SELA: Tree-Search Enhanced LLM Agents for Automated Machine
Learning

Anonymous ACL submission

Abstract

Automated Machine Learning (AutoML) ap-
proaches encompass traditional methods that
optimize fixed pipelines for model selection
and ensembling, as well as newer LLM-based
frameworks that autonomously build pipelines.
While LLM-based agents have shown promise
in automating machine learning tasks, they of-
ten generate low-diversity and suboptimal code,
even after multiple iterations. To overcome
these limitations, we introduce Tree-Search
Enhanced LLM Agents (SELA), an innovative
agent-based system that leverages Monte Carlo
Tree Search (MCTYS) to optimize the AutoML
process. By representing pipeline configura-
tions as trees, our framework enables agents
to conduct experiments intelligently and itera-
tively refine their strategies, facilitating a more
effective exploration of the machine learning
solution space. This novel approach allows
SELA to discover optimal pathways based on
experimental feedback, improving the overall
quality of the solutions. In an extensive evalu-
ation across 20 machine learning datasets, we
compare the performance of traditional and
agent-based AutoML methods, demonstrating
that SELA achieves a win rate of 65% to 80%
against each baseline across all datasets. These
results underscore the significant potential of
agent-based strategies in AutoML, offering a
fresh perspective on tackling complex machine
learning challenges.

1 Introduction

Automated Machine Learning (AutoML) is a
rapidly evolving field that seeks to automate the
process of designing reliable machine learning solu-
tions with minimal human intervention. Traditional
AutoML frameworks, such as Auto-WEKA (Thorn-
ton et al., 2013), Auto-Sklearn (Feurer et al., 2015,
2020), AutoGluon (Tang et al., 2024b), and H20
AutoML (LeDell and Poirier, 2020), rely on pre-
defined search spaces and routines. These frame-

works primarily focus on optimizing hyperparame-
ters and model ensembling to find the best model
configuration.

Recently, large language model (LLM)-based
agents have emerged as promising tools for au-
tomating machine learning tasks by leveraging nat-
ural language processing capabilities to generate
code. These systems typically begin with a natu-
ral language prompt describing the dataset and the
problem, after which an LLM generates an end-to-
end solution. Early efforts, such as (Zhang et al.,
2024), experimented with prompting LLMs to gen-
erate machine learning solutions, while (Hong
et al., 2024a) introduced agents equipped with
hierarchical graph modeling and programmable
node generation to address complex and dynamic
workflows. Despite these advances, LLLM-based
solutions often fall short in generating diverse and
highly optimized workflows, as their search process
remains limited to a single pass or trial. Without
iterative refinement or the ability to explore alter-
native strategies, these solutions often converge to
suboptimal results, even when multiple attempts
are allowed.

To address the limitations of both traditional Au-
toML and LLM-based frameworks, we examine
the problem-solving strategies of human experts.
Unlike traditional AutoML, which relies on prede-
fined search space and prebuilt pipelines, experts
dynamically construct workflows by deriving task-
specific insights from data. Furthermore, rather
than settling on a single attempt, they iteratively ex-
periment, analyze outcomes, and refine each com-
ponent based on feedback. This adaptive, feedback-
driven process enables the exploration of diverse so-
lutions and continuous optimization—an approach
that current LLM-based frameworks struggle to
replicate.

We propose Tree-Search Enhanced LLM Agents
(SELA), a novel framework that integrates LLM
agents with a dynamic, feedback-driven search pro-

Dynamic Feature Model Model Pipeline

Pipeline Engineering Training Improvement Optimization
AutoGluon (Erickson et al., 2020) X X Fixed models Multi-layer stacking + bagging X
AutoSklearn (Feurer et al., 2020) X X Fixed models Bayes Opt. + meta-learning + ensemble X
Data Interpreter (Hong et al., 2024a) v Instinctive Instinctive Instinctive X
AIDE (Jiang et al., 2025) v Instinctive Dynamic & diverse Dynamic & diverse One-step refinement + LLM
SELA (Ours) v Dynamic & diverse ~ Dynamic & diverse Dynamic & diverse Stepwise MCTS + LLM

Table 1: Comparison of key capabilities across various AutoML methods. Dynamic indicates the system’s
ability to adjust workflows based on intermediate outcomes, allowing it to adapt as new information
emerges. Diverse refers to employing multiple strategies or methods across tasks, which helps capture
varied modeling needs. Instinctive means that the system directly relies on the decisions generated by an

LLM and heavily depends on the model’s inclination.
/Wmmns
Impute Scale the jate the
O %, O//O\
Derive a new

Apply polynomial Use PCA O O
feature

features

)

Exploratory
Data Analysis
Data
Preprocess

Feature
Engineering

. Model
Training
——
Multi-step Generation
Propose a multi-step plan and
generate the ML solution step
by step.

N Y MY

Refine Refine
1 1

~, | Refine
—> >

| uonnjos
Z uonnjos
€ uonnjos

Experiment
with LR and
RF

Use a stacking Use k-fold
classifier @ bagging to avoid

overfitting

C
C

—/

One-step Generation + Iterative Refinement
Generate the whole ML solution within one
step and then iteratively refine and improve

the whole solution.

Our Method
To generate a multi-step ML solution, we utilize an LLM
to propose the search space for different ML stages. We

1
1
1
1
1
1
1
1
1
1
|
1
1
!
|
1
1
1
1
1
1
|
1
1
1
: then apply MCTS to search for an optimized solution.

Figure 1: SELA’s abstraction compared to other agent-based AutoML frameworks. There are two main types of agent-based
approaches to AutoML problems. The first approach (Hong et al., 2024a) divides a machine learning task into multiple stages,
proposing a plan for each stage, and generating and executing code step by step according to the plan, with no refinement after
the solution is completed. The second (Jiang et al., 2025) generates the entire solution in one step and iteratively refines it as a
whole. SELA integrates both approaches, enabling stage-wise planning while iteratively exploring better solutions at each stage
level.

cess for automated machine learning. Our frame- To summarize, our research makes the following
work combines a task-specific insight proposer, contributions:

which dynamically explores machine learning con-
figurations, with a modified Monte Carlo Tree
Search (MCTS) selection algorithm, designed to insight proposer that enables LLM agents to
efficiently navigate complex search spaces by prior- dynamically explore machine learning con-
itizing deeper levels earlier. As shown in Figure 1, figurations, iteratively optimizing solutions
SELA combines stage-wise planning, where each across multiple experimental rounds.

phase (e.g., Exploratory Data Analysis, Data Pre-
processing, Feature Engineering, and Model Train-
ing) is handled sequentially, with iterative refine-
ment to continuously improve solutions. Through
this combination, SELA iteratively optimizes ma-
chine learning workflows, much like experts refin-
ing their approach based on feedback and experi- 3
mentation.

1. We introduce a feedback-driven, task-specific

2. We propose a modified MCTS selection algo-
rithm that adapts to computation-heavy sce-
narios, prioritizing the exploration of deeper
levels of the search tree earlier to enhance
efficiency and solution quality.

. We compare agent-based and traditional Au-
toML approaches, highlighting the flexibility
and performance advantages of agentic meth-

We ri 1 luated SELA using 20 di
e rigorously evaluate using iverse ods in machine learning.

datasets from the AutoML Benchmark (Gijsbers
et al., 20.2.4), comparing its performance against 2 Related Works

both traditional AutoML systems and agent-based

AutoML approaches. The results demonstrate that ~ Tree Search and Its Integration with LLMs
SELA consistently delivers superior performance Tree search algorithms have significantly advanced
across a wide range of machine learning tasks, val- problem-solving in artificial intelligence, with
idating its effectiveness and adaptability. Monte Carlo Tree Search (MCTS) emerging as a

leading technique. These algorithms have been suc-
cessfully applied across various domains, including
robotics (Wu et al., 2015; Clary et al., 2018; Best
et al., 2019), chemistry (Segler et al., 2018), and
gaming (Silver et al., 2016, 2017), where MCTS
is used to navigate vast solution spaces and solve
complex problems. More recently, research has
focused on integrating tree search with Large Lan-
guage Models (LLMs) to enhance reasoning and
decision-making. Studies such as Krishnamurthy
et al. (2024) and Dwaracherla et al. (2024) explored
LLMs’ capacities for efficient exploration, while
Tang et al. (2024a) and Hui and Tu (2024) devel-
oped strategies for exploiting previously learned
knowledge. Zhou et al. (2024) and Chi et al. (2024)
applied MCTS for planning with external or self-
evaluated feedback, while Feng et al. (2023); Wang
et al. (2024a) adapted AlphaZero-style tree search
to LLM-based tasks. However, the combination of
LLMs and MCTS can be computationally intensive
and time-consuming. Investigating more efficient
strategies for using MCTS with LLMs presents a
promising direction.

