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Learning With Asymmetric Kernels: Least
Squares and Feature Interpretation
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and Johan A. K. Suykens , Fellow, IEEE

Abstract—Asymmetric kernels naturally exist in real life, e.g.,
for conditional probability and directed graphs. However, most
of the existing kernel-based learning methods require kernels to
be symmetric, which prevents the use of asymmetric kernels.
This paper addresses the asymmetric kernel-based learning in the
framework of the least squares support vector machine named
AsK-LS, resulting in the first classification method that can uti-
lize asymmetric kernels directly. We will show that AsK-LS can
learn with asymmetric features, namely source and target fea-
tures, while the kernel trick remains applicable, i.e., the source
and target features exist but are not necessarily known. Besides,
the computational burden of AsK-LS is as cheap as dealing with
symmetric kernels. Experimental results on various tasks, includ-
ing Corel, PASCAL VOC, Satellite, directed graphs, and UCI
database, all show that in the case asymmetric information is
crucial, the proposed AsK-LS can learn with asymmetric ker-
nels and performs much better than the existing kernel meth-
ods that rely on symmetrization to accommodate asymmetric
kernels.

Index Terms—Asymmetric kernels, directed graphs, Kullback-
Leibler kernel, least squares support vector machine.
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I. INTRODUCTION

K ERNEL-BASED learning [1], [2] is an important scheme
in machine learning and has been widely used in classifi-

cation [3], [4], regression [5], clustering [6], and many other
tasks. Traditionally, a kernel used in kernel-based learning
should satisfy the Mercer’s condition [7]. For the Mercer’s
condition, there are two well-known requirements on a kernel
K(·, ·) : Rd ×Rd �→ R: for samples {xi, yi}mi=1, where d and
m are the dimension and number of data. The kernel matrix
K : Kij = K(xi,xj) should be i) symmetric and ii) positive
semi-definite (PSD). When the latter condition is relaxed, the
flexibility is enhanced and those methods are called indefinite
learning, for which some interesting results could be found
in [8], [9], [10], [11], [12] and a review [13]. However, discussion
on relaxing the symmetry condition is rare. Many asymmetric
similarities exist in real life. For example, in directed graphs,
the connection similarity is asymmetric: d(xi,xj) �= d(xj ,xi).
The conditional probability, which has been widely used to
measure the directional similarity [14], is also asymmetric:
p(xi|xj) �= p(xj |xi). Those asymmetric measurements cannot
be used in current kernel-based learning directly.

Let us consider the support vector machine (SVM, [3])

min
α∈Rm

1

2
α�Hα− 1�α, s.t. Y �α = 0, 0 ≤ α ≤ C1, (1)

whereC > 0 is a pre-given constant,1 is a m-dimensional vector
of all ones, Y = [y1, . . . , ym]�, α is a dual variable vector, and
H : Hij = yiKijyj . When H is asymmetric, at least in (1),
we can directly use it. However, by noticing that

α�Hα = α�
H� +H

2
α, ∀α ∈ Rm,H ∈ Rm×m,

one can find that only the symmetric part of an asymmetric kernel
is learned when directly using it in SVM.

Another popular kernel-based learning framework is the least
squares support vector machine (LS-SVM, [1], [15]). Its dual
form is the following linear system[

0 Y �

Y I
γ +H

][
b

α

]
=

[
0

1

]
,

where I is an identity matrix. An interesting point here is that us-
ing an asymmetric kernel in LS-SVM will not reduce to its sym-
metrization and asymmetric information can be learned. Then
we can develop asymmetric kernels in the LS-SVM framework
in a straightforward way. The corresponding kernel trick, feature
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interpretation, and asymmetric information will be investigated
in this paper. Notice that we do not claim that asymmetric kernels
could not be applied in SVM, but it is not straightforward and
requires further investigation. Similarly, for symmetric but in-
definite kernels, the solving method in the LS-SVM framework
keeps easy [10], while SVM needs delicately design in form,
theory, and solving-algorithm [11], [16].

In this paper, a novel method called AsK-LS for learning with
asymmetric kernels in the framework of least squares will be
established. The most important discussion is to investigate the
kernel trick and the feature interpretation on how the asymmetric
information could be extracted by Ask-LS. Generally, there are
two features involved in the kernel trick. Using the concept in
directed graphs, which have two feature embeddings for source
and target nodes [17], [18], [19], we call the features in AsK-LS
as source feature and target feature. The name distinguishes
two features but does not mean that it can only be used for di-
rected graphs. For the singular value decomposition, asymmetric
kernels could be introduced into the LS-SVM framework [20]
where the two features are related to columns and rows of the
matrix, respectively.

