planners.

Limited Traffic Observation Here, state information is expanded to include high-level traffic metrics avail-
able on platforms like Google Maps, TomTom, Here, or Inrix, without installing local sensors. This
setup allows the model to make more informed decisions by understanding the general flow of traffic.

The information available to agent i is sj;,,, = {s},op {10"- -, p5E" 1Y, where pi5F denotes the
average speed on agent ¢’s kth lane.

Full Observation This scenario includes detailed metrics for a thorough representation as enabled by traffic
sensors: %, = {8 {7 Y gL g )Y, where pt* and ¢bF are the traffic
densities and queue lengths on agent i’s k*" lane.
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2.2 MODEL DETAILS
2.2.1 PERMUTATION-INVARIANT LANE ENCODING

Let us now introduce the first step of our pipeline: the lane encoding mechanism. Each agent a’ has access
to information from its incoming and outgoing lanes, denoted as {I*',...,1»~"}. The value of L’ varies
based on the intersection type, and assigning a canonical order to these lanes is challenging due to the diverse
shapes of intersections in a road network. We, therefore, seek to find a canonical encoding of the lane-level
information through permutation-invariance and take inspiration from point cloud processing to also minimize
the influence of the lance count L. We concatenate lane-level information individually for each lane and feed
it through a PointNet encoder (2017), which consists of a Multi-Layer Perceptron (MLP) projecting
lane features to a high-dimensional space and a permutation-invariant reduction by max-pooling over an
agent’s individual lanes. By projection to a high-dimensional space, the information content can be well
retained beyond the max-pooling operation as Qi et al. demonstrated in their seminal work (2017).
The weights of the MLP are shared across all agents and an in-depth visualization is shown in Fig. [I]
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g ‘ﬁr — )
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<
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W
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o
I :
()]
c
T
incoming lanes - lane level observation o latent lane encoding
v
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Agent Qr fra]
lane1 position maxspeed  sourcelD  angle .. targetld lane 1
N ‘g' —) U —)
Hr 2
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Figure 1: Permutation-Invariant Lane Encoding: The PointNet (2017)-inspired lane-encoding
concatenates lane-level observations, projects them into a high dimension and creates a permutation-invariant
representation through max-pooling. This enables a canonical representation of lane-level observations for
each agent.

2.2.2 INTER-AGENT COMMUNICATION

As mentioned before, we approach the communication among agents as the primary sequence modeling
problem by allowing agent’s states s to attend to other states s*,k # i. We condition our transformer
network on the spatial relations between agents by overlaying a 2D positional encoding onto s*, based on
normalized longitude and latitude. We can additionally explicitly influence attention values by utilizing an
attention mask M that exponentially decays with distance between individual agents, allowing only attending
to agents in close proximity as

M= (m;;),mi; = ed”'/C,Vdi,j € D,C € const. and D € RV*Y : the distance matrix. (5)

Once an agent’s permutation-invariant representation of its lane observations is obtained, we concatenate it
with agent-level observations (sec.[2.1.2) as s* and feed them to the Transformer to get 5, ...
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2.2.3 MODEL TYPES

Enriched states §° are mapped to action a’ and the value estimate v by dedicated MLPs 74 and Vj,, as

N
a' ~mp (8),Vi€ {1, N}, v=> V(5 (6)
i=0

and we also create an additional baseline model without any inter-agent communication, which only uses an
MLP fy for transformation of s*, before feeding it to the value and policy networks

N
a' ~ 7y (fo(s)), Vi€ {1,... N}, v=> Vy (fols")). (7)
=0

This leads us to two different models for which we show the pipeline in Fig.

* Transformer for attention-based inter-agent communication.
* Simple MLP without any information exchange between agents.
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- position o cument phase —
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Figure 2: Final Network Design and Pipeline: Permutation-invariant lane features are concatenated with
agent-level observations to produce s* and fed through a communication network, after which dedicated
networks derive actions and values from the enriched agent’s state §°.

