
SELA: Tree-Search Enhanced LLM Agents for Automated Machine
Learning

Anonymous ACL submission

Abstract001

Automated Machine Learning (AutoML) ap-002
proaches encompass traditional methods that003
optimize fixed pipelines for model selection004
and ensembling, as well as newer LLM-based005
frameworks that autonomously build pipelines.006
While LLM-based agents have shown promise007
in automating machine learning tasks, they of-008
ten generate low-diversity and suboptimal code,009
even after multiple iterations. To overcome010
these limitations, we introduce Tree-Search011
Enhanced LLM Agents (SELA), an innovative012
agent-based system that leverages Monte Carlo013
Tree Search (MCTS) to optimize the AutoML014
process. By representing pipeline configura-015
tions as trees, our framework enables agents016
to conduct experiments intelligently and itera-017
tively refine their strategies, facilitating a more018
effective exploration of the machine learning019
solution space. This novel approach allows020
SELA to discover optimal pathways based on021
experimental feedback, improving the overall022
quality of the solutions. In an extensive evalu-023
ation across 20 machine learning datasets, we024
compare the performance of traditional and025
agent-based AutoML methods, demonstrating026
that SELA achieves a win rate of 65% to 80%027
against each baseline across all datasets. These028
results underscore the significant potential of029
agent-based strategies in AutoML, offering a030
fresh perspective on tackling complex machine031
learning challenges.032

1 Introduction033

Automated Machine Learning (AutoML) is a034

rapidly evolving field that seeks to automate the035

process of designing reliable machine learning solu-036

tions with minimal human intervention. Traditional037

AutoML frameworks, such as Auto-WEKA (Thorn-038

ton et al., 2013), Auto-Sklearn (Feurer et al., 2015,039

2020), AutoGluon (Tang et al., 2024b), and H2O040

AutoML (LeDell and Poirier, 2020), rely on pre-041

defined search spaces and routines. These frame-042

works primarily focus on optimizing hyperparame- 043

ters and model ensembling to find the best model 044

configuration. 045

Recently, large language model (LLM)-based 046

agents have emerged as promising tools for au- 047

tomating machine learning tasks by leveraging nat- 048

ural language processing capabilities to generate 049

code. These systems typically begin with a natu- 050

ral language prompt describing the dataset and the 051

problem, after which an LLM generates an end-to- 052

end solution. Early efforts, such as (Zhang et al., 053

2024), experimented with prompting LLMs to gen- 054

erate machine learning solutions, while (Hong 055

et al., 2024a) introduced agents equipped with 056

hierarchical graph modeling and programmable 057

node generation to address complex and dynamic 058

workflows. Despite these advances, LLM-based 059

solutions often fall short in generating diverse and 060

highly optimized workflows, as their search process 061

remains limited to a single pass or trial. Without 062

iterative refinement or the ability to explore alter- 063

native strategies, these solutions often converge to 064

suboptimal results, even when multiple attempts 065

are allowed. 066

To address the limitations of both traditional Au- 067

toML and LLM-based frameworks, we examine 068

the problem-solving strategies of human experts. 069

Unlike traditional AutoML, which relies on prede- 070

fined search space and prebuilt pipelines, experts 071

dynamically construct workflows by deriving task- 072

specific insights from data. Furthermore, rather 073

than settling on a single attempt, they iteratively ex- 074

periment, analyze outcomes, and refine each com- 075

ponent based on feedback. This adaptive, feedback- 076

driven process enables the exploration of diverse so- 077

lutions and continuous optimization—an approach 078

that current LLM-based frameworks struggle to 079

replicate. 080

We propose Tree-Search Enhanced LLM Agents 081

(SELA), a novel framework that integrates LLM 082

agents with a dynamic, feedback-driven search pro- 083

1

Dynamic
Pipeline

Feature
Engineering

Model
Training

Model
Improvement

Pipeline
Optimization

AutoGluon (Erickson et al., 2020) ✗ ✗ Fixed models Multi-layer stacking + bagging ✗
AutoSklearn (Feurer et al., 2020) ✗ ✗ Fixed models Bayes Opt. + meta-learning + ensemble ✗
Data Interpreter (Hong et al., 2024a) ✓ Instinctive Instinctive Instinctive ✗
AIDE (Jiang et al., 2025) ✓ Instinctive Dynamic & diverse Dynamic & diverse One-step refinement + LLM
SELA (Ours) ✓ Dynamic & diverse Dynamic & diverse Dynamic & diverse Stepwise MCTS + LLM

Table 1: Comparison of key capabilities across various AutoML methods. Dynamic indicates the system’s
ability to adjust workflows based on intermediate outcomes, allowing it to adapt as new information
emerges. Diverse refers to employing multiple strategies or methods across tasks, which helps capture
varied modeling needs. Instinctive means that the system directly relies on the decisions generated by an
LLM and heavily depends on the model’s inclination.

R

A1 A2 A3

B1 B2 B3

C2 C3

Check the data columns

C1

Update the
one-hot encoding

Scale the
numeric
columns

Use PCAApply polynomial
features

Derive a new
feature

Impute
with
medians

Experiment
with LR and
RF

Use a stacking
classifier

Use k-fold
bagging to avoid
overfitting

Data
Preprocess

Feature
Engineering

Model
Training

Exploratory
Data Analysis

Multi-step Generation
Propose a multi-step plan and
generate the ML solution step

by step.

One-step Generation + Iterative Refinement
Generate the whole ML solution within one
step and then iteratively refine and improve

the whole solution.

Refine
1

Refine
1

Refine
2

Solution 1

Solution 2

Solution 3

Our Method
To generate a multi-step ML solution, we utilize an LLM
to propose the search space for different ML stages. We

then apply MCTS to search for an optimized solution.

Figure 1: SELA’s abstraction compared to other agent-based AutoML frameworks. There are two main types of agent-based
approaches to AutoML problems. The first approach (Hong et al., 2024a) divides a machine learning task into multiple stages,
proposing a plan for each stage, and generating and executing code step by step according to the plan, with no refinement after
the solution is completed. The second (Jiang et al., 2025) generates the entire solution in one step and iteratively refines it as a
whole. SELA integrates both approaches, enabling stage-wise planning while iteratively exploring better solutions at each stage
level.