Advances and Limitations in AutoML Systems
Automated Machine Learning (AutoML) frame-
works were introduced to reduce the need for expert
knowledge in designing machine learning pipelines.
Early AutoML efforts, such as (Thornton et al.,
2013; Olson and Moore, 2016; Jin et al., 2019;
Feurer et al., 2020; Erickson et al., 2020; LeDell
and Poirier, 2020; Wang et al., 2021; Jin et al.,
2023; Tang et al., 2024b), focused primarily on
automating key pipeline components like hyper-
parameter optimization, model selection, stacking,
and ensembling. These frameworks achieved no-
table progress by integrating meta-learning and hy-
perparameter search strategies to automatically se-
lect and tune machine learning models.

Recently, there has been growing interest in
leveraging LLLMs within AutoML systems to en-
hance pipeline flexibility. Studies such as (Holl-
mann et al., 2024; Li et al., 2024) applied LLMs
to automate feature engineering, while Liu et al.
(2024) introduced LLMs for hyperparameter tun-
ing. In addition, Luo et al. (2024) proposed embed-
ding LLMs at each stage of the machine learning
workflow. Despite these advancements, traditional
AutoML systems, which consist of pre-defined
search space and procedure, face challenges in
adapting to unique datasets or specific task require-
ments.

LLM Agents for Dynamic ML Pipelines

LLM-based agents provide dynamic solutions
for complex machine learning tasks. Hong et al.
(2024a,b) introduced LLM agents with hierarchical
graph modeling and programmable node genera-
tion, creating adaptable pipelines for diverse data
scenarios. Zhang et al. (2024) showed LLMs’ abil-
ity to interpret structured inputs and apply past
experiences to new tasks. Guo et al. (2024) intro-
duced a data science agent leveraging case-based
reasoning but struggled with generating solutions
from scratch due to reliance on existing codebases.
Jiang et al. (2025) proposed an iterative approach
where pipelines are generated and refined incre-
mentally.

SELA combines stage-wise planning and itera-
tive refinement, allowing autonomous exploration
and generation of machine learning solutions from
the ground up. This provides greater flexibility and
control, enabling optimized solutions at each stage.
Table 1 compares the functionalities of various Au-
toML systems.

3 Method

As illustrated in Figure 2, SELA consists of three
key components: an LLM-based insight proposer,
an MCTS-based search module, and an LLM agent
for executing experiments. First, the LLM gen-
erates insights from the problem description and
dataset, defining a search space. The search module
then organizes this space into a tree structure and
uses MCTS to explore promising paths. At each
cycle, the selected path is passed to the LLM agent,
which translates it into an executable pipeline, con-
ducts the experiment, and feeds back the results to
refine future searches. This iterative process contin-
ues until the termination criterion is met. We show
the pseudo code in Algorithm 1 and explain each
component in the following sections.

3.1 Insight Proposal and Search Space
Creation

To explore various machine learning strategies,
SELA employs an insight proposer that generates
diverse methods tailored to different stages of the
workflow. Each insight suggests a technique or
combination of methods aimed at improving per-
formance, such as feature engineering or model
training strategies. The proposer takes as input the
problem description p and dataset d, generating
insights A for each stage of the process, which are
stored in an insight pool A. We break down the

Dataset Information

o N\ - 4 N\
| Generated Search Space | GichlopDesciptonle @ Dataset Simulate and Get Feedback

5. Simulation score feedback

1. Input problem
and data info

Default start:
Exploratory Data Analysis,

Data Processing:

One-hot Encoding

Feature Engineering:
Polynomial Features

Model Training:
Stacking Classifier

Data Feature MQQeI -
Preprocess Engineering Tra!mng ! 2. Generate
Insights Insights Insights search space
Monte Carlo Tree Search 3. Output
search result
Root for execution
Select
3 Expand | R
Simuite | <
OEQ‘ O
- J

Loop (step 3 -> 4 -> 5) until stopping condition satisfied

Default end:
Model Evaluate

- J/

Figure 2: SELA’s pipeline operates as follows: The system begins by inputting the problem description and dataset information
into the LLM, which generates a search space of potential solutions, encompassing data preprocessing, feature engineering,
and model training. The search module, powered by Monte Carlo Tree Search (MCTS), explores this space by selecting,
expanding, and simulating potential configurations. The LLM agent then simulates the selected configuration by planning,
coding, and executing the experiment. Feedback from the simulation is fed back into the search module, where it is used in
the backpropagation step to refine future searches. This iterative process continues until a predefined stopping criterion is met,

resulting in an optimized experimental pipeline.

process into five stages: Exploratory Data Analysis
(11), Data Preprocessing (72), Feature Engineering
(13), Model Training (74), and Model Evaluation
(75), collectively denoted as 7.

InsightProposer(p, d, M) — A (D

A={)\|7eT,i=1,...,m})

Figure 3 shows how the insight proposer uses
dataset information to generate a task-specific in-
sight, which is then converted into a feature engi-
neering code snippet.

loan duration | amount | age | ... target

Insight proposer

! Insight: Create a new feature by calculating the ratio between credit amount
+and loan duration. Also, create a feature by categorizing age into groups.

Experimenter

Figure 3: An example of a task-specific feature engineering
insight generated by the insight proposer using the credit-g
dataset, along with the corresponding code produced by the
experimenter.

3.2 Pipeline Execution and Code Generation

We use an LLM agent, called the experimenter F,
to conduct each trial by constructing experimental
pipelines from natural language requirements. The

agent follows two main steps. First, given an ex-
periment configuration c, a set of insights provided
by the search module (described in Section 3.3.2),
the agent translates these insights into a detailed
plan, consisting of task instructions "7 for each
stage of the machine learning process. This step is
referred to as Epjan.

Next, the agent writes and executes code ¢” for
each task 7 based on the instructions /7, producing
a complete set of code o™€” for the full pipeline
and a final execution score s. The combined code
outputs o™€T form the full solution oy to the prob-
lem. This phase is referred to as Fiode & execute-

Eptan(p, d, ¢, M) — IT" 3)
Eecode & execute(ITETa D, M) — (UT6T7 3) 4)

3.3 Tree Search in Machine Learning
Experiments

The search space is modeled as a hierarchical tree,
where each node represents an experiment configu-
ration. We use Monte Carlo Tree Search (MCTYS)
to explore and identify the best solution, balancing
exploration and exploitation across different stages.
The search process includes selection, expansion,
simulation, and backpropagation, as outlined be-
low:

3.3.1 Experiment Node

Each node z in the tree represents an insight A and
contains several attributes: the insight \(x) corre-
sponding to the method or strategy for the pipeline
stage, the depth ¢(x) indicating the pipeline stage

2. Skip < \ g
unpromising
branch to
explore
more

/

\ o,

[

3. Early 4. Refrain from 5. Early
i greedy exploit it

exp_ ot g escape from exploi

| potential local

\
PN 7N, optima
oo N ! - A —
p o N 6. Explore

i PES i
’ 1 -

! Visited nodes { ! Unvisited nodes | - Deeper layers properly explored

! " ! - Balances search between layers

(a) UCT-DP (SELA)

Feal
Engineering

Training

Y\ 2.Search
budget
exhausted by
¢ first layer

\
'
'
|

- Deeper layers sparsely explored
- Reduces to BFS search between layers

(b) UCT

Figure 4: Mechanism of UCT-DP and search behavior of SELA. Our proposed UCT-DP algorithm offers key advantages over
vanilla UCT, enabling more efficient exploration in machine learning scenarios where search budgets are constrained by high
computational costs. With only a few rollouts (e.g., no more than 10), standard UCT selection degenerates into a breadth-first
search (BFS), as unvisited nodes are given infinite priority. Consequently, deeper layers remain unexplored until every node
in the current layer has been visited at least once, leading to sparse traversal of deeper nodes. In contrast, UCT-DP retains the
core properties of standard UCT (red dotted lines) while crucially activating them earlier in the search process, mitigating this
limitation through early exploitation (blue dotted lines). This allows SELA to assess deeper layers more effectively, achieving a
well-balanced exploration across the entire search tree. For clarity, we present a simplified tree for illustration.

