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ABSTRACT

As machine learning increasingly relies on large amounts of data, concerns about
privacy and ethics have grown. Recently, methods for generating synthetic data to
augment or replace real datasets have emerged to mitigate these concerns. In this
paper, we demonstrate improved performance on a discriminative task when train-
ing on a mix of real and synthetic data, compared to training solely on the original
real data. Our synthetic data is generated using a novel sampling method based
on a conditional generative model and a discriminator, both trained exclusively on
the original data, with no need for auxiliary data nor pre-trained foundation mod-
els. We consider the challenging task of face recognition, which is well known
for its privacy and ethical issues. Using our augmented dataset, we demonstrate
consistent improvements over the model trained on the original dataset, on various
benchmarks including IJB-C and IJB-B by up to 5% while performing competi-
tively with state-of-the-art synthetic data generation 1.

1 INTRODUCTION

As machine learning increasingly relies on data for specific applications, the need for high-quality,
accurately labeled datasets is becoming a significant challenge. Moreover, the collection of large
datasets required to meet high-performance demands poses even greater challenges when consider-
ing privacy and ethical concerns, particularly in sensitive domains such as human face images. One
possible solution that recently become popular is synthesizing the data Wood et al. (2021); Azizi
et al. (2023); Rahimi et al. (2024); DeAndres-Tame et al. (2024); Bae et al. (2023). The synthetic
datasets are generated from different methodologies including 3D-Rendering Graphics and Genera-
tive Models (e.g., GANs and Diffusion Models) to name a few. Sometimes because we can generate
many examples using our generation methodologies we can even surpass the performance of the
model which is trained using real data. An example of this is the work by Wood et al. (2021), which
showed that using a 3D-rendering engine and a mesh-based face model enables the generation of
precise labels for dense prediction tasks like face landmark localization. This approach can surpass
the models trained on the real data as human annotations for such datasets are usually difficult to
gather and real datasets are small. The synthetic data can also be created using generative models.
Since the introduction of VAEs Kingma (2013), GANs Goodfellow et al. (2020); Karras et al. (2019;
2021), and more recently Diffusion models Song et al. (2020); Karras et al. (2022; 2024); Hooge-
boom et al. (2023); Gu et al. (2024), the pace of generative model development has significantly
accelerated. These models are often just compared with each other using metrics such as Fréchet
Distance (FD) Stein et al. (2023); Heusel et al. (2017), which essentially evaluate how likely gener-
ators are to generate samples that look alike to their training datasets, or, in the case of text-to-image
generative models, using subjective qualitative metrics like user preferences Esser et al. (2024).

In this paper, we emphasize looking at the usage of the generative models as an augmentation
tool not just solely generating images in respect to metrics such as FD. Currently, the trend is to
use generative models Rombach et al. (2022) that are trained on large datasets like LAION-5B
Schuhmann et al. (2022). Later, they refine the models for downstream tasks (e.g., classification)
using techniques like fine-tuning on separate datasets, prompt engineering, or textual inversion to
incorporate augmentation based on generative models Azizi et al. (2023) Trabucco et al. (2024).
In the domain of face images, DCFace Kim et al. (2023), authors generated synthetic face images

1The code and generated datasets will be made available upon publication.
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from multiple identities, each exhibiting various intra-class variations. In addition to datasets like
CASIA-WebFace for training their method, they employed separate robust face recognition (FR)
systems to filter samples based on similarity and other auxiliary networks to balance the generated
images across different criteria (e.g., gender, race). It is difficult to determine whether the observed
performance gains stem from the massive datasets used to train generative or discriminative models,
or from other factors. It is well-known that models exposed to larger and more diverse datasets tend
to perform better.

On the contrary, in our approach, as depicted in Figure 1 by using a single dataset for training both
our discriminative models (i.e., M = p(y|X)) and also the generative model (i.e., G = p(X|y)
in case of conditional generative model and G = p(X) in case of unconditional version) we want
to study the possibility of a performance boost for a discriminative task when it is trained on the
mix of the original dataset and the generated one, Mmix. This performance improvement is in
comparison with a discriminative model which was solely trained on the original dataset, Morig.
This is particularly useful in critical applications in which data is usually scarce.

Figure 1: In this paper we explore the use of a generator and discriminator trained on the same
dataset to generate useful augmentation of the data that can make the final downstream model more
robust (i.e., better performance across diverse benchmarks).

The main contribution of this paper is to validate the following hypothesis for the task of Face
Recognition (FR) :

A generative model, which aims to model p(X|y) can boost the performance of a downstream
discriminative model p(y|X) by appropriate informed sampling, and combining the resulting data
with the original data that was used for training the generative and discriminative models.

We proposed a novel sampling technique that allows us to validate our hypothesis through extensive
FR experiments. To the best of our knowledge, this is the first time that generative image models
are considered for augmentation at this scale without the usage of auxiliary models or datasets.

2 BACKGROUND

Usage of Synthetic Data in Computer Vision. For a smaller number of class variations, (e.g.,
2 or 3 classes for classification target), authors in Frid-Adar et al. (2018) train separate generative
models. This approach is not scalable for a higher number of classes and variations of our target
(e.g., we have thousands of classes for training an FR system). In Azizi et al. (2023), the authors fine-
tuned pre-trained diffusion models on ImageNet classes after training on large text-image datasets,
demonstrating improved performance on this benchmark through the synthesis of new samples.
Recently authors in Kupyn & Rupprecht (2024) introduced the Instance Augmentation method to
augment images by redrawing individual objects in the scene retaining their original shape using
pre-trained text-to-image models.