cess for automated machine learning. Our frame-084

work combines a task-specific insight proposer,085

which dynamically explores machine learning con-086

figurations, with a modified Monte Carlo Tree087

Search (MCTS) selection algorithm, designed to088

efficiently navigate complex search spaces by prior-089

itizing deeper levels earlier. As shown in Figure 1,090

SELA combines stage-wise planning, where each091

phase (e.g., Exploratory Data Analysis, Data Pre-092

processing, Feature Engineering, and Model Train-093

ing) is handled sequentially, with iterative refine-094

ment to continuously improve solutions. Through095

this combination, SELA iteratively optimizes ma-096

chine learning workflows, much like experts refin-097

ing their approach based on feedback and experi-098

mentation.099

We rigorously evaluated SELA using 20 diverse100

datasets from the AutoML Benchmark (Gijsbers101

et al., 2024), comparing its performance against102

both traditional AutoML systems and agent-based103

AutoML approaches. The results demonstrate that104

SELA consistently delivers superior performance105

across a wide range of machine learning tasks, val-106

idating its effectiveness and adaptability.107

To summarize, our research makes the following 108

contributions: 109

1. We introduce a feedback-driven, task-specific 110

insight proposer that enables LLM agents to 111

dynamically explore machine learning con- 112

figurations, iteratively optimizing solutions 113

across multiple experimental rounds. 114

2. We propose a modified MCTS selection algo- 115

rithm that adapts to computation-heavy sce- 116

narios, prioritizing the exploration of deeper 117

levels of the search tree earlier to enhance 118

efficiency and solution quality. 119

3. We compare agent-based and traditional Au- 120

toML approaches, highlighting the flexibility 121

and performance advantages of agentic meth- 122

ods in machine learning. 123

2 Related Works 124

Tree Search and Its Integration with LLMs 125

Tree search algorithms have significantly advanced 126

problem-solving in artificial intelligence, with 127

Monte Carlo Tree Search (MCTS) emerging as a 128

2

leading technique. These algorithms have been suc-129

cessfully applied across various domains, including130

robotics (Wu et al., 2015; Clary et al., 2018; Best131

et al., 2019), chemistry (Segler et al., 2018), and132

gaming (Silver et al., 2016, 2017), where MCTS133

is used to navigate vast solution spaces and solve134

complex problems. More recently, research has135

focused on integrating tree search with Large Lan-136

guage Models (LLMs) to enhance reasoning and137

decision-making. Studies such as Krishnamurthy138

et al. (2024) and Dwaracherla et al. (2024) explored139

LLMs’ capacities for efficient exploration, while140

Tang et al. (2024a) and Hui and Tu (2024) devel-141

oped strategies for exploiting previously learned142

knowledge. Zhou et al. (2024) and Chi et al. (2024)143

applied MCTS for planning with external or self-144

evaluated feedback, while Feng et al. (2023); Wang145

et al. (2024a) adapted AlphaZero-style tree search146

to LLM-based tasks. However, the combination of147

LLMs and MCTS can be computationally intensive148

and time-consuming. Investigating more efficient149

strategies for using MCTS with LLMs presents a150

promising direction.151

Advances and Limitations in AutoML Systems152

Automated Machine Learning (AutoML) frame-153

works were introduced to reduce the need for expert154

knowledge in designing machine learning pipelines.155

Early AutoML efforts, such as (Thornton et al.,156

2013; Olson and Moore, 2016; Jin et al., 2019;157

Feurer et al., 2020; Erickson et al., 2020; LeDell158

and Poirier, 2020; Wang et al., 2021; Jin et al.,159

2023; Tang et al., 2024b), focused primarily on160

automating key pipeline components like hyper-161

parameter optimization, model selection, stacking,162

and ensembling. These frameworks achieved no-163

table progress by integrating meta-learning and hy-164

perparameter search strategies to automatically se-165

lect and tune machine learning models.166

Recently, there has been growing interest in167

leveraging LLMs within AutoML systems to en-168

hance pipeline flexibility. Studies such as (Holl-169

mann et al., 2024; Li et al., 2024) applied LLMs170

to automate feature engineering, while Liu et al.171

(2024) introduced LLMs for hyperparameter tun-172

ing. In addition, Luo et al. (2024) proposed embed-173

ding LLMs at each stage of the machine learning174

workflow. Despite these advancements, traditional175

AutoML systems, which consist of pre-defined176

search space and procedure, face challenges in177

adapting to unique datasets or specific task require-178

ments.179

LLM Agents for Dynamic ML Pipelines180

LLM-based agents provide dynamic solutions 181

for complex machine learning tasks. Hong et al. 182

(2024a,b) introduced LLM agents with hierarchical 183

graph modeling and programmable node genera- 184

tion, creating adaptable pipelines for diverse data 185

scenarios. Zhang et al. (2024) showed LLMs’ abil- 186

ity to interpret structured inputs and apply past 187

experiences to new tasks. Guo et al. (2024) intro- 188

duced a data science agent leveraging case-based 189

reasoning but struggled with generating solutions 190

from scratch due to reliance on existing codebases. 191

Jiang et al. (2025) proposed an iterative approach 192

where pipelines are generated and refined incre- 193

mentally. 194

SELA combines stage-wise planning and itera- 195

tive refinement, allowing autonomous exploration 196

and generation of machine learning solutions from 197

the ground up. This provides greater flexibility and 198

control, enabling optimized solutions at each stage. 199

Table 1 compares the functionalities of various Au- 200

toML systems. 201

3 Method 202

As illustrated in Figure 2, SELA consists of three 203

key components: an LLM-based insight proposer, 204

an MCTS-based search module, and an LLM agent 205

for executing experiments. First, the LLM gen- 206

erates insights from the problem description and 207

dataset, defining a search space. The search module 208

then organizes this space into a tree structure and 209

uses MCTS to explore promising paths. At each 210

cycle, the selected path is passed to the LLM agent, 211

which translates it into an executable pipeline, con- 212

ducts the experiment, and feeds back the results to 213

refine future searches. This iterative process contin- 214

ues until the termination criterion is met. We show 215

the pseudo code in Algorithm 1 and explain each 216

component in the following sections. 217

3.1 Insight Proposal and Search Space 218

Creation 219

To explore various machine learning strategies, 220

SELA employs an insight proposer that generates 221

diverse methods tailored to different stages of the 222

workflow. Each insight suggests a technique or 223

combination of methods aimed at improving per- 224

formance, such as feature engineering or model 225

training strategies. The proposer takes as input the 226

problem description p and dataset d, generating 227

insights λ for each stage of the process, which are 228

stored in an insight pool Λ. We break down the 229

3

Select

R

A1 A2 A3

B1 B2 B3

Expand

Simulate
(by Agent)

Backprop

Problem Description &
Dataset InformationGenerated Search Space

Data
Preprocess

Insights

Feature
Engineering

Insights

Model
Training
Insights

Monte Carlo Tree Search

Dataset

LLM

3. Output
search result
for execution

2. Generate
search space

4. Plan &
execute

1. Input problem
and data info

Default start:
Exploratory Data Analysis

Data Processing:
One-hot Encoding

Feature Engineering:
Polynomial Features

Model Training:
Stacking Classifier

Default end:
Model Evaluate

5. Simulation score feedback

Loop (step 3 -> 4 -> 5) until stopping condition satisfied

C1 C2

Root

Simulate and Get Feedback

A1

B2

C2

Figure 2: SELA’s pipeline operates as follows: The system begins by inputting the problem description and dataset information
into the LLM, which generates a search space of potential solutions, encompassing data preprocessing, feature engineering,
and model training. The search module, powered by Monte Carlo Tree Search (MCTS), explores this space by selecting,
expanding, and simulating potential configurations. The LLM agent then simulates the selected configuration by planning,
coding, and executing the experiment. Feedback from the simulation is fed back into the search module, where it is used in
the backpropagation step to refine future searches. This iterative process continues until a predefined stopping criterion is met,
resulting in an optimized experimental pipeline.

process into five stages: Exploratory Data Analysis230

(τ1), Data Preprocessing (τ2), Feature Engineering231

(τ3), Model Training (τ4), and Model Evaluation232

(τ5), collectively denoted as T .233

InsightProposer(p, d,M)→ Λ (1)234

Λ := {λτ
i | τ ∈ T, i = 1, . . . ,m} (2)235

Figure 3 shows how the insight proposer uses236

dataset information to generate a task-specific in-237

sight, which is then converted into a feature engi-238

neering code snippet.239

Figure 3: An example of a task-specific feature engineering
insight generated by the insight proposer using the credit-g
dataset, along with the corresponding code produced by the
experimenter.

3.2 Pipeline Execution and Code Generation240

We use an LLM agent, called the experimenter E,241

to conduct each trial by constructing experimental242

pipelines from natural language requirements. The243

agent follows two main steps. First, given an ex- 244

periment configuration c, a set of insights provided 245

by the search module (described in Section 3.3.2), 246

the agent translates these insights into a detailed 247

plan, consisting of task instructions Iτ∈T for each 248

stage of the machine learning process. This step is 249

referred to as Eplan. 250

Next, the agent writes and executes code στ for 251

each task τ based on the instructions Iτ , producing 252

a complete set of code στ∈T for the full pipeline 253

and a final execution score s. The combined code 254

outputs στ∈T form the full solution σsol to the prob- 255

lem. This phase is referred to as Ecode & execute. 256

Eplan(p, d, c,M)→ Iτ∈T (3) 257

Ecode & execute(I
τ∈T , D,M)→ (στ∈T , s) (4) 258

3.3 Tree Search in Machine Learning 259

Experiments 260

The search space is modeled as a hierarchical tree, 261

where each node represents an experiment configu- 262

ration. We use Monte Carlo Tree Search (MCTS) 263

to explore and identify the best solution, balancing 264

exploration and exploitation across different stages. 265

The search process includes selection, expansion, 266

simulation, and backpropagation, as outlined be- 267

low: 268

3.3.1 Experiment Node 269

Each node x in the tree represents an insight λ and 270

contains several attributes: the insight λ(x) corre- 271

sponding to the method or strategy for the pipeline 272

stage, the depth δ(x) indicating the pipeline stage 273

4

0.95 0.95

0.97 0.98

0.66

0.92

0.97

0.95 0.95

0.97

0.66

0.92

0.94 0.93

1. Explore

2. Skip
unpromising

branch to
explore
more

3. Early
exploit

5. Early
exploit

4. Refrain from
greedy exploit
& escape from
potential local

optima

6. Explore

3. Exploit

1. Explore

2. Search
budget

exhausted by
first layer

Root

Feature
Engineering

Model
Training

- Deeper layers properly explored
- Balances search between layers

- Deeper layers sparsely explored
- Reduces to BFS search between layers

Unvisited nodes

(a) UCT-DP (SELA) (b) UCT

Visited nodes

Figure 4: Mechanism of UCT-DP and search behavior of SELA. Our proposed UCT-DP algorithm offers key advantages over
vanilla UCT, enabling more efficient exploration in machine learning scenarios where search budgets are constrained by high
computational costs. With only a few rollouts (e.g., no more than 10), standard UCT selection degenerates into a breadth-first
search (BFS), as unvisited nodes are given infinite priority. Consequently, deeper layers remain unexplored until every node
in the current layer has been visited at least once, leading to sparse traversal of deeper nodes. In contrast, UCT-DP retains the
core properties of standard UCT (red dotted lines) while crucially activating them earlier in the search process, mitigating this
limitation through early exploitation (blue dotted lines). This allows SELA to assess deeper layers more effectively, achieving a
well-balanced exploration across the entire search tree. For clarity, we present a simplified tree for illustration.

