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Abstract

The impact of random seeds in fine-tuning large
language models (LLMs) has been largely over-
looked despite its potential influence on model
performance. In this study, we systematically
evaluate the effects of random seeds on LLMs
using the GLUE and SuperGLUE benchmarks.
We analyze the macro-level impact through tra-
ditional metrics like accuracy and F1, calculat-
ing their mean and variance to quantify perfor-
mance fluctuations. To capture the micro-level
effects, we introduce a novel metric, consis-
tency, measuring the stability of individual pre-
dictions across runs. Our experiments reveal
significant variance at both macro and micro
levels, underscoring the need for careful con-
sideration of random seeds in fine-tuning and
evaluation.

1 Introduction

The impact of random seeds in neural network train-
ing has long been recognized across various do-
mains, such as general machine learning classifica-
tion and regression tasks (Ganesh et al., 2023; Mad-
hyastha and Jain, 2019), computer vision (Picard,
2021; Akesson et al., 2024), natural language pro-
cessing (NLP)(Bethard, 2022; Lucic et al., 2022).
Random seeds influence initialization and train-
ing dynamics, introducing variability in model out-
comes that can lead to significant fluctuations in
performance (Bengio, 2012).

In the field of NLP, large language models
(LLMs) have achieved remarkable success across
a wide range of NLP tasks, setting new state-of-
the-art results on benchmarks like GLUE and Su-
perGLUE. These benchmarks have became the de
facto standard for evaluating the capabilities of
LLMs in understanding, reasoning, and generating
natural language. Despite the success of LLMs,
the pretrained transformer architectures, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu,
2019), have been found to be particularly sensitive
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Figure 1: Macro and micro performance. A pretrained
LLM is fine-tuned with random seed 42 and 52. The
accuracy for both models is 60%, but the overlapping
of individual predictions is 20%.

to random seeds (Risch and Krestel, 2020; Dodge
et al., 2020; Mosbach et al., 2021). This sensitiv-
ity can result in substantial performance variations,
complicating the interpretation of experimental re-
sults and undermining confidence in benchmarking
or state-of-the-art outcomes. A recent analysis of
85 papers from the ACL Anthology (Bethard, 2022)
revealed risky practices in the use of random seeds:
over 50% of the papers exhibited potential misuse,
with 24 using a single fixed random seed. This
highlights that the influence of random seeds on
LLM performance is still an underexplored area.

Existing studies examining the impact of random
seeds (Ganesh et al., 2023; Madhyastha and Jain,
2019; Picard, 2021) typically evaluate performance
variations by measuring the variance of standard
metrics, such as accuracy and F1 score for classifi-
cation tasks, or Pearson correlation for regression
tasks, across multiple seeds. These evaluations
focus on the macro-level agreement of model per-
formance across the entire test set, offering insights
into overall variability. However, they overlook the
micro-level impact of how individual test points are
influenced by random seed variations. As shown in
Figure 1, model performance is robust to random
seeds 42 and 52 at the macro level (both achieve
60% accuracy) but lacks consistency at the micro
level (only 20% overlapping predictions). This



micro-level inconsistency can have severe conse-
quences in real-world applications, especially in
fields where model predictions are highly sensitive
to individual test points, such as medical diagnosis
and autonomous driving. Understanding this micro-
level effect is crucial for assessing model robust-
ness at the level of individual predictions, ensuring
that specific test samples are not inconsistently mis-
classified or predicted due to seed-induced varia-
tions. Additionally, it helps pinpoint specific areas
where models may exhibit significant instability,
such as consistently misclassifying certain types
of data points or showing highly variable predic-
tions for similar inputs. Recognizing these areas
of instability can guide targeted improvements in
both model design and evaluation practices, en-
suring that assessments account for seed-induced
variations in performance.

Major contributions: To address these gaps, in
this work, (1) we analyze the impact of random
seeds on pretrained LLMs using the GLUE and
SuperGLUE benchmarks, covering both macro and
micro-level variability; (2) We introduce a novel
consistency metric to assess prediction stability
on individual test points, capturing the micro-level
effects of random seeds; (3) Our extensive experi-
ments reveal significant variability in both standard
and consistency metrics, underscoring the need to
consider seed-induced variations in fine-tuning and
evaluation, and incorporate random seed sensitivity
into benchmarking and reporting for more reliable
and reproducible results.

2 Macro Metric: Variance

To measure the macro-level impact of random
seeds on LLM performance, we calculate the vari-
ance of a standard metric across multiple seeds.
Let [y, ,(g] represent the values of a model
performance metric for LLMs fine-tuned with S
random seeds, the variance is calculated by:
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where ¢ = % 2?:1 G;. ¢ can be any standard met-
rics, such as F1 score for classification tasks or
Pearson correlation for regression tasks. A smaller
VAR indicates less variation in macro-level perfor-
mance.