(e.g., preprocessing, feature engineering, model
training), the value v(z) representing the cumula-
tive score from simulations for this node and its
descendants, the number of Visits nyisjis () show-
ing the total number of simulations conducted,
the simulation score s(x) for the node’s simula-
tion, the solution code oy (x) produced after sim-
ulation, and the stage code ouage(2) generated
up to this node’s stage. A path from the root
to node x represents an experiment configuration

c(x) = {\x1), AM(z2),..., A(z)}.

3.3.2 Tree Search for ML Experiments

Monte Carlo Tree Search (MCTY) is used to ex-
plore and identify optimal machine learning solu-
tions. The search process involves selection, expan-
sion, simulation, and backpropagation.
Selection At each iteration, we use a modified ver-
sion of the UCT (Upper Confidence Bound for
Trees) algorithm (Kocsis and Szepesvari, 20006),
referred to as UCT-DP (depth-preferred), to select
a node from the search tree. Unlike traditional
MCTS, where simulations are often performed
quickly due to a fixed action space and negligi-
ble action time, the context of machine learning
tasks presents a different challenge. Processes such
as model training introduce significant computa-
tional time, making efficient node exploration cru-
cial. Since model selection can heavily influence
the overall machine learning performance, we pri-
oritize exploring nodes at greater depths early on.
This modification reduces the need to explore
every unvisited node, allowing deeper nodes to be

reached in fewer iterations—making the approach
better suited for large-scale machine learning ex-
periments. The modified selection algorithm is
expressed as:

U(ZE‘) In nyisits (xparent)
UCT-DP = —= <plore { | —— L
() n(x) Gexpto n(x)
%)
n(z) = Qunvisted 1f nvisits.(fl') =0 ©)
Nyisits () otherwise.

Here, orynvisted 18 a constant between 0 and 1 con-
trolling the selection preference for unvisited nodes,
balancing between full exploration and computa-
tional efficiency. This adjustment allows us to fo-
cus more on deeper parts of the tree that are likely
to yield better solutions. We illustrate the mecha-
nism of UCT-DP in comparison to standard UCT
in Figure 4.

Expansion During the expansion phase, a set of
child nodes X pijq are instantiated from the selected
node x for potential simulation. Note that a child
node ¢hilg from the node x at depth § inherits the
attributes of = and possesses A(Zchilg) — A70+1, an
insight of stage 751 from the search space.

Simulation Once expanded, a node Zsample
is uniformly sampled from Xcpjq for simula-
tion. The path from root to the sampled
node forms a set of insights c(Tsample) =
{AM@1), AMx2), ..., M@sample) } C A, representing

the experiment configuration. This configuration is
passed to the experimenter F for execution, follow-
ing Eplan and Feode & execute> Yielding a simulation
score s, as described in Section 3.3.1. The score
serves as feedback for backpropagation. The simu-
lation process is outlined in Algorithm 2.
Backpropagation After the simulation concludes,
the performance score (e.g., based on the develop-
ment set) is retrieved and backpropagated through
the tree. The score is propagated from the sim-
ulated node up to the root, updating each parent
node’s value and visit count. This allows nodes
representing more promising solutions to be prior-
itized in future rollouts. In addition, the solution
code is also backpropagated up to the tree, and it
can be processed and saved as stage code depend-
ing on the parent node during the update.

Backpropagation ensures that the algorithm
learns which paths yield better results, guiding the
search toward higher-performing nodes as more
rollouts are conducted.

3.3.3 Experiment State Saving and Loading

To improve efficiency and reduce token usage,
SELA caches code at the stage level for each con-
figuration. This allows for reusing code when simi-
lar configurations are encountered, and ensures con-
sistency by rerunning saved stage code, addressing
LLM non-determinism. This approach minimizes
resource consumption (Appendix H) while main-
taining robust performance.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate SELA alongside several
baselines on 20 datasets, which include 13 classi-
fication tasks and 7 regression tasks from the Au-
toML Benchmark (AMLB) (Gijsbers et al., 2024)
and Kaggle Competitions.

Table 5 provides detailed information on the
datasets used. All datasets are split into training,
validation, and test sets with a 6:2:2 ratio. Each
framework utilizes the training and validation sets
to train models and makes predictions on the test
set labels.

Evaluation Metrics For the AMLB datasets, we
use the default target column provided by OpenML.
For Kaggle competition datasets, we rely on the tar-
get column specified in the competition description.
Performance is measured using root mean squared
error (RMSE) for regression tasks, F1 score for

binary classification, and F1-weighted score for
multi-class classification. To ensure comparability
across datasets with varying metrics, we introduce
a Normalized Score (NS), which maps RMSE into
the range from O to 1.

1 . . .
—————— if the metric is RMSE.
NS(Sraw) = {1+10g(1+8mw)

Sraw otherwise.

(N

Here, s;4., represents the raw score before nor-
malization. To evaluate SEL A against other frame-
works, we employ three key metrics: average Nor-
malized Score (NS), average rank, and average best
rank. The average rank is calculated by considering
all rankings of a method across datasets, while the
average best rank focuses on the method’s best per-
formance in each dataset. We also want to quantify
how other baselines perform relative to SELA. The
“Rescaled NS" is defined as:

Rescaled NS(f) = NSy 3

~ NSseLa
where f represents the baseline method being com-
pared to SELA.

Method and Baselines Setup We compare
SELA with several baseline methods, including
Data Interpreter (Hong et al., 2024a), AIDE (Jiang
et al., 2025), AutoGluon (Erickson et al., 2020),
and AutoSklearn (Feurer et al., 2015, 2020).

For our LLM-based approaches (SELA, Data In-
terpreter, and AIDE), we employ a consistent initial
task prompt across all methods. This prompt en-
compasses the dataset name, target column, and
evaluation metric. We choose DeepSeek-V2.5
(DeepSeek-Al, 2024) as our foundation LLM due
to its open-source nature, strong coding capabili-
ties, and cost-effective token usage. To encourage
output diversity, we set the temperature parameter
to 0.5 for all LLM-based methods. AIDE conducts
10 iterations per execution, while SEL A performs
10 rollouts.

For SELA, we employ Data Interpreter as the
experimenter, leveraging its multi-step generation
capability. We configured the hyperparameters of
UCT-DP as follows: oyunyisited 18 Set to 0.8 and
Qeexplore 18 set to 1.4. These settings aim to balance
exploration and exploitation in the method’s search
strategy. Each method, except for AutoGluon, is
run three times for each dataset. AutoGluon, being
deterministic, is run only once with its default set-
tings. AutoSklearn is also run with default settings.

Method Wins Losses Topl Avg.NS% 1 Avg.BestNS % 1 Avg.Rank| Avg. Best Rank |
AutoGluon 7 13 4 532 532 4.4 4.4
AutoSklearn 5 15 5 46.1 47.5 7.6 6.1
AIDE 5 15 2 47.1 51.8 7.8 53
Data Interpreter 4 16 2 47.4 50.2 8.8 6.4
SELA - - 7 53.3 54.7 4.8 2.7

Table 2: Results of each AutoML framework on 20 tabular datasets. The “Wins" column indicates the number of datasets where
the method outperforms SELA, while “Losses" shows the number of datasets where the method underperforms. The “Top 1"
column represents the number of datasets where the method produces the best predictions across methods.