(e.g., preprocessing, feature engineering, model274

training), the value v(x) representing the cumula-275

tive score from simulations for this node and its276

descendants, the number of visits nvisits(x) show-277

ing the total number of simulations conducted,278

the simulation score s(x) for the node’s simula-279

tion, the solution code σsol(x) produced after sim-280

ulation, and the stage code σstage(x) generated281

up to this node’s stage. A path from the root282

to node x represents an experiment configuration283

c(x) = {λ(x1), λ(x2), . . . , λ(x)}.284

3.3.2 Tree Search for ML Experiments285

Monte Carlo Tree Search (MCTS) is used to ex-286

plore and identify optimal machine learning solu-287

tions. The search process involves selection, expan-288

sion, simulation, and backpropagation.289

Selection At each iteration, we use a modified ver-290

sion of the UCT (Upper Confidence Bound for291

Trees) algorithm (Kocsis and Szepesvári, 2006),292

referred to as UCT-DP (depth-preferred), to select293

a node from the search tree. Unlike traditional294

MCTS, where simulations are often performed295

quickly due to a fixed action space and negligi-296

ble action time, the context of machine learning297

tasks presents a different challenge. Processes such298

as model training introduce significant computa-299

tional time, making efficient node exploration cru-300

cial. Since model selection can heavily influence301

the overall machine learning performance, we pri-302

oritize exploring nodes at greater depths early on.303

This modification reduces the need to explore304

every unvisited node, allowing deeper nodes to be305

reached in fewer iterations—making the approach 306

better suited for large-scale machine learning ex- 307

periments. The modified selection algorithm is 308

expressed as: 309

UCT-DP(x) =
v(x)

n(x)
+ αexplore

√
lnnvisits(xparent)

n(x)

(5)

310

n(x) =

{
αunvisted if nvisits(x) = 0

nvisits(x) otherwise.
(6) 311

Here, αunvisted is a constant between 0 and 1 con- 312

trolling the selection preference for unvisited nodes, 313

balancing between full exploration and computa- 314

tional efficiency. This adjustment allows us to fo- 315

cus more on deeper parts of the tree that are likely 316

to yield better solutions. We illustrate the mecha- 317

nism of UCT-DP in comparison to standard UCT 318

in Figure 4. 319

Expansion During the expansion phase, a set of 320

child nodes Xchild are instantiated from the selected 321

node x for potential simulation. Note that a child 322

node xchild from the node x at depth δ inherits the 323

attributes of x and possesses λ(xchild)→ λτδ+1 , an 324

insight of stage τδ+1 from the search space. 325

Simulation Once expanded, a node xsample 326

is uniformly sampled from Xchild for simula- 327

tion. The path from root to the sampled 328

node forms a set of insights c(xsample) = 329

{λ(x1), λ(x2), . . . , λ(xsample)} ⊂ Λ, representing 330

5

the experiment configuration. This configuration is331

passed to the experimenter E for execution, follow-332

ing Eplan and Ecode & execute, yielding a simulation333

score s, as described in Section 3.3.1. The score334

serves as feedback for backpropagation. The simu-335

lation process is outlined in Algorithm 2.336

Backpropagation After the simulation concludes,337

the performance score (e.g., based on the develop-338

ment set) is retrieved and backpropagated through339

the tree. The score is propagated from the sim-340

ulated node up to the root, updating each parent341

node’s value and visit count. This allows nodes342

representing more promising solutions to be prior-343

itized in future rollouts. In addition, the solution344

code is also backpropagated up to the tree, and it345

can be processed and saved as stage code depend-346

ing on the parent node during the update.347

Backpropagation ensures that the algorithm348

learns which paths yield better results, guiding the349

search toward higher-performing nodes as more350

rollouts are conducted.351

3.3.3 Experiment State Saving and Loading352

To improve efficiency and reduce token usage,353

SELA caches code at the stage level for each con-354

figuration. This allows for reusing code when simi-355

lar configurations are encountered, and ensures con-356

sistency by rerunning saved stage code, addressing357

LLM non-determinism. This approach minimizes358

resource consumption (Appendix H) while main-359

taining robust performance.360

4 Experiments361

4.1 Experimental Setup362

Datasets We evaluate SELA alongside several363

baselines on 20 datasets, which include 13 classi-364

fication tasks and 7 regression tasks from the Au-365

toML Benchmark (AMLB) (Gijsbers et al., 2024)366

and Kaggle Competitions.367

Table 5 provides detailed information on the368

datasets used. All datasets are split into training,369

validation, and test sets with a 6:2:2 ratio. Each370

framework utilizes the training and validation sets371

to train models and makes predictions on the test372

set labels.373

Evaluation Metrics For the AMLB datasets, we374

use the default target column provided by OpenML.375

For Kaggle competition datasets, we rely on the tar-376

get column specified in the competition description.377

Performance is measured using root mean squared378

error (RMSE) for regression tasks, F1 score for379

binary classification, and F1-weighted score for 380

multi-class classification. To ensure comparability 381

across datasets with varying metrics, we introduce 382

a Normalized Score (NS), which maps RMSE into 383

the range from 0 to 1. 384

NS(sraw) =

{
1

1+log (1+sraw)
if the metric is RMSE.

sraw otherwise.
(7)

385

Here, sraw represents the raw score before nor- 386

malization. To evaluate SELA against other frame- 387

works, we employ three key metrics: average Nor- 388

malized Score (NS), average rank, and average best 389

rank. The average rank is calculated by considering 390

all rankings of a method across datasets, while the 391

average best rank focuses on the method’s best per- 392

formance in each dataset. We also want to quantify 393

how other baselines perform relative to SELA. The 394

“Rescaled NS" is defined as: 395

Rescaled NS(f) =
NSf

NSSELA
(8) 396

where f represents the baseline method being com- 397

pared to SELA. 398

Method and Baselines Setup We compare 399

SELA with several baseline methods, including 400

Data Interpreter (Hong et al., 2024a), AIDE (Jiang 401

et al., 2025), AutoGluon (Erickson et al., 2020), 402

and AutoSklearn (Feurer et al., 2015, 2020). 403

For our LLM-based approaches (SELA, Data In- 404

terpreter, and AIDE), we employ a consistent initial 405

task prompt across all methods. This prompt en- 406

compasses the dataset name, target column, and 407

evaluation metric. We choose DeepSeek-V2.5 408

(DeepSeek-AI, 2024) as our foundation LLM due 409

to its open-source nature, strong coding capabili- 410

ties, and cost-effective token usage. To encourage 411

output diversity, we set the temperature parameter 412

to 0.5 for all LLM-based methods. AIDE conducts 413

10 iterations per execution, while SELA performs 414

10 rollouts. 415

For SELA, we employ Data Interpreter as the 416

experimenter, leveraging its multi-step generation 417

capability. We configured the hyperparameters of 418

UCT-DP as follows: αunvisited is set to 0.8 and 419

αexplore is set to 1.4. These settings aim to balance 420

exploration and exploitation in the method’s search 421

strategy. Each method, except for AutoGluon, is 422

run three times for each dataset. AutoGluon, being 423

deterministic, is run only once with its default set- 424

tings. AutoSklearn is also run with default settings. 425

6

Method Wins Losses Top 1 Avg. NS % ↑ Avg. Best NS % ↑ Avg. Rank ↓ Avg. Best Rank ↓

AutoGluon 7 13 4 53.2 53.2 4.4 4.4
AutoSklearn 5 15 5 46.1 47.5 7.6 6.1
AIDE 5 15 2 47.1 51.8 7.8 5.3
Data Interpreter 4 16 2 47.4 50.2 8.8 6.4
SELA - - 7 53.3 54.7 4.8 2.7

Table 2: Results of each AutoML framework on 20 tabular datasets. The “Wins" column indicates the number of datasets where
the method outperforms SELA, while “Losses" shows the number of datasets where the method underperforms. The “Top 1"
column represents the number of datasets where the method produces the best predictions across methods.

4.2 Results426

As shown in Table 2, SELA achieves the high-427

est average Normalized Score (NS) and average428

best rank among all frameworks. Notably, SELA429

excels in producing the highest number of top pre-430

dictions, as indicated in the “Top 1" column across431

all datasets. Furthermore, the “Losses" column432

reveals that each competing method falls short433

against SELA, losing in 65-80% of the datasets.434

Interestingly, AutoGluon exhibits a marginally435

higher average rank than SELA. This slight dis-436

crepancy may be attributed to the inherent random-437

ness in LLMs and model training processes, which438

can influence the exploration of machine learning439

solutions. However, SELA’s higher average NS440

suggests that it performs strongly in the datasets441

where it excels, while its losses in other datasets are442

relatively minor. This means that even when SELA443

produces lower-ranked solutions, the performance444

gap is small, allowing it to fully compensate in the445

datasets where it performs well.446

The two other agent-based methods exhibit rela-447

tively lower performance. The first method, Data448

Interpreter, struggles to enhance its score with mul-449

tiple attempts due to its inability to refine its so-450

lution after completing a machine learning task.451

The second method, AIDE, does not have a stage-452

specific planning module, limiting its capacity to453

improve results after a series of greedy exploitation,454

which makes it prone to falling into local optima.455

These limitations likely account for their weaker456

performance.457

Figure 5 further corroborates SELA’s effective-458

ness, revealing that its best solutions frequently oc-459

cupy leading positions across various datasets. This460

visual representation exhibits the method’s consis-461

tent high performance and adaptability across dif-462

ferent ML datasets. We also include a detailed463

results of each method in Appendix D.464

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rescaled NS on Test Data (relative to SELA)

Click_prediction_small
GesturePhaseSegmentationProcessed

Moneyball
SAT11-HAND-runtime-regression

boston
colleges

concrete-strength
credit-g

diamonds
house-prices

icr
jasmine

kc1
kick

mfeat-factors
segment

smoker-status
software-defects

titanic
wine-quality-white

D
at

as
et

AutoML Framework
AutoSklearn
AIDE
AutoGluon
Data Interpreter
SELA Best

Figure 5: Rescaled NS of AutoML frameworks relative to
SELA on tabular datasets. Points to the left of the vertical
line indicate poorer predictions compared to SELA. Notably,
SELA mostly occupies a leading position across the datasets.

