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ABSTRACT

Multi-class anomaly detection (AD) is one of the most challenges for anomaly
detection. For such a challenging task, popular normalizing flow (NF) based AD
methods may fall into a “homogeneous mapping” issue, where the NF-based AD
models are biased to generate similar latent representations for both normal and ab-
normal features, and thereby lead to a high missing rate of anomalies. In this paper,
we propose a novel Hierarchical Gaussian mixture normalizing flows modeling
method for accomplishing multi-class Anomaly Detection, which we call HGAD.
Our HGAD consists of two key components: inter-class Gaussian mixture prior
modeling and intra-class mixed class centers learning. Compared to the previous
NF-based AD methods, the hierarchical Gaussian mixture modeling approach can
bring stronger representation capability to the latent space of normalizing flows,
so that even complex multi-class distribution can be well represented and learned
in the latent space. In this way, we can avoid mapping different class distribu-
tions into the same single Gaussian prior, thus effectively avoiding or mitigating
the “homogeneous mapping” issue. We further find that the more distinguishable
different class centers, the more conducive to avoiding the bias issue. Thus, we
further propose a mutual information maximization loss for better structuring the
latent feature space. We evaluate our method on four real-world AD benchmarks,
where we can significantly improve the previous NF-based AD methods and also
outperform the SOTA unified AD methods. Code will be available online.

1 INTRODUCTION

Anomaly detection has received increasingly wide attentions and applications in different scenarios,
such as industrial defect detection (Bergmann et al., 2019; Roth et al., 2022), video surveillance
(Acsintoae et al., 2022; Sultani et al., 2018), medical lesion detection (Tian et al., 2021; Zhang et al.,
2021), and road anomaly detection (Vojir et al., 2021; Biase et al., 2021). Considering the highly
scarce anomalies and diverse normal classes, most previous AD studies have mainly devoted to
unsupervised one-class learning, i.e., learning one specific AD model by only utilizing one-class
normal samples and then detecting anomalies in this class. However, such a one-for-one paradigm
would require more human labor, time, and computation costs when training and testing many product
categories, and also underperform when the one normal class has large intra-class diversity.

In this work, considering the unified AD ability, we aim to tackle a more practical task: multi-class
anomaly detection. As shown in Fig. 1b, one unified model is trained with normal samples from
multiple classes, and the objective is to detect anomalies for all these classes without any fine-tuning.
Nonetheless, solving such a task is quite challenging. Currently, there are two reconstruction-
based AD methods for tackling the challenging multi-class AD task, UniAD (You et al., 2022)
and PMAD (Yao et al., 2023b). But the reconstruction-based methods may fall into the “identical
shortcut reconstruction” dilemma (You et al., 2022), where anomalies can also be well reconstructed,
resulting in the failure of anomaly detection. UniAD and PMAD attempt to mask the adjacent or
suspicious anomalies to avoid identical reconstruction. However, due to the diverse scale and shape
of anomalies, the masking mechanism cannot completely avoid the abnormal information leakage
during reconstruction, the risk of identical reconstruction is still existing. To this end, we consider
designing unified AD model from the normal data distribution learning perspective. The advantage is
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that we will no longer face the abnormal information leakage risk in principle, as there is no need to
reconstruct anomalies as normals for detecting anomalies. Specifically, we employ normalizing flows
(NF) to learn the normal data distribution (Gudovskiy et al., 2022).
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Figure 1: Anomaly detection task settings. We aim to implement one unified AD model (b). (c)
Mapping all input features to the same latent class center may induce the risk of learning a biased
solution. (d) We propose a hierarchical Gaussian mixture normalizing flows modeling method for
more effectively capturing the complex multi-class distribution.

However, we find that the NF-based AD methods perform unsatisfactorily when applied to the multi-
class AD task. They usually fall into a “homogeneous mapping” issue (see Sec. 3.2), where the NF-
based AD models are biased to generate large log-likelihoods for both normal and abnormal inputs (see
Fig. 2b). We further explain this issue as: The multi-class distribution is far more diverse and usually
multi-modal. However, conventional NF-based AD methods (Gudovskiy et al., 2022; Yu et al., 2021)
employ the uni-modal Gaussian prior to learn the invertible mapping. This can be seen as learning a
mapping from a heterogeneous space to the latent homogeneous space. To learn the mapping well, the
network may be prompted to take a bias to concentrate on the coarse-grained common characteristics
(e.g., local pixel correlations) and suppress the fine-grained distinguishable characteristics (e.g.,
semantic content) among different class features (Kirichenko et al., 2020). Consequently, the network
homogeneously maps different class features to the close latent embeddings. Thus, even anomalies
can obtain large log-likelihoods and become less distinguishable.

To address this issue, we first empirically confirm that mapping to multiple latent class centers is
effective to prevent the model from learning the bias (see Fig. 2c). Accordingly, we propose to model
NF-based AD networks with inter-class Gaussian mixture prior for more effectively capturing the
complex multi-class distribution. Second, we argue that the inter-class Gaussian mixture prior can
only ensure the features are drawn to the whole prior distribution but lacks inter-class repulsion, still
resulting in a much weaker discriminative ability for different class features. This may cause different
class centers to collapse into the same center. To further increase the inter-class discriminability,
we propose a mutual information maximization loss to introduce the class repulsion property to the
model for better structuring the latent feature space, where the class centers can be pushed away from
each other. Third, we introduce an intra-class mixed class centers learning strategy that can urge
the model to learn diverse normal patterns even within one class. Finally, we form a hierarchical
Gaussian mixture normalizing flows modeling approach for multi-class anomaly detection, which
we call HGAD. Our method can dramatically improve the unified AD performance of the previous
single-class NF-based AD methods (e.g, CFLOW-AD), boosting the AUROC from 89.0%/94.0% to
98.4%/97.9%, and also outperform the SOTA unified AD methods (e.g., UniAD).

2 RELATED WORK

Anomaly Detection. 1) Reconstruction-based approaches are the most popular AD methods. These
methods rely on the assumption that models trained by normal samples would fail in abnormal
regions. Many previous works attempt to train AutoEncoders (Park et al., 2020; Zavrtanik et al.,
2021), Variational AutoEncoders (Liu et al., 2020) and GANs (Schlegl et al., 2017; Akcay et al.,
2018) to reconstruct the input images. However, these methods face the ”identical shortcut” problem
(You et al., 2022). 2) Embedding-based approaches recently show better AD performance by using
ImageNet pre-trained networks as feature extractors (Bergman et al., 2020; Cohen & Hoshen, 2020).
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PaDiM (Defard et al., 2021) extract pre-trained features to model Multivariate Gaussian distribution
for normal samples, then utilize Mahalanobis distance to measure the anomaly scores. PatchCore
(Roth et al., 2022) extends on this line by utilizing locally aggregated features and introducing greedy
coreset subsampling to form nominal feature banks. 3) Knowledge distillation assumes that the
student trained to learn the teacher on normal samples could only regress normal features but fail in
abnormal features (Bergmann et al., 2020). Recent works mainly focus on feature pyramid Salehi
et al. (2021); Wang et al. (2021), reverse distillation (Deng & Li, 2022), and asymmetric distillation
(Rudolph et al., 2023). 4) Unified AD approaches attempt to train a unified AD model to accomplish
anomaly detection for multiple classes. UniAD (You et al., 2022), PMAD (Yao et al., 2023b) and
OmniAL (Zhao, 2023) are three existing methods in this new direction. UniAD is a transformer-
based reconstruction model with three improvements, it can perform well under the unified case by
addressing the ”identical shortcut” issue. PMAD is a MAE-based patch-level reconstruction model,
which can learn a contextual inference relationship within one image rather than the class-dependent
reconstruction mode. OmniAL is a unified CNN framework with anomaly synthesis, reconstruction
and localization improvements. To prevent the identical reconstruction, OmniAL trains the model
with proposed panel-guided synthetic anomaly data rather than directly using normal data.

Normalizing Flows in Anomaly Detection. In anomaly detection, normalizing flows are employed
to learn the normal data distribution (Rudolph et al., 2021; Gudovskiy et al., 2022; Yu et al., 2021;
Yao et al., 2023a), which maximize the log-likelihoods of normal samples during training. Rudolph
et al. (Rudolph et al., 2021) first employ NFs for anomaly detection by estimating the distribution
of pre-trained features. In CFLOW-AD (Gudovskiy et al., 2022), the authors further construct
NFs on multi-scale feature maps to achieve anomaly localization. Recently, fully convolutional
normalizing flows (Rudolph et al., 2022; Yu et al., 2021) have been proposed to improve the accuracy
and efficiency of anomaly detection. In BGAD (Yao et al., 2023a), the authors propose a NF-based
AD model to tackle the supervised AD task. In this paper, we mainly propose a novel NF-based AD
model (HGAD) with three improvements to achieve much better unified AD performance.