For the discussion on learning theory, classical PD kernels
induce functions in reproducing kernel Hilbert spaces, which
is then extended to reproducing kernel Kerı̆n spaces for in-
definite kernels. To formulate the asymmetric kernel methods,
reproducing kernel Banach space (RKBS) provides a suitable
mathematical framework. Various RKBSs have been introduced
in a wide variety of fields, including, among many others,
machine learning [21], sampling reconstruction [22], and sparse
approximation [23]. For more recent progress on RKBSs, one
can refer to [24] and references therein. However, most existing
literature only focuses on the theoretical properties of RHBSs,
while how to conduct optimization in these spaces has not yet
been thoroughly investigated. In this paper, we apply a general-
ized kernel trick to construct asymmetric kernels in Definition
1. This kernel indeed defines a reproducing kernel of a RKBS
constructed in [24] (see Section 2.2 of [24] for more details).

In the rest of this paper, we will first discuss asymmetric
kernels and illustrate that there are two different features em-
bedded in an asymmetric kernel; see Section II for details. Then
in Section III we will formulate AsK-LS, discuss its feature
interpretation, and design the solving algorithm. In principle,
an asymmetric kernel contains more information than the sym-
metric one. Thus, the proposed AsK-LS will demonstrate advan-
tages when the asymmetric information is crucial, as numerically
evaluated in Section IV. Section V will end this paper with a brief
conclusion.

II. ASYMMETRIC KERNELS

In the classical kernel-based learning, the kernel K is sym-
metric, i.e., the kernel matrix Kij = K(xi,xj) for training
samples is symmetric. But there could be many asymmetric
kernels. For example, in image classification tasks, the Kullback-
Leibler (KL, [25]) kernel could be used to measure the similarity
between two probability distributions. The directed graph is
another example, where the dissimilarity between two nodes is
essentially asymmetric. Notice that similarity and dissimilarity

could be readily converted. In text, we choose one following
usual custom. While, for kernel value, we always use similarity,
i.e., the larger the kernel value is, the higher similarity is, which
is also the setting of the radial basis function (RBF) kernel, the
most widely used kernel.

Intuitively, K being asymmetric contains more information
than that being symmetric. For symmetric kernels, the kernel
trick (there are additional conditions for the existence of kernel
trick; see, e.g, [7]) means that there is a feature mapping φ such
that K(u,v) = 〈φ(u), φ(v)〉 for two samples u and v. Then it
is expected that there are more features for asymmetric kernels.
Fig. 1 illustrates a simple case for asymmetric (dis)similarity. In
Fig. 1(b-d), we illustrate three methods which make the kernel
matrix symmetric. For source dissimilarity, one can extract a
nonlinear feature mapping, denoted as φs(u). Meanwhile, a
target nonlinear feature mapping, denoted as φt(u) which is
generally different from φs(u), can be also extracted. However,
in the existing kernel-based learning, only symmetric kernels
are acceptable and hence one has to use: symmetric similarity,
for example, (K� +K)/2 orK�K, which indicates that those
symmetrization methods may lose asymmetric information.

Besides KL kernel and directed graphs, there are other tasks
where the asymmetric kernels may be superior. In kernel density
estimation problems, asymmetric kernels performed better than
symmetric ones where the underlying random variables were
bounded [26], [27], [28]. In Gaussian process regression tasks,
Pintea et al. argued that it was helpful to set an individual kernel
parameter for each data center, which enabled each data center to
learn a proper kernel parameter in its neighborhood and resulted
in an asymmetric kernel matrix [29]. In federated learning
tasks [30], an asymmetric neural tangent kernel was established
to address the issue that the gradient of the global machine was
not determined by local gradient directions directly.

Our aim in this paper is to propose a novel method to directly
learn with asymmetric kernels and can correspondingly learn
with two feature mappings. For a long time, symmetrization
is the main way for dealing with asymmetric kernels. In an
early paper [31], Tsuda let the asymmetric kernel matrix S be
symmetric by multiplying its transpose, then a new symmetric
matrix Q was obtained as Q = S�S. Munoz et al. utilized
a pick-out method to convert the asymmetric kernel into the
symmetric one [32]. Moreno et al. studied the KL divergence
kernel D(P,Q) in SVM on multimedia data [25]. They defined
D(P,Q) = KL(P||Q) + KL(Q||P) to satisfy the Mercer’s condi-
tion, but the asymmetric information disappeared. Koide and
Yamashita proposed an asymmetric kernel method and applied
it to the Fisher’s discriminant (AKFD) [33]. They claimed that
an asymmetric kernelK(x,y) = 〈φ1(x), φ2(y)〉was generated
by the inner product between two different feature mappings. In
the AKFD, the decision function was assumed to be spanned
by {φ1(xi)}mi=1 and input data were mapped by φ2. However,
the assumption of the AKFD was very strict and the situation
that the decision function was spanned by {φ2(xi)}mi=1 was
not considered. Wu et al. proposed a hyper asymmetric kernel
method to learn with asymmetric kernels between data from two
different input spaces such as query spaceX and document space
Y [34], while an asymmetric kernel degenerated to a symmetric
one when two spaces were identical, i.e., X = Y . In summary,
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Fig. 1. Simple illustration for asymmetric dissimilarity. In order to show the asymmetric information, the dissimilarity between sample C and the other samples
is shown in sub-figures (b), (c) and (d) as an example. (a) There are seven samples on a directed graph where red and green colors indicate two categories. The
dissimilarity from one sample to another one is defined as the shortest path from the first sample to the latter, for example, the dissimilarity from sample A to
sample E is 2 and if the sample can not be reached, dissimilarity is∞. (b) Symmetrization. The directed edges are replaced by undirected edges. (c) Source space.
The dissimilarity from C to others. (d) Target space. The dissimilarity from other samples to C.

these works used symmetrization methods at the optimization
level, which canceled the asymmetric information and was not
expected in the asymmetric kernel-based learning.