4.3 Ablation Study 465

For the rest of the study, we employ a sub- 466

set of datasets to evaluate SELA under various 467

settings. Our selection process involves choos- 468

ing the first two datasets alphabetically for each 469

machine learning task. Specifically, we use 470

boston, colleges, credit-g, Click_prediction_small, 471

GesturePhaseSegmentationProcessed, and mfeat- 472

factors to conduct the ablation study. 473

Avg. NS ↑ Avg. Rank ↓

Data Interpreter 56.4 9.2
SELA-RS 58.6 5.6
SELA-MCTS (UCT) 58.9 5.8
SELA-MCTS (UCT-DP) 60.9 4.1

Table 3: Performance across different search strategies on six
datasets. SELA-MCTS with UCT-DP (depth-preferred) out-
performs standard UCT and random sampling (RS), achieving
the highest normalized score and best average rank. This high-
lights the effectiveness of guiding search deeper under limited
rollouts.

Effectiveness of Search To evaluate the impact 474

of search strategies, we compared MCTS with 475

UCT and UCT-DP, random sampling of the insights 476

from the insight pool, and the Data Interpreter (Ta- 477

ble 3). Between the two MCTS variants, UCT-DP 478

achieves the highest normalized score (60.9) and 479

best average rank (4.1), clearly outperforming stan- 480

dard UCT (58.9, 5.8). This confirms that depth- 481

7

preferred search improves solution quality under482

limited rollouts by encouraging earlier exploration483

of deeper nodes. In contrast, standard UCT tends484

to over-explore shallow nodes, leading to less ef-485

fective optimization. Moreover, even the random486

sampling variant of our method outperforms Data487

Interpreter, the base experimenter. This suggests488

that an appropriate search space and an experiment489

agenda is vital for improving a machine learning490

agent. Our insight proposer generates relevant and491

useful insights, facilitating such improvement, re-492

gardless of the selection method.493

3 6 9 12 15 18
of Rollouts

0.60

0.62

0.64

0.66

N
or

m
al

iz
ed

 S
co

re

Figure 6: The average performance of SELA on six selected
datasets with an increasing number of rollouts.

Number of Rollouts Figure 6 illustrates that the494

average performance of SELA improves as the495

number of permitted rollouts increases. The trend496

demonstrates the strong scalability of SELA, as497

it efficiently leverages additional opportunities to498

explore the search space, improving the normalized499

score by 4.7% after 10 rollouts and 6.4% after 20,500

compared to the initial rollout.501

DS V2.5 G4o C3.5 Qwen2.5 DS-R1

Click_pred 23.2 27.6 15.6 18.0 35.3
Gesture 67.9 65.6 63.4 66.1 66.6
boston 40.1 40.9 41.6 40.5 41.4
colleges 87.8 88.0 87.3 87.5 88.0
credit-g 50.9 55.2 43.2 49.3 57.7
mfeat 95.7 96.4 96.1 94.6 95.8

Avg. NS ↑ 60.9 62.3 57.9 59.3 64.1

Table 4: Performance of SELA across LLMs. DS V2.5, G4o,
C3.5, Qwen2.5, and DS-R1 stand for DeepSeek V2.5, GPT-
4o, Claude-3.5-Sonnet, Qwen2.5-72B-Instruct, and DeepSeek-
R1 respectively. DeepSeek-R1 achieves the highest average
normalized score (NS).

Robustness Across LLMs To evaluate the ro-502

bustness and adaptability of our framework,503

we conduct experiments using a variety of504

LLMs. Specifically, we assess the per-505

formance of SELA with GPT-4o (OpenAI,506

2024), Claude-3.5-Sonnet (Anthropic, 2024),507

DeepSeek V2.5, Qwen2.5-72B-Instruct (Yang 508

et al., 2024), and DeepSeek-R1 (Guo et al., 2025). 509

As illustrated in Table 4, SELA achieves 510

strong and consistent performance across these 511

different LLMs. Notably, DeepSeek-R1 achieves 512

the highest average normalized score (NS) of 513

64.1, while the smaller open-source model 514

Qwen2.5-72B-Instruct also obtains a competi- 515

tive score of 59.3. These results demonstrate that 516

SELA is not only effective but also highly adapt- 517

able to a wide range of LLMs, including both pro- 518

prietary and open-source models. 519

5 Conclusion 520

We introduced SELA, a novel framework that 521

combines LLM-based agents with Monte Carlo 522

Tree Search (MCTS) to automate machine learning 523

workflows. Experimental results across 20 datasets 524

demonstrate its effectiveness and advantages over 525

traditional AutoML frameworks and existing LLM- 526

based approaches. 527

Future work could extend SELA to other do- 528

mains, such as software engineering, scientific dis- 529

covery, game playing, and robotics as these se- 530

quential decision-making problems can potentially 531

be represented as tree structures with scalar re- 532

wards. Improving search efficiency and scalability 533

for larger solution spaces is another key direction, 534

along with developing techniques for providing in- 535

terpretable explanations to enhance transparency. 536

SELA showcases the potential of combining tra- 537

ditional search algorithms with LLM flexibility in 538

automated machine learning. 539

Limitations While focused on tabular datasets, 540

SELA can be adapted to other data types, including 541

time series, text, and images. Additionally, while 542

SELA enhances machine learning workflows, it 543

lacks inherent safeguards against harmful content 544

generation, so we recommend implementing safety 545

measures for responsible use. 546

References 547

Anthropic. 2024. Introducing Claude 3.5 Sonnet 548
— anthropic.com. https://www.anthropic.com/ 549
news/claude-3-5-sonnet. 550

Graeme Best, Oliver M Cliff, Timothy Patten, Ram- 551
gopal R Mettu, and Robert Fitch. 2019. Dec-mcts: 552
Decentralized planning for multi-robot active percep- 553
tion. The International Journal of Robotics Research, 554
38(2-3):316–337. 555

8

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924

Tobias Block. 2019. 10kgnad: Ten thousand german556
news articles dataset for topic classification. https:557
//tblock.github.io/10kGNAD/. Accessed: 2025-558
05-17.559

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James560
Aung, Dane Sherburn, Evan Mays, Giulio Starace,561
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian562
Weng, and Aleksander Mądry. 2025. Mle-bench:563
Evaluating machine learning agents on machine564
learning engineering. Preprint, arXiv:2410.07095.565

Yizhou Chi, Kevin Yang, and Dan Klein. 2024.566
Thoughtsculpt: Reasoning with intermediate revision567
and search.568

Patrick Clary, Pedro Morais, Alan Fern, and Jonathan569
Hurst. 2018. Monte-carlo planning for agile legged570
locomotion. Proceedings of the International Con-571
ference on Automated Planning and Scheduling,572
28(1):446–450.573

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-574
cal, and efficient mixture-of-experts language model.575
Preprint, arXiv:2405.04434.576

Vikranth Dwaracherla, Seyed Mohammad Asghari, Bo-577
tao Hao, and Benjamin Van Roy. 2024. Efficient578
exploration for llms.579

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang580
Zhang, Pedro Larroy, Mu Li, and Alexander Smola.581
2020. Autogluon-tabular: Robust and accurate au-582
toml for structured data. Preprint, arXiv:2003.06505.583

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,584
Weinan Zhang, and Jun Wang. 2023. Alphazero-like585
tree-search can guide large language model decoding586
and training.587

Matthias Feurer, Katharina Eggensperger, Stefan588
Falkner, Marius Lindauer, and Frank Hutter. 2020.589
Auto-sklearn 2.0: Hands-free automl via meta-590
learning.591

Matthias Feurer, Aaron Klein, Katharina Eggensperger,592
Jost Springenberg, Manuel Blum, and Frank Hutter.593
2015. Efficient and robust automated machine learn-594
ing. In Advances in Neural Information Processing595
Systems 28 (2015), pages 2962–2970.596

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin597
LeDell, Sébastien Poirier, Janek Thomas, Bernd Bis-598
chl, and Joaquin Vanschoren. 2024. Amlb: an automl599
benchmark. Journal of Machine Learning Research,600
25(101):1–65.601

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,602
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,603
Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai604
Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,605
Zhuoshu Li, Ziyi Gao, Aixin Liu, and 180 others.606
2025. Deepseek-r1: Incentivizing reasoning capa-607
bility in llms via reinforcement learning. Preprint,608
arXiv:2501.12948.609

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, 610
Yi Chang, and Jun Wang. 2024. Ds-agent: Auto- 611
mated data science by empowering large language 612
models with case-based reasoning. 613

Noah Hollmann, Samuel Müller, and Frank Hutter. 2024. 614
Large language models for automated data science: 615
Introducing caafe for context-aware automated fea- 616
ture engineering. 617

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, 618
Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, 619
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, 620
Mingchen Zhuge, Taicheng Guo, Tuo Zhou, Wei 621
Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, and 622
6 others. 2024a. Data interpreter: An llm agent for 623
data science. Preprint, arXiv:2402.18679. 624

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 625
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 626
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 627
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 628
and Jürgen Schmidhuber. 2024b. MetaGPT: Meta 629
programming for a multi-agent collaborative frame- 630
work. In The Twelfth International Conference on 631
Learning Representations. 632

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. 633
2023. Mlagentbench: Evaluating language agents on 634
machine learning experimentation. arXiv preprint 635
arXiv:2310.03302. 636