3 METHOD

3.1 PRELIMINARY OF NORMALIZING FLOW BASED ANOMALY DETECTION

In subsequent sections, upper case letters denote random variables (RVs) (e.g., X) and lower case
letters denote their instances (e.g., x). The probability density function of a RV is written as p(X),
and the probability value for one instance as pX(x). The normalizing flow models (Dinh et al., 2017;
Kingma & Dhariwal, 2019) can fit an arbitrary distribution p(X) by a tractable latent base distribution
with p(Z) density and a bijective invertible mapping φ : X ∈ Rd → Z ∈ Rd. Then, according to the
change of variable formula (Villani, 2003), the log-likelihood of any x ∈ X can be estimated as:

logpθ(x) = logpZ(φθ(x)) + log|detJ | (1)

where θ means the learnable model parameters, and we use pθ(x) to denote the estimated probability
value of feature x by the model φθ. The J = ▽xφθ(x) is the Jacobian matrix of the bijective
transformation (z = φθ(x) and x = φ−1

θ (z)). The model parameters θ can be optimized by
maximizing the log-likelihoods across the training distribution p(X). The loss function is defined as:

Lm = Ex∼p(X)[−logpθ(x)] (2)

In anomaly detection, the latent variables Z for normal features are usually assumed to obey N (0, I)
for simplicity (Rudolph et al., 2021). By replacing pZ(z) = (2π)−

d
2 e−

1
2 z

T z, z = φθ(x) in Eq. 1,
the loss function in Eq. 2 can be written as:

Lm = Ex∼p(X)

[d
2
log(2π) +

1

2
φθ(x)

Tφθ(x)− log|detJ |
]

(3)

After training, the log-likelihoods of the input features can be exactly estimated by the trained
normalizing flow models as logpθ(x) = −d

2 log(2π) −
1
2φθ(x)

Tφθ(x) + log|detJ |. Next, we can
convert log-likelihoods to probabilities via exponential function: pθ(x) = elogpθ(x). As we maximize
log-likelihoods for normal features in Eq. 2, the estimated probabilities pθ(x) can directly measure
the normality. Thus, the anomaly scores can be calculated by s(x) = 1− pθ(x).
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3.2 REVISITING NORMALIZING FLOW BASED ANOMALY DETECTION METHODS

(a) (b) (c) (d)

Single-Class NF-based AD Multiple Latent Class Centers

Figure 2: Comparison between single-class and multi-class NF-based AD methods on MVTecAD.
(a) and (c) show the training losses and the testing anomaly detection and localization AUROCs. (b)
shows that the single-class NF-based AD model may have an obvious norma-abnormal overlap, while
ours (d) can bring better normal-abnormal distinguishability.

Under the multi-class AD task, we follow the NF-based anomaly detection paradigm (Rudolph et al.,
2021; Gudovskiy et al., 2022) and reproduce the FastFlow (Yu et al., 2021) to estimate log-likelihoods
of the features extracted by a pre-trained backbone. We then convert the estimated log-likelihoods
to anomaly scores and evaluate the AUROC metric every 10 epochs. As shown in Fig. 2a, after
a period of training, the performance of the model drops severely while the losses continue going
extremely small. Accordingly, the overall log-likelihoods become much large. We attribute this
phenomenon to the “homogeneous mapping” issue, where the normalizing flows may map all inputs
to much close latent variables and then present large log-likelihoods for both normal and abnormal
features, thus failing to detect anomalies. This speculation is empirically verified by the visualization
results in Fig. 2b (more results in App. Fig. 5), where the normal and abnormal log-likelihoods
are highly overlapped. As we explained in Sec. 1, the phenomenon may come from that the model
excessively suppresses the fine-grained distinguishable characteristics between normal and abnormal
features. However, as shown in Fig. 2c and 2d, when using multiple latent class centers and mapping
different class features to their corresponding class centers, the model can more effectively avoid
highly overlapped normal and abnormal log-likelihoods, indicating a slighter log-likelihoods bias
problem. This encourages us to analyze as follows.

Below, we denote normal features as xn ∈ Rd and abnormal features as xa ∈ Rd, where d is the
channel dimension. We provide a rough analysis using a simple one coupling layer normalizing flow
model. When training, the forward affine coupling (Dinh et al., 2017) can be calculated as:

x1, x2 = split(xn) and z1 = x1; z2 = x2 ⊙ exp(s(x1)) + t(x1) and z = cat(z1, z2) (4)

where split and cat mean split and concatenate the feature maps along the channel dimension, s(x1)
and t(x1) are transformation coefficients predicted by a learnable neural network (Dinh et al., 2017).
With the maximum likelihood loss in Eq. 3 pushing all z to fit N (0, I), the model has no need to
distinguish different class features. Thus, it is more likely to take a bias to predict all s(·) to be
very small negative numbers (→ −∞) and t(·) close to zero. The impact is that the model could
also fit xa to N (0, I) well with the bias, failing to detect anomalies. However, if we use multiple
latent class centers and map different class features to their corresponding class centers, the model is
harder to simply take a bias solution. Instead, s(·) and t(·) must be highly related to input features.
Considering that s(·) and t(·) in the trained model are relevant to normal features, the model thus
could not fit xa well. We think that the above rough analysis can also be applied to multiple layers.
Because the output of one coupling layer will tend to 0 when s(·) and t(·) of the layer are biased.
From Eq. 4, we can see that when the output of one coupling layer is close to 0, the output of the
next layer will also tend to 0. Therefore, the output after multiple layers will tend to 0, the network is
still biased.

3.3 HIERARCHICAL GAUSSIAN MIXTURE NORMALIZING FLOWS MODELING

Overview. As shown in Fig. 3, our HGAD is composed of a feature extractor, a normalizing flow
model (details in App. C), and the hierarchical Gaussian mixture modeling. First, the features
extracted by a fixed pre-trained backbone are sent into the normalizing flow model to transform into
the latent embeddings. Then, the latent embeddings are used to fit the hierarchical Gaussian mixture
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Figure 3: Model overview. The extracted feature vectors are sent into the normalizing flow model
for transforming into latent embeddings. Positional embeddings are added to each invertible layer
Gudovskiy et al. (2022). The latent embeddings are used to fit the hierarchical Gaussian mixture
prior, which can assist the model against learning the “homogeneous mapping”.

prior during training. The pseudo-code of our HGAD is provided in Alg. 1. In the subsequent
sections, we will describe the hierarchical Gaussian mixture modeling and the specific losses in detail.

Algorithm 1 HGAD: Hierarchical Gaussian mixture modeling for multi-class Anomaly Detection

Input: Input image I ∈ RH×W×3, Class label y ∈ {1, . . . , Y }
1: Initialization: Class centers µy ← y, y ∈ {1, . . . , Y }, Learnable vector ψ ← 0, Total loss
Lall ← 0

2: Feature Extraction: we extract K feature maps, denoted as Xk, k ∈ {1, . . . ,K}
3: for each feature x ∈ Xk do
4: Obtain the latent representation: φθ(x)
5: Calculate all logarithmic class weights: cy = logsoftmaxy(ψ), y ∈ {1, . . . , Y }
6: Calculate inter-class loss: Lg based on Eq. 6
7: Calculate mutual information maximization loss: Lmi based on Eq. 8
8: Calculate entropy loss: Le based on Eq. 9
9: Calculate intra-class loss: Lin based on Eq. 10

10: Calculate the overall loss: L = λ1Lg + λ2Lmi + Le + Lin

11: Update Lall ← Lall + L
12: end for
13: Update mean loss Lmean = Lall/N , N is the total number of features
Output: Mean loss Lmean

Modeling Normalizing Flows with Inter-Class Gaussian mixture Prior. As discussed in Sec. 3.2,
using multiple latent class centers can suffer a slighter log-likelihoods bias problem. To this end,
to further better fit the complex multi-class normal distribution in the latent space, a natural way is
to extend the single-class Gaussian prior to the inter-class Gaussian mixture prior. Specifically, a
Gaussian mixture model with class-dependent means µy and covariance matrices Σy , where y means
the class labels, is used as the prior distribution for the latent variables Z:

p(Z|y) = N (µy,Σy) and pZ(z) =
∑

y
p(y)N (z;µy,Σy) (5)

For simplicity, we also use unit matrix I to replace all the class-dependent covariance matrices Σy.
To urge the network to adaptively learn the class weights, we parameterize the class weights p(Y )
through a learnable vector ψ, with p(y) = softmaxy(ψ), where the subscript of the softmax operator
denotes the class index of the calculated softmax value. The use of the softmax can ensure that p(y)
stays positive and sums to one. The ψ can be initialized to 0. With the parameterized p(Y ), we can
derive the loss function with the inter-class Gaussian mixture prior as follows (the detailed derivation
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is in App. E):

Lg = Ex∼p(X)

[
− logsumexp

y

(
− ||φθ(x)− µy||22

2
+ cy

)
− log|detJ |+ d

2
log(2π)

]
(6)

where cy denotes logarithmic class weights and is defined as cy := logp(y) = logsoftmaxy(ψ), and
the subscript y of the logsumexp operator denotes summing the exp values of all classes.

Mutual Information Maximization. Next, we further argue that the inter-class Gaussian mixture
prior can only ensure the latent features are drawn together to the whole prior distribution (pa-
rameterized by {µy, ψy}Yy=1), where the {p(y)}Yy=1 can control the contribution of different class
centers to the log-likelihood estimation value logpθ(x). This means that the loss function in Eq. 6
only has the drawing characteristic to make the latent features fit the Gaussian mixture prior, but
without the repulsion property for separating among different classes, still resulting in a much weaker
discriminative ability for different class features. As the class centers are randomly initialized, this
may cause different class centers to collapse into the same center. To address this, we consider
that the latent feature z with class label y should be drawn close to its corresponding class center
µy as much as possible while far away from the other class centers. From the information theory
perspective, this means that the mutual information I(Y,Z) should be large enough. So, we propose
a mutual information maximization loss to introduce the class repulsion property for increasing the
class discrimination ability. The loss function is defined as follows (the derivation is in App. E):

Lmi = −Ey∼p(Y )[−logp(y)]− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
(7)

By replacing p(φθ(x)|y) with N (φθ(x);µy, I) in Eq. 7, we can derive the following practical loss
format (the detailed derivation is in App. E):

Lmi = −E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)
− cy

]
(8)

where µy′ means all the other class centers except for µy, and the subscript y of the logsoftmax
operator denotes calculating logsoftmax value for class y. Note that we also use this representation
way for softmax calculation in the following sections.

In addition to the mutual information maximization loss, we propose that we can also introduce the
class repulsion property by minimizing the inter-class entropy. We use the −||φθ(x)− µy||22/2 as
the class logits for class y, and then define the entropy loss as follows (a standard entropy formula):

Le = Ex∼p(X)

[∑
y

− softmax
y

(−||φθ(x)− µy′ ||22/2) · logsoftmax
y

(−||φθ(x)− µy′ ||22/2)
]

(9)

Learning Intra-Class Mixed Class Centers. In real-world scenarios, even one object class may
contain diverse normal patterns. Thus, to better model intra-class distribution, we further extend the
Gaussian prior p(Z|y) = N (µy,Σy) to mixture Gaussian prior p(Z|y) =

∑M
i=1 pi(y)N (µy

i ,Σ
y
i ),

where M is the number of intra-class latent centers. We can directly replace the p(Z|y) in Eq. 5
and derive the corresponding loss function Lg in Eq. 6 (see App. Eq. 18). However, the initial
latent features Z usually have large distances with the intra-class centers {µy

i }Mi=1, this will cause the
p(z|y), z ∈ Z close to 0. After calculating the logarithm function, it is easy to cause the loss to be
numerically ill-defined (NaN), making it fail to be optimized. To this end, we propose to decouple the
inter-class Gaussian mixture prior fitting and the intra-class latent centers learning. This decoupling
strategy is more conducive to learn class centers as we form a coarse-to-fine optimization process.
Specifically, for each class y, we learn a main class center µy

1 and the delta vectors {∆µy
i }Mi=1 (∆µy

1
is fixed to 0), which mean the offset values from the main center and are used to represent the other
intra-class centers: µy

i = {µy
1 +∆µy

i }Mi=1. Then, we can directly employ the Eq. 6 to optimize the
main center µy

1 . When learning the other intra-class centers, we detach the main center µy
1 from the

gradient graph and only optimize the delta vectors by the following loss function:

Lin = E(x,y)∼p(X,Y )

[
− logsumexp

i

(
− ||φθ(x)− (SG[µy

1] + ∆µy
i )||22

2
+cyi

)
− log|detJ |

]
(10)
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where SG[·] means to stop gradient backpropagation, cyi denotes logarithmic intra-class center
weights and is defined as cyi := logpi(y) = logsoftmaxi(ψy).

Overall Loss Function. The overall training loss function is the combination of the Eq. 6, Eq. 8, Eq.
9 and Eq. 10, as follows:

L = λ1Lg + λ2Lmi + Le + Lin (11)

where the λ1 and λ2 are used to trade off the loss items and are set to 1 and 100 by default. In App.
A, we summarize the supervision information required by our method and other methods, we also
further discuss the limitations, applications, effective guarantee, and complexity of our method. We
also provide an information-theoretic view in App. F.

3.4 ANOMALY SCORING

Formally, we define K as the subset including the indexes of feature maps for use. For each test
input feature xk from level-k, k ∈ K, we can calculate its intra-class log-likelihood logpθ(x

k) =
logsumexpi(−||φθ(x

k)− µy
i ||22/2+ cyi ) + log|detJ | − d/2log(2π) and inter-class negative entropy

nh(xk) =
∑

y softmaxy(−||φθ(x
k) − µy′

1 ||22/2) · logsoftmaxy(−||φθ(x
k) − µy′

1 ||22/2). Note that
y in cyi denotes which class xk belongs to, not whether xk is normal or abnormal. Next, we convert
the log-likelihood to probability pθ(xk) = elogpθ(x

k). Then, we upsample all pθ(xk) in the level-k
to the input image resolution (H × W ) using bilinear interpolation Pk = b(pθ(x

k)) ∈ RH×W .
Finally, we calculate anomaly score map Sl by aggregating all upsampled probabilities as Sl =

max(
∑K

k=1 Pk)−
∑K

k=1 Pk. For the inter-class negative entropy, we also follow the above steps to
convert to anomaly score map Se. Then the final anomaly score map is obtained by combining the
two maps S = Sl⊙Se, where the⊙ is the element-wise multiplication. In this way, even if anomalies
fall into the inter-class Gaussian mixture distribution, they are usually in the low-density regions
among the inter-class class centers. So, we can still ensure that anomalies are out-of-distribution
through intra-class log-likelihoods (please see App. A for more discussions).

4 EXPERIMENT

4.1 DATASETS AND METRICS

Datasets. We extensively evaluate our approach on four real-world industrial AD datasets: MVTecAD
(Bergmann et al., 2019), BTAD (Mishra et al., 2021), MVTec3D-RGB (Bergmann et al., 2021), and
VisA (zou et al., 2022). The detailed introduction to these datasets is provided in App. D. To more
sufficiently evaluate the unified AD performance of different AD models, we combine these datasets
to form a 40-class dataset, which we call Union dataset.

Metrics. Following prior works (Bergmann et al., 2019; 2020; Zavrtanik et al., 2021), the standard
metric in anomaly detection, AUROC, is used to evaluate the performance of AD methods.

4.2 MAIN RESULTS

Setup. All the images are resized and cropped to 256 × 256 resolution. The feature maps from
stage-1 to stage-3 of EfficientNet-b6 (Tan & Le, 2019) are used as inputs to the normalizing flow
models. The parameters of the feature extractor are frozen during training. The layer numbers of the
NF models are all 12. The number of inter-class centers is always equal to the number of classes in
the dataset. The number of intra-class centers is set as 10 for all datasets (see ablation study in Sec.
4.3). We use the Adam (P.Kingma & Ba, 2015) optimizer with weight decay 1e−4 to train the model.
The total training epochs are set as 100 and the batch size is 8 by default. The learning rate is 2e−4

initially, and dropped by 0.1 after [48, 57, 88] epochs. The evaluation is run with 3 random seeds.

Baselines. We compare our approach with single-class AD baselines including: PaDiM (Defard
et al., 2021), MKD (Salehi et al., 2021), and DRAEM (Zavrtanik et al., 2021), and SOTA unified AD
methods: PMAD (Yao et al., 2023b), UniAD (You et al., 2022), and OmniAL (Zhao, 2023). We also
compare with the SOTA single-class NF-based AD methods: CFLOW (Gudovskiy et al., 2022) and
FastFlow (Yu et al., 2021). Under the unified case, the results of the single-class AD baselines and
the NF-based AD methods are run with the publicly available implementations.
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Table 1: Anomaly detection and localization results on MVTecAD. All methods are evaluated
under the unified case. ·/· means the image-level and pixel-level AUROCs.

Category Baseline Methods Unified Methods Normalizing Flow Based Methods
PaDiM MKD DRAEM PMAD UniAD OmniAL FastFlow CFLOW HGAD (Ours)

Carpet 93.8/97.6 69.8/95.5 98.0/98.6 99.0/97.9 99.8/98.5 98.7/99.4 91.6/96.7 98.8/97.5 100±0.00/99.4±0.05
Grid 73.9/71.0 83.8/82.3 99.3/98.7 96.2/95.6 98.2/96.5 99.9/99.4 85.7/96.8 95.9/94.1 99.6±0.09/99.1±0.08

Leather 99.9/84.8 93.6/96.7 98.7/97.3 100/99.2 100/98.8 99.0/99.3 93.7/98.2 100/98.1 100±0.00/99.6±0.00
Tile 93.3/80.5 89.5/85.3 99.8/98.0 99.8/94.5 99.3/91.8 99.6/99.0 99.2/95.8 97.9/92.2 100±0.00/96.1±0.09

Wood 98.4/89.1 93.4/80.5 99.8/96.0 99.6/89.0 98.6/93.2 93.2/97.4 98.0/92.0 99.0/92.7 99.5±0.08/95.9±0.09

Bottle 97.9/96.1 98.7/91.8 97.5/87.6 99.8/98.4 99.7/98.1 100/99.2 100/94.0 98.7/96.4 100±0.00/98.6±0.08
Cable 70.9/81.0 78.2/89.3 57.8/71.3 93.5/95.4 95.2/97.3 98.2/97.3 90.9/95.2 80.4/92.9 97.3±0.26/95.2±0.49

Capsule 73.4/96.9 68.3/88.3 65.3/50.5 80.5/97.0 86.9/98.5 95.2/96.9 90.5/98.6 75.5/97.7 99.0±0.40/99.2±0.05
Hazelnut 85.5/96.3 97.1/91.2 93.7/96.9 99.6/97.4 99.8/98.1 95.6/98.4 98.9/96.6 97.1/95.7 99.9±0.08/98.8±0.05
Metal nut 88.0/84.8 64.9/64.2 72.8/62.2 98.0/91.7 99.2/94.8 99.2/99.1 96.5/97.2 87.8/84.4 100±0.00/97.8±0.29

Pill 68.8/87.7 79.7/69.7 82.2/94.4 89.4/93.4 93.7/95.0 97.2/98.9 90.4/96.1 88.0/90.7 96.3±0.73/98.8±0.05
Screw 56.9/94.1 75.6/92.1 92.0/95.5 73.3/96.6 87.5/98.3 88.0/98.0 76.8/95.9 59.5/93.9 95.5±0.16/99.3±0.12

Toothbrush 95.3/95.6 75.3/88.9 90.6/97.7 95.8/98.2 94.2/98.4 100/99.4 86.1/97.1 78.0/95.7 91.2±0.37/99.1±0.05
Transistor 86.6/92.3 73.4/71.7 74.8/64.5 97.2/93.3 99.8/97.9 93.8/93.3 85.7/93.8 86.7/92.3 97.7±0.21/91.9±0.26

Zipper 79.7/94.8 87.4/86.1 98.8/98.3 96.0/96.1 95.8/96.8 100/99.5 93.8/95.7 92.2/95.7 100±0.04/99.0±0.09

Mean 84.2/89.5 81.9/84.9 88.1/87.2 94.5/95.6 96.5/96.8 97.2/98.3 91.8/96.0 89.0/94.0 98.4±0.08/97.9±0.05

Table 2: Anomaly detection and localization results on BTAD, MVTec3D-RGB, VisA, and Union
datasets. All methods are evaluated under the unified case.

Dataset PaDiM MKD DRAEM PMAD UniAD OmniAL FastFlow CFLOW HGAD (Ours)

BTAD 93.8/96.6 89.7/96.2 91.2/91.9 93.8/97.3 94.0/97.2 -/- 92.9/95.3 93.0/96.6 95.2±0.09/97.1±0.12

MVTec3D-RGB 77.4/96.3 73.5/95.9 73.9/95.5 75.4/95.3 77.5/96.6 -/- 67.9/90.2 71.6/95.7 83.9±0.35/96.6±0.05

VisA 86.8/97.0 74.2/93.9 85.5/90.5 -/- 92.8/98.1 87.8/96.6 77.2/95.1 88.0/95.9 97.1±0.11/98.9±0.06

Union 79.0/91.4 72.1/88.9 66.4/82.7 -/- 86.9/95.5 -/- 57.2/78.8 55.7/82.9 92.3±0.26/96.5±0.13

Quantitative Results. The detailed results on MVTecAD are shown in Tab. 1. We also report
the results under the single-class setting in App. Tab. 6. By comparison, we can see that the
performances of all baselines and SOTA single-class NF-based AD methods drop dramatically under
the unified case. However, our HGAD outperforms all baselines under the unified case significantly.
Compared with the single-class NF-based AD counterparts, we improve the unified AD performance
from 91.8% to 98.4% and from 96.0% to 97.9%. We further indicate that our model has the same
network architecture as CFLOW, and we only introduce multiple inter- and intra-class centers
as extra learnable parameters. However, our method can significantly outperform CFLOW. This
demonstrates that our novel designs are the keys to improving the unified AD ability of the NF-based
AD methods. Moreover, our HGAD also surpasses the SOTA unified AD methods, PMAD (by 3.9%
and 2.3%) and UniAD (by 1.9% and 1.1%), demonstrating our superiority. Furthermore, the results
on BTAD, MVTec3D-RGB, and VisA (see Tab. 2) also verify the superiority of our method, where
we outperform UniAD by 1.2%, 6.4%, and 4.3% in anomaly detection. The results on the Union
dataset further show that our method is more superior when there are more product classes.

Qualitative Results. Fig. 4 shows qualitative results. It can be found that our approach can generate
much better anomaly score maps than the single-class NF-based baseline CFLOW (Gudovskiy et al.,
2022) even for different anomaly types. More qualitative results are in the App. Fig. 6.

(a) (b) (c)

(d) (e) (f)

GT CFLOW Ours CFLOW Ours CFLOW OursGT GT

Figure 4: Qualitative results on MVTecAD. (a) and (b) both represent global anomalies, (c) contains
large cracks, (d) shows small dints, (e) contains texture scratches, and (f) shows color anomalies.
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Table 3: Ablation studies on MVTecAD. SGC, FMC, ICG, MIM, and Intra mean single Gaussian
center, fixed multiple centers, inter-class Gaussian mixture prior, mutual information maximization,
and intra-class mixed class centers learning, respectively. Note that the experiments in (a), (b), (c),
and (e) are conducted with λ1 and λ2 set to 1 and 10.

(a) Hierarchical Gaussian mixture prior.

SGC FMC ICG MIM Intra Det. Loc.

✓ - - - - 89.0 94.0
- ✓ - - - 94.7 96.1
- - ✓ - - 94.5 96.7
- - ✓ ✓ - 96.3 96.6
- ✓ - - ✓ 96.3 97.1
- - ✓ ✓ ✓ 97.7 97.6

(b) Number of intra-class centers.

# Centers Det. Loc.

3 97.5 97.3
5 97.6 97.1
10 97.7 97.6
15 97.6 97.3
20 97.4 97.2

(c) Anomaly criterion.

Logps Entropy Det. Loc.

✓ - 94.4 97.1
- ✓ 96.6 97.0
✓ ✓ 97.7 97.6

(d) Hyperparameters.

λ1 λ2 Det. Loc. λ1 λ2 Det. Loc.

1 1 96.5 96.7 0.5 100 98.4 97.8
1 5 97.6 97.3 1 100 98.4 97.9
1 10 97.7 97.6 5 100 98.3 97.9
1 50 98.2 97.8 10 100 98.3 97.8
1 100 98.4 97.9 20 100 97.8 97.6

(e) Optimization strategy.

Det. Loc.

- 96.5 97.0
✓ 97.7 97.6

4.3 ABLATION STUDIES

Hierarchical Gaussian mixture Prior. 1) Tab. 3a verifies our confirmation that multiple latent class
centers are of vital significance. With the fixed multiple centers (FMC), image-level and pixel-level
AUROCs can be improved by 5.7% and 2.1%, respectively. By employing the learnable inter-class
Gaussian mxiture prior to model the latent multi-class distribution, the pixel-level AUROC can be
improved by 0.6%. 2) The effectiveness of Mutual information maximization (MIM) is proven in Tab.
3a, where adding MIM brings promotion by 1.8% for detection. This shows that to better learn the
complex multi-class distribution, it is necessary to endow the model class discrimination ability to
avoid multiple centers collapsing into the same center. 3) Tab. 3a confirms the efficacy of intra-class
mixed class centers learning. With the FMC as the baseline, introducing to learn intra-class mixed
class centers could bring an increase of 1.6% for detection and 1.0% for localization, respectively.
Finally, combining these, we form the hierarchical Gaussian mixture to achieve the best results.

Number of Intra-Class Centers. We conduct experiments to investigate the influence of intra-class
centers in each class. The results are shown in Tab. 3b. The best performance is achieved with
a moderate number: 10 class centers. A larger class center number like 20 does not bring further
promotion, which may be because the class centers are saturated and more class centers are harder to
train. For other datasets, we also use 10 as the number of intra-class centers.

Anomaly Criterion. Only taking the log-likelihood and the entropy as the anomaly criterion can
achieve a good performance, while our associated criterion outperforms each criterion consistently.
This illustrates that the associated anomaly scoring strategy is more conducive to guarantee that
anomalies are recognized as out-of-distribution.

Hyperparameters. We ablate the hyperparameters λ1 and λ2 in Tab. 3d. The results in Tab. 3d show
that the larger λ2 can achieve better unified AD performance. The larger λ2 can urge the network more
focused on separating different class features into their corresponding class centers, indicating that
the class discrimination ability is of vital significance to accomplish multi-class anomaly detection.

5 CONCLUSION

In this paper, we focus on how to unify anomaly detection regarding multiple classes. For such
a challenging task, popular normalizing flow based AD methods may fall into a “homogeneous
mapping” issue. To address this, we propose a novel HGAD against learning the bias with three key
improvements: inter-class Gaussian mixture prior, mutual information maximization, and intra-class
mixed class centers learning strategy. Under the multi-class AD setting, our method can improve
NF-based AD methods by a large margin, and also surpass the SOTA unified AD methods.
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generation with conditional invertible neural networks. arXiv preprint arXiv: 1907.02392, 2019.

Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Kothe. Training normalizing
flows with the information bottleneck for competitive generative classification. In NIPS, 2020.

Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor anomaly detection. arXiv
preprint arXiv: 2002.10445, 2020.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad - a comprehensive
real-world dataset for unsupervised anomaly detection. In CVPR, 2019.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students: Student-
teacher anomaly detection with discriminative latent embeddings. In CVPR, 2020.

Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Steger. The mvtec 3d-ad dataset for unsuper-
vised 3d anomaly detection and localization. arXiv preprint arXiv:2112.09045, 2021.

Giancarlo Di Biase, Hermann Blum, Roland Siegwart, and Cesar Cadena. Pixel-wise anomaly
detection in complex driving scenes. In CVPR, 2021.

Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspondences.
arXiv preprint arXiv: 2005.02357v3, 2020.

Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch
distribution modeling framework for anomaly detection and localization. In 1st International
Workshop on Industrial Machine Learning, 2021.

Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding.
In CVPR, 2022.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka. Cflow-ad: Real-time unsupervised anomaly
detection with localization via conditional normalizing flows. In IEEE Winter Conference on
Application of Computer Vision, 2022.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Conference and Workshop on Neural Information Processing Systems, 2019.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Why normalizing flows fail to detect
out-of-distribution data. In NIPS, 2020.

Wenqian Liu, Runze Li, Meng Zheng, Srikrishna Karanam, Ziyan Wu, Bir Bhanu, Richard J. Radke,
and Octavia Camps. Towards visually explaining variational autoencoders. In CVPR, 2020.

Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and Gian Luca Foresti. Vt-
adl: A vision transformer network for image anomaly detection and localization. arXiv preprint
arXiv:2104.10036, 2021.

Hyunjong Park, Jongyoun Noh, and Bumsub Ham. Learning memory-guided normality for anomaly
detection. In CVPR, 2020.

10



Under review as a conference paper at ICLR 2024

Diederik P.Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Scholkopf, Thomas Brox, and Peter Gehler.
Towards total recall in industrial anomaly detection. In CVPR, 2022.

Marco Rudolph, Bastian Wandt, and Bodo Rosenhahn. Same same but differnet: Semi-supervised
defect detection with normalizing flows. In IEEE Winter Conference on Application of Computer
Vision, 2021.

Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Fully convolutional cross-
scale-flows for image-based defect detection. In IEEE Winter Conference on Application of
Computer Vision, 2022.

Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric student-teacher
networks for industrial anomaly detection. In WACV, 2023.

Mohammadreza Salehi, Niousha Sadjadi, Soroos Hossein Rohban, and Hamid R.Rabiee. Multireso-
lution knowledge distillation for anomaly detection. In CVPR, 2021.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning.
In ICLR, 2018.

Thomas Schlegl, Philipp Seeb¨ock, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International Conference on Information Processing in Medical Imaging, 2017.

Claude Elwood Shannon. A mathematical theory of communication. Bell System Technical Journal,
1948.

Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance videos.
In CVPR, 2018.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, 2019.

Yu Tian, Guansong Pang, Fengbei Liu, Yuanhong Chen, Seon Ho Shin, Johan W Verjans, Rajvinder
Singh, and Gustavo Carneiro. Constrained contrastive distribution learning for unsupervised
anomaly detection and localisation in medical images. Medical Image Computing and Computer
Assisted Intervention, pp. 128–140, 2021.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In IEEE
Information Theory Workshop (ITW), 2015.

Naftali Tishby, Fernando C Pereira, , and William Bialek. The information bottleneck method. In
The 37th annual Allerton Conference on Communication, Control and Computing, 1999.

Cedric Villani. Topics in optimal transportation. American Mathematical, 2003.

Tomas Vojir, Tomas Sipka, and Rahaf Aljundi. Road anomaly detection by partial image reconstruc-
tion with segmentation coupling. In ICCV, 2021.

Guodong Wang, Shumin Han, Errui Ding, and Di Huang. Student-teacher feature pyramid matching
for unsupervised anomaly detection. In British Machine Vision Conference, 2021.

Xincheng Yao, Ruoqi Li, Jing Zhang, Jun Sun, and Chongyang Zhang. Explicit boundary guided
semi-push-pull contrastive learning for supervised anomaly detection. In CVPR, 2023a.

Xincheng Yao, Chongyang Zhang, Ruoqi Li, Jun Sun, and Zhenyu Liu. One-for-all: Proposal masked
cross-class anomaly detection. In AAAI, 2023b.

Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified model for
multi-class anomaly detection. arXiv preprint arXiv:2206.03687, 2022.

11



Under review as a conference paper at ICLR 2024

Jiawei Yu, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu, Rui Zhao, and Liwei Wu. Fastflow:
Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint
arXiv:2111.07677, 2021.

Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem: A discriminatively trained reconstruction
embedding for surface anomaly detection. In ICCV, 2021.

Jianpeng Zhang, Yutong Xie, Guansong Pang, Zhibin Liao, Johan Verjans, Wenxing Li, Zongji Sun,
Jian He, Yi Li, Chunhua Shen, and Yong Xia. Viral pneumonia screening on chest x-rays using
confidence-aware anomaly detection. Medical Imaging, pp. 879–890, 2021.

Ying Zhao. Ominal: A unified cnn framework for unsupervised anomaly localization. In CVPR,
2023.

Yang zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference
self-supervised pre-training for anomaly detection and segmentation. In ECCV, 2022.

12



Under review as a conference paper at ICLR 2024

APPENDIX

A MORE DISCUSSIONS

A.1 CLASS LABELS

Our method uses class labels, but it does not introduce any extra data collection cost compared to
one-for-one AD models. Because our method only explicitly uses class labels, while they implicitly
use class labels. The existing AD datasets are collected for one-for-one anomaly detection (i.e., we
need to train a model for each class). Thus, the existing AD datasets need to be separated according
to classes, with each class as a subdataset. Therefore, one-for-one AD methods also need class labels,
as they require normal samples from the same class to train. If the classes are not separated (in
other words, without class labels), these one-for-one AD methods cannot be used either. Our method
actually has the same supervision as these methods. The difference is that we explicitly use the
class labels but they don’t explicitly use the class labels. So, our method still follows the same data
organization format as the one-for-one AD models, we don’t introduce any extra data collection cost.
But the advantage of our unified AD method is that we can train one model for all classes, greatly
reducing the resource costs of training and deploying. Moreover, our method only uses class labels
and does not require pixel-level annotations. For real-world industrial applications, this doesn’t incur
extra data collection costs, as we usually consciously collect data according to different classes. So,
class labels are bonuses for us.

We summarize the training samples and the supervision information required by our method and
other methods as follows:

Table 4: Training samples and supervision information summarization.

PaDiM MKD DRAEM PMAD UniAD OmniAL FastFlow CFLOW HGAD (Ours)
N N N+P N N N+P N N N
C C C C w/o C w/o C C C C

where N means only using normal samples during training, P means also using pseudo (or synthetic)
anomalies during training, C means requiring class labels and w/o C means not using class labels.

Our method can be easily extended to completely unsupervised, as industrial images often have
significant differences between different classes. For instance, after extracting global features, we can
use a simple unsupervised clustering algorithm to divide each image into a specific class. Or we can
only require few-shot samples for each class as a reference, and then compute the feature distances
between each input sample to these reference samples. In this way, we can also conveniently divide
each sample into the most relevant class.

A.2 MORE DISCUSSIONS WITH UNIAD

Here, we provide more discussions between our HGAD and UniAD (You et al., 2022) to further
clarify that we does not simply replace the reconstruction model of UniAD with normalizing flows
and accordingly introduce the “homogeneous mapping” issue.

Our method and UniAD (You et al., 2022) both aim to tackle the multi-class AD task, but we adopt a
different research line from UniAD. Unlike UniAD, our method doesn’t face the ”identical shortcut”
issue, as it doesn’t have the abnormal information leakage risk in principle (see the second paragraph
in sec. 1). However, the NF-based models have their own problems when used for multi-class
anomaly detection. We first empirically observe a significant performance degradation when directly
using the previous NF-based AD methods for multi-class anomaly detection (see Fig. 2(a) and Tab. 1).
The “homogeneous mapping” issue is a possible explanation we provide for this phenomenon, rather
than casually introduced. Moreover, as analyzed in sec. 3.2, we provide a reasonable explanation
from the perspective of the formula in normalizing flow. Finally, the key designs proposed in our
method are completely different from those in UniAD. Based on these designs, we can achieve much
better unified AD performance than UniAD on all four real-world AD datasets. Therefore, compared
to UniAD, our method should be reasonably seen as an effective exploration for multi-class anomaly
detection in the direction of normalizing flow based anomaly detection.
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Table 5: Complexity comparison between our HGAD and other baseline methods.

PaDiM MKD DRAEM PMAD UniAD FastFlow CFLOW HGAD (Ours)

FLOPs 14.9G 24.1G 198.7G 52G 9.7G 36.2G 30.7G 32.8G
Learnable Parameters / 24.9M 97.4M 163.4M 9.4M 69.8M 24.7M 30.8M

Inference Speed 12.8fps 23fps 22fps 10.8fps 29fps 42.7fps 24.6fps 24.3fps
Training Epochs / 50 700 300 1000 400 200 100

A.3 THE WAY TO GUARANTEE ANOMALIES OUT-OF-DISTRIBUTION.

Here, we further explain how to guarantee that anomalies are out-of-distribution. In our method,
increasing inter-class distances is to ensure that the latent space has sufficient capacity to accommo-
date the features of multiple classes. In addition, we also model the intra-class Gaussian mixture
distribution for each class to ensure that the normal distribution of each class still remains compact.
Therefore, even if anomalies fall into the inter-class Gaussian mixture distribution, they are usually in
the low-density regions among the inter-class class centers. So, we can still ensure that anomalies
are out-of-distribution through intra-class Gaussian mixture distributions. As described in Anomaly
Scoring section (sec. 3.4), we can guarantee that anomalies are recognized as out-of-distribution by
combining intra-class log-likelihood and inter-class entropy to measure anomalies. Because only if
the anomaly is out-of-distribution, the anomaly score based on the association of log-likelihood and
entropy will be high, and the detection metrics can be better. The visualization results (decision-level
results based on log-likelihood) in Fig. 2 and 5 also intuitively show that our method has fewer
normal-abnormal overlaps and the normal boundary is more compact.

A.4 LIMITATIONS

In this paper, we propose a novel HGAD to accomplish the multi-class anomaly detection task. Even
if our method manifests good unified AD performance, there are still some limitations of our work.
Here, we discuss two main limitations as follows:

One limitation is that our method mainly targets NF-based AD methods to improve their unified
AD abilities. To this end, our method cannot be directly utilized to the other types of anomaly
detection methods, such as reconstruction-based, OCC-based, embedding-based, and distillation-
based approaches (see Related Work, Sec. 2). However, we believe that the other types of anomaly
detection methods can also be improved into unified AD methods, but we need to find and solve the
corresponding issues in the improvement processes, such as the ”identical shortcut” issue (You et al.,
2022) in reconstruction-based AD methods. How to upgrade the other types of anomaly detection
methods to unified AD methods and how to find a general approach for unified anomaly detection
modeling will be the future works.

In this work, our method is mainly aimed at solving multi-class anomaly detection, it doesn’t have the
ability to directly generalize to unseen classes. Because, in our method, the new class features usually
do not match the learned known multi-class feature distribution, which can lead to normal samples
being misrecognized as anomalies. Generalization to unseen classes can be defined as cross-class
anomaly detection (Yao et al., 2023b), where the model is trained with normal instances from multiple
known classes with the objective to detect anomalies from unseen classes. In the practical industrial
scenarios, models with cross-class anomaly detection capabilities are very valuable and necessary,
because new products will continuously appear and it’s cost-ineffective and inconvenient to retrain
models for new products. We think our method should achieve better performance on unseen classes
than previous NF-based methods due to the ability to learn more complex multi-class distribution,
but it’s far from solving the cross-class problem. How to design a general approach for cross-class
anomaly detection modeling will be the future works.

A.5 MODEL COMPLEXITY

With the image size fixed as 256× 256, we compare the FLOPs and learnable parameters with all
competitors. In Tab. 5, we can conclude that the advantage of HGAD does not come from a larger
model capacity. Compared to UniAD, our method requires fewer epochs (100 vs. 1000) and has a
shorter training time.
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A.6 REAL-WORLD APPLICATIONS

In industrial inspection scenarios, the class actually means a type of product on the production line.
Multi-class anomaly detection can be applied to train one model to detect defects in all products,
without the need to train one model for each type of product. This can greatly reduce the resource costs
of training and deploying. In video surveillance scenarios, we can use one model to simultaneously
detect anomalies in multiple camera scenes.

B SOCIAL IMPACTS AND ETHICS

As a unified model for multi-class anomaly detection, the proposed method does not suffer from
particular ethical concerns or negative social impacts. All datasets used are public. All qualitative
visualizations are based on industrial product images, which doesn’t infringe personal privacy.

C IMPLEMENTATION DETAILS

Optimization Strategy. In the initial a few epochs, we only optimize with Lg and Lmi to form
distinguishable inter-class main class centers. And then we simultaneously optimize the intra-class
delta vectors and the main class centers with the overall loss L in Eq. 11. In this way, we can better
decouple the inter-class and intra-class learning processes. This strategy can make the intra-class
learning become much easier, as optimizing after forming distinguishable inter-class main centers
will not have the problem that many centers initially overlap with each other.

Model Architecture. The normalizing flow model in our method is mainly based on Real-NVP
(Dinh et al., 2017) architecture, but the convolutional subnetwork in Real-NVP is replaced with a
two-layer MLP network. As in Real-NVP, the normalizing flow in our model is composed of the
so-called coupling layers. All coupling layers have the same architecture, and each coupling layer is
designed to tractably achieve the forward or reverse affine coupling transformation (Dinh et al., 2017)
(see Eq. 4). Then each coupling layer is followed by a random and fixed soft permutation of channels
Ardizzone et al. (2019) and a fixed scaling by a constant, similar to ActNorm layers introduced by
(Kingma & Dhariwal, 2019). For the coupling coefficients (i.e., exp(s(x1)) and t(x1) in Eq. 4), each
subnetwork predicts multiplicative and additive components simultaneously, as done by (Dinh et al.,
2017). Furthermore, we adopt the soft clamping of multiplication coefficients used by (Dinh et al.,
2017). The layer numbers of the normalizing flow models are all 12. We add positional embeddings to
each coupling layer, which are concatenated with the first half of the input features (i.e., x1 in Eq. 4).
Then, the concatenated embeddings are sent into the subnetwork for predicting couping coefficients.
The dimension of all positional embeddings is set to 256. The implementation of the normalizing
flows in our model is based on the FrEIA library https://github.com/VLLHD/FrEIA.

D DATASETS

MVTecAD. The MVTecAD (Bergmann et al., 2019) dataset is widely used as a standard benchmark
for evaluating unsupervised image anomaly detection methods. This dataset contains 5354 high-
resolution images (3629 images for training and 1725 images for testing) of 15 different product
categories. 5 classes consist of textures and the other 10 classes contain objects. A total of 73 different
defect types are presented and almost 1900 defective regions are manually annotated in this dataset.

BTAD. The BeanTech Anomaly Detection dataset (Mishra et al., 2021) is an another popular
benchmark, which contains 2830 real-world images of 3 industrial products. Product 1, 2, and 3 of
this dataset contain 400, 1000, and 399 training images respectively.

MVTecAD-3D. The MVTecAD-3D (Bergmann et al., 2021) dataset is recently proposed for 3D
anomaly detection, which contains 4147 high-resolution 3D point cloud scans paired with 2D RGB
images from 10 real-world categories. In this dataset, most anomalies can also be detected only
through RGB images. Since we focus on image anomaly detection, we only use RGB images of the
MVTecAD-3D dataset. We refer to this subset as MVTec3D-RGB.

VisA. The Visual Anomaly dataset (zou et al., 2022) is a recently proposed larger anomaly detection
dataset compared to MVTecAD (Bergmann et al., 2019). This dataset contains 10821 images with
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9621 normal and 1200 anomalous samples. In addition to images that only contain single instance,
the VisA dataset also have images that contain multiple instances. Moreover, some product categories
of the VisA dataset, such as Cashew, Chewing gum, Fryum and Pipe fryum, have objects that are
roughly aligned. These characteristics make the VisA dataset more challenging than the MVTecAD
dataset, whose images only have single instance and are better aligned.

E DETAILED LOSS FUNCTION DERIVATION

In this section, we provide the detailed derivation of the loss functions proposed in the main text,
including Lg (Eq. 6), Lmi (Eq. 8), and Lin (Eq. 10).

Derivation of Lg. We use a Gaussian mixture model with class-dependent means µy and unit
covariance I as the inter-class Gaussian mixture prior, which is defined as follows:

pZ(z) =
∑

y
p(y)N (z;µy, I) (12)

Below, we use cy as a shorthand of logp(y). Then, we can calculate the log-likelihood as follows:

logpZ(z) = log
[∑

y
p(y)N (z;µy, I)

]
= log

[∑
y
p(y)(2π)−

d
2 e−

1
2 (z−µy)

T (z−µy)
]

= −d
2
log(2π) + log

(∑
y
ecy · e−

||z−µy||22
2

)
= −d

2
log(2π) + log

(∑
y
e−

||z−µy||22
2 +cy

)
= −d

2
log(2π) + logsumexp

y

(
− ||z − µy||22

2
+ cy

)
(13)

Then, we bring the logpZ(z) into Eq. 1 to obtain the log-likelihood logpθ(x) as:

logpθ(x) = −
d

2
log(2π) + logsumexp

y

(
− ||φθ(x)− µy||22

2
+ cy

)
+ log|detJ | (14)

Further, the maximum likelihood loss in Eq. 2 can be written as:

Lm = Ex∼p(X)[−logpθ(x)]

= Ex∼p(X)

[
− logsumexp

y

(
− ||φθ(x)− µy||22

2
+ cy

)
− log|detJ |+ d

2
log(2π)

]
(15)

The loss function Lg is actually defined as the above maximum likelihood loss Lm with inter-class
Gaussian mixture prior.

Extending Lg for Learning Intra-Class Mixed Class Centers. When we extend the Gaussian
prior p(Z|y) = N (µy, I) to mixture Gaussian prior p(Z|y) =

∑M
i=1 pi(y)N (µy

i , I), where M is the
number of intra-class latent centers, the likelihood of latent feature z can be calculated as follows:

pZ(z) =
∑

y
p(y)

(∑M

i=1
pi(y)N (µy

i , I)
)

(16)

Then, following the derivation in Eq. 13, we have:

logpZ(z) = log
(∑

y
p(y) sumexp

i

[−||z − µy
i ||22

2
+ cyi −

d

2
log(2π)

])
(17)

where cyi is the shorthand of logpi(y). The Lg for learning intra-class mixed class centers can be
defined as:

Lg = Ex∼p(X)

[
− log

(∑
y
p(y) sumexp

i

[−||φθ(x)− µy
i ||22

2
+ cyi −

d

2
log(2π)

])
− log|detJ |

]
(18)
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However, as the initial latent features Z usually have large distances with the intra-class centers
{µy

i }Mi=1, this will cause the value after sumexp operation close to 0. After calculating the logarithm
function, it’s easy to cause the loss to be numerically ill-defined (NaN). Besides, we find that directly
employing Eq. 18 for learning intra-class mixed class centers will lead to much worse results, as we
need to simultaneously optimize all intra-class centers of all classes to fit the inter-class Gaussian
mixture prior. To this end, we propose to decouple the inter-class Gaussian mixture prior fitting and
the intra-class latent centers learning. The loss function of learning intra-class mixed class centers is
defined in Eq. 22.

Derivation of Lmi. We first derive the general format of the mutual information loss in Eq. 7 as
follows:

Lmi = −I(Y, Z) = −H(Y ) +H(Y |Z) = −H(Y )−H(Z) +H(Y,Z)

= −H(Y )− Ex∼p(X)

[
− log

(∑
y
p(y)p(φθ(x)|y)

)]
+ E(x,y)∼p(X,Y )[−log(p(y)p(φθ(x)|y))]

= −H(Y )− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
= −Ey∼p(Y )[−logp(y)]− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
(19)

Then, by replacing p(φθ(x)|y) with N (φθ(x);µy, I) in the mutual information loss, we can derive
the following practical loss format for the second part of Eq. 19. We also use cy as a shorthand of
logp(y).

− E(x,y)∼p(X,Y )

[
log

p(y)p(φθ(x)|y)∑
y′ p(y′)p(φθ(x)|y′)

]
= −E(x,y)∼p(X,Y )

[
log

p(y)N (φθ(x);µy, I)∑
y′ p(y′)N (φθ(x);µy′ , I)

]
= −E(x,y)∼p(X,Y )

[
log

(2π)−
d
2 e−

1
2 (φθ(x)−µy)

T (φθ(x)−µy) · ecy∑
y′(2π)−

d
2 e−

1
2 (φθ(x)−µy′ )T (φθ(x)−µy′ ) · ecy′

]

= −E(x,y)∼p(X,Y )

[
log

e−
||φθ(x)−µy||22

2 +cy∑
y′ e−

||φθ(x)−µ
y′ ||22

2 +cy′

]

= −E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
(20)

By replacing Eq. 20 back to the Eq. 19, we can obtain the following practical loss format of the
mutual information loss.

Lmi = −Ey∼p(Y )[−logp(y)]− E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
= −Ey∼p(Y )[−cy]− E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)]
= −E(x,y)∼p(X,Y )

[
logsoftmax

y

(
− ||φθ(x)− µy′ ||22

2
+ cy′

)
− cy

]
(21)

Intra-Class Mixed Class Centers Learning Loss. The loss function for learning the intra-class
class centers is actually the same as the Lg in Eq. 6. But we note that we need to replace the class
centers with the intra-class centers: µy

i = {µy
1 +∆µy

i }Mi=1, and the sum operation is performed on all
intra-class centers µy

i within the corresponding class y. Another difference is that we need to detach
the main center µy

1 from the gradient graph and only optimize the delta vectors. The loss function can
be written as:

Lin = E(x,y)∼p(X,Y )

[
− logsumexp

i

(
− ||φθ(x)− (SG[µy

1] + ∆µy
i )||22

2
+cyi

)
− log|detJ |

]
(22)
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Finally, we note that the use of logsumexp and logsoftmax pytorch operations above is quite
important. As the initial ||φθ(x)− µy||22/2 distance values are usually large, if we explicitly perform
the exp and then log operations, the values will become too large and the loss will be numerically
ill-defined (NaN).

F AN INFORMATION-THEORETIC VIEW

Information theory (Shannon, 1948) is an important theoretical foundation for explaining deep
learning methods. The well-known Information Bottleneck principle (Tishby et al., 1999; Tishby &
Zaslavsky, 2015; Alemi et al., 2017; Saxe et al., 2018) is also rooted from the information theory,
which provides an explanation for representation learning as the trade-off between information
compression and informativeness retention. Below, we denote the input variable as X , the latent
variable as Z, and the class variable as Y . Formally, in this theory, supervised deep learning attempts
to minimize the mutual information I(X,Z) between the input X and the latent variable Z while
maximizing the mutual information I(Z, Y ) between Z and the class Y :

min I(X,Z)− αI(Z, Y ) (23)

where the hyperparameter α > 0 controls the trade-off between compression (i.e., redundant informa-
tion) and retention (i.e., classification accuracy).

In this section, we will show that our method can be explained by the Information Bottleneck principle
with the learning objective minI(X,ZE)−αI(Z, Y ), where ZE = φθ(X+E) and p(E) = N (0, σ2I)
is Gaussian with mean zero and covariance σ2I. First, we derive I(X,ZE) as follows:

I(X,ZE) = I(ZE , X) = H(ZE)−H(ZE |X)

= Ex∼p(X),ϵ∼p(E)[−logp(φθ(x+ ϵ))]︸ ︷︷ ︸
:=A

+Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|x)]︸ ︷︷ ︸
:=B

(24)

To approximate the second item (B), we can replace the condition x with φθ(x), because φθ is
bijective and both conditions convey the same information (Ardizzone et al., 2020).

B = Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|x)] = Ex∼p(X),ϵ∼p(E)[logp(φθ(x+ ϵ)|φθ(x))] (25)

We can linearize φθ(x+ ϵ) by its first order Taylor expansion: φθ(x+ ϵ) = φθ(x) + Jϵ+O(ϵ2),
where the matrix J = ▽xφθ(x) is the Jacobian matrix of the bijective transformation (z = φθ(x)
and x = φ−1

θ (z)). Then, we have:

B = Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ+O(ϵ2)|φθ(x))]

= Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ|φθ(x))] + Eϵ∼p(E)[O(ϵ2)]
= Ex∼p(X),ϵ∼p(E)[logp(φθ(x) + Jϵ|φθ(x))] +O(σ2) (26)

where the Eϵ∼p(E)[O(ϵ2)] is actually the covariance of p(E) = N (0, σ2I), thus can be replaced with
O(σ2). Since p(E) is Gaussian with mean zero and covariance σ2I, the conditional distribution is
Gaussian with mean φθ(x) and covariance σ2JJT . Then, we have:

B = Ex∼p(X),ϵ∼p(E)[logN (φθ(x) + Jϵ;φθ(x), σ
2JJT )] +O(σ2)

= Ex∼p(X),ϵ∼p(E)[log((2π)
− d

2 · (|σ2JJT |)− 1
2 · e−

1
2

1
σ2 ϵT ϵ)] +O(σ2)

= Ex∼p(X)[−
1

2
log(|σ2JJT |)]− d

2
log(2π)− 1

2σ2
Eϵ∼p(E)[ϵ

T ϵ] +O(σ2)

= Ex∼p(X)[−
1

2
log(|JJT |)]− dlog(σ)− d

2
log(2π)− 1

2σ2
O(σ2) +O(σ2)

= Ex∼p(X)[−log|detJ |]− dlog(σ)−
d

2
log(2π)− 1

2σ2
O(σ2) +O(σ2) (27)
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For the first item (A), we can use the derivation in Eq. 13.

A = Ex∼p(X),ϵ∼p(E)[−logp(φθ(x+ ϵ))]

= Ex∼p(X),ϵ∼p(E)

[d
2
log(2π)− logsumexp

y

(
− ||φθ(x+ ϵ)− µy||22

2
+ cy

)]
= Ex∼p(X),ϵ∼p(E)

[
− logsumexp

y

(
− ||φθ(x+ ϵ)− µy||22

2
+ cy

)]
+
d

2
log(2π) (28)

Finally, we put the above derivations together and drop the constant items and the items that vanish
with rate O(σ2) as σ → 0. The I(X,ZE) becomes:

I(X,ZE) = Ex∼p(X),ϵ∼p(E)

[
− logsumexp

y

(
− ||φθ(x+ ϵ)− µy||22

2
+ cy

)
− log|detJ |

]
(29)

We can find that the I(X,ZE) has the same formula as the loss Lg except the constant item d
2 log(2π),

and I(Z, Y ) = I(Y, Z) = −Lmi (see Eq. 19). Thus, the learning objective minI(X,ZE)−αI(Z, Y )
in Information Bottleneck principle can be converted to Lg + αLmi, which is the first half part of the
training loss in Eq. 11.

From the Information Bottleneck principle perspective, we can explain our method: it attempts to
minimize the mutual information I(X,ZE) between X and ZE , forcing the model to ignore the
irrelevant aspects of X + E which do not contribute to fit the latent distribution and only increase
the potential for overfitting. Therefore, the Lg loss function actually endows the normalizing flow
model with the compression ability for establishing correct invertible mappings between input X
and the latent Gaussian mixture prior Z, which is effective to prevent the model from learning the
“homogeneous mapping”. Simultaneously, it encourages to maximize the mutual information I(Y, Z)
between Y and Z, forcing the model to map different class features to their corresponding class
centers which can contribute to class discriminative ability.

G ADDITIONAL RESULTS

Quantitative Results Under the Single-Class Setting. In Tab. 6, we report the detailed results of
anomaly detection and localization on MVTecAD (Bergmann et al., 2019) under the single-class
setting. We can find that all baselines achieve excellent results under the single-class setting, but their
performances drop dramatically under the unified case (see Tab. 1 in the main text). For instance, the
strong baseline, DRAEM, suffers from a drop of 9.9% and 10.1%. The performance of the previous
SOTA NF-based AD method, FastFlow, drops by 7.6% and 2.5%. This demonstrates that the unified
anomaly detection is quite more challenging than the conventional single-class anomaly detection
task, and current SOTA AD methods cannot be directly applied to the multi-class AD task well. Thus,
how to improve the unified AD ability for AD methods should be further studied. On the other hand,
compared with reconstruction-based AD methods (e.g, DRAEM (Zavrtanik et al., 2021)), NF-based
AD methods have less performance degradation when directly applied to the unified case, indicating
that NF-based approaches may be a more suitable way for the multi-class AD modeling than the
reconstruction-based approaches.

Log-likelihood Histograms. In Fig. 5, we show log-likelihoods generated by the single-class NF-
based AD method and our method. All categories are from the MVTecAD dataset. The visualization
results can empirically verify our speculation that the single-class NF-based AD methods may fall
into the “homogeneous mapping” issue, where the normal and abnormal log-likelihoods are highly
overlapped.

Qualitative Results. We present in Fig. 6 additional anomaly localization results of categories with
different anomalies in the MVTecAD dataset. It can be found that our approach can generate much
better anomaly score maps that the single-class NF-based baseline CFLOW (Gudovskiy et al., 2022)
even for different categories from the MVTecAD dataset.
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Table 6: Anomaly detection and localization results on MVTecAD. All methods are evaluated
under the single-class setting. ·/· means the image-level and pixel-level AUROCs.

Category Baseline Methods Unified Methods NF Based Methods
PaDiM MKD DRAEM PMAD UniAD FastFlow CFLOW

Carpet 99.8/99.0 79.3/95.6 97.0/95.5 99.7/98.8 99.9/98.0 100/99.4 100/99.3
Grid 96.7/97.1 78.0/91.8 99.9/99.7 97.7/96.3 98.5/94.6 99.7/98.3 97.6/99.0

Leather 100/99.0 95.1/98.1 100/98.6 100/99.2 100/98.3 100/99.5 97.7/99.7
Tile 98.1/94.1 91.6/82.8 99.6/99.2 100/94.4 99.0/91.8 100/96.3 98.7/98.0

Wood 99.2/94.1 94.3/84.8 99.1/96.4 98.0/93.3 97.9/93.4 100/97.0 99.6/96.7

Bottle 99.9/98.2 99.4/96.3 99.2/99.1 100/98.4 100/98.1 100/97.7 100/99.0
Cable 92.7/96.7 89.2/82.4 91.8/94.7 98.0/97.5 97.6/96.8 100/98.4 100/97.6

Capsule 91.3/98.6 80.5/95.9 98.5/94.3 89.8/98.6 85.3/97.9 100/99.1 99.3/99.0
Hazelnut 92.0/98.1 98.4/94.6 100/99.7 100/98.8 99.9/98.8 100/99.1 96.8/98.9
Metal nut 98.7/97.3 73.6/86.4 98.7/99.5 99.2/97.5 99.0/95.7 100/98.5 91.9/98.6

Pill 93.3/95.7 82.7/89.6 98.9/97.6 94.3/95.5 88.3/95.1 99.4/99.2 99.9/99.0
Screw 85.8/98.4 83.3/96.0 93.9/97.6 73.9/91.4 91.9/97.4 97.8/99.4 99.7/98.9

Toothbrush 96.1/98.8 92.2/96.1 100/98.1 91.4/98.2 95.0/97.8 94.4/98.9 95.2/99.0
Transistor 97.4/97.6 85.6/76.5 93.1/90.9 99.8/97.8 100/98.7 99.8/97.3 99.1/98.0

Zipper 90.3/98.4 93.2/93.9 100/98.8 99.5/96.7 96.7/96.0 99.5/98.7 98.5/99.1

Mean 95.5/97.4 87.8/90.7 98.0/97.3 96.1/96.8 96.6/96.6 99.4/98.5 98.3/98.6

Single-Class 

NF-based AD
Our GiGAD

Single-Class 

NF-based AD

Single-Class 

NF-based AD
Our GiGAD Our GiGAD

Bottle Cable Capsule

Carpet Grid Hazelnut

Leather Metal_nut Pill

Screw Tile Toothbrush

Transistor Wood Zipper

Figure 5: Log-likelihood histograms on MVTecAD. All categories are from the MVTecAD dataset.
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GT CFLOW Ours GT CFLOW Ours GT CFLOW Ours

Figure 6: Qualitative results on MVTecAD. More visualization of anomaly localization maps
generated by our method on industrial inspection data. All examples are from the MVTecAD dataset.
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