It was interesting that the matrix singular value decomposition
(SVD) could be merged in the LS-SVM framework [20], [35].
The matrix to be decomposed could be asymmetric and even
non-square, implying that LS-SVM could tolerate asymmetric
kernels. From the viewpoint of the LS-SVM setting, the matrix
SVD was related to two feature maps acting on the column
vectors and the row vectors of the matrix, respectively. For
directed graphs, it was also possible to use the adjacency matrix
without the label to extract embeddings as the source and target
features, respectively [17], [18], [19]. These works, although in
an unsupervised setting, demonstrated that asymmetric kernels
can be studied rather than through the symmetrization process.

III. ASYMMETRIC KERNELS IN LS-SVM

A. PD and Indefinite Kernels in LS-SVM

Given training samples {xi, yi}mi=1 with x ∈ Rd and y ∈
{+1,−1}, a discriminant function f : Rd → R is constructed
to classify the input samples. For linearly inseparable problems,
a non-linear feature mapping φ : Rd → Rp is needed, where Rp

is a high-dimensional space.
LS-SVMs with positive definite (PD) kernels can be solved

by the following optimization problem [15]

min
ω,b,ξ

1

2
ω�ω +

γ

2

m∑
i=1

ξ2i

s.t. yi(ω
�φ(xi) + b) = 1− ξi
∀i ∈ {1, 2, . . . ,m}, (2)

where the discriminant function f is formulated as f(x) =
ω�φ(x) + b. When the kernel is generalized to a non-PD one,
the primal problem is as follows [10]

min
ω,b,ξ

1

2

(
ω�+ω+ − ω�−ω−

)
+

γ

2

m∑
i=1

ξ2i

s.t. yi
(
ω�+φ+(xi) + ω�−φ−(xi) + b

)
= 1− ξi

∀i ∈ {1, 2, . . . ,m}, (3)

where φ+ : Rd → Rp1 and φ− : Rd → Rp2 are two non-linear
feature mappings, both Rp1 and Rp2 are potential high-
dimensional spaces. The discriminant function here is formu-
lated as f(x) = ω�+φ+(xi) + ω�−φ−(xi) + b.

Although the feature interpretations of (2) and (3) are not the
same, their dual problems share the same formulation as below[

0 Y �

Y I
γ +H

][
b

α

]
=

[
0

1

]
. (4)

The kernel trick, which gives the feature interpretation of (4),
is different for different types of kernels. If the kernel is PD then

K(xi,xj) = 〈φ(xi), φ(xj)〉,
If the kernel is non-PD but has a positive decomposition associ-
ated with a reproducing kernel Kreı̆n space (RKKS), for which
the conceptual condition and a practice judgment can be found
in [12], the kernel trick becomes

K(xi,xj) = 〈φ+(xi), φ+(xj)〉 − 〈φ−(xi), φ−(xj)〉
= K+(xi,xj)−K−(xi,xj),

where K+ and K− are two PD kernels.

B. AsK-LS

When looking at the framework of LS-SVM from the view-
point of solving (4), there is not any problem ifK is asymmetric.
It is still well-defined and a solution can be readily obtained.
The key problem is to analyze what we really learn if K is
asymmetric.

First, we define a generalized kernel trick to present a kernel
as an inner product of two mappings φs and φt.

Definition 1. A kernel trick for a kernelK : Rds ×Rdt → R
can be defined by the inner product of two different feature
mappings as follows:

K(u,v) = 〈φs(u), φt(v)〉, ∀u ∈ Rds ,v ∈ Rdt ,

where φs : Rds → Rp, φt : Rdt → Rp, and Rp is a high-
dimensional even an infinite-dimensional space.

Different from the classical kernel trick, the above definition
allows different φs and φt, of which even the dimension ds
and dt could be different. In this article, we consider the case
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d := ds = dt then both K(u,v) and K(v,u) are well-defined
and the kernel matrix for training data is square but asymmetric.
Definition 1 is compatible with the existing symmetric kernels,
including PD and indefinite ones.

1) The symmetric and positive definite kernelK(u, v) can be
defined as follows:

K(u,v) = 〈φ(u), φ(v)〉, ∀u,v ∈ Rd,

in the situation when, two feature mappings φs and φt are
identical φ := φs = φt. φs, φt ∈ Rd → Rp.