Wenyang Hui and Kewei Tu. 2024. Rot: Enhancing 637
large language models with reflection on search trees. 638

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, 639
Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang 640
Wu. 2025. Aide: Ai-driven exploration in the space 641
of code. Preprint, arXiv:2502.13138. 642

Haifeng Jin, François Chollet, Qingquan Song, and Xia 643
Hu. 2023. Autokeras: An automl library for deep 644
learning. Journal of machine Learning research, 645
24(6):1–6. 646

Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto- 647
keras: An efficient neural architecture search system. 648
In Proceedings of the 25th ACM SIGKDD interna- 649
tional conference on knowledge discovery & data 650
mining, pages 1946–1956. 651

Levente Kocsis and Csaba Szepesvári. 2006. Bandit 652
based monte-carlo planning. In Machine Learning: 653
ECML 2006, pages 282–293, Berlin, Heidelberg. 654
Springer Berlin Heidelberg. 655

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei- 656
Fei. 2013. 3d object representations for fine-grained 657
categorization. In Proceedings of the IEEE Interna- 658
tional Conference on Computer Vision Workshops, 659
pages 554–561. 660

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, 661
Cyril Zhang, and Aleksandrs Slivkins. 2024. Can 662
large language models explore in-context? 663

9

https://tblock.github.io/10kGNAD/
https://tblock.github.io/10kGNAD/
https://tblock.github.io/10kGNAD/
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://doi.org/10.1609/icaps.v28i1.13933
https://doi.org/10.1609/icaps.v28i1.13933
https://doi.org/10.1609/icaps.v28i1.13933
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138

Erin LeDell and Sebastien Poirier. 2020. H2O Au-664
toML: Scalable automatic machine learning. 7th665
ICML Workshop on Automated Machine Learning666
(AutoML).667

Dawei Li, Zhen Tan, and Huan Liu. 2024. Exploring668
large language models for feature selection: A data-669
centric perspective. Preprint, arXiv:2408.12025.670

Siyi Liu, Chen Gao, and Yong Li. 2024. Large language671
model agent for hyper-parameter optimization. arXiv672
preprint arXiv:2402.01881.673

Daqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing674
Shen. 2024. Autom3l: An automated multimodal ma-675
chine learning framework with large language mod-676
els. arXiv preprint arXiv:2408.00665.677

Randal S Olson and Jason H Moore. 2016. Tpot: A678
tree-based pipeline optimization tool for automating679
machine learning. In Workshop on automatic ma-680
chine learning, pages 66–74. PMLR.681

OpenAI. 2024. Hello GPT-4o. https://openai.com/682
index/hello-gpt-4o/.683

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,684
and C V Jawahar. 2012. Cats and dogs. In Proceed-685
ings of the IEEE Conference on Computer Vision and686
Pattern Recognition, pages 3498–3505.687

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng688
Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng689
Liu, and Emad Barsoum. 2025. Agent labora-690
tory: Using llm agents as research assistants. arXiv691
preprint arXiv:2501.04227.692

Marwin Segler, Mike Preuss, and Mark Waller. 2018.693
Planning chemical syntheses with deep neural net-694
works and symbolic ai. Nature, 555:604–610.695

David Silver, Aja Huang, Chris J. Maddison, Arthur696
Guez, L. Sifre, George van den Driessche, Julian697
Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-698
neershelvam, Marc Lanctot, Sander Dieleman, Do-699
minik Grewe, John Nham, Nal Kalchbrenner, Ilya700
Sutskever, Timothy P. Lillicrap, Madeleine Leach,701
Koray Kavukcuoglu, Thore Graepel, and Demis Has-702
sabis. 2016. Mastering the game of go with deep703
neural networks and tree search. Nature.704

David Silver, Julian Schrittwieser, Karen Simonyan,705
Ioannis Antonoglou, Aja Huang, Arthur Guez,706
Thomas Hubert, Lucas baker, Matthew Lai, Adrian707
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,708
L. Sifre, George van den Driessche, Thore Graepel,709
and Demis Hassabis. 2017. Mastering the game of710
go without human knowledge. Nature.711

Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng712
Zhong, Wei-Long Zheng, Xujie Si, and Kevin Ellis.713
2024a. Code repair with llms gives an exploration-714
exploitation tradeoff.715

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan 716
Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff, and 717
George Karypis. 2024b. Autogluon-multimodal (au- 718
tomm): Supercharging multimodal automl with foun- 719
dation models. arXiv preprint arXiv:2404.16233. 720

Chris Thornton, Frank Hutter, Holger H Hoos, and 721
Kevin Leyton-Brown. 2013. Auto-weka: Combined 722
selection and hyperparameter optimization of classi- 723
fication algorithms. In Proceedings of the 19th ACM 724
SIGKDD international conference on Knowledge dis- 725
covery and data mining, pages 847–855. 726

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian 727
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a. 728
Litesearch: Efficacious tree search for llm. Preprint, 729
arXiv:2407.00320. 730

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang 731
Zhu. 2021. Flaml: A fast and lightweight automl 732
library. In MLSys. 733

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. 734
Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, 735
Yueqi Song, Bowen Li, Jaskirat Singh, and 1 others. 736
2024b. Openhands: An open platform for ai soft- 737
ware developers as generalist agents. arXiv preprint 738
arXiv:2407.16741. 739

Feng Wu, Sarvapali D. Ramchurn, Wenchao Jiang, 740
Jeol E. Fischer, Tom Rodden, and Nicholas R. Jen- 741
nings. 2015. Agile planning for real-world disaster 742
response. In Proceedings of the 24th International 743
Conference on Artificial Intelligence, IJCAI’15, page 744
132–138. AAAI Press. 745

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. 746
Fashion-mnist: a novel image dataset for bench- 747
marking machine learning algorithms. CoRR, 748
abs/1708.07747. 749

An Yang, Baosong Yang, Beichen Zhang, Binyuan 750
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi- 751
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian 752
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Ji- 753
axi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and 754
23 others. 2024. Qwen2.5 technical report. Preprint, 755
arXiv:2412.15115. 756

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and 757
Yuqing Yang. 2024. Mlcopilot: Unleashing the 758
power of large language models in solving machine 759
learning tasks. Preprint, arXiv:2304.14979. 760

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 761
Haohan Wang, and Yu-Xiong Wang. 2024. Lan- 762
guage agent tree search unifies reasoning acting and 763
planning in language models. 764

10

https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2501.04227
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://arxiv.org/abs/2407.00320
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979

A Datasets 765

Table 5 outlines the detailed information of the datasets used for evaluation. 766

Dataset name # Features # Rows # Classes Task Type Metric Source

boston 14 506 N/A Regression RMSE OpenML (Dataset ID: 531)
colleges 48 7063 N/A Regression RMSE OpenML (Dataset ID: 42727)
concrete-strength 9 4866 N/A Regression RMSE Kaggle (playground-series-s3e9)
diamonds 10 53940 N/A Regression RMSE OpenML (Dataset ID: 42225)
house-prices 81 1460 N/A Regression RMSE Kaggle (house-prices-advanced-regression-techniques)
Moneyball 15 1232 N/A Regression RMSE OpenML (Dataset ID: 41021)
SAT11-HAND-runtime-regression 118 4440 N/A Regression RMSE OpenML (Dataset ID: 41980)
credit-g 21 1000 2 Classification F1 OpenML (Dataset ID: 31)
Click_prediction_small 12 39948 2 Classification F1 OpenML (Dataset ID: 42733)
icr 58 617 2 Classification F1 Kaggle (icr-identify-age-related-conditions)
jasmine 145 2984 2 Classification F1 OpenML (Dataset ID: 41143)
kc1 21 2109 2 Classification F1 OpenML (Dataset ID: 1067)
kick 33 72983 2 Classification F1 OpenML (Dataset ID: 41162)
smoker-status 23 143330 2 Classification F1 Kaggle (playground-series-s3e24)
software-defects 22 91586 2 Classification F1 Kaggle (playground-series-s3e23)
titanic 12 891 2 Classification F1 Kaggle (titanic)
GesturePhaseSegmentationProcessed 33 9873 5 Multiclass F1-weighted OpenML (Dataset ID: 4538)
mfeat-factors 217 2000 10 Multiclass F1-weighted OpenML (Dataset ID: 12)
segment 20 2310 7 Multiclass F1-weighted OpenML (Dataset ID: 40984)
wine-quality-white 12 4898 7 Multiclass F1-weighted OpenML (Dataset ID: 40498)

Table 5: Summary of the machine learning datasets used in the experiments. OpenML datasets can be accessed using their
respective dataset IDs. The Kaggle datasets are available at https://www.kaggle.com/competitions/{source}.

B Pseudo Code of SELA 767

Algorithm 1 Tree-Search Enhanced LLM Agents

Input: Problem description p, data information d, data D, LLM M , rollout number k.
1: Λ← InsightProposer(p, d,M)
2: Initialize Tree using Λ
3: for i = 1 to k do
4: node x← select(Tree)
5: Xchild ← expand(Tree, x)
6: Randomly sample a node xsample from Xchild
7: Retreive experiment configuration c(xsample)
8: σsol, s← simulate(c(xsample), p, d,D,M)
9: attach the simulation result σsol, s to xsample for final solution selection

10: Backpropagate(Tree, s)
11: end for
12: xdev best ← argmax

x∈Tree
(s(x))

Output: σsol(xdev best)

Algorithm 2 Simulate
Input: Experiment configuration c, problem description p, data information d, data D, LLM M .