4.2 Results

As shown in Table 2, SELA achieves the high-
est average Normalized Score (NS) and average
best rank among all frameworks. Notably, SELA
excels in producing the highest number of top pre-
dictions, as indicated in the “Top 1" column across
all datasets. Furthermore, the “Losses" column
reveals that each competing method falls short
against SELA, losing in 65-80% of the datasets.

Interestingly, AutoGluon exhibits a marginally
higher average rank than SELA. This slight dis-
crepancy may be attributed to the inherent random-
ness in LLMs and model training processes, which
can influence the exploration of machine learning
solutions. However, SELA’s higher average NS
suggests that it performs strongly in the datasets
where it excels, while its losses in other datasets are
relatively minor. This means that even when SELA
produces lower-ranked solutions, the performance
gap is small, allowing it to fully compensate in the
datasets where it performs well.

The two other agent-based methods exhibit rela-
tively lower performance. The first method, Data
Interpreter, struggles to enhance its score with mul-
tiple attempts due to its inability to refine its so-
lution after completing a machine learning task.
The second method, AIDE, does not have a stage-
specific planning module, limiting its capacity to
improve results after a series of greedy exploitation,
which makes it prone to falling into local optima.
These limitations likely account for their weaker
performance.

Figure 5 further corroborates SELA’s effective-
ness, revealing that its best solutions frequently oc-
cupy leading positions across various datasets. This
visual representation exhibits the method’s consis-
tent high performance and adaptability across dif-
ferent ML datasets. We also include a detailed
results of each method in Appendix D.

Click_prediction_small .
GesturePhaseSegmentationProcessed
Moneyball & *
SAT11-HAND-runtime-regression
boston * .
colleges &
concrete-strength -
credit-g « *>
diamonds *
house-prices .
icr >
jasmine
ket
kick
mfeat-factors
segment
smoker-status
software-defects
titanic
wine-quality-white

*

AutoML Framework
AutoSklearn
AIDE
AutoGluon

Dataset

Data Interpreter
== SELABest

29340t ,08888,

? 4
L4

$
4§,
*

_‘ LA

00 02 04 06 08 10 12 14
Rescaled NS on Test Data (relative to SELA)

Figure 5: Rescaled NS of AutoML frameworks relative to
SELA on tabular datasets. Points to the left of the vertical
line indicate poorer predictions compared to SELA. Notably,
SELA mostly occupies a leading position across the datasets.

4.3 Ablation Study

For the rest of the study, we employ a sub-
set of datasets to evaluate SELA under various
settings. Our selection process involves choos-
ing the first two datasets alphabetically for each
machine learning task. Specifically, we use
boston, colleges, credit-g, Click_prediction_small,
GesturePhaseSegmentationProcessed, and mfeat-
factors to conduct the ablation study.

Avg. NST Avg. Rank |

Data Interpreter 56.4 9.2
SELA-RS 58.6 5.6
SELA-MCTS (UCT) 58.9 5.8
SELA-MCTS (UCT-DP) 60.9 4.1

Table 3: Performance across different search strategies on six
datasets. SELA-MCTS with UCT-DP (depth-preferred) out-
performs standard UCT and random sampling (RS), achieving
the highest normalized score and best average rank. This high-
lights the effectiveness of guiding search deeper under limited
rollouts.

Effectiveness of Search To evaluate the impact
of search strategies, we compared MCTS with
UCT and UCT-DP, random sampling of the insights
from the insight pool, and the Data Interpreter (Ta-
ble 3). Between the two MCTS variants, UCT-DP
achieves the highest normalized score (60.9) and
best average rank (4.1), clearly outperforming stan-
dard UCT (58.9, 5.8). This confirms that depth-

preferred search improves solution quality under
limited rollouts by encouraging earlier exploration
of deeper nodes. In contrast, standard UCT tends
to over-explore shallow nodes, leading to less ef-
fective optimization. Moreover, even the random
sampling variant of our method outperforms Data
Interpreter, the base experimenter. This suggests
that an appropriate search space and an experiment
agenda is vital for improving a machine learning
agent. Our insight proposer generates relevant and
useful insights, facilitating such improvement, re-
gardless of the selection method.

o o
o) @
~ >

Normalized Score
o
(o]
N

0.60

3 6 9 12 15 18
of Rollouts

Figure 6: The average performance of SELA on six selected
datasets with an increasing number of rollouts.

Number of Rollouts Figure 6 illustrates that the
average performance of SELA improves as the
number of permitted rollouts increases. The trend
demonstrates the strong scalability of SELA, as
it efficiently leverages additional opportunities to
explore the search space, improving the normalized
score by 4.7% after 10 rollouts and 6.4% after 20,
compared to the initial rollout.

DSV25 G40 C35 Qwen2.5 DS-R1
Click_pred 232 27.6 156 18.0 35.3
Gesture 67.9 65.6 634 66.1 66.6
boston 40.1 409 41.6 40.5 414
colleges 87.8 88.0 873 87.5 88.0
credit-g 50.9 552 432 49.3 57.7
mfeat 95.7 964 96.1 94.6 95.8
Avg. NS 1 60.9 623 579 59.3 64.1

Table 4: Performance of SELA across LLMs. DS V2.5, G4o,
C3.5, Qwen2.5, and DS-R1 stand for DeepSeek V2.5, GPT-
40, Claude-3.5-Sonnet, Qwen2.5-72B-Instruct, and DeepSeek-
R1 respectively. DeepSeek-R1 achieves the highest average
normalized score (NS).

Robustness Across LLMs To evaluate the ro-
bustness and adaptability of our framework,
we conduct experiments using a variety of
LLMs. Specifically, we assess the per-
formance of SELA with GPT-40 (OpenAl,
2024), Claude-3.5-Sonnet (Anthropic, 2024),

DeepSeek V2.5, Qwen2.5-72B-Instruct (Yang
et al., 2024), and DeepSeek-R1 (Guo et al., 2025).

As illustrated in Table 4, SELA achieves
strong and consistent performance across these
different LLMs. Notably, DeepSeek-R1 achieves
the highest average normalized score (NS) of
64.1, while the smaller open-source model
Qwen2.5-72B-Instruct also obtains a competi-
tive score of 59.3. These results demonstrate that
SELA is not only effective but also highly adapt-
able to a wide range of LLMs, including both pro-
prietary and open-source models.

5 Conclusion

We introduced SELA, a novel framework that
combines LL.M-based agents with Monte Carlo
Tree Search (MCTS) to automate machine learning
workflows. Experimental results across 20 datasets
demonstrate its effectiveness and advantages over
traditional AutoML frameworks and existing LLM-
based approaches.

Future work could extend SELA to other do-

mains, such as software engineering, scientific dis-
covery, game playing, and robotics as these se-
quential decision-making problems can potentially
be represented as tree structures with scalar re-
wards. Improving search efficiency and scalability
for larger solution spaces is another key direction,
along with developing techniques for providing in-
terpretable explanations to enhance transparency.
SELA showcases the potential of combining tra-
ditional search algorithms with LLM flexibility in
automated machine learning.
Limitations While focused on tabular datasets,
SELA can be adapted to other data types, including
time series, text, and images. Additionally, while
SELA enhances machine learning workflows, it
lacks inherent safeguards against harmful content
generation, so we recommend implementing safety
measures for responsible use.

References

Anthropic. 2024. Introducing Claude 3.5 Sonnet
— anthropic.com. https://www.anthropic.com/
news/claude-3-5-sonnet.

Graeme Best, Oliver M Cliff, Timothy Patten, Ram-
gopal R Mettu, and Robert Fitch. 2019. Dec-mcts:
Decentralized planning for multi-robot active percep-
tion. The International Journal of Robotics Research,
38(2-3):316-337.