Usage of Synthetic Data in Face Recognition. Authors in DCFace Kim et al. (2023) have used
dual condition latent diffusion models (LDM), one for the style and the other for identity. Similar
to our approach, they used CASIA-WebFace Yi et al. (2014) for training their method. By applying
auxiliary networks based on race and a separate strong face recognition (FR) system, they filtered
the generated images to create their dataset. In Sevastopolskiy et al. (2023), the authors collected a
large set of unlabeled face images from various ethnicities and pre-trained a StyleGAN2-ADA (SG2)
model Karras et al. (2020). They then trained an encoder to map images to SG2’s latent space.
By transferring the encoder’s weights to the face recognition (FR) network, they demonstrated a
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bias-mitigated version of the final FR system. GANDiffFace Melzi et al. (2023) uses a pre-trained
Stable Diffusion model Rombach et al. (2022) trained on the large LAION-5B dataset Schuhmann
et al. (2022). The method involves two steps: first, synthesizing identities using StyleGAN3 Kar-
ras et al. (2021) and transforming them in its latent space. Then, by applying Stable Diffusion and
DreamBooth Ruiz et al. (2023) fine-tuning, they introduce more intra-class variability. In IDiff-face
Boutros et al. (2023), a LDM was conditioned on the embedding space of a face recognition (FR)
system trained on the MS1Mv2 dataset to generate their data. Authors in DigiFace1M Bae et al.
(2023) used 3D rendering pipelines to generate various intra-class variabilities of different identities
by accessorizing them and rendering the final 3D model in different poses, expressions, and lighting
conditions. Recently in Rahimi et al. (2024), authors used off-the-shelf image-to-image transla-
tion methodologies without any identity information and demonstrated performance improvement
in comparison to the original DigiFace1M.

As discussed here, while most methods rely on auxiliary datasets and models to show improvement
in some datasets, we take a different approach, demonstrating a performance boost without using
any additional models or data in most of the FR benchmarks.

3 METHODOLOGY

Figure 2 provides an overview of our proposed methodology. Our approach involves using the
features from a discriminator Morig and the generated images from a generator G, both trained
on a single dataset. We condition G so that the generated images can be treated as new classes,
effectively augmenting the original dataset. First, we outline a general problem formulation for both
the discriminator (Classifier Training and its output) and the generator (Generator Training block and
its output) in subsection 3.1 and subsection 3.2 respectively. We then present our main contribution:
generating new classes (Finding Weights in the figure) to augment real datasets with the generated
images in the latter.

Figure 2: Overview diagram of AugGen, we used a single labeled dataset, Dorig, for training a
class-conditional generator, G(Z, c) and also a discriminative model, Morig. Later with both of
these models, we find new condition vectors, C∗ that will lead to a new dataset, Daug (when we are
giving the new condition to the generator and sampling from it). The conditions are set in a way that
the newly generated dataset would be beneficiary for boosting the performance of the Morig when
we augment it with the original dataset. This is done without relying on any auxiliary dataset/model.
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3.1 DISCRIMINATIVE MODEL

Assume that we have a dataset, Dorig, consist of k pairs of image and label,
{(X0, y0), (X1, y1), . . . , (Xk, yk)}. Xi is an image of the form RH×W×3, for simplicity here
we assume that the H and W are fixed for all of the k sample pairs in our dataset. yi is a scalar
that depicts the label of images from a fixed set of l possible values (e.g., {0, 1, ..., l}), L, which
l ≪ k. Here the goal of a discriminative model is to learn the conditional probability p(y|X)
using the samples in Dorig. For example here the Dorig can be the ImageNet Russakovsky et al.
(2015) or CASIA-WebFace Yi et al. (2014) dataset. The discriminative model’s task is to identify
the most likely class of the image. In most cases this enforces the features (i.e., usually output of
penultimate layer, e) for the similar images to be closer together according to a measure, m (e.g.,
Cosine Similarity, the lower the output of m(e1, e2) the more similar the features e1 and e2 are).
This is usually learned by a mapping function fθdis : X → y parameterized by θdis which uniquely
describes the architecture and the parameters of the f . The θdis is learned through empirical risk
minimization as follows:

θ∗dis = argmin
θdis∈Θdis

E(X,y)∼Dorig [Ldis(fθdis(X),y)] (1)

Where for a classification problem the, Ldis, is usually in the form of Cross-Entropy and the Ex-
pectation here is being calculated by drawing sample pairs from, Dorig. Here we refer to possible
hyperparameters for calculating the θ∗dis as hdis, which tries to abstract out the processes such as
Learning rates and its schedules, number of epochs for training and other complexities in the real
world training of a neural network. As depicted in Figure 2, The outcome of this process is a model,
Morig, (i.e., fθdis∗ ), which tries to reflect that the model is trained on the Dorig.

3.2 GENERATIVE MODEL

Generative models aim to capture the underlying distribution of the dataset given some samples,
such that new samples can be drawn from it. Here we present general problem formulation in the
context of the diffusion models, in which we also demonstrate the experiments using these types of
models in section 4. The idea of the diffusion models Song et al. (2020); Anderson (1982) is that
by sequentially adding noise to the data (i.e., Xis ) and learning a denoiser/score function, S. This is
done to gradually learn to go from a complete white Gaussian noise (i.e., in the sampling process)
to the data distribution, by adding noise to the data in different scales and learning the noise that
was added to the data during the training process (i.e., supervision). Following Karras et al. (2024;
2022) formulation, S, the denoiser function can be learned in two stages. The first stage is that given
a noise level, σ, we optimize the parameters of the denoiser (i.e., θden) by adding a noise Nh×w×c

which is dependent on σ and removing it by the denoiser function as follows:
L(Sθden ;σ) = E(X,y)∼Dorig,N∼N (0,σI)[||Sθden(EVAE(X) + N; c(y), σ)− X||22] (2)

Here the image and its corresponding label, (X, y) are sampled from, Dorig. The X is passed to a
VAE encoder, Zh×w×c = EVAE(X) as we are working on the latent diffusion paradigm Rombach
et al. (2022). Later this Z can be transformed back to image space using the VAE’s decoder, X ≃
DVAE(EVAE(X)). Latent diffusion models are mostly popular because of lower computational cost
with respect to pixel-level diffusion models, especially in higher resolution. The denoising is done
in the latent space of the VAE and later decoded to the pixel space. The denoiser function takes
the noisy input, noise scale, and the class condition, c(y) as input and tries to estimate the original
latent, EVAE(X). The second stage is to iterate over different data-dependent noise scales which
reduces the final optimization target to:

θ∗den = argmin
θden∈Θden

Eσ∼N (µ,σ2)[λσL(Sθden ;σ)] (3)

Which λσ is noise scale dependent weight, and µ and σ in N (µ, σ2) are empirically set to focus
the training on more important noise levels for the latent space of a VAE Karras et al. (2024; 2022);
Rombach et al. (2022).