2) The symmetric and indefinite kernel K(u, v) can be de-
fined as follows:

K(u,v) = K1(u,v)−K2(u,v)

= 〈φ1(u), φ1(v)〉 − 〈φ2(u), φ2(v)〉

=

[
φ1(u)

φ2(u)

]� [
φ1(v)

−φ2(v)

]

:= 〈φs(u), φt(v)〉, ∀u,v ∈ Rd,

in the situation when two feature mappings φs and φt

are not identical, K1 and K2 are two PD kernels and φ1 :
Rd → Rp1 and φ2 : Rd → Rp2 are two high-dimensional
feature mappings corresponding to K1 and K2, respec-
tively. Rp1 and Rp2 are two high-dimensional spaces.

The kernel trick associated with an asymmetric kernel con-
tains two different feature mappings. Using the concept from
directed graphs, we call them source and target features, respec-
tively. Then for each sample, e.g., a node in a directed graph,
we can extract two features from different views and classify
the sample in the framework of the least squares support vector
machine, which is hence called Ask-LS. AsK-LS in the primal
space takes the following form

min
ω,ν,b1,b2,e,h

ω�ν +
γ

2

m∑
i=1

e2i +
γ

2

m∑
i=1

h2
i

s.t. yi(ω
�φs(xi) + b1) = 1− ei

yi(ν
�φt(xi) + b2) = 1− hi

∀i ∈ {1, 2, . . . ,m},
(5)

where ei, hi ∈ R and γ is the regularization coefficient of mis-
classification errors.

In the objective function of (5), there are three terms. The
latter two are to require the output to be around the label,
i.e., we not only pursue classification accuracy but also prefer
small within-class scatter. It is as same as that in LS-SVM
and the only difference is that (5) considers both the source
and target feature spaces simultaneously. The first term, i.e.,
ω�ν, is a regularization term in pseudo-euclidean (pE) spaces.
In the SVM framework, the geometric meaning about margin
in pE spaces has been discussed in [9]. A pE space R(p,q)

can be seen as a product space of real and imaginary eu-
clidean vector spaces Rp × iRq , where i =

√−1, p, q ∈ N0.
A bilinear but not necessarily positive definite inner product is
defined by 〈z, z′〉pE = z�Mz′ and a square norm is defined by
‖z‖2pE = 〈z, z〉pE for indefinite learning where z, z′ ∈ R(p,q)

and M = diag(1p,−1q). [9] minimizes 1
2‖z‖2pE as a margin

regularization. In a word, ω�ν plays as a regularization term in
the pE space R(p,p)

ω�ν =
1

2

[
ω

ν

]� [
0 Ip

Ip 0

][
ω

ν

]
=

1

2
μ�Bμ,

where Ip is a p× p identity matrix and μ,B are defined by

μ =

[
ω

ν

]
, B =

[
0 Ip

Ip 0

]
.

B is a real symmetric matrix and has a spectral decomposi-
tion B = ΓΛΓ�, where Γ is a orthogonal matrix and Λ is a
real diagonal matrix. Notice that BB� = ΓΛ2Γ� = I2p, from
which it follows that Λ2 = I2p, i.e., eigenvalues λi of B are
±1. Besides, the trace of B is 0, i.e.,

∑2p
i=1 λi = 0. Combining

the above two conditions, we know that the diagonal matrix
Λ = diag(1p,−1p) and then

ω�ν =
1

2

[
ω

ν

]� [
0 Ip

Ip 0

][
ω

ν

]
=

1

2
μ�Bμ

=
1

2
μ�Γ

[
Ip 0

0 −Ip

]
Γ�μ

=
1

2
〈Γ�μ,Γ�μ〉pE

=
1

2
‖Γ�μ‖2pE

=
1

2

∥∥∥∥∥Γ�
[
ω

ν

]∥∥∥∥∥
2

pE

.

Therefore, similarly to the discussion in [9], ω�ν in (5) can be
regarded as a Tikhonov margin regularization in the pE space
R(p,p). This term also has appeared in discussing singular value
decomposition [20], where the column and row vectors can
also be regarded as two different features but SVD works in
an unsupervised learning manner.

Now let us investigate the dual problem of (5), of which the
kernel trick for an asymmetric kernel is crucial.

Proposition 1. Let b�1, b
�
2,α

�,β� be the solution of the prob-
lem below, whereH ij = yiφs(xi)

�φt(xj)yj = yiK(xi,xj)yj
with an asymmetric kernel K⎡

⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1

b2

α

β

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

0

1

1

⎤
⎥⎥⎥⎦, (6)

1) ω� and ν� are spanned by {φt(xi)}mi=1 and {φs(xi)}mi=1,
respectively

ω� =

m∑
i=1

β�
i yiφt(xi), ν� =

m∑
i=1

α�
i yiφs(xi),

where (ω�,ν�) is a stationary point of the primal problem
(5)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 22,2024 at 10:16:58 UTC from IEEE Xplore.  Restrictions apply. 



10048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

2) The primal problem (5) results in two discriminant func-
tions fs and ft as follows:{

fs(x) = K(x,X)(β� � Y ) + b�1
ft(x) = K(X,x)(α� � Y ) + b�2,

(7)

where X = {xi}mi=1 is a training set and � denotes a
element-wise product,
K(x,X) = [K(x,x1), . . . ,K(x,xm)],
K(X,x) = [K(x1,x), . . . ,K(xm,x)].