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1177/0278364918755924

Tobias Block. 2019. 10kgnad: Ten thousand german
news articles dataset for topic classification. https:
//tblock.github.io/10kGNAD/. Accessed: 2025-
05-17.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian
Weng, and Aleksander Madry. 2025. Mle-bench:
Evaluating machine learning agents on machine
learning engineering. Preprint, arXiv:2410.07095.

Yizhou Chi, Kevin Yang, and Dan Klein. 2024.
Thoughtsculpt: Reasoning with intermediate revision
and search.

Patrick Clary, Pedro Morais, Alan Fern, and Jonathan
Hurst. 2018. Monte-carlo planning for agile legged
locomotion. Proceedings of the International Con-
ference on Automated Planning and Scheduling,
28(1):446-450.

DeepSeek-Al 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Bo-
tao Hao, and Benjamin Van Roy. 2024. Efficient
exploration for Ilms.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang
Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
2020. Autogluon-tabular: Robust and accurate au-
toml for structured data. Preprint, arXiv:2003.06505.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training.

Matthias Feurer, Katharina Eggensperger, Stefan
Falkner, Marius Lindauer, and Frank Hutter. 2020.
Auto-sklearn 2.0: Hands-free automl via meta-
learning.

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
2015. Efficient and robust automated machine learn-
ing. In Advances in Neural Information Processing
Systems 28 (2015), pages 2962-2970.

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin
LeDell, Sébastien Poirier, Janek Thomas, Bernd Bis-
chl, and Joaquin Vanschoren. 2024. Amlb: an automl
benchmark. Journal of Machine Learning Research,
25(101):1-65.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai
Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,
Zhuoshu Li, Ziyi Gao, Aixin Liu, and 180 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024. Ds-agent: Auto-
mated data science by empowering large language
models with case-based reasoning.

Noah Hollmann, Samuel Miiller, and Frank Hutter. 2024.
Large language models for automated data science:
Introducing caafe for context-aware automated fea-
ture engineering.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu,
Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang,
Mingchen Zhuge, Taicheng Guo, Tuo Zhou, Wei
Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, and
6 others. 2024a. Data interpreter: An llm agent for
data science. Preprint, arXiv:2402.18679.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024b. MetaGPT: Meta
programming for a multi-agent collaborative frame-
work. In The Twelfth International Conference on
Learning Representations.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023. Mlagentbench: Evaluating language agents on
machine learning experimentation. arXiv preprint
arXiv:2310.03302.

Wenyang Hui and Kewei Tu. 2024. Rot: Enhancing
large language models with reflection on search trees.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth,
Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang
Wu. 2025. Aide: Ai-driven exploration in the space
of code. Preprint, arXiv:2502.13138.

Haifeng Jin, Francois Chollet, Qingquan Song, and Xia
Hu. 2023. Autokeras: An automl library for deep
learning. Journal of machine Learning research,
24(6):1-6.

Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-
keras: An efficient neural architecture search system.
In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining, pages 1946-1956.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282-293, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 2013. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops,
pages 554-561.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster,
Cyril Zhang, and Aleksandrs Slivkins. 2024. Can
large language models explore in-context?

https://tblock.github.io/10kGNAD/
https://tblock.github.io/10kGNAD/
https://tblock.github.io/10kGNAD/
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://doi.org/10.1609/icaps.v28i1.13933
https://doi.org/10.1609/icaps.v28i1.13933
https://doi.org/10.1609/icaps.v28i1.13933
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138

Erin LeDell and Sebastien Poirier. 2020. H20 Au-
toML: Scalable automatic machine learning. 7th
ICML Workshop on Automated Machine Learning
(AutoML).

Dawei Li, Zhen Tan, and Huan Liu. 2024. Exploring
large language models for feature selection: A data-
centric perspective. Preprint, arXiv:2408.12025.

Siyi Liu, Chen Gao, and Yong Li. 2024. Large language
model agent for hyper-parameter optimization. arXiv
preprint arXiv:2402.01881.

Dagqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing
Shen. 2024. Autom31: An automated multimodal ma-
chine learning framework with large language mod-
els. arXiv preprint arXiv:2408.00665.

Randal S Olson and Jason H Moore. 2016. Tpot: A
tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic ma-
chine learning, pages 66—74. PMLR.

OpenAl 2024. Hello GPT-40. https://openai.com/
index/hello-gpt-4o/.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
and C V Jawahar. 2012. Cats and dogs. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3498-3505.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng
Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng
Liu, and Emad Barsoum. 2025. Agent labora-
tory: Using llm agents as research assistants. arXiv
preprint arXiv:2501.04227.

Marwin Segler, Mike Preuss, and Mark Waller. 2018.
Planning chemical syntheses with deep neural net-
works and symbolic ai. Nature, 555:604-610.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, L. Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep
neural networks and tree search. Nature.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
L. Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. 2017. Mastering the game of
go without human knowledge. Nature.

Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng
Zhong, Wei-Long Zheng, Xujie Si, and Kevin Ellis.
2024a. Code repair with llms gives an exploration-
exploitation tradeoff.

10

Zhigiang Tang, Haoyang Fang, Su Zhou, Taojiannan
Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff, and
George Karypis. 2024b. Autogluon-multimodal (au-
tomm): Supercharging multimodal automl with foun-
dation models. arXiv preprint arXiv:2404.16233.

Chris Thornton, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. 2013. Auto-weka: Combined
selection and hyperparameter optimization of classi-
fication algorithms. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 847-855.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a.
Litesearch: Efficacious tree search for llm. Preprint,
arXiv:2407.00320.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang
Zhu. 2021. Flaml: A fast and lightweight automl
library. In MLSys.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F.
Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, and 1 others.
2024b. Openhands: An open platform for ai soft-
ware developers as generalist agents. arXiv preprint
arXiv:2407.16741.

Feng Wu, Sarvapali D. Ramchurn, Wenchao Jiang,
Jeol E. Fischer, Tom Rodden, and Nicholas R. Jen-
nings. 2015. Agile planning for real-world disaster
response. In Proceedings of the 24th International
Conference on Artificial Intelligence, IICAT’ 15, page
132-138. AAAI Press.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017.
Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. CoRR,
abs/1708.07747.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Ji-
axi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and
23 others. 2024. Qwen?2.5 technical report. Preprint,
arXiv:2412.15115.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and
Yuqing Yang. 2024. Mlcopilot: Unleashing the
power of large language models in solving machine
learning tasks. Preprint, arXiv:2304.14979.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning acting and
planning in language models.

https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://arxiv.org/abs/2408.12025
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2501.04227
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://arxiv.org/abs/2407.00320
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979
https://arxiv.org/abs/2304.14979

A Datasets

Table 5 outlines the detailed information of the datasets used for evaluation.

Dataset name # Features # Rows # Classes Task Type Metric Source

boston 14 506 N/A Regression RMSE OpenML (Dataset ID: 531)
colleges 48 7063 N/A Regression RMSE OpenML (Dataset ID: 42727)
concrete-strength 9 4866 N/A Regression RMSE Kaggle (playground-series-s3e9)
diamonds 10 53940 N/A Regression RMSE OpenML (Dataset ID: 42225)
house-prices 81 1460 N/A Regression RMSE Kaggle (house-prices-advanced-regression-techniques)
Moneyball 15 1232 N/A Regression RMSE OpenML (Dataset ID: 41021)
SAT11-HAND-runtime-regression 118 4440 N/A Regression RMSE OpenML (Dataset ID: 41980)
credit-g 21 1000 2 Classification F1 OpenML (Dataset ID: 31)
Click_prediction_small 12 39948 2 Classification F1 OpenML (Dataset ID: 42733)
icr 58 617 2 Classification Fl Kaggle (icr-identify-age-related-conditions)
jasmine 145 2984 2 Classification F1 OpenML (Dataset ID: 41143)
kel 21 2109 2 Classification F1 OpenML (Dataset ID: 1067)
kick 33 72983 2 Classification F1 OpenML (Dataset ID: 41162)
smoker-status 23 143330 2 Classification Fl Kaggle (playground-series-s3e24)
software-defects 22 91586 2 Classification F1 Kaggle (playground-series-s3e23)
titanic 12 891 2 Classification F1 Kaggle (titanic)
GesturePhaseSegmentationProcessed 33 9873 5 Multiclass Fl-weighted OpenML (Dataset ID: 4538)
mfeat-factors 217 2000 10 Multiclass Fl-weighted OpenML (Dataset ID: 12)
segment 20 2310 7 Multiclass Fl-weighted OpenML (Dataset ID: 40984)
wine-quality-white 12 4898 7 Multiclass Fl-weighted OpenML (Dataset ID: 40498)

Table 5: Summary of the machine learning datasets used in the experiments. OpenML datasets can be accessed using their
respective dataset IDs. The Kaggle datasets are available at https://www.kaggle.com/competitions/{source}.