In our formulation, we used one-hot encoding for the c function, meaning that, if the dataset Dorig

contains l unique labels, c maps each i ∈ {0, 1, . . . , l} to a unique vector of size l that the value
corresponding to the label is 1, while the rest are set to 0. After training the conditional denoiser (i.e.,
Sθden

), using Equation 3, as depicted in the middle of Figure 2, we can sample from the generator in
two ways.
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1. During sampling, we pass the condition vector c as it was during the training of S, i.e.,
one-hot vectors representing the classes.

2. The condition c∗ is different from the values used during training.

As an example, depicted in Figure 2, when we pass c, one-hot condition vector corresponding to the
first class, we expect the generator to synthesize samples that are highly similar to the first class in
the, Dorig. We refer to this dataset that tries to reproduce the, Dorig, the Drepro. In this paper, we
explored the ways of conditioning a generator with the values that it has not seen before, and how
we can use the model Morig that was trained using the dataset Dorig to generate samples that can
be used to make Mmix more robust (i.e., consistently more performing in various benchmarks). Our
goal is to synthesize a new class by combining two conditions that the generator has seen before
(i.e., the one-hot condition during training). To this end, given the one-hot condition of two classes,
i and j, namely, ci and cj, we seek to find α and β such that the condition vector of a hypothetically
new class would be:

c∗ = αci + βcj (4)

For ease of notation here we denote the generation process of the trained denoiser by a function G,
Xi = G(Z, ci), which involves giving as input the Z ∼ N (0, I) and condition vector c to generator
to denoise the noisy latent iteratively based on a noise scheduler and finally decode it using DVAE

back to image space. For finding the α and β that produces a class that is dissimilar to the source
classes that we are mixing (i.e., i and j in Equation 4) and also similar within each other (i.e., when
we give the same condition to G we expect the model to generate images of the same class) we
formulate the problem as a search grid.

We set the α and β to some possible combinations for linear space of the values between 0.1 to
1.1. For example, possible combinations would be α = 0.3, β = 0.5 or α = 1.1, β = 0.4. We
denote W, the set which contains possible values of α and β. We also select some subset of L
and call it Ls, for the set to contain some specific classes. Then we randomly select two values
from the Ls namely i and j. Later for each (α, β) ∈ W we calculate the Equation 4, to get the
c∗. For K times we generate three types of images. The first two is the reproduction dataset,
Drepro as before by setting the conditions to ci and cj , to get Xi = G(Z, ci) and Xj = G(Z, cj).
Finally the third one is X∗ = G(Z, c∗). By passing the generated images to the fθdis∗ (i.e., our
discriminator which was trained on the Dorig) we get the features, ei, ej and e∗. As mentioned
previously we seek to maximize the dissimilarity between generated images so that we can treat the
new sample X∗ as a new class. For this, we use a dissimilarity measure, md which the higher its
absolute value it produces the more dissimilar the inputs are. Later we calculate this measure for
each of the reproduced images of the existing classes in respect to the new class, di = md(e

i, e∗)
and dj = md(e

j , e∗), here we define the total dissimilarity between the reproduced classes and the
newly generated class as mtotal

d = |di|+ |dj |. As mentioned earlier we repeat this process K times,
this means that we get K different X∗. We also want that X∗ to be as similar as possible to each
other so we can assign the same label/class to them for a fix α and β. To this end, we also calculate
a similarity measure, ms, in which the higher the absolute output of this measure is the more similar
their input is. We calculate it between the K generated X∗ as mtotal

s . We hypothesize and verify
later with our experiments that the good candidates for α and β are the ones that have a high value
of the mtotal = mtotal

s +mtotal
d . This search for α and β is presented in the Algorithm 1.

After finding candidate values for α and β, by randomly selecting classes from L, and calculating
c∗, we can generate images that represent a hypothetically new class. The output of this process
is what we call generated augmentations of the Dorig, or Daug as depicted in the middle row of
the Figure 2. Later as depicted in the last line of Figure 2, in the experiments, we demonstrated
that combining this generated dataset with the Dorig can make the downstream discriminative model
more robust. Additionally, in Appendix C , we experimentally demonstrate that common metrics for
evaluating generator performance do not correlate with the final performance on downstream task.

4 EXPERIMENTS
In this section, we demonstrate the effectiveness of our proposed method for generating augmenta-
tions. We consider the problem of Face Recognition (FR). As previously mentioned, the challenges
associated with the large datasets required for training modern FR systems are significant. There-
fore, achieving better performance with smaller datasets is advantageous. Here we show that in
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Algorithm 1 Grid search for α and β

Require: Search range for α, β ∈ [0.1, 1.1],Ls ⊆ L, K: Number of iterations.
Require: G(., .): Class-conditional Generator trained on Dorig

Require: fθ∗
dis

: Discriminator trianed on Dorig

Output: α∗ and β∗

1: Create set W = {(α, β) | α, β ∈ [0.1, 1.1]}
2: Randomly select two values i and j from Ls

3: Create empty set M.
4: for each (α, β) ∈ W do
5: c∗ = αci + βcj

6: Create empty set F.
7: for k = 1, . . . ,K do
8: Get Images : Xi = G(Z, ci),Xj = G(Z, cj),X∗ = G(Z, c∗)
9: Get Features: ei, ej , e∗ = fθdis∗ (X

i), fθdis∗ (X
j), fθdis∗ (X

∗)
10: Add e∗ to F
11: Dissimilarity measures: di = md(e

i, e∗), dj = md(e
j , e∗)

12: Total dissimilarity: mtotal
d = |di|+ |dj |

13: end for
14: mtotal

s = 0
15: ∀p, q ∈ F|p ̸= q Calculate ms(e

p, eq) and add it to mtotal
s

16: Final measure: mtotal = mtotal
s +mtotal

d and add it to M.
17: end for
18: Return α∗ and β∗ that the mtotal, in M is high.

various benchmarks training with our synthetically generated augmentation is beneficiary for the
downstream model with respect to a model trained solely on the real dataset, Dorig.