1: Draft plans Iτ∈T ← Eplan(p, d, c,M)
2: Code and execute sequentially στ∈T , s← Ecode & execute(I

τ∈T , D,M)
3: σsol ← concatenate(στ∈T)

Output: σsol, s

11

C Prompts768

C.1 Task Prompt769

All LLM-based methods start by receiving the same base requirement prompt at the beginning of the task.770

The prompt specifies the dataset’s name, the target label column, the evaluation metric to be used, and the771

dataset’s file path. Furthermore, the prompt include a path to a text file containing the dataset’s metadata.772
773

1 TASK_PROMPT = """774
2 # User requirement775
3 This is a {datasetname} dataset.776
4 Your goal is to predict the target column `{target_col}`.777
5 Perform data analysis , data preprocessing , feature engineering , and modeling to predict the target. Report {778

metric} on the eval data. Do not plot or make any visualizations.779
6780
7 # Data dir781
8 train set (with labels): {train_path}782
9 dev set (with labels): {dev_path}783

10 test set (without labels): {test_path}784
11 dataset description: {data_info_path}785
12 (During EDA , you can use this file786
13 to get additional information about the dataset)787
14 """788789

Since AIDE automatically splits the training data into a new train set and a validation set, we combine790

the original train and validation sets and provide them as input to AIDE. We set k_fold_validation to 1 in791

its configuration file to enforce a single train-val split for closer alignment with our setup. In both setups,792

the frameworks have access to the labels for both the train and validation sets.793

C.2 Instruction Prompt794

The instruction prompt would direct the framework to save the final prediction file for evaluation.795
796

1 DI_INSTRUCTION = """797
2 ## Attention798
3 1. Please do not leak the target label in any form during training.799
4 2. Test set does not have the target column.800
5 3. When conducting data exploration or analysis , print out the results of your findings.801
6 4. You should perform transformations on train , dev , and test sets at the same time (it's a good idea to802

define functions for this and avoid code repetition).803
7 5. When scaling or transforming features , make sure the target column is not included.804
8 6. You could utilize dev set to validate and improve model training. {special_instruction}805
9806

10 ## Saving Dev and Test Predictions807
11 1. Save the prediction results of BOTH the dev set and test set in `dev_predictions.csv` and `808

test_predictions.csv` respectively in the output directory.809
12 - Both files should contain a single column named `target ` with the predicted values.810
13 2. Make sure the prediction results are in the same format as the target column in the training set.811
14 - For instance , if the target column is categorical , the prediction results should be categorical as well.812
15813
16 ## Output Performance814
17 Print the train and dev set performance in the last step.815
18816
19 # Output dir817
20 {output_dir}818
21 """819820

12

C.3 Insight Proposal Prompt 821

Insight Proposer uses this prompt to generate a search space of insights for different stages of the machine 822

learning task. 823
824

1 DATASET_INSIGHT_PROMPT = """ 825
2 # Dataset Description 826
3 {dataset} 827
4 828
5 # Dataset Metadata 829
6 {metadata} 830
7 831
8 # Dataset Head 832
9 {head} 833

10 834
11 # Instruction 835
12 Propose insights to help improve the performance of the model on this dataset. 836
13 The insights should be proposed based on the dataset description with different task types. 837
14 Each task type should have at least 5 insights. 838
15 Make sure each method is diverse enough and can be implemented separately. 839
16 Be specific about models ' choices , ensemble and tuning techniques , and preprocessing & feature engineering 840

techniques. 841
17 842
18 # Format 843
19 ```json 844
20 [845
21 {{ 846
22 "task_type ": "EDA", 847
23 "insights ": [848
24 "insight1", 849
25 "insight2", 850
26 "insight3", 851
27 ... 852
28 "insightN" 853
29] 854
30 }}, 855
31 {{ 856
32 "task_type ": "Data Preprocessing", 857
33 "insights ": [858
34 "insight1", 859
35 "insight2", 860
36 "insight3", 861
37 ... 862
38 "insightN" 863
39] 864
40 }}, 865
41 {{ 866
42 "task_type ": "Feature Engineering", 867
43 "insights ": [868
44 "insight1", 869
45 "insight2", 870
46 "insight3", 871
47 ... 872
48 "insightN" 873
49] 874
50 }}, 875
51 {{ 876
52 "task_type ": "Model Training", 877
53 "insights ": [878
54 "insight1", 879
55 "insight2", 880
56 "insight3", 881
57 ... 882
58 "insightN" 883
59] 884
60 }} 885
61] 886
62 ``` 887
63 """ 888889

13

D Results890

D.1 Main Results891

AutoGluon AutoSklearn AIDE DI SELA
Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

Click_prediction_small 7 7 2 1 7.3 4 11 10 7.7 6
GesturePhaseSegmentationProcessed 1 1 6.3 3 7.3 4 11 10 5.3 2
Moneyball 4 4 10 9 4 1 9 2 6 3
SAT11-HAND-runtime-regression 1 1 12 11 5.3 3 9 8 3.7 2
boston 5 5 12 11 3.7 2 9 8 4 1
colleges 1 1 12 11 6 2 8 7 4 3
concrete-strength 5 5 12 11 6.3 4 2 1 8.3 6
credit-g 4 4 10 9 10 5 5.3 1 3.7 2
diamonds 2 2 12 11 6 4 8.7 7 3 1
house-prices 1 1 12 11 6.7 5 7.3 3 4 2
icr 5 5 5.3 3 12 11 9 8 2.3 1
jasmine 7 7 6 4 8.7 5 11.3 9 2 1
kc1 10 10 2.7 1 8 5 11.3 9 5 2
kick 4 4 2 1 9.3 6 11 10 6.7 5
mfeat-factors 4 4 2 1 10 9 10.3 6 6.7 5
segment 3 3 6.3 5 11 10 9.7 7 2.3 1
smoker-status 7 7 4.7 3 11.3 9 7.7 2 4.3 1
software-defects 8 8 2 1 12 11 6 4 7.7 6
titanic 7 7 9.7 6 2.7 1 10.3 8 5.3 3
wine-quality-white 2 2 10 8 7.3 4 9 7 3.3 1

Overall Rank ↓ 4.4 4.4 7.6 6.1 7.8 5.3 8.8 6.4 4.8 2.7

Table 6: Methods’ ranking for each tabular dataset

14

E Tree Search vs. Reasoning-Based Models 892

With the emergence of advanced reasoning models like DeepSeek-R1, a pivotal question arises: how do 893

deliberative capabilities compare to empirical, feedback-driven methods in complex decision-making 894

tasks? To explore this, we evaluate three configurations that dissect the contributions of reasoning 895

capabilities and structured search: 896

1. Tree Search + Non-Reasoning Model: SELA with DeepSeek-V2.5 897

2. Reasoning Model: standalone DeepSeek-R1 898

3. Tree Search + Reasoning Model: SELA with DeepSeek-R1 899

SELA with DeepSeek-V2.5 outperforms the standalone reasoning-heavy DeepSeek-R1 on 5 out 900

of 6 datasets, demonstrating that empirical, feedback-driven experimentation can outperform purely 901

deliberative reasoning in complex data analysis workflows. Notably, the best results are obtained when 902

both approaches are combined. 903

boston Click_pred colleges credit-g Gesture mfeat Avg.

SELA (V2.5) 40.1 23.2 87.8 50.9 67.9 95.7 60.9
DeepSeek-R1 39.9 29.8 87.6 48.5 64.7 93.9 60.7
SELA (R1) 41.4 35.3 88.0 57.7 66.6 95.8 64.1

Table 8: Performance comparison between tree search and reasoning-based modeling configurations across six datasets.

The results highlight a key distinction between reasoning-driven approaches like DeepSeek-R1 and 904

SELA’s tree search framework. Long-form Chain of Thoughts (CoT) enables a model to carefully 905

deliberate before coding, selecting solutions it deems optimal based on internal reasoning. While this 906

can be beneficial, it remains a static decision that may not always align with real-world outcomes. In 907

contrast, SELA emphasizes iterative experimentation—actively testing and refining solutions based on 908

actual data feedback. Much like a human expert, while deep reasoning is valuable, it is through structured 909

experimentation that one can verify assumptions and adapt strategies dynamically, leading to superior 910

performance. 911

Notably, SELA and reasoning models like R1 are complementary rather than competing approaches. 912

SELA’s framework is model-agnostic and can seamlessly integrate reasoning-enhanced LLMs to further 913

improve performance. We tested SELA with DeepSeek-R1 and observed a significant performance boost, 914

achieving an average score of 64.1. This demonstrates that incorporating stronger reasoning capabilities 915

within SELA’s experimental framework further enhances its effectiveness, pushing the performance 916

boundary even higher. 917

15

F SELA’s Adaptability to Additional Datasets and Benchmarks918

To evaluate SELA’s generalization capabilities, we conducted experiments on ten additional datasets919

encompassing various modalities, including text, image, and tabular data. These datasets were sourced920

from classical benchmarks, trending Huggingface datasets, and MLE-Bench (Chan et al., 2025) tasks.921

The following table summarizes the normalized scores achieved by SELA and AIDE across the selected922

datasets:923

Dataset Modality (Metric) AIDE SELA

sms_spam (Huggingface) Text (F1) 93.3 97.5
banking77 (Huggingface) Text (F1-weighted) 86.0 88.4
gnad10 (Block, 2019) Text (F1-weighted) 84.8 85.6
random-acts-of-pizza (MLE-Bench) Text (AUC) 64.5 65.9
fashion_mnist (Xiao et al., 2017) Image (F1-weighted) 0 90.1
oxford-iiit-pet (Parkhi et al., 2012) Image (F1-weighted) 0 88.9
stanford_cars (Krause et al., 2013) Image (F1-weighted) 0 73.7
plant-pathology-2020-fgvc7 (MLE-Bench) Image (AUC) 98.1 70.0
tabular-playground-series-dec-2021 (MLE-Bench) Tabular (Accuracy) 95.8 95.3
nomad2018-predict-transparent-conductors (MLE-Bench) Tabular (RMSLE) 88.07 94.2

Table 9: Normalized scores of AIDE and SELA across diverse datasets.