2.3 TRAINING ENVIRONMENT

As detailed in the section [2.4] we use SUMO (Simulation of Urban MObility) for traffic data simulation,
where an environment F consists of 1. the road network and 2. the traffic demand. Our model can be trained
using either synthetically generated environments or use imported real world road networks (for instance,
the map of Ziirich). This was built into our pipeline to allow for thorough training and testing of our model
performance, and for evaluating its ability to handle a wide range of network complexities.

Our marked contribution here is that we have implemented a methodology to automate the dataset and data
distribution generation process, where we can sample new environments conditioned on hyperparameters,
such as the allowed range for N (number of agents / intersections) and the average traffic density p, i.e.
E ~ Pg(:|N, p). This also allows us to resample the environment during training to avoid over-fitting or to
train on several environments simultaneously. Fig. [3]shows some of our generated road network samples for
low values of IV and a more complicated example is shown in Fig. [6a]

2.4 TooLs & FRAMEWORKS

Simulation Environment As mentioned in section 2.3] we use SUMO |[Lopez et al] (2018b), which has
established itself as the standard for simulating traffic environments.
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Figure 3: Some examples of randomized road networks with relatively low /V-values, that we can generate on
the fly while training our networks.

RL Framework SUMO-RL allows easy access to SUMO’s API and creating multi-agent PettingZoo en-
vironments [Alegre| (2019); [Terry et al.| (2021). These integrate well with Ray’s RLIib, which
implements state-of-the-art model-free algorithms (PPO, DQN) on distributed systems Liang et al.
(2018)). PyTorch is used for the implementation of our custom neural networks |Paszke et al.| (2019).

Training & Evaluation Our training runs are deployed using Docker/Apptainer, and we train on ETHZ’s
Euler cluster. Training progress and results were analysed using WandB.ai Biewald| (2020).
2.5 TRAINING

As mentioned in section we can choose to train either on a single environment or multiple at
the same time and the algorithms for doing so are presented in Alg. [I] and Alg. 2] respectively.

Algorithm 2 Multiple Environment Training

Algorithm 1 Single Environment Training Require: episodes > 0
Require: episodes > 0 Require: B > 0
Re uire: B0 > batch size Require: ng > 2 > simult. environments
%‘ N .PE (E) ) while n < epidodes do
. ) T+ [..]
while . < episodes do . fori e {1,...,ng}do > parallelized
T+ [..] > container for traces F ~ Pu(E
forb € {1,...,B} do °
forbe {1,...,B/ng}do
T + step(E)  step(E)
T <+ append(T) T step d
end for T <+ append(T)
V, 7, fo < PPO(T) end for
end while end for
V.7, fo < PPO(T)
end while

3 EXPERIMENTS

We ran over 300 experiments to thoroughly test our proposed contributions. Among our experiments, we
varied network complexity, traffic flow dynamics, and state information availability to gauge the impact of
each factor. The following sections outline some of our results.

3.1 SIMPLE NETWORK

Here, a simple environment, as shown in Fig. @ is used to train the Transformer model and the Simple MLP
with all 3 different levels of available state information. The traffic flow demand within the network was
kept static. Both models showed rapid convergence during training, and there was no significant difference
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between model performances as seen in Fig. b] (where Simple MLP is denoted as MultiAgentPPO). This
result is hinting that — at least for simple road networks — limited observations are not a big issue.

CO2 Emission Number of waiting vehicles
** No traffic-MultiAgentPPO == Limited obs-MultiAgentPPO ‘e No traffic-MultiAgentPPO == Limited obs-MultiAgentPPO
‘. No traffic-Transformer == Limited obs-Transformer “* No traffic-Transformer == Limited obs-Transformer
— All obs-Transformer = All obs-MultiAgentPPO — All obs-Transformer = All obs-MultiAgentPPO

=

o N ® 0o

20 40 60 80 10¢ 20 40 60 80 10¢

(a) A simple ring network (b) Training graphs for all models on the simple network. Note that multi-agent PPO
with 7 agents. corresponds to the baseline Simple MLP.