4.1 EXPERIMENT SETUP

Here we set the dataset Dorig to CASIA-WebFace Yi et al. (2014). This dataset contains 10, 572
identities and also for each identity some variations (e.g., same identity in different lighting, expres-
sion, and poses).

Discriminative Model For training the discriminator and a fair comparison between different
methods, we trained an FR system consisting of a ResNet50 backbone as modified in ArcFace’s
implementation Deng et al. (2019), with the AdaFace Kim et al. (2022) head for margin loss. We
trained a separate network multiple times under the same conditions, like the same number of GPUs
for training them (unless otherwise mentioned), the same learning rate schedule (i.e., same hdis in
subsection 3.1 refer to the appendix Table 7 for the details of the hdis). The only variable in the
multiple training iterations is the seed which controls the initialization of the weights of the network
and other sources of randomness like the order in which the empirical minimization algorithm is
observing the training data which leads to slightly different results. The number of iterations was set
between 2 and 4, based on the observed performance variance of the final downstream model. These
hyper-parameters have been used to train a FR backbone for each synthetic dataset such as, the orig-
inal DigiFace1M dataset (from 3D graphics) and its translated RealDigiFace versions Rahimi et al.
(2024) (i.e., Hybrid, 3D graphics and post-processing), and the two Diffusion-based DCFace Kim
et al. (2023) and IDiff-Face Boutros et al. (2023) datasets. We also applied common augmentations
for the FR task, such as photometric, cropping, and low-resolution augmentations.

Generative Model To train our generative model, we used a variant of the latent diffusion formu-
lation Karras et al. (2022; 2024). In this case, the one-hot condition vectors c10572 have a size of
10,572, corresponding to the number of classes in Dorig. We train two versions of the latent diffusion
model (LDM) from scratch, labeled small and medium, to analyze the impact of network size and
training iterations on the final performance, following the approach outlined in the original papers
Karras et al. (2024; 2022). See Appendix B for additional details on training the generator.

Grid Search As presented in the Algorithm 1 we need to find an appropriate α and β for gen-
erating useful augmentations based on the generator trained in the previous section. For this we
set the Ls to the classes from the generator which are presented more than the median number of
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Figure 3: Random sample, from left to right, the first column is variations of a random ID, 1, in the,
Dorig, the second column is the reproduction of the same ID in the first column using the generator,
when we put the conditions to corresponding one-hot G(Z, c1), The last two columns are the same
but for different ID and the middle column representing the new class/identity by generating image
using G(Z, c∗).

samples per class, we empirically observed that these classes are better reproduced when we were
generating Drepro. Later we set the W to {0.1, 0.2, . . . , 1.0, 1.1} for searching α and β to calculate
the new condition vector c∗. Closely related on how the FR models are being trained, especially the
usage of the margin loss, (i.e., AdaFace Kim et al. (2022) or ArcFace Deng et al. (2019)), we set
the measure for dissimilarity between the features of the two sample images, X1 and X2, to cosine
similarity which calculating, md = e1.e2

||e1||||e2|| . Note that the es were calculated using a discrimina-
tor that was trained solely on the Dorig. We treat the values of the measure in such a way that the
higher the output of the measure the more it is reflecting its functionality (i.e., the larger the measure
for dissimilarity is the more dissimilar the inputs are). Accordingly, we set the similarity measure
to ms = 1 − | e1.e2

||e1||||e2|| |, which again reflects that the inputs are more similar if the output of this
measure is closer to 1. We iterate multiple choices of the, i and j and average our mtotal for each
of the choices. A sample of the output of this process is depicted in Figure 4. Here we observe that
by increasing the α and β from (0.1, 0.1) to between (0.7, 0.7) and (0.8, 0.8) the measure increases
and after that, it will decrease when we go toward (1.1, 1.1), we specifically interested in the α = β
line as we do not want to include any bias regarding the classes that we randomly choose. We con-
sider three sets of values for (α, β), (0.5, 0.5), (0.7, 0.7) and (1.0, 1.0) corresponding to the mtotal

of 1.48, 1.58 and 1.53 respectively. We set the output of Algorithm 1 to (0.7, 0.7). We will show
quantitatively the effectiveness of this measure in the final performance of discriminator when we
train it on the synthetically generated dataset using various α and β in subsection 4.3.

Synthetic Dataset For generating the reproduction dataset Drepro, we set the condition for each of
the 10, 572 classes in the original CASIA-WebFace dataset to the generator. The number of samples
per class is 50 unless mentioned otherwise. For generating Daug we randomly sampled 10, 000

combination of the Ls,
(
Card(Ls)

2

)
, (samples with more than the median number of sample/class in

the original CASIA-WebFace), and fixed them for all the experiments. Later by setting the α and
β to candidate values found in the previous section, (0.7, 0.7), we generated 50 sample per 10, 000
selected classes. In Figure 3, some samples of the generated images are shown. Here the first and
last columns are the examples of the two classes in the original dataset. The second and 4-th columns
are the reproduction of the identities in the first and last column respectively (i.e., Drepro). Each line
is generated using the same seed (source of randomness in the generator), and finally, the middle
column (3rd) is the Daug which is generated by X∗ = G(Z, c∗) when we calculate the c∗. We can
observe that the middle column identity is slightly different from the source classes while being
coherent when we generate multiple examples of this new identity. This might be one of the reasons
why our augmentation is improving the final performance. Please refer to the appendix Appendix D
for more samples.
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Figure 4: The value of the proposed measure mtotal for setting the candidate values of α (x axis)
and β (y axis). Here for each α and β and our 100 combination of Ls we calculated the mtotal by
setting the K in Algorithm 1 to 10.