Proof. The Lagrangian function of the primal problem (5) is
formulated as follows:

L(Θ;α,β) = ω�ν +
γ

2

m∑
i=1

e2i +
γ

2

m∑
i=1

h2
i

+

m∑
i=1

αi(1− ei − yi(ω
�φs(xi) + b1))

+
m∑
i=1

βi(1− hi − yi(ν
�φt(xi) + b2)), (8)

where Θ = {ω,ν, b1, b2, e,h} is the parameter set. Then the
condition of stationary points requires the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ν = ω −∑m

i=1 βiyiφt(xi) = 0
∂L
∂ω = ν −∑m

i=1 αiyiφs(xi) = 0
∂L
∂b1

=
∑m

i=1 αiyi = 0
∂L
∂b2

=
∑m

i=1 βiyi = 0
∂L
∂ei

= γei − αi = 0
∂L
∂hi

= γhi − βi = 0
∂L
∂αi

= 1− ei − yi(ω
�φs(xi) + b1) = 0

∂L
∂βi

= 1− hi − yi(ν
�φt(xi) + b2) = 0.

(9)

The last two conditions can be converted into the following
equations{

∂L
∂αi

= 1− αi

γ − yib1 − yi
∑m

j=1 βjyjφ
�
s (xi)φt(xj) = 0

∂L
∂βi

= 1− βi

γ − yib2 − yi
∑m

j=1 αjyjφ
�
t (xi)φs(xj) = 0.

(10)
The (10) can be formulated as a linear system as follows:

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ ZsZt

�

0 Y ZtZs
� I

γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1

b2

α

β

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

0

1

1

⎤
⎥⎥⎥⎦, (11)

where {
Zs =

[
y1φ

�
s (x1); · · · ; ymφ�s (xm)

]
Zt =

[
y1φ

�
t (x1); · · · ; ymφ�t (xm)

]
.

According to Definition 1, an asymmetric kernel is defined as
follows:

K(xi,xj) = 〈φs(xi), φt(xj)〉.

Then, the linear system (11) can be reformulated as follows:

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1

b2

α

β

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

0

1

1

⎤
⎥⎥⎥⎦,

where Hij = yiφs(xi)
�φt(xj)yj = yiK(xi,xj)yj with a

given asymmetric kernel K.
Suppose b�1, b

�
2,α

�,β� be the solution of (6), according to
partial derivative (9), a stationary point (ω,ν) can be formulated
as below

ω� =
m∑
i=1

β�
i yiφt(xi), ν� =

m∑
i=1

α�
i yiφs(xi).

Since a stationary point of the primal problem (5) is obtained,
two functions which classify samples from source and target
points of view respectively can be formulated as follows:

{
fs(x)=ω��φs(x)+b�1=K(x,X)(β� � Y )+b�1
ft(x)=ν��φt(x)+b�2=K(X,x)(α� � Y )+b�2.

�
The primal-dual relationship between (5) and (6) for asym-

metric kernels is characterized by Proposition 1, which also
includes symmetric kernels. In that case, both the primal and
dual formulations reduce to the classical LS-SVM, as shown
below.

Proposition 2. When the kernel K in (5) is symmetric,
1) two functions fs and ft are identical;
2) two linear systems (6) and (4) are equivalent.
Proof. According to Definition 1, symmetric kernels can be

also defined in the asymmetric kernel framework. Thus, kernels
in AsK-LS can be also positive semi-definite, even indefinite.

A solution to the primal problem (5) is given by the linear
system (6) which can be reformulated as follows, according to
the matrix column transformation (CT) and row transformation
(RT) formulas,

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1

b2

α

β

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

0

1

1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H�

0 Y H I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b2

b1

β

α

⎤
⎥⎥⎥⎦.

Feeding the symmetric kernel K, H is then a symmet-
ric matrix, Hij = yiφs(xi)

�φt(xj)yj = yiK(xi,xj)yj , i.e.,
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H = H�. The following equation holds

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1

b2

α

β

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b2

b1

β

α

⎤
⎥⎥⎥⎦.

The above equation can be simplified by moving the right
term to the left.⎡

⎢⎢⎢⎣
0 0 Y � 0

0 0 0 Y �

Y 0 I
γ H

0 Y H� I
γ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1 − b2

b2 − b1

α− β

β −α

⎤
⎥⎥⎥⎦ = 0

RT−→

⎡
⎢⎢⎢⎣
Y 0 I

γ H

0 Y H� I
γ

0 0 Y � 0

0 0 0 Y �

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
b1 − b2

b2 − b1

α− β

β −α

⎤
⎥⎥⎥⎦

� A ·

⎡
⎢⎢⎢⎣
b1 − b2

b2 − b1

α− β

β −α

⎤
⎥⎥⎥⎦ = 0, (12)

where the matrix A ∈ R(2m+2)×(2m+2) denotes the system
matrix. Notice that A has a full rank and the (12) indicates that
b1 = b2 and α = β. Then two functions in (7) are identical as
below,

fs(x) = K(x,X)(β� � Y ) + b�1

= K(X,x)(α� � Y ) + b�2 = ft(x).