The results indicate that SELA exhibits robust performance across various data modalities. No-924

tably, SELA successfully generated valid solutions for image-based datasets such as fashion_mnist,925

oxford-iiit-pet, and stanford_cars, where AIDE failed to produce valid outputs. This suggests that926

SELA is highly adaptable and capable of generalizing beyond tabular tasks.927

16

G Comparison with General-Purpose Agentic Frameworks 928

We additionally compare SELA with general software engineering agents OpenHands (Wang et al., 929

2024b), MLAB (Huang et al., 2023), and Agent Laboratory (Schmidgall et al., 2025) across the ablation 930

datasets. Each method is executed three times per dataset, and we report the average Normalized Score. If 931

a method fails to produce a valid test set prediction, we exclude it from the average and note the success 932

rate in parentheses. 933

Method boston Click_pred colleges credit-g Gesture mfeat

SELA 40.1 23.2 87.8 50.9 67.9 95.7
OpenHands 38.5 (66.7%) 22.3 87.6 (66.7%) 48.8 (33.3%) 64.4 94.7
MLAB N/A (0%) 17.0 (33.3%) 0.4 (33.3%) N/A (0%) N/A (0%) 0.1 (33.3%)
Agent Laboratory (GPT-4o) 38.6 27.2 (33.3%) 86.9 (66.7%) 32.9 (33.3%) 54.2 93.9 (66.7%)

Table 10: Normalized Scores across six datasets. Success rates are indicated in parentheses where applicable.

SELA achieves the highest average score and outperforms OpenHands on 5 of 6 datasets. OpenHands 934

tends to generate minimal code, covering preprocessing, feature engineering, and modeling without 935

deeper optimization. SELA’s structured approach—dividing tasks into stages and enforcing diverse, 936

sophisticated configurations—gives it a distinct advantage. MLAB frequently stalls in data inspection 937

loops or produces weak models, while Agent Laboratory struggles with debugging loops and feature 938

engineering failures, particularly with DeepSeek-V2.5. Even with GPT-4o, it has lower performance and 939

occasional failures. Unlike general software engineering agents, which focus on task completion, machine 940

learning agents must optimize performance based on data feedback. SELA excels by systematically 941

exploring diverse strategies to maximize results. 942

17

H Cost-effectiveness Analysis943

We conduct multiple trials of execution of each method to estimate the average running cost for the LLM-944

based baselines. As shown in Table 11, all methods incur relatively low costs to complete a single machine945

learning task. Among these, AIDE exhibits the lowest execution cost, due to the lack of stage-wise946

planning, resulting in fewer token generations compared to the other approaches. Additionally, SELA,947

which employs Data Interpreter as its base experimenter, is less costly than Data Interpreter itself. This948

efficiency is largely due to SELA’s state-saving and loading mechanism, which reduces the generation of949

repeated tasks and code.950

Cost per ML task ($)

Data Interpreter (k=10) 0.07
AIDE (k=10) 0.01
SELA (k=10) 0.05

Table 11: Estimated costs of agent-based frameworks utilizing DeepSeekV2.5 on a single machine learning dataset over k
iterations/rollouts.

18

I Case Study 951

I.1 Overview of SELA’s search process 952

953
1 Number of simulations: 10 954
2 [Node 0] 955
3 Plans: 956
4 1. Perform exploratory data analysis on the train and dev datasets 957
5 2. Preprocess the train , dev , and test datasets 958
6 3. Perform feature engineering on the train , dev , and test datasets 959
7 4. Train multiple models and evaluate their performance 960
8 5. Train a weighted ensemble model using the best performing models 961
9 6. Evaluate the ensemble model on the dev set and save predictions 962

10 7. Generate predictions for the test set and save them 963
11 Simulated: True 964
12 Score: avg score: 0.6150206840685731 , simulated score: {'train_score ': 1.0, 'dev_score ': 965

0.6855841857240594 , 'test_score ': 0.6814818772150697 , 'score ': 0.6855841857240594} , Visits: 10 966
13 967
14 [Node 0-0] 968
15 Plans: 969
16 3. Perform feature engineering on the train , dev , and test datasets by creating new features that 970

calculate the magnitude of the vectorial velocities and accelerations to capture the overall 971
movement intensity. 972

17 Simulated: True 973
18 Score: avg score: 0.6507249985568175 , simulated score: {'train_score ': 0.982920964830782 , 'dev_score ': 974

0.6420233166755841 , 'test_score ': 0.647550336228104 , 'score ': 0.6420233166755841} , Visits: 2 975
19 976
20 [Node 0-0-0] 977
21 Plans: 978
22 4. Train a Random Forest classifier to leverage its ability to handle high -dimensional data and 979

capture non -linear relationships , and evaluate its performance 980
23 Simulated: False 981
24 Score: avg score: 0, simulated score: {}, Visits: 0 982
25 983
26 [Node 0-0-1] 984
27 Plans: 985
28 4. Train multiple models , including a Support Vector Machine (SVM) with a radial basis function 986

(RBF) kernel , and evaluate their performance. 987
29 Simulated: False 988
30 Score: avg score: 0, simulated score: {}, Visits: 0 989
31 990
32 [Node 0-0-2] 991
33 Plans: 992
34 4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data 993

and evaluate its performance 994
35 Simulated: True 995
36 Score: avg score: 0.6594266804380511 , simulated score: {'train_score ': 1.0, 'dev_score ': 996

0.6594266804380511 , 'test_score ': 0.6702614538699305 , 'score ': 0.6594266804380511} , Visits: 1 997
37 998
38 [Node 0-0-3] 999
39 Plans: 1000
40 4. Train multiple models , apply an ensemble method like Gradient Boosting to combine them , and 1001

evaluate their performance 1002
41 Simulated: False 1003
42 Score: avg score: 0, simulated score: {}, Visits: 0 1004
43 1005
44 [Node 0-0-4] 1006
45 Plans: 1007
46 4. Train multiple models , perform hyperparameter tuning using Grid Search or Random Search , and 1008

evaluate their performance 1009
47 Simulated: False 1010
48 Score: avg score: 0, simulated score: {}, Visits: 0 1011
49 1012
50 [Node 0-1] 1013
51 Plans: 1014
52 3. Perform feature engineering on the train , dev , and test datasets by generating time -based features , 1015

such as the difference between consecutive frames , to capture the rate of change in movements. 1016
53 Simulated: True 1017
54 Score: avg score: 0.6464940718972336 , simulated score: {'train_score ': 1.0, 'dev_score ': 1018

0.5985614604756948 , 'test_score ': 0.5857379626419719 , 'score ': 0.5985614604756948} , Visits: 2 1019
55 1020
56 [Node 0-1-0] 1021
57 Plans: 1022
58 4. Train a Random Forest classifier to leverage its ability to handle high -dimensional data and 1023

capture non -linear relationships 1024
59 Simulated: False 1025
60 Score: avg score: 0, simulated score: {}, Visits: 0 1026
61 1027
62 [Node 0-1-1] 1028
63 Plans: 1029
64 4. Train multiple models , including a Support Vector Machine (SVM) with a radial basis function 1030

(RBF) kernel , and evaluate their performance to model the complex decision boundaries between 1031
different gesture phases. 1032

65 Simulated: True 1033
66 Score: avg score: 0.6944266833187726 , simulated score: {'train_score ': 1.0, 'dev_score ': 1034

0.6944266833187726 , 'test_score ': 0.6928451194338062 , 'score ': 0.6944266833187726} , Visits: 1 1035

19

671036
68 [Node 0-1-2]1037
69 Plans:1038
70 4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data1039

and evaluate its performance1040
71 Simulated: False1041
72 Score: avg score: 0, simulated score: {}, Visits: 01042
731043
74 [Node 0-1-3]1044
75 Plans:1045
76 4. Train multiple models , apply an ensemble method like Gradient Boosting to combine them , and1046

evaluate their performance1047
77 Simulated: False1048
78 Score: avg score: 0, simulated score: {}, Visits: 01049
791050
80 [Node 0-1-4]1051
81 Plans:1052
82 4. Train multiple models and perform hyperparameter tuning using techniques like Grid Search or1053

Random Search to optimize and evaluate their performance.1054
83 Simulated: False1055
84 Score: avg score: 0, simulated score: {}, Visits: 01056
851057
86 [Node 0-2]1058
87 Plans:1059
88 3. Perform feature engineering on the train , dev , and test datasets by creating features that represent1060

the spatial relationships between different body parts , such as the distance between the hands and1061
the head.1062