4.2 FACE RECOGNITION BENCHMARKS

We show that our synthetic augmentation is boosting the performance of a model trained on the real
dataset in all the benchmarks. For this purpose, we evaluated against two sets of FR benchmarks.
The first set consists of LFW Huang et al. (2008), CFPFP Sengupta et al. (2016), CPLFW Zheng &
Deng (2018), CALFW Zheng et al. (2017), AgeDB Moschoglou et al. (2017), which includes mainly
high-quality images with various lighting, poses, and ages Table 1. The second set involves bench-
marks consisting of medium to low-quality images from a realistic and challenging FR scenario
(NIST IJB-B/C) Maze et al. (2018); Whitelam et al. (2017) Table 2. In table Table 2, we mainly
show the verification accuracy for two thresholds which are usually used in real-world scenarios
when the FR systems are being deployed, namely TPR@FPR=1-e-06 and TPR@FPR=1e-05 for
both IJB-B and IJB-C. Please refer to appendix Appendix A for the IJB-B and IJB-C results for all
usual FPRs. In the Table 1 and Table 2, the Aux column depicts that if the method under study used
any auxiliary model for the generation of the dataset other than the Dorig. The ideal value for this
column is N which refers to not using any auxiliary model/datasets. The ns and nr depict the num-
ber of synthetic and real images used for training the discriminative model. The final values for the
benchmarks are reported as mean and std of the observed numbers when we are changing only the
seed as discussed before for stronger conclusions. Table 2 and Table 1 consist of two parts separated
by a double horizontal line. The upper part refers to fully synthetic FR training, without including
any real data. The second part consists of fully real FR training, as well as mixed training which
consists of the same real dataset and the synthetic data from three methods: the proposed AugGen,
DCFace Kim et al. (2023) and IDiffface Boutros et al. (2023). This ensures a fair comparison, as
all the mentioned methods are generative model-based, unlike DigiFace1M and RealDigiFace1M,
which are used for fully synthetic training. Here for each part of the table bold and underline text
are presenting best and second best respectively. In the second part, if augmentation with the real
CASIA-WebFace performed better than solely training with the CASIA-WebFace (middle part of
both tables) the cell is shaded in gray. For the less challenging benchmarks in Table 1, we observe
that although our method consists of a smaller number of samples and does not use any auxiliary
model/data we are performing competitively with other state-of-the-art (SOTA) methods/datasets.
In the second part of this table we are observing mainly all methods we combined with the CASIA-
WebFace are boosting the discriminator which is solely trained on the CASIA-WebFace. In the
Table 2, we demonstrate better general performance being the best or second to best in most bench-
marks although our dataset were generated for augmentation by design. By observing the results
after the augmentation (second part of the table) we are the only method that consistently performs
better than the baseline. One interesting finding was the performance drop of the model when it
was combined with the CASIA-WebFace in the Table 2. But we are observing that consistently in
all of the benchmarks, our augmentation methodology is boosting the baseline. We demonstrate
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that although we did not use any auxiliary model/data our synthetic dataset performed competitively
with other state-of-the-art methods or even outperformed them in some cases.

Table 1: Comparison of the fully synthetic FR training (upper part), fully real FR training (middle),
and mixed FR training (bottom) using CASIA-WebFace, when the models are evaluated in terms
of accuracy against standard FR benchmarks, namely LFW, CFPFP, CPLFW, AgeDB and CALFW
with their corresponding protocols. Here ns and nr depict the number of Synthetic and Real Images
respectively and Aux depicts whether the method for generating the dataset uses an auxiliary infor-
mation network for generating their datasets (Y) or not (N).

Method/Data Aux ns nr LFW CFP-FP CPLFW AgeDB CALFW Avg

DigiFace1M N/A 1.22M 0 92.43±0.00 74.64±0.06 82.57±0.43 75.72±0.51 69.48±1.32 78.97±0.44
RealDigiFace Y 1.20M 0 93.88±0.19 76.95±0.17 85.47±0.06 77.57±0.07 72.82±0.59 81.34±0.02

IDiff-face Y 1.2M 0 97.45±0.05 77.07±0.34 80.48±0.63 87.26±0.05 81.15±0.61 84.68±0.05
DCFace Y 0.5M 0 98.33±0.07 82.50±0.11 90.28±0.20 91.52±0.05 89.67±0.36 90.46±0.07
DCFace Y 1.2M 0 98.79±0.11 84.20±0.34 91.19±0.01 92.50±0.07 91.22±0.06 91.58±0.09

AugGen, Daug (Ours) N ∼0.6M 0 97.69±0.03 81.55±0.03 86.88±0.46 88.49±0.04 83.74±0.01 87.67±0.09
AugGen Drepro (Ours) N ∼0.6M 0 98.60±0.02 85.26±0.14 91.13±0.14 90.54±0.16 87.69±0.19 90.64±0.07

CASIA-WebFace N/A 0 ∼0.5M 99.21±0.18 87.85±1.72 95.69±1.16 92.78±0.47 92.71±0.96 93.65±0.89

IDiff-face Y 1.2M ∼0.5M 99.53±0.07 89.92±0.01 96.91±0.27 93.64±0.16 94.28±0.04 94.86±0.02
DCFace Y 0.5M ∼0.5M 99.43±0.08 89.44±0.42 96.67±0.16 93.82±0.04 94.24±0.15 94.72±0.09

AugGen Daug (Ours) N ∼0.2M ∼0.5M 99.41±0.08 89.32±0.02 96.41±0.09 93.13±0.03 93.63±0.15 94.38±0.00

Table 2: Comparison of the fully synthetic FR training (upper part), fully real FR training (middle),
and mixed FR training (bottom) using CASIA-WebFace, when the models are evaluated against
challenging FR benchmarks with their standard protocols: on IJB-B (B) and IJB-C (C) in terms of
True Positive Rate (TPR) using two thresholds set for two practical False Positive Rates (FPRs), and
also on TinyFace in terms of Rank-1 accuracy (TR1). Here ns and nr depict the number of Synthetic
and Real Images respectively and Aux depicts whether the method for generating the dataset using
an auxiliary information network for generating their datasets