Since b1 = b2,α = β andH is a symmetric matrix, the linear
system (6) can be simplified into a lower-dimensional linear
system as follows:[

0 Y �

Y I
γ +H

][
b1

α

]
=

[
0

1

]
,

which is equivalent to (4) and we complete the proof.
Symmetric and asymmetric kernels lead to a unified linear

system. When the kernel is asymmetric, we simultaneously ob-
tain two functions fs, ft. The predictor can be fs only or ft only
or an ensemble of fs and ft. Which predictor to use is actually
determined by users and problems. To fully use the asymmetric
information, we merge them together by two ensemble methods.
Averaging is a simple way and other ensemble methods like the
stacked generalization [36], [37] can be also used. Overall, we
summarize the algorithm for AsK-LS in Algorithm 1.

Algorithm 1: Learning With an Asymmetric Kernel in AsK-
LS.

Input:The asymmetric kernel K, the regularization
parameter γ, training data (X,Y ), and test data Z.

Output:The prediction f(Z) of test data Z.
1: Calculate an asymmetric kernel matrix H by the

asymmetric kernel K and training data (X,Y ).
2: [α�,β�, b�1, b

�
2]← solve the linear system (6).

3: Predict test data from source and target views, i.e.,
fs(Z) and ft(Z).

4: Merge two classifiers fs(Z) and ft(Z) to obtain the
final prediction f(Z).

5: return f(Z).

The complexity of AsK-LS is as same as that of symmetric
LS-SVMs with the same matrix size. Specifically, the mem-
ory complexity of is O(m2) and the calculation complexity is
O(m3). For the sparsity, the performance is also as same as that
in a symmetric LS-SVM: all the training samples are support
vectors which participate in constructing a decision functions.
The reason is that the constrains of LS-SVMs are equalities
instead of inequalities and thus are always active. When the data
size is not very large, (6) is easy to solve. For large-scale prob-
lems, one can consider the fixed-size method [38], [39], Nyström
approximation [40], and random Fourier features (RFF) [12],
[41], [42]. For Nyström methods, the spectral decomposition
does no longer hold for asymmetric kernels. In order to ap-
proximate asymmetric kernels via low-rank matrices, one could
consider their singular value expansion. For RFF, an asymmetric
kernel does not correspond to any well-defined probability and
thus both of them are worthy of further research.

IV. NUMERICAL EXPERIMENTS

The aim of designing the AsK-LS is to learn with asymmetric
kernels. As discussed before, asymmetric kernels could come
from asymmetric metrics and directed graphs. The following
experiments are not to claim that asymmetric kernels are better
than symmetric kernels, which is surely not true since the choice
of kernels is problem-dependent. Instead, we will show that
when the asymmetric information is crucial, our AsK-LS can
largely improve the performance of the existing kernel learn-
ing methods. The experiments are implemented in MATLAB
on a PC with Intel i7-10700 K CPU (3.8 GHz) and 32 GB
memory. All the reported results are the average over 10 tri-
als. The source code of our implementation can be found in
https://github.com/AlexHe123/AsK-LS.

A. Kullback-Leibler Kernel

Kullback-Leibler divergence is the measure of how one prob-
ability distribution Q is different from another probability dis-
tribution P

KL(P ||Q) =

∫ ∞
−∞

P (x) log
P (x)

Q(x)
dx, (13)
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TABLE I
MICRO-/MACRO-F1 SCORES (MEAN ± STD) OF DIFFERENT METHODS WITH THE KL KERNEL BETWEEN GMMS ON SEVERAL DATASETS

which is asymmetric. KL divergence has been successfully used
in many fields, e.g., VAE [43] and GAN [44], [45]. From
KL divergence, one can evaluate the similarity between two
probability distributions by the KL kernel as follows:

K(si, sj) = exp (−a ·KL(Pi||Pj)), (14)

where a > 0 is the hyperparameter for kernel bandwidth, s de-
notes a sample, andPi, Pj are probability distributions estimated
from samples si and sj , respectively. a is tuned by 10-fold cross-
validation on a parameter grid {10−4, 10−3, 10−2, 10−1, 100}.
Since KL kernel is asymmetric, the kernel matrix is also asym-
metric. AsK-LS can be utilized to directly learn with the asym-
metric KL kernel rather than its symmetry [25].

We conduct image classification experiments on Corel [46],
Satellite1, and PASCAL VOC 2007 [47]. The Corel database
contains 80 concept groups, including, e.g., autumn, aviation,
dog, and elephant. Of these groups, 10 classes are picked:
beaches, bus, dinosaurs, elephants, flowers, foods, horses, mon-
uments, snow mountains, and African people & villages. There
are 100 images per class: 90 for training and 10 for test. The
Satellite dataset is a remote sensing image set containing four
classes: cloudy, desert, green area, and water. There are 440
images for each class: 400 for training and 40 for test. The
PASCAL VOC 2007 dataset has four concept groups: person,
animal, vehicle and indoor. 10 classes in those groups are chosen:
aeroplane, bicycle, bird, boat, bus, car, cat, dog, horse and
person. There are 110 images for each class: 90 for training
and 20 for test. For each image, we follow the standard fea-
ture extraction method [25] to obtain a 64-dimensional discrete
cosine transform feature vector X .