89 Simulated: True1063
90 Score: avg score: 0.6296836159165489 , simulated score: {'train_score ': 0.7619969104124632 , 'dev_score ':1064

0.5997286931710517 , 'test_score ': 0.604077566134264 , 'score ': 0.5997286931710517} , Visits: 31065
911066
92 [Node 0-2-0]1067
93 Plans:1068
94 4. Train a Random Forest classifier to leverage its ability to handle high -dimensional data and1069

capture non -linear relationships , and evaluate its performance1070
95 Simulated: False1071
96 Score: avg score: 0, simulated score: {}, Visits: 01072
971073
98 [Node 0-2-1]1074
99 Plans:1075

100 4. Train multiple models , including a Support Vector Machine (SVM) with a radial basis function1076
(RBF) kernel , and evaluate their performance to model the complex decision boundaries between1077
different gesture phases.1078

101 Simulated: True1079
102 Score: avg score: 0.6446610772892973 , simulated score: {'train_score ': 0.9952809245924918 ,1080

'dev_score ': 0.6372459669415207 , 'test_score ': 0.6423549137767338 , 'score ':1081
0.6372459669415207} , Visits: 21082

1031083
104 [Node 0-2-1-0]1084
105 Plans:1085
106 5. Train a weighted ensemble model using the best performing models from task 41086
107 Simulated: False1087
108 Score: avg score: 0, simulated score: {}, Visits: 01088
1091089
110 [Node 0-2-1-1]1090
111 Plans:1091
112 5. Using the models that performed best in task 4, train a weighted ensemble model to improve1092

overall performance.1093
113 Simulated: False1094
114 Score: avg score: 0, simulated score: {}, Visits: 01095
1151096
116 [Node 0-2-1-2]1097
117 Plans:1098
118 5. Develop a weighted ensemble model by integrating the top -performing models from task 4,1099

ensuring to evaluate and adjust the weights for optimal performance.1100
119 Simulated: True1101
120 Score: avg score: 0.6520761876370741 , simulated score: {'train_score ': 1.0, 'dev_score ':1102

0.6520761876370741 , 'test_score ': 0.6563435152603494 , 'score ': 0.6520761876370741} ,1103
Visits: 11104

1211105
122 [Node 0-2-1-3]1106
123 Plans:1107
124 5. Train a weighted ensemble model by combining the predictions of the top -performing models1108

from task 4 to improve overall performance.1109
125 Simulated: False1110
126 Score: avg score: 0, simulated score: {}, Visits: 01111
1271112
128 [Node 0-2-1-4]1113
129 Plans:1114
130 5. Develop a weighted ensemble model by combining the top -performing models from task 4,1115

ensuring to optimize the weights for improved performance.1116
131 Simulated: False1117
132 Score: avg score: 0, simulated score: {}, Visits: 01118
1331119
134 [Node 0-2-2]1120
135 Plans:1121

20

136 4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data 1122
and evaluate its performance 1123

137 Simulated: False 1124
138 Score: avg score: 0, simulated score: {}, Visits: 0 1125
139 1126
140 [Node 0-2-3] 1127
141 Plans: 1128
142 4. Train multiple models , apply an ensemble method like Gradient Boosting to combine them , and 1129

evaluate their performance 1130
143 Simulated: False 1131
144 Score: avg score: 0, simulated score: {}, Visits: 0 1132
145 1133
146 [Node 0-2-4] 1134
147 Plans: 1135
148 4. Perform hyperparameter tuning using Grid Search or Random Search to train multiple models and 1136

evaluate their performance 1137
149 Simulated: False 1138
150 Score: avg score: 0, simulated score: {}, Visits: 0 1139
151 1140
152 [Node 0-3] 1141
153 Plans: 1142
154 3. Apply feature selection techniques such as Recursive Feature Elimination (RFE) or SelectKBest to 1143

identify and retain the most important features in the train , dev , and test datasets. 1144
155 Simulated: True 1145
156 Score: avg score: 0.49056683315196203 , simulated score: {'train_score ': 0.9988177730410426 , 1146

'dev_score ': 0.51620611302976 , 'test_score ': 0.525989891002361 , 'score ': 0.51620611302976} , 1147
Visits: 2 1148

157 1149
158 [Node 0-3-0] 1150
159 Plans: 1151
160 4. Train a Random Forest classifier to leverage its ability to handle high -dimensional data and 1152

capture non -linear relationships , and evaluate its performance. 1153
161 Simulated: False 1154
162 Score: avg score: 0, simulated score: {}, Visits: 0 1155
163 1156
164 [Node 0-3-1] 1157
165 Plans: 1158
166 4. Train multiple models , including a Support Vector Machine (SVM) with a radial basis function 1159

(RBF) kernel , and evaluate their performance to model the complex decision boundaries between 1160
different gesture phases. 1161

167 Simulated: True 1162
168 Score: avg score: 0.4649275532741641 , simulated score: {'train_score ': 0.7299159411193588 , 1163

'dev_score ': 0.4649275532741641 , 'test_score ': 0.4631598897487413 , 'score ': 1164
0.4649275532741641} , Visits: 1 1165

169 1166
170 [Node 0-3-2] 1167
171 Plans: 1168
172 4. Implement and train a Neural Network with multiple layers to capture hierarchical patterns in 1169

the data and evaluate its performance 1170
173 Simulated: False 1171
174 Score: avg score: 0, simulated score: {}, Visits: 0 1172
175 1173
176 [Node 0-3-3] 1174
177 Plans: 1175
178 4. Train multiple models , apply an ensemble method like Gradient Boosting to combine them , and 1176

evaluate their performance 1177
179 Simulated: False 1178
180 Score: avg score: 0, simulated score: {}, Visits: 0 1179
181 1180
182 [Node 0-3-4] 1181
183 Plans: 1182
184 4. Train multiple models , perform hyperparameter tuning using techniques like Grid Search or Random 1183

Search , and evaluate their performance 1184
185 Simulated: False 1185
186 Score: avg score: 0, simulated score: {}, Visits: 0 1186
187 1187
188 [Node 0-4] 1188
189 Plans: 1189
190 3. Create interaction features by combining existing features , such as the product of velocity and 1190

acceleration , to capture complex relationships in the train , dev , and test datasets 1191
191 Simulated: False 1192
192 Score: avg score: 0, simulated score: {}, Visits: 0 1193
193 1194
194 Generated 29 unique codes. 1195
195 Best node: 0-1-1, score: {'train_score ': 1.0, 'dev_score ': 0.6944266833187726 , 'test_score ': 1196

0.6928451194338062 , 'score ': 0.6944266833187726} 1197
196 Dev best node: 0-1-1, score: {'train_score ': 1.0, 'dev_score ': 0.6944266833187726 , 'test_score ': 1198

0.6928451194338062 , 'score ': 0.6944266833187726} 11991200

In this case study, we demonstrate how SELA conducts a search cycle using MCTS: 1201

Pre-search Step: Initialization 1202

SELA begins by defining high-level stages, such as exploratory data analysis, data preprocessing, feature 1203

engineering, and model training, which structure the overall machine learning workflow. During the 1204

search, SELA populates these stages with specific insights, which act as experimental configurations for 1205

21

simulation.1206

Step 1 & 2: Selection and Expansion1207

SELA leverages MCTS to explore specific stages like feature engineering and model training. For1208

example, in one iteration, SELA selects Node 0-1. This node corresponds to a stage insight that generates1209

time-based features, expanding into five child nodes representing various model specifications and training1210

strategies, such as Random Forests, Support Vector Machines, Neural Networks, Gradient Boosting, or1211

Grid Search.1212

Step 3: Simulation1213

Next, SELA samples one of the expanded child nodes for simulation. For instance, when Node 0-1-1 is1214

chosen, SELA runs a complete experiment where time-based feature engineering (Node 0-1) is followed1215

by training a Support Vector Machine (SVM) with a kernel specified by Node 0-1-1. The simulation1216

yields an evaluation score.1217

Step 4: Backpropagation1218

After the simulation, the resulting performance score is propagated back through the tree. For example,1219

after simulating Node 0-1-1, MCTS updates the numeric feedback for its parent nodes, such as Node 0-11220

and Node 0. The search cycle repeats from Steps 1 to 4 until a stopping condition is reached.1221

Post-search Step: Best Node Selection1222

In the final phase, SELA selects the node representing the best-performing solution. In this example, Node1223

0-1-1, using an SVM with an RBF kernel, achieved the highest score in the current dataset by combining1224

effective feature engineering with advanced model training. SELA then presents the code associated with1225

this node as the optimal solution.1226

22

	Introduction
	Related Works
	Method
	Insight Proposal and Search Space Creation
	Pipeline Execution and Code Generation
	Tree Search in Machine Learning Experiments
	Experiment Node
	Tree Search for ML Experiments
	Experiment State Saving and Loading

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Datasets
	Pseudo Code of SELA
	Prompts
	Task Prompt
	Instruction Prompt
	Insight Proposal Prompt

	Results
	Main Results

	Tree Search vs. Reasoning-Based Models
	SELA's Adaptability to Additional Datasets and Benchmarks
	Comparison with General-Purpose Agentic Frameworks
	Cost-effectiveness Analysis
	Case Study
	Overview of SELA's search process