Method/Data Aux ns nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1

DigiFace1M N/A 1.22M 0 15.31±0.42 29.59±0.82 26.06±0.77 36.34±0.89 32.30±0.21
RealDigiFace Y 1.20M 0 21.37±0.59 39.14±0.40 36.18±0.19 45.55±0.55 42.64±1.70

IDiff-face Y 1.2M 0 26.84±2.03 50.08±0.48 41.75±1.04 51.93±0.89 45.98±0.61
DCFace Y 0.5M 0 29.74±2.25 57.55±0.76 51.64±1.55 64.58±1.01 42.85±0.07
DCFace Y 1.2M 0 22.48±4.35 47.84±6.10 35.27±10.78 58.22±7.50 45.94±0.01

Auggen Daug (Ours) N ∼0.6M 0 32.67±1.17 51.52±0.69 47.74±0.47 58.07±0.48 48.10±0.05
Auggen Drepro (Ours) N ∼0.6M 0 15.71±3.12 45.97±4.64 31.54±6.65 58.61±3.89 53.61±0.47

CASIA-WebFace N/A 0 ∼0.5M 1.16±0.08 5.61±1.64 0.83±0.10 5.86±1.31 58.01±0.28

IDiff-face Y 1.2M ∼0.5M 0.89±0.07 5.80±0.63 0.70±0.11 7.46±2.08 59.32±0.34
DCFace Y 0.5M ∼0.5M 0.26±0.11 1.59±0.51 0.18±0.07 1.54±0.59 56.60±0.41

Auggen Daug (Ours) N ∼0.2M ∼0.5M 1.29±0.01 8.21±1.38 1.43±0.22 9.67±1.01 58.01±0.50

4.3 EFFECTIVENESS OF GRID SEARCH

We study the effectiveness of our proposed method in Algorithm 1 which tries to find the suitable
condition weights, α, and β. We compare with four sets of values:

• Rand: α and β were selected randomly for 10, 000 mixture of identities from the set of
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1}.

• Half: α and β set to 0.5 for all 10, 000 random mixture of identities selected from Ls.

• Full: α and β set to 1 for all 10, 000 random mixture of identities selected from Ls.

• Half++: α and β set to 0.7 according to the Algorithm 1 for the generator and discrimi-
nator trained on CASIA-WebFace dataset. This is done for all 10, 000 random mixture of
identities selected from Ls

The results for this are shown in the Table 3, here as we observe on almost all of the benchmarks the
Daug generated using α and β values with higher mtotal are performing better.
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Table 3: Effectiveness of our weighting procedure (W/ Half++) in comparison to (W/ Random) or
when putting the conditions to 0.5 (W/ Half) and when setting the condition signal to 1 (W/ Full).
Best in bold, second best, underlined.

C Weight Method ns nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1 mtotal

W/ Half ∼0.5M 0 8.52±5.61 27.74±6.87 11.59±4.26 35.69±5.23 46.42±0.60 1.48
W/ Full ∼0.5M 0 17.63±0.08 32.47±0.47 24.30±0.80 37.45±0.22 45.08±0.17 1.53

W/ Random ∼0.5M 0 24.47±1.23 39.83±1.08 30.79±1.39 44.33±0.88 49.34±0.31 N/A
W/ Half++ ∼0.5M 0 25.44±0.19 46.20±0.12 39.66±0.38 51.47±0.29 47.95±0.09 1.58

4.4 MIXING EFFECT

In Table 4, the effect of increasing the number of samples in our augmented dataset using (α, β) =
(0.7, 0.7) weights is shown. On average, adding more classes (#Class) and samples per class (#Sam-
ple) improves the performance of the final discriminative model. The performance eventually de-
creases as more samples are added per class. We hypothesize that this is due to the similarity of
images generated under the new conditions, c, when sampling G(Z, c) multiple times. This reduces
the intra-class variability necessary for training an effective discriminator. We also observe that we
should add an appropriate number of the augmentation dataset (i.e., comparing 10k × 5 to with-
out any augmentation) for the final performance to be better than the discriminator trained on the
original dataset.

Table 4: Effect of mixing different numbers of classes (#Class) and samples per class (#Sample)
with the original data, CASIA-WebFace. For TinyFace Rank-1 and Rank-5 accuracies are presented
as TR1 and TR5 respectively.

Syn #Class × #Sample nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1 TR5

0 0.5M 1.16±0.08 5.61±1.64 0.83±0.10 5.86±1.31 58.01±0.28 63.47±0.07

Ours (5k × 5 ) 0.5M 0.85±0.06 5.60±0.84 0.65±0.08 6.70±0.97 58.19±0.20 63.48±0.01
Ours (5k × 20) 0.5M 1.08±0.16 5.81±1.01 0.84±0.12 6.88±1.38 57.50±0.13 63.07±0.33
Ours (5k × 50) 0.5M 0.63±0.23 4.56±0.41 0.46±0.10 6.55±0.35 57.39±0.20 62.55±0.11

Ours (10K × 5) 0.5M 0.77±0.08 4.40±0.14 0.61±0.03 4.69±0.26 58.30±0.28 63.28±0.30
Ours (10K × 20) 0.5M 1.29±0.01 8.21±1.38 1.43±0.22 9.67±1.01 58.01±0.50 63.00±0.71
Ours (10K × 50) 0.5M 0.62±0.17 4.29±0.27 0.64±0.10 5.98±0.00 57.51±0.32 62.77±0.08

5 CONCLUSIONS

We have shown that by using a generator and discriminative model trained on a single dataset, we
can generate an augmented dataset that will boost the performance of the discriminative model on
several FR benchmarks, without relying on any auxiliary data or pre-trained model. We consistently
outperformed the baseline discriminator model on various evaluation benchmarks, unlike other state-
of-the-art models whose performance improvements were not consistent across evaluations.

Future work. Our method can be considered a general formulation of MixUp Zhang (2017) and
CutMix Yun et al. (2019), but instead of cropping or blending images, we use a generator to create
a new class. One interesting research direction would be to test if we can reformulate the margin
losses used in FR to be compatible with the soft labels. Later by establishing a correlation between
the target soft labels and the c∗, (e.g., for α and β set to 0.7 which increases the mtotal an obvious
choice for soft target labels would be 0.5 and 0.5 for the corresponding source classes) one can study
would it be beneficiary to treat the class as a soft-class or a new one.

Reproducibility. All code for the discriminative and generative models, along with the generated
datasets and trained models, will be publicly available for reproducibility.
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A FACE RECOGNITION BENCHMARKS

Here we present the same experiment setting as in Table 2 for IJB-B Whitelam et al. (2017) and
IJB-C Maze et al. (2018) for more thresholds set by usual False Positive Rates (FPRs), respectively
presented in Table 5 and Table 6. We can observe again that our generated images consistently
improve the discriminator trained on the original dataset in both the benchmarks and all the FPR
values.

Table 5: Comparison of the fully synthetic FR training, fully real FR training, and mixed FR training,
when the models are evaluated against IJB-B with various FR thresholds. Here ns and nr depict
the number of Synthetic and Real Images respectively and Aux depicts whether the method for
generating the dataset using an auxiliary information network for generating their datasets

Method/Data Aux ns nr B-1e-6 B-1e-5 B-1e-4 B-1e-3 B-0.01 B-0.1 Avg

DigiFace1M N/A 1.22M 0 15.31±0.42 29.59±0.82 43.53±0.77 59.89±0.51 76.62±0.44 91.01±0.12 52.66±0.47
RealDigiFace Y 1.20M 0 21.37±0.59 39.14±0.40 52.61±0.70 67.68±0.73 81.30±0.56 93.15±0.17 59.21±0.52

IDiff-face Y 1.2M 0 26.84±2.03 50.08±0.48 64.58±0.32 77.19±0.41 88.27±0.15 95.94±0.05 67.15±0.50
DCFace Y 0.5M 0 29.74±2.25 57.55±0.76 73.00±0.39 83.87±0.28 92.29±0.17 97.34±0.06 72.30±0.65
DCFace Y 1.2M 0 22.48±4.35 47.84±6.10 73.20±2.53 86.11±0.59 93.55±0.16 97.56±0.06 70.12±2.28

Auggen, Daug (Ours) N ∼0.6M 0 32.67±1.17 51.52±0.69 67.77±0.83 80.24±0.50 90.30±0.03 96.74±0.03 69.87±0.52
Auggen Drepro (Ours) N ∼0.6M 0 15.71±3.12 45.97±4.64 73.05±0.89 85.54±0.16 93.52±0.17 97.82±0.08 68.60±1.43

CASIA-WebFace N/A 0 ∼0.5M 1.16±0.08 5.61±1.64 50.32±4.65 87.03±0.38 95.41±0.09 98.36±0.04 56.31±1.13

IDiff-face Y 1.22M ∼0.5M 0.89±0.07 5.80±0.63 54.76±2.31 88.33±0.49 96.02±0.04 98.59±0.03 57.40±0.56
DCFace Y 0.5M ∼0.5M 0.26±0.11 1.59±0.51 35.62±7.89 84.30±3.52 95.10±0.46 98.36±0.08 52.54±2.08

Auggen, Daug N ∼0.2M ∼0.5M 1.29±0.01 8.21±1.38 57.12±4.32 87.98±0.50 95.31±0.25 98.45±0.02 58.06±1.07

Table 6: Comparison of the fully synthetic FR training, fully real FR training, and mixed FR training,
when the models are evaluated against IJB-C with various FR thresholds. Here ns and nr depict
the number of Synthetic and Real Images respectively and Aux depicts whether the method for
generating the dataset using an auxiliary information network for generating their datasets

Method/Data Aux ns nr C-1e-6 C-1e-5 C-1e-4 C-1e-3 C-0.01 C-0.1 Avg

DigiFace1M N/A 1.22M 0 26.06±0.77 36.34±0.89 49.98±0.55 65.17±0.39 80.21±0.22 92.44±0.05 58.37±0.46
RealDigiFace Y 1.20M 0 36.18±0.19 45.55±0.55 58.63±0.59 72.06±0.90 84.77±0.59 94.57±0.19 65.29±0.50

IDiff-face Y 1.2M 0 41.75±1.04 51.93±0.89 65.01±0.63 78.25±0.39 89.41±0.19 96.55±0.05 70.48±0.47
DCFace Y 0.5M 0 51.64±1.55 64.58±1.01 76.98±0.74 86.90±0.38 93.90±0.07 97.82±0.01 78.64±0.63
DCFace Y 1.2M 0 35.27±10.78 58.22±7.50 77.51±2.89 88.86±0.69 94.81±0.09 98.06±0.06 75.46±3.65

Auggen, Daug (Ours) N ∼0.6M 0 47.74±0.47 58.07±0.48 71.61±0.50 82.87±0.32 92.03±0.04 97.37±0.04 74.95±0.31
Auggen Drepro (Ours) N ∼0.6M 0 31.54±6.65 58.61±3.89 78.11±0.51 88.51±0.04 94.79±0.09 98.17±0.04 74.96±1.82

CASIA-WebFace N/A 0 ∼0.5M 0.83±0.10 5.86±1.31 56.87±3.14 89.41±0.40 96.19±0.06 98.61±0.02 57.96±0.83

IDiff-face Y 1.22M ∼0.5M 0.70±0.11 7.46±2.08 57.43±4.17 89.89±0.71 96.63±0.08 98.77±0.01 58.48±1.19
DCFace Y 0.5M ∼0.5M 0.18±0.07 1.54±0.59 38.17±8.24 86.18±3.32 95.88±0.42 98.59±0.05 53.42±2.11

Auggen, Daug N ∼0.2M ∼0.5M 1.43±0.22 9.67±1.01 61.75±3.48 90.00±0.44 96.17±0.19 98.64±0.01 59.61±0.81

B EXPERIMENT DETAILS

B.1 DISCRIMINATOR TRAINING

In the Table 7 the most important parameters for training our discriminative models are presented.