Figure 4: Training metrics for a simple network. All models converged with insignificant performance
differences.

To evaluate our model, we compared it to the static traffic control baseline where the traffic signal phases are
changed periodically irrespective of traffic flow information. The simulation ran for an hour, and as seen in
Fig. [5] our model demonstrated improvements across all metrics: a 47% reduction in both fuel consumption
and CO4 emissions, and approximately a 90% decrease in the number of waiting vehicles. These results stem
from the static traffic lights causing traffic jams in the simulation, whereas our model enhances traffic flow by
reducing stop-and-go scenarios, thereby significantly improving these metrics.

Number of Waiting Vehicles © Speed (km/h) Total Fuel Consumption (liters) - Total CO2 Emission (kg)
175 400
150 40 a50 800
300
125 38
250 600
100
36 200
75 150 400
50 34
100 200
2 321 50
o o ]
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (minutes) Time (minutes) Time (minutes) Time (minutes)
—— Static Control —— Al-Based Traffic Optimization

Figure 5: Evaluation of our transformer model against the static baseline.

3.2 COMPLEX NETWORK

In this experiment, a complex network is used to train our transformer model and additionally, the traffic flow
demand within the network was made dynamic i.e. traffic flow varied with time. The model was trained on
all levels of state information. Our model converged, regardless of the level of state information it was given,
as seen in Fig. [6b]

3.3 MULTI-NETWORK

In subsequent experiments, we simultaneously trained our model on several road networks of differing
complexities to develop a unified model capable of adapting and generalizing to diverse environments and
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(a) A complex grid network - - I
with 73 agents. (b) Training graphs show our model converges with all levels of state information.

Figure 6: Training metrics for complex network.

traffic demands. The traffic flow remained dynamic, and our transformer model was trained using all available
levels of state information. Although our model has yet to show convergence with these advanced settings,
the training pipeline is prepared for further experimentation and fine-tuning.

4 DISCUSSION & FUTURE WORK

For the simple network training experiments, as seen in section[3.1] the models showed rapid convergence and
had similar performance during evaluation. Since this training was done with static traffic flows, it gave us our
primary proof of concept for our novel approach to modeling the TSC problem: the transformer architecture
was able to effectively model the communication using its attention mechanism without hindering training
and convergence. Evaluation metrics in the simple network setup when compared to static baseline support
this finding.

Further evaluation was done on more complex road networks. As outlined in section[3.2} our transformer
model converged on all levels of state information, with similar performance on each level. It is an interesting
finding that the performance does not seem to depend at all on the state knowledge, and all observation types
reach the same results as seen in Fig. [6]

A possible avenue for future work, emerging from our multi-network environment experiments, is to develop
a unified model capable of understanding diverse urban landscapes and traffic demands. This model aims
to handle dynamic changes, such as construction sites, seamlessly across various city environments. Our
contributed dataset, training pipeline and model architecture can serve as a strong foundation for this endeavor.

5 CONCLUSION

We were able to successfully engineer a training pipeline with randomized environment generation. Our novel
architecture allows training on arbitrary environments without any modifications. Our approach to modeling
this problem enables our model to handle variable sizes of input networks - essentially removing the need for
training multiple networks based on network complexity.

Our results show the efficacy of using language modeling methods for the task of multi-agent RL for TSC. By
modeling the agent communication as the primary sequence modeling problem, we showed that the agents
were able to effectively communicate globally within the network.
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Moreover, we were able to successfully show that limited state information to the agents can be sufficient
to achieve competitive results. This is significant in reducing reliance on expensive sensor technologies to
support convenient and cheap deployment to real-world road networks to reduce waiting times and CO,
emissions in traffic globally.
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