B Pseudo Code of SELA

Algorithm 1 Tree-Search Enhanced LLM Agents

Input: Problem description p, data information d, data D, LLM M, rollout number k.
1: A « InsightProposer(p, d, M)
2: Initialize Tree using A
3: fori=1to k do

4: node x <+ select(Tree)

5: Xchig ¢ expand(Tree, x)

6: Randomly sample a node Zgample from Xcpilg

7. Retreive experiment configuration ¢(Zsample)

8: 0ol < simulate(c(Zsample), p, d, D, M)

9: attach the simulation result 0, s t0 Zsample for final solution selection
10: Backpropagate(Tree, s)

11: end for

12: Zdey best <— argmax(s(z))

xETree
Output: 04,(Zdey best)

Algorithm 2 Simulate

Input: Experiment configuration ¢, problem description p, data information d, data D, LLM M.
1: Draft plans I™T < Eyn(p, d, c, M)
2: Code and execute sequentially 077, s < Feode & execute (1™, D, M)
3: 040 < concatenate(c™<T)

Output: o4, s

11

LR W N —

®© 3 O

N

11
12
13
14

C Prompts

C.1 Task Prompt

All LLM-based methods start by receiving the same base requirement prompt at the beginning of the task.
The prompt specifies the dataset’s name, the target label column, the evaluation metric to be used, and the
dataset’s file path. Furthermore, the prompt include a path to a text file containing the dataset’s metadata.

TASK_PROMPT = """

User requirement

This is a {datasetname} dataset.

Your goal is to predict the target column ~{target_col}"

Perform data analysis, data preprocessing, feature engineering, and modeling to predict the target. Report {
metric} on the eval data. Do not plot or make any visualizations.

Data dir

train set (with labels): {train_path}

dev set (with labels): {dev_path}

test set (without labels): {test_path}

dataset description: {data_info_path}

(During EDA, you can use this file

to get additional information about the dataset)

nnn

Since AIDE automatically splits the training data into a new train set and a validation set, we combine
the original train and validation sets and provide them as input to AIDE. We set k_fold_validation to 1 in
its configuration file to enforce a single train-val split for closer alignment with our setup. In both setups,
the frameworks have access to the labels for both the train and validation sets.

C.2 Instruction Prompt

The instruction prompt would direct the framework to save the final prediction file for evaluation.

DI_INSTRUCTION = """

Attention

1. Please do not leak the target label in any form during training.

2. Test set does not have the target column.

3. When conducting data exploration or analysis, print out the results of your findings.

4. You should perform transformations on train, dev, and test sets at the same time (it's a good idea to
define functions for this and avoid code repetition).

5. When scaling or transforming features, make sure the target column is not included.

6. You could utilize dev set to validate and improve model training. {special_instruction}

Saving Dev and Test Predictions

1. Save the prediction results of BOTH the dev set and test set in ~dev_predictions.csv™ and °
test_predictions.csv™ respectively in the output directory.

- Both files should contain a single column named ~target™ with the predicted values.

2. Make sure the prediction results are in the same format as the target column in the training set.

- For instance, if the target column is categorical, the prediction results should be categorical as well.

Output Performance
Print the train and dev set performance in the last step.

Output dir
{output_dir}

wnn

12

C.3 Insight Proposal Prompt

Insight Proposer uses this prompt to generate a search space of insights for different stages of the machine
learning task.

1| DATASET_INSIGHT_PROMPT = """

2 # Dataset Description

3| {dataset?}

4

5| # Dataset Metadata

6| {metadata}

7

8| # Dataset Head

9| {head}

10

11| # Instruction

12| Propose insights to help improve the performance of the model on this dataset.

13| The insights should be proposed based on the dataset description with different task types.

14| Each task type should have at least 5 insights.

15| Make sure each method is diverse enough and can be implemented separately.

16| Be specific about models' choices, ensemble and tuning techniques, and preprocessing & feature engineering
techniques.

17

18| # Format

19|~~~ json

20([

21 {{

22 "task_type": "EDA",

23 "insights”: [

24 "insight1",

25 "insight2",

26 "insight3",

27

28 "insightN"

29]

30 1,

31 {{

32 "task_type"”: "Data Preprocessing”,

33 "insights”: [

34 "insight1",

35 "insight2",

36 "insight3",

37

38 "insightN"

39]

40 13,

41 {{

42 "task_type"”: "Feature Engineering”,

43 "insights": [

44 "insight1",

45 "insight2",

46 "insight3",

47

48 "insightN"

49]

50 1Y,

51 {{

52 "task_type": "Model Training”,

53 "insights": [

54 "insight1",

55 "insight2",

56 "insight3",

57

58 "insightN"

59]

60 1}

61

62| " "

63 """

13

D Results
D.1 Main Results

AutoGluon AutoSklearn AIDE DI SELA

Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
Click_prediction_small 7 7 2 1 73 4 1 1 10 77 6
GesturePhaseSegmentationProcessed 1 1 6.3 3 7.3 4 11 10 5.3 2
Moneyball 4 4 10 9 4 1 9 2 6 3
SAT11-HAND-runtime-regression 1 1 12 11 5.3 3 9 8 3.7 2
boston 5 5 12 11 3.7 2 9 8 4 1
colleges 1 1 12 11 6 2 8 7 4 3
concrete-strength 5 5 12 11 6.3 4 2 1 8.3 6
credit-g 4 4 10 9 10 5 53 1 3.7 2
diamonds 2 2 12 11 6 4 8.7 7 3 1
house-prices 1 1 12 11 6.7 5 7.3 3 4 2
ier 5 5 53 3 12 11 9 8 23 1
jasmine 7 7 6 4 8.7 5 11.3 9 2 1
kel 10 10 27 1 8 5 11.3 9 5 2
kick 4 4 2 1 9.3 6 11 10 6.7 5
mfeat-factors 4 4 2 1 10 9 10.3 6 6.7 5
segment 3 3 6.3 5 11 10 9.7 7 23 1
smoker-status 7 7 4.7 3 11.3 9 1.7 2 43 1
software-defects 8 8 2 1 12 11 6 4 7.7 6
titanic 7 7 9.7 6 2.7 1 10.3 8 53 3
wine-quality-white 2 2 10 8 7.3 4 9 7 33 1
Overall Rank | 44 44 7.6 6.1 78 53 88 64 48 27

Table 6: Methods’ ranking for each tabular dataset

14

E Tree Search vs. Reasoning-Based Models

With the emergence of advanced reasoning models like DeepSeek-R1, a pivotal question arises: how do
deliberative capabilities compare to empirical, feedback-driven methods in complex decision-making
tasks? To explore this, we evaluate three configurations that dissect the contributions of reasoning
capabilities and structured search:

1. Tree Search + Non-Reasoning Model: SELA with DeepSeek-V2.5
2. Reasoning Model: standalone DeepSeek-R1
3. Tree Search + Reasoning Model: SEL A with DeepSeek-R1

SELA with DeepSeek-V2.5 outperforms the standalone reasoning-heavy DeepSeek-R1 on 5 out
of 6 datasets, demonstrating that empirical, feedback-driven experimentation can outperform purely
deliberative reasoning in complex data analysis workflows. Notably, the best results are obtained when
both approaches are combined.

boston Click_pred colleges credit-g Gesture mfeat Avg.