3 Micro Metric: Consistency

’Consistency’ can have varying definitions across
domains. Building on prior work, Wang et al.
(2020) formally defined the consistency of a deep
learning model as its ability to produce consistent
predictions for the same input when periodically
retrained with streaming data in deployment set-
tings. Extending this idea, we define the consis-
tency of an LLM as its ability to generate consistent
predictions for the same input across models fine-
tuned with different hyperparameter settings, with
correct-consistency further specifying its ability to
make consistent correct predictions in this context.
More specifically, consider two LLMs A and B,
given a dataset D = dy, - - - , d of N data points,
yZA and yZB are the prediction of A,B for a data
point d; with ground truth r;. For classification
tasks, we calculate the consistency as follows:

N
1
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where 14 g(-) is the indicator function that equals
1if y! = yP, otherwise 0. And the correct-
consistency is calculated by:

N
1
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where 14 g ,(-) is the indicator function that equals
Lif y#* = yP = ry, otherwise 0.
For regression tasks, we calculate the consis-
tency as the Pearson correlation between two sets
of predictions [yi, ..., y4] and [yP, ..., y%]:
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CON and ACC-CON range from [0, 1], while
CON-PEAR ranges from [-1, 1], where higher val-
ues indicate smaller variations in micro-level pre-
dictions. While consistency metrics can generally
be used for quantifying the agreement of individ-
ual predictions from any two LLMs with different
architectures, hyperparameters, or training settings,
in our study, they are specifically used to serve
as metrics to evaluate the micro-level impact of
random seeds on the same pretrained LLM.

CON-PEAR:

4 Experimental Setup

In this section, we will show the details of our
experiment settings. More setting details can be



found in Appendix.

4.1 Benchmarks

In this study, we conduct experiments on a range
of NLP tasks including COLA (Matthews Corre-
lation Coefficient), SST2 (Accuracy), MRPC (Ac-
curacy), STSB (Pearson correlations), QQP (Accu-
racy), QNLI (Accuracy), and RTE (Accuracy) from
GLUE (Wang et al., 2018) benchmark; RTE (Ac-
curacy), CB (Accuracy), WiC (Accuracy), BoolQ
(Accuracy), MultiRC (Accuracy), and COPA (Ac-
curacy) from SuperGLUE (Wang et al., 2019)
benchmark. In our paper, we use RTEG to denote
RTE task from GLUE and RTES for SuperGLUE.

To ensure our experiments are conducted with
proper settings and are reproducible, we followed
the configurations and replicated the state-of-the-
art (SOTA) scores reported in (Liu, 2019). We
choose RoBERTa-large as the pretrained LLM. We
were unable to replicate the representation (special
token extractions) and model settings (unpublished
pretrained model) for the WSC and MNLI tasks,
so they are omitted from the experiment.

4.2 Settings

Our experiments were implemented using Hugging
Face Transformers (v4.30.0) and PyTorch (v2.0),
conducted on NVIDIA A100 GPUs with 40GB of
memory across two GPUs. With limited computa-
tional resources, we perform fully fine-tuning for
each task with five random seeds: 42, 52, 62, 72, 82
(i.e., S = 5), which are randomly chosen except 42
(see Section 5.1). To calculate CON, ACC-CON,
and CON-PEAR, we compute the metric for each
of the 10 random seed pairs (e.g., 42 and 52) and
then take the average of these 10 values as the fi-
nal consistency score. We used the run_glue.py
PyTorch script for fine-tuning, and default settings
were applied unless otherwise specified. Although
differences in the fine-tuning script and missing set-
tings from the original authors prevented us from
reproducing the exact SOTA scores, our results are
close to the reported SOTA. A comparison of our
implementation with the reference SOTA scores
and detailed data and learning settings are provided
in Appendix Table 2, Table 3, and Table 4.

5 Results and Discussion

In this section, we will show experimental results
at both macro- and micro-level and discuss key
findings.

SuperGLUE BoolQ CB RTES MultiRC WiC COPA

ACC 85.05 988 69.6 79.01 684 732

VAR 0.24 1.1 1822 12.21 2.83 12.83

CON 94.78 91.61 71.84 76.16 79.09 67.6
ACC-CON 82.44 90.18 56.61 67.10 5795 57

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
ACC 90.34 94.53 92.02 95.73 84.04 64.51 92.19
VAR 093 0.16 0.07 0.71 047 064 0.30
CON 9221 96.84 96.00 98.10 92.78 94.23 0.9853
ACC-CON 52.33 9295 90.03 94.58 80.43 82.52 -

Table 1: Macro- and micro-impact of five random seeds.
ACC is the average of five accuracies (SOTA metrics).
VAR is the variance of Accuracy calculated using Equa-
tion 1. CON and ACC-CON are the average of 10
values, each derived from Equation 2, 3, or 4. For
STSB, we put CON-PEAR value in CON row for con-
cise format. ACC, CON, and ACC-CON are expressed
as percentages.

5.1 Macro impact

Table 1 presