Published at the GEM workshop, ICLR 2024

GREEN FLUORESCENT PROTEIN ENGINEERING WITH A
BIOPHYSICS-BASED PROTEIN LANGUAGE MODEL

Sam Gelman & Bryce Johnson

Department of Computer Sciences, University of Wisconsin-Madison
Morgridge Institute for Research
{sgelman2,bcjohnson7}@wisc.edu

Chase Freschlin & Sameer D’Costa
Department of Biochemistry, University of Wisconsin-Madison
{freschlin, dcosta2}@wisc.edu

Anthony Gitter *

Department of Computer Sciences, University of Wisconsin-Madison

Morgridge Institute for Research

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
gitter@biostat.wisc.edu

Philip A. Romero *
Department of Biochemistry, University of Wisconsin-Madison
promero2@wisc.edu

Deep neural networks and language models are revolutionizing protein modeling and design (Bepler
& Bergerl 2021)), but these models struggle in low data settings and when generalizing beyond their
training data. Although prior neural networks have proven capable in learning complex evolutionary
or sequence-structure-function relationships from large datasets, they largely ignore the vast accu-
mulated knowledge of protein biophysics, limiting their ability to perform the strong generalization
required for protein engineering. We introduce Mutational Effect Transfer Learning (METL), a
specialized protein language model for predicting quantitative protein function that bridges the gap
between traditional biophysics-based and machine learning approaches. METL incorporates syn-
thetic data from molecular simulations as a means to augment experimental data with biophysical
information. Molecular modeling can generate large datasets revealing mappings from amino acid
sequences to protein structure and properties. Pretraining protein language models on this data can
impart fundamental biophysical knowledge that can be connected with experimental observations.

METL operates in three steps: synthetic data generation, synthetic data pretraining, and experimen-
tal data finetuning. First, we generate synthetic pretraining data via molecular modeling with Rosetta
(Alford et al.,|2017) to model the structures of millions of protein sequence variants. For each mod-
eled structure, we extract 55 biophysical attributes including molecular surface areas, solvation ener-
gies, van der Waals interactions, and hydrogen bonding. Second, we pretrain a transformer encoder
(Vaswani et al.l 2017) to learn relationships between amino acid sequences and these biophysical
attributes and to form an internal representation of protein sequences based on their underlying
biophysics. The transformer utilizes a protein structure-based relative positional embedding (Shaw
et al., 2018)) that considers the three-dimensional distances between residues. Finally, we finetune
the pretrained transformer encoder on limited experimental sequence-function data to produce a
model that integrates prior biophysical knowledge with experimental data. Finetuned models pre-
dict specific quantitative functions assayed in experimental datasets such as binding, thermostability,
and expression. The complete METL model and evaluations are presented in|Gelman et al.|(2024).

To demonstrate METL’s ability to guide protein engineering with limited training data, we applied
it to design green fluorescent protein (GFP) sequence variants in complex scenarios (Gelman et al.,
2024). We used a version of METL, referred to as METL-Local, pretrained on 20M synthetic GFP
variants and their corresponding Rosetta scores. This model was finetuned to predict GFP brightness
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using only 64 variants randomly sampled from an experimental dataset (Sarkisyan et al.,[2016). We
tested two design scenarios, Observed and Unobserved, whereby designed variants were constrained
to either include or exclude amino acid substitutions found in the training set, respectively. The
designed variants contained 5 or 10 amino acid substitutions from wild-type GFP, which is more
than the average 3.9 substitutions in the training data.

Within these strict experimental constraints, we used METL-Local, simulated annealing, and clus-
tering to design 20 GFP sequences that were not part of the original dataset and experimentally
validated the resulting GFP variants to measure their relative brightness (Fig.[I). Of the 20 designed
sequences, 16 exhibited fluorescence. The hit rate was 40% (2/5) in the most restrictive design
scenario, Unobserved with 10 amino acid substitutions, and it increased to 80% (4/5) with 5 sub-
stitutions. In the Observed design scenario, the hit rate was 100% (10/10). While several of the
designed sequences matched or exceeded the relative brightness of the best training set variant, none
surpassed that of the wild type. Despite this, six variants exhibited greater GFP fluorescence than
the wild type. We theorize improved stability compensates for reduced brightness such that the total
GFP fluorescence for these variants is greater than wild type GFP.

Pretraining Finetuning Observed AA designs
on simulated on experimental 5x 5-mutants 5x 10-mutants
GFP variants GFP variants Simu’alf_ed Mutations observed
o annealing q q
Pretrainin, PR 17T 7T TT 1N in experimental
[” | ” ] [ | I | I I ] ¢ METL-Local optimization ) training variants
[Dj |:{> model for
[ | | | ” ] [ | ” | | ] GFP brightness Unobserved AA designs Mutations not observed
( | ] (1T 1 )] Finetuning 5x 5-mutants 5x 10-mutants in experimental
training variants
20M examples w/ 64 examples w/
up to 5 mutations avg 3.9 mutations ( )( )
b p — 2T %
% Training ?113 :
Y& Wildtype GFP N ® e
& 0.8 @
O O e (O Training examples D\E. ® ® . ® ‘
28O 002 o, Wy, 5 06 ¢ o
a 8_e%, o o) -20 -15 -1.0 05 00 - .
8 O, O O 7]
[0] o [0} .
2 % © oo o © 3 S 044 ®
S 06000 O o Designs = 0.
=] 0 & o X))
g o " @ 000 5 @ Fluorescent observed o ’ .
@ '. o (0] O Non-fluorescent observed g 0.2 ‘
o® B
‘ o 98 Fluorescent unobserved ® 8
$% Non-fluorescent unobserved @ 0.0 © @ O
T T
& BTWT  Observed Observed Unobserved Unobserved
Sequence space 5-mutants 10-mutants 5-mutants 10-mutants

Figure 1: Engineering GFP variants in challenging design scenarios with METL. (a) Overview
of the GFP design experiment. (b) Multidimensional scaling sequence space visualization of the
wild type GFP sequence, the 64 GFP training sequences, and the 20 designed proteins. Training
set sequences are colored on a gradient according to their experimental brightness score. Designed
sequences are colored according to whether they exhibited fluorescence. (c¢) Experimentally char-
acterized brightness (multiple replicates) of the designed sequences, the best training set sequence
(BT), and the wild-type sequence (WT).

METL fits within the broader trend of combining simulations and machine learning (Cranmer et al.,
2020), and it represents a significant step toward effectively integrating biophysics insights with
machine learning-based protein fitness prediction. The METL framework pretrains protein language
models on molecular simulations, capturing underlying signals present in the simulated data. METL
can pretrain on general stability terms or more specific function-related scores, offering the potential
to model protein functions that can be simulated but are not highly evolutionarily constrained. As the
field of biophysics and molecular simulation continues to evolve, METL stands to benefit from faster
and more accurate simulations. Biophysics-based pretraining can help overcome key challenges
in protein engineering, such as prioritizing protein variants for experimental analysis with limited
training data. Consequently, METL emerges as a promising tool for protein engineering with a
distinct approach from the many existing methods rooted in evolutionary information.
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