SELA (V2.5) 40.1 232 87.8 50.9 67.9 957 60.9
DeepSeek-R1 39.9 29.8 87.6 48.5 64.7 939 60.7
SELA (R1) 414 35.3 88.0 57.7 66.6 95.8 64.1

Table 8: Performance comparison between tree search and reasoning-based modeling configurations across six datasets.

The results highlight a key distinction between reasoning-driven approaches like DeepSeek-R1 and
SELA’s tree search framework. Long-form Chain of Thoughts (CoT) enables a model to carefully
deliberate before coding, selecting solutions it deems optimal based on internal reasoning. While this
can be beneficial, it remains a static decision that may not always align with real-world outcomes. In
contrast, SEL A emphasizes iterative experimentation—actively testing and refining solutions based on
actual data feedback. Much like a human expert, while deep reasoning is valuable, it is through structured
experimentation that one can verify assumptions and adapt strategies dynamically, leading to superior
performance.

Notably, SELA and reasoning models like R1 are complementary rather than competing approaches.
SELA’s framework is model-agnostic and can seamlessly integrate reasoning-enhanced LLMs to further
improve performance. We tested SEL A with DeepSeek-R1 and observed a significant performance boost,
achieving an average score of 64.1. This demonstrates that incorporating stronger reasoning capabilities
within SELA’s experimental framework further enhances its effectiveness, pushing the performance
boundary even higher.

15

F SELA’s Adaptability to Additional Datasets and Benchmarks

To evaluate SELA’s generalization capabilities, we conducted experiments on ten additional datasets
encompassing various modalities, including text, image, and tabular data. These datasets were sourced
from classical benchmarks, trending Huggingface datasets, and MLE-Bench (Chan et al., 2025) tasks.

The following table summarizes the normalized scores achieved by SELA and AIDE across the selected
datasets:

Dataset Modality (Metric) AIDE SELA
sms_spam (Huggingface) Text (F1) 93.3 97.5
banking77 (Huggingface) Text (F1-weighted) 86.0 88.4
gnad1@ (Block, 2019) Text (F1-weighted) 84.8 85.6
random-acts-of-pizza (MLE-Bench) Text (AUC) 64.5 65.9
fashion_mnist (Xiao et al., 2017) Image (F1-weighted) 0 90.1
oxford-iiit-pet (Parkhi et al., 2012) Image (F1-weighted) 0 88.9
stanford_cars (Krause et al., 2013) Image (F1-weighted) 0 73.7
plant-pathology-2020-fgvc7 (MLE-Bench) Image (AUC) 98.1 70.0
tabular-playground-series-dec-2021 (MLE-Bench) Tabular (Accuracy) 95.8 95.3

nomad2018-predict-transparent-conductors (MLE-Bench) Tabular (RMSLE) 88.07 94.2

Table 9: Normalized scores of AIDE and SELA across diverse datasets.

The results indicate that SELA exhibits robust performance across various data modalities. No-
tably, SELA successfully generated valid solutions for image-based datasets such as fashion_mnist,
oxford-iiit-pet, and stanford_cars, where AIDE failed to produce valid outputs. This suggests that
SELA is highly adaptable and capable of generalizing beyond tabular tasks.

16

G Comparison with General-Purpose Agentic Frameworks

We additionally compare SEL A with general software engineering agents OpenHands (Wang et al.,
2024b), MLAB (Huang et al., 2023), and Agent Laboratory (Schmidgall et al., 2025) across the ablation
datasets. Each method is executed three times per dataset, and we report the average Normalized Score. If
a method fails to produce a valid test set prediction, we exclude it from the average and note the success
rate in parentheses.

Method boston Click_pred colleges credit-g Gesture mfeat
SELA 40.1 232 87.8 50.9 67.9 95.7
OpenHands 38.5 (66.7%) 223 87.6 (66.7%) 48.8 (33.3%) 64.4 94.7
MLAB N/A (0%) 17.0 (33.3%) 0.4 (33.3%) N/A (0%) N/A(0%) 0.1(33.3%)
Agent Laboratory (GPT-40) 38.6 27.2 (33.3%) 86.9 (66.7%) 32.9 (33.3%) 54.2 93.9 (66.7%)

Table 10: Normalized Scores across six datasets. Success rates are indicated in parentheses where applicable.

SELA achieves the highest average score and outperforms OpenHands on 5 of 6 datasets. OpenHands
tends to generate minimal code, covering preprocessing, feature engineering, and modeling without
deeper optimization. SELA’s structured approach—dividing tasks into stages and enforcing diverse,
sophisticated configurations—gives it a distinct advantage. MLAB frequently stalls in data inspection
loops or produces weak models, while Agent Laboratory struggles with debugging loops and feature
engineering failures, particularly with DeepSeek-V2.5. Even with GPT-4o0, it has lower performance and
occasional failures. Unlike general software engineering agents, which focus on task completion, machine
learning agents must optimize performance based on data feedback. SELA excels by systematically
exploring diverse strategies to maximize results.

17

H Cost-effectiveness Analysis

We conduct multiple trials of execution of each method to estimate the average running cost for the LLM-
based baselines. As shown in Table 11, all methods incur relatively low costs to complete a single machine
learning task. Among these, AIDE exhibits the lowest execution cost, due to the lack of stage-wise
planning, resulting in fewer token generations compared to the other approaches. Additionally, SELA,
which employs Data Interpreter as its base experimenter, is less costly than Data Interpreter itself. This
efficiency is largely due to SELA’s state-saving and loading mechanism, which reduces the generation of
repeated tasks and code.

Cost per ML task ($)
Data Interpreter (k=10) 0.07
AIDE (k=10) 0.01
SELA (k=10) 0.05

Table 11: Estimated costs of agent-based frameworks utilizing DeepSeek V2.5 on a single machine learning dataset over k
iterations/rollouts.

18

I
I1

Num
[No
Pla
1.

oo s WwWN

7.
Sim
Sco

Case Study

Overview of SELA’s search process

ber of simulations: 10
de @]
ns:

Perform exploratory data analysis on the train and dev datasets

Preprocess the train, dev, and test datasets

Perform feature engineering on the train, dev, and test datasets

Train multiple models and evaluate their performance

Train a weighted ensemble model using the best performing models

Evaluate the ensemble model on the dev set and save predictions

Generate predictions for the test set and save them

ulated: True

re: avg score: 0.6150206840685731, simulated score: {'train_score': 1.0, 'dev_score
0.6855841857240594, 'test_score': 0.6814818772150697, 'score': 0.6855841857240594}, Visits: 10

[Node 0-0]

Plans:

3. Perform feature engineering on the train, dev, and test datasets by creating new features that
calculate the magnitude of the vectorial velocities and accelerations to capture the overall
movement intensity.

Simulated: True

Score: avg score: 0.6507249985568175, simulated score: {'train_score': ©0.982920964830782, 'dev_score':
0.6420233166755841, 'test_score': ©0.647550336228104, 'score': 0.6420233166755841}, Visits: 2

[Node 0-0-0]

Plans:

4. Train a Random Forest classifier to leverage its ability to handle high-dimensional data and
capture non-linear relationships, and evaluate its performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

[Node 0-0-11]

Plans:

4. Train multiple models, including a Support Vector Machine (SVM) with a radial basis function
(RBF) kernel, and evaluate their performance.

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-0-2]

Plans:

4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data
and evaluate its performance

Simulated: True

Score: avg score: 0.6594266804380511, simulated score: {'train_score': 1.0, 'dev_score':
0.6594266804380511, 'test_score': 0.6702614538699305, 'score': 0.6594266804380511}, Visits: 1

[Node ©-0-3]

Plans:

4. Train multiple models, apply an ensemble method like Gradient Boosting to combine them, and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node 0-0-4]

Plans:

4. Train multiple models, perform hyperparameter tuning using Grid Search or Random Search, and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©0-1]

Plans:

3. Perform feature engineering on the train, dev, and test datasets by generating time-based features,
such as the difference between consecutive frames, to capture the rate of change in movements.