In the experiment, we use the Gaussian mixture model
(GMM) with 256 diagonal Gaussian components to estimate
the probability distribution Pi(Xi) of the image feature vector
sequence Xi. Since the KL divergence for two GMMs can
not be calculated by (13) directly, we use the Monte Carlo
method to calculate it. Then kernel value between two images is
given by the KL kernel similarity (14) of these two probability
distributions.

The corresponding asymmetric KL divergence has been
widely used in learning tasks. However, due to that KL diver-
gence violates the symmetry requirement, it has never been di-
rectly used in the kernel-based learning. Now with the proposed
AsK-LS, we can use it in classification tasks. As a comparison,
SVM and LS-SVM are used with a symmetric KL kernel [25].

For the parameters, i.e., the hyperparameter a and regulariza-
tion parameter γ in all the three models is tuned by 10-fold
cross-validation. Our AsK-LS outputs two classifiers and here
we simply average them.

The image classification is a multi-classes task where we
utilize the one-vs-rest scheme, for which the average Micro-F1
and Macro-F1 scores are reported in Table I. AsK-LS achieves
better performance on the PASCAL, Corel and Satellite datasets,
showing that learning with the asymmetric information can help.

B. Directed Adjacency Matrix

Nodes classification with an asymmetric adjacency matrix
is a task that needs to learn from asymmetric metrics. In this
task, nodes in a directed graph H = {N , E} with nodes set N
and edges set E are classified. Its adjacency matrix showing the
connection among nodes is defined as follows:

Aij =

{
1, if j → i,
0, otherwise.

where j → i means that there is a link pointing to node i from
node j. This model has wide applications and here we consider
five directed graphs, namely Cora, Citeseer, and Pubmed [48],
AM-photo, and AM-computer [49]. Details of the data set could
be found in Table II. For the first three widely used graphs, the
nodes and edges present documents and citations, respectively.
For the latter two, the nodes present goods, and the edges
mean the two goods are frequently bought together. The node
classification is originally a multi-classes task where we utilize
the one-vs-rest scheme and focus on Micro-F1 and Macro-F1
scores.

A directed graph is fully characterized by its adjacency ma-
trix. However, in existing kernel methods, one cannot directly
use the adjacency matrix as a kernel. Therefore, the current
mainstream is to first do feature embedding [17], [18], [19] to
extract the asymmetric information and then do classification
based on the extracted features. In the experiment, For the
embedding, we use a SOTA embedding method NERD [19],
which utilizes random walk to extract node embeddings φs(v)
and φt(v) as source feature and target feature of each node
v ∈ N on a directed graph. We combine them as a unified feature
φ(v) = [φ�s (v), φ

�
t (v)]

� which then defines a symmetric kernel

1https://www.kaggle.com/datasets/mahmoudreda55/satellite-image-
classification
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TABLE II
THE DETAILED INFORMATION OF USED DIRECTED GRAPH DATASETS

TABLE III
MICRO-/MACRO-F1 SCORES (MEAN ± STD) OF DIFFERENT ALGORITHMS ON THE NODES CLASSIFICATION TASK

that can be used in classical kernel-based learning methods, e.g.,
SVM and LS-SVM, and results are reported in Table III.

Existing kernel machines based on symmetric similarities
such as SVMs and LS-SVMs and their variations are chosen
as compared methods. The adjacency matrix by symmetrization
(A+A�)/2 is fed to these classical but symmetric methods.
The maximum and minimum eigenvalues of symmetric adja-
cency matrices are shown in Table II. It can be observed that
the Gram matrices are non-PSD/indefinite. There are generally

two ways to deal with indefinite kernels: spectrum modification
and non-convex optimization. In spectrum modification, the
indefinite kernel matrix is converted into a PSD matrix by op-
erations on spectrum. We consider three methods: “Flip” using
the absolute values of eigenvalues [50]; “Clip” setting negative
eigenvalues be zeros [51]; “Shift” adding a positive numbers
to all eigenvalues until the smallest eigenvalue is zero [52]. In
non-convex optimization, we consider two methods: “KSVM”
[16] and “IKSVM-DC” [53]. The former regrades the indefinite
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TABLE IV
CLASSIFICATION ACCURACY (MEAN ± STD) OF LS-SVM AND ASK-LS WITH SEVERAL KERNELS ON THE UCI DATABASE

SVM as a min-max problem in reproducing kernel Kreı̆n spaces.
The latter reformulates the indefinite problem as a difference of
convex functions and use the related algorithm [54].

Since the asymmetric information can be extracted by the
embedding method, the performance of that is much better than
using existing kernel methods with symmetric adjacency matri-
ces, of which micro-/macro- F1 scores are listed in Table III.