B.2 GENERATOR AND ITS TRAINING

We trained two sizes of generator namely small and medium as in Karras et al. (2024). The training
of the small-sized generator took about 1 NVIDIA H100 GPU day for the generator to see 805M
images with a batch size of 2048. For reaching the same number of training images for the medium-
sized generator, took about 2 days with a batch size of 1024. We used an Exponential Moving
Average (EMA) length of 10%. As observed in literature Nichol & Dhariwal (2021), the EMA of
model weights plays a crucial role in the output quality of the Image Generators.

For sampling our models we did not employ any Classifier Free Guidance (CFG) Ho & Salimans
(2021).
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B.3 TABLE DETAILS

For the Table 3 we conditioned a medium-sized generator which trained till it saw 805M images.
The conditions were set according to the four sets of values of the α and β. This is done for a fixed
identity combination from the Ls for all of them. Later for each of these new conditions c∗ we
generated 50 images. All other tables were reported from a medium-sized generator when they saw
335M training samples.

Table 7: Details of the Discriminator and its Training

Parameter Name Discriminator Type 1 Discriminator Type 2
Network type ResNet 50 ResNet 50
Marin Loss AdaFace AdaFace

Batch Size 192 512
GPU Number 4 1

Gradient Acc Step 1 (For every training step ) N/A
GPU Type Nvidia RTX 3090 Ti Nvidia H100

Precision of Floating Point Operations High High
Matrix Multiplication Precision High High

Optimizer Type SGD SGD
Momentum 0.9 0.9

Weight Decay 0.0005 0.0005
Learning Rate 0.1 0.1

WarmUp Epoch 1 1
Number of Epochs 26 26

LR Scheduler Step Step
LR Milestones [12, 24, 26] [12, 24, 26]

LR Lambda 0.1 0.1

Input Dimension 112 × 112 112 ×112
Input Type RGB images RGB Images

Output Dimension 512 512

Seed 41,2048,10 (In some models) 41,2048

C DOWNSTREAM PERFORMANCE VS METRICS IN GENERATIVE MODELS

In this section, we examine whether there is a correlation between common metrics for evaluat-
ing generative models and the discriminator’s performance when trained on our augmented dataset.
We studied the FD Heusel et al. (2017) Precision/Recall Sajjadi et al. (2018); Kynkäänniemi et al.
(2019) and Coverage Naeem et al. (2020) which is usually used to quantify the performance of the
Generative Models. Calculation of these metrics requires the projection of the images into mean-
ingful feature spaces. For feature extraction, we consider two backbones, Inception-V3 Szegedy
et al. (2016) and DINOv2 Oquab et al. (2023) which are shown effective for evaluating diffusion
models Stein et al. (2023). Both these models were trained using the ImageNet Russakovsky et al.
(2015) in a supervised and semi-supervised manner respectively. Experiments were performed by
randomly selecting 100, 000 images of both CASIA-WebFace (as the source distribution) and our
generated images by value of α and β using Algorithm 1 (i.e., the same settings as presented in
the section 4). We are reporting four versions of our generated augmentation using a medium-sized
generator when it sees 184M, 335M, 603M, and 805M training samples (M for Million). For each
of the classes generated from these models we selected 20 samples, based on the observation in Ta-
ble 4. Later by mixing the selected images with the original CASIA-WebFace we train FR for each
of them and reporting the average accuracies for different thresholds in the IJB-C (i.e., similar to last
column in the Table 6). Figure 5 and Figure 6 are showing mentioned metrics for Inception-V3 and
DINOv2 feature extractor respectively. We observe no clear correlation between the metrics used
to evaluate generative models and the performance of a downstream task. This holds when we are
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augmenting the dataset for training the generator and discriminator with the original dataset. This
highlights the need to develop new evaluation metrics.

(a) FD (b) Recall (c) Coverage (d) Precision

Figure 5: Correlation between the FD, Recall, Coverage, and Precision for the generated dataset by
comparing it with the features of CASIA-WebFace using DINOv2 extractor.

(a) FD (b) Recall (c) Coverage (d) Precision

Figure 6: Correlation between the FD, Recall, Coverage, and Precision for the generated dataset by
comparing it with the features of CASIA-WebFace using Inception-v3 extractor.

D GENERATED IMAGES

In the following figures, you can find more examples of generated images for Small and Medium-
sized generators and also trained for more steps. By comparing Figure 7 (generated result from a
small-sized generator trained when it sees 335M images, S335M), Figure 8 (M335M) and Figure 9
(M805M) we generally observe that larger generators are producing better images, but training for
more steps does not necessarily translate to better image quality.
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Figure 7: Samll-sized generator trained till it sees 335M images. From left to right, the first column
is variations of a random ID, 1, in the, Dorig, the second column is the recreation of the same ID in
the first column using the generator when we put the conditions to 1, The last two columns are the
same but for different IDs and the middle column representing the interpolated new identity.
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Figure 8: Medium-sized generator trained till it sees 335M images. From left to right, the first
column is variations of a random ID, 1, in the, Dorig, the second column is the recreation of the
same ID in the first column using the generator when we put the conditions to 1, The last two
columns are the same but for different IDs and the middle column representing the interpolated new
identity.
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Figure 9: Medium-sized generator trained till it sees 805M images. From left to right, the first
column is variations of a random ID, 1, in the, Dorig, the second column is the recreation of the
same ID in the first column using the generator when we put the conditions to 1, The last two
columns are the same but for different IDs and the middle column representing the interpolated new
identity.
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Figure 10: Medium-sized generator trained for till it sees 335M images for different IDs. From left
to right, the first column is variations of a random ID, 1, in the, Dorig, the second column is the
recreation of the same ID in the first column using the generator when we put the conditions to 1,
The last two columns are the same but for different IDs and the middle column representing the
interpolated new identity.
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