Simulated: True

Score: avg score: 0.6464940718972336, simulated score: {'train_score': 1.0, 'dev_score':
0.5985614604756948, 'test_score': 0.5857379626419719, 'score': ©0.59856146047569483}, Visits: 2

[Node 0-1-0]

Plans:

4. Train a Random Forest classifier to leverage its ability to handle high-dimensional data and
capture non-linear relationships

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

[Node 0-1-1]

Plans:

4. Train multiple models, including a Support Vector Machine (SVM) with a radial basis function
(RBF) kernel, and evaluate their performance to model the complex decision boundaries between
different gesture phases.

Simulated: True

Score: avg score: 0.6944266833187726, simulated score: {'train_score': 1.0, 'dev_score':
0.6944266833187726, 'test_score': ©.6928451194338062, 'score': ©.6944266833187726}, Visits: 1

19

[Node 0-1-2]

Plans:

4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data
and evaluate its performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-1-3]

Plans:

4. Train multiple models, apply an ensemble method like Gradient Boosting to combine them, and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node 0-1-4]

Plans:

4. Train multiple models and perform hyperparameter tuning using techniques like Grid Search or
Random Search to optimize and evaluate their performance.

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-2]

Plans:

3. Perform feature engineering on the train, dev, and test datasets by creating features that represent
the spatial relationships between different body parts, such as the distance between the hands and
the head.

Simulated: True

Score: avg score: 0.6296836159165489, simulated score: {'train_score': ©.7619969104124632, 'dev_score':
0.5997286931710517, 'test_score': 0.604077566134264, 'score': ©.5997286931710517}, Visits: 3

[Node ©-2-0]

Plans:

4. Train a Random Forest classifier to leverage its ability to handle high-dimensional data and
capture non-linear relationships, and evaluate its performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-2-11]

Plans:

4. Train multiple models, including a Support Vector Machine (SVM) with a radial basis function
(RBF) kernel, and evaluate their performance to model the complex decision boundaries between
different gesture phases.

Simulated: True

Score: avg score: 0.6446610772892973, simulated score: {'train_score': ©.9952809245924918,
'dev_score': 0.6372459669415207, 'test_score': ©.6423549137767338, 'score':
0.6372459669415207}, Visits: 2

[Node ©-2-1-0]

Plans:

5. Train a weighted ensemble model using the best performing models from task 4
Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node 0-2-1-1]

Plans:

5. Using the models that performed best in task 4, train a weighted ensemble model to improve
overall performance.

Simulated: False

Score: avg score: @, simulated score: {}, Visits: 0

[Node ©-2-1-2]

Plans:

5. Develop a weighted ensemble model by integrating the top-performing models from task 4,
ensuring to evaluate and adjust the weights for optimal performance.

Simulated: True

Score: avg score: 0.6520761876370741, simulated score: {'train_score': 1.0, 'dev_score':
0.6520761876370741, 'test_score': ©.6563435152603494, 'score': 0.6520761876370741%},
Visits: 1

[Node ©-2-1-3]

Plans:

5. Train a weighted ensemble model by combining the predictions of the top-performing models
from task 4 to improve overall performance.

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-2-1-4]

Plans:

5. Develop a weighted ensemble model by combining the top-performing models from task 4,
ensuring to optimize the weights for improved performance.

Simulated: False

Score: avg score: @, simulated score: {}, Visits: @

[Node ©-2-2]
Plans:

20

4. Implement a Neural Network with multiple layers to capture the hierarchical patterns in the data
and evaluate its performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-2-3]

Plans:

4. Train multiple models, apply an ensemble method like Gradient Boosting to combine them, and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

[Node ©-2-4]

Plans:

4. Perform hyperparameter tuning using Grid Search or Random Search to train multiple models and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-3]

Plans:

3. Apply feature selection techniques such as Recursive Feature Elimination (RFE) or SelectKBest to
identify and retain the most important features in the train, dev, and test datasets.

Simulated: True

Score: avg score: 0.49056683315196203, simulated score: {'train_score': ©.9988177730410426,
'dev_score': ©0.51620611302976, 'test_score': ©.525989891002361, 'score': ©.51620611302976},
Visits: 2

[Node ©-3-0]

Plans:

4. Train a Random Forest classifier to leverage its ability to handle high-dimensional data and
capture non-linear relationships, and evaluate its performance.

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-3-11]

Plans:

4. Train multiple models, including a Support Vector Machine (SVM) with a radial basis function
(RBF) kernel, and evaluate their performance to model the complex decision boundaries between
different gesture phases.

Simulated: True

Score: avg score: 0.4649275532741641, simulated score: {'train_score': ©.7299159411193588,
'dev_score': 0.4649275532741641, 'test_score': ©.4631598897487413, 'score':
0.4649275532741641}, Visits: 1

[Node ©-3-2]

Plans:

4. Implement and train a Neural Network with multiple layers to capture hierarchical patterns in
the data and evaluate its performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

[Node ©-3-3]

Plans:

4. Train multiple models, apply an ensemble method like Gradient Boosting to combine them, and
evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: @

[Node ©-3-4]

Plans:

4. Train multiple models, perform hyperparameter tuning using techniques like Grid Search or Random
Search, and evaluate their performance

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

[Node 0-4]

Plans:

3. Create interaction features by combining existing features, such as the product of velocity and
acceleration, to capture complex relationships in the train, dev, and test datasets

Simulated: False

Score: avg score: 0, simulated score: {}, Visits: 0

Generated 29 unique codes.

Best node: ©-1-1, score: {'train_score': 1.0, 'dev_score': 0.6944266833187726, 'test_score':
0.6928451194338062, 'score': 0.6944266833187726}

Dev best node: @-1-1, score: {'train_score': 1.0, 'dev_score': 0.6944266833187726, 'test_score':
0.6928451194338062, 'score': ©0.6944266833187726}

In this case study, we demonstrate how SELA conducts a search cycle using MCTS:

Pre-search Step: Initialization
SELA begins by defining high-level stages, such as exploratory data analysis, data preprocessing, feature
engineering, and model training, which structure the overall machine learning workflow. During the
search, SELA populates these stages with specific insights, which act as experimental configurations for

21

simulation.

Step 1 & 2: Selection and Expansion
SELA leverages MCTS to explore specific stages like feature engineering and model training. For
example, in one iteration, SELA selects Node 0-1. This node corresponds to a stage insight that generates
time-based features, expanding into five child nodes representing various model specifications and training
strategies, such as Random Forests, Support Vector Machines, Neural Networks, Gradient Boosting, or
Grid Search.

Step 3: Simulation
Next, SELA samples one of the expanded child nodes for simulation. For instance, when Node 0-1-1 is
chosen, SELA runs a complete experiment where time-based feature engineering (Node 0-1) is followed
by training a Support Vector Machine (SVM) with a kernel specified by Node 0-1-1. The simulation
yields an evaluation score.

Step 4: Backpropagation
After the simulation, the resulting performance score is propagated back through the tree. For example,
after simulating Node 0-1-1, MCTS updates the numeric feedback for its parent nodes, such as Node 0-1
and Node 0. The search cycle repeats from Steps 1 to 4 until a stopping condition is reached.

Post-search Step: Best Node Selection
In the final phase, SELA selects the node representing the best-performing solution. In this example, Node
0-1-1, using an SVM with an RBF kernel, achieved the highest score in the current dataset by combining
effective feature engineering with advanced model training. SELA then presents the code associated with
this node as the optimal solution.

22

	Introduction
	Related Works
	Method
	Insight Proposal and Search Space Creation
	Pipeline Execution and Code Generation
	Tree Search in Machine Learning Experiments
	Experiment Node
	Tree Search for ML Experiments
	Experiment State Saving and Loading

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Datasets
	Pseudo Code of SELA
	Prompts
	Task Prompt
	Instruction Prompt
	Insight Proposal Prompt

	Results
	Main Results

	Tree Search vs. Reasoning-Based Models
	SELA's Adaptability to Additional Datasets and Benchmarks
	Comparison with General-Purpose Agentic Frameworks
	Cost-effectiveness Analysis
	Case Study
	Overview of SELA's search process