Now we have the AsK-LS and can directly learn with the adja-
cency matrix without the feature embedding. Before sending the
adjacency matrix to AsK-LS, we pre-process it by its in-degree
di =

∑m
j=1Aij (the same pre-process is also applied for SVM

and LS-SVM). The Micro- and Macro-F1 scores of AsK-LS are
reported in the last column in Table III. The performance is much
better than SVM and LS-SVM with the symmetrization of the
kernel, indicating that the asymmetric information is helpful. For
the comparison with the SOTA embedding methods, AsK-LS
is better or at least comparable, showing the effectiveness of
AsK-LS for extracting the asymmetric information.

C. Symmetric or Asymmetric Kernels

We have shown that the proposed AsK-LS can learn with
asymmetric kernels. Since asymmetric kernels are more gen-
eral than symmetric ones, learning with asymmetric kernels is
promising to get improvement, if there is an efficient method
to get a suitable kernel. In the case in our paper, kernels are
pre-given, then the performance is determined by the choice of
kernels. In the previous sections, the asymmetric information,
i.e., measuring the difference by KL divergence and directed dis-
tance, is important, thus the corresponding asymmetric kernels
lead to a good performance. Although the asymmetric kernels
are more flexible, a specific asymmetric kernel is not necessarily
better than a symmetric one. Especially, there have been study on
symmetric kernels that have good performance on many tasks,
e.g., the RBF kernel [55], the truncated �1 (TL1) kernel [56],
and the tanh kernel [57]

We conduct classification experiments on several datasets
from the UCI database [58], where 60% of the data are randomly
picked up for training and the rest for test. Two asymmetric
kernels, called SNE kernel and T kernel, are considered here.
They have been used for dimension reduction [14] but have
not been used for classification, since before there was no

classification method that can learn with asymmetric kernels
directly. The formulations are given as below,

1) The SNE kernel with the parameter σ ∈ R

KSNE(x,y) =
exp(−‖x− y‖22/σ2)∑

z∈Z exp(−‖x− z‖22/σ2)
,

2) The T kernel

KT(x,y) =
(1 + ‖x− y‖22)−1∑
z∈Z(1 + ‖x− z‖22)−1

,

3) The TL1 kernel with the parameter ρ

KTL1(x,y) = max{ρ− ‖x− y‖�1 , 0},
4) The tanh kernel with parameters c, t

KT(x,y) = tanh
(
cx�y + t

)
,

5) The RBF kernel with the parameter σ ∈ R

KRBF(x,y) = exp(−‖x− y‖22/σ2).

where Z stands for the training set, x,y ∈ Z and z is defined
as an element belonging to Z. All the parameters are tuned
by 10-fold cross-validation. The parameter σ is turned on a
grid {2−3, 2−2, 2−1, 1, 2, 5, 10}. The TL1 kernel is an indefinite
kernel. As discussed in [56], the performance of the TL1 kernel
is not sensitive to ρ, we set ρ = 0.7 d as suggested where d is
the input dimension. The tanh kernel is indefinite when c < 0.
c is turned by 10-folds cross-validation on a grid, of which the
values uniformly lie on [−10, 10]. And d is turned by 10-folds
cross-validation on {0, 1, 5, 10, 15}

The classification accuracy of AsK-LS with the two asymmet-
ric kernels is reported in Table IV, together with the accuracy
of LS-SVM with the TL1, tanh and RBF kernels. Generally,
the best choice of kernels is problem-dependent and one cannot
assert which kernel is good in advance. But at least, the proposed
AsK-LS makes it possible to use asymmetric kernels. With
delicately designing or efficiently learning, asymmetric kernels
could lead to a good performance.

V. CONCLUSION

In this paper, we investigate the least squares support vector
machine with asymmetric kernels in theoretical and algorithmic
aspects. The proposed AsK-LS is the first model that can learn
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with asymmetric kernels. The primal and dual representations
for AsK-LS are given, showing the feature interpretation that
there are two different functions, can be simultaneously learned
from the source and the target views. In numerical experiments,
when the asymmetric information is physically important, the
AsK-LS with asymmetric kernels significantly outperforms
SVM and LS-SVM that can only deal with symmetric kernels.

The most significant contribution of this paper is to make
asymmetric kernels useful in the kernel-based learning. In
methodology, the least squares framework is not the unique
way to accommodate asymmetric kernels. Models from other
kernel-based methods, e.g., the support vector machine and the
logistic regression, etc., are worthy to be investigated. In theory,
the functional spaces associated with asymmetric kernels are
interesting, which is beyond reproducing kernel Hilbert spaces
for PD kernels or reproducing kernel Kreı̆n spaces for indefinite
kernels, but falls in a reproducing kernel Banach space. The
proposed algorithm fully exploits the structure of the feature
mapping and the data similarity encoding the asymmetry of the
kernels. The theoretical behavior of our algorithm can be further
studied under the framework of [24], which we will leave as
further work. In application, one can design asymmetric ker-
nels for different tasks, especially those that involve directional
relationships, including but not limited to directed graphs, the
distribution distance [59], the causality analysis [60], [61], and
the optimal transport [62], [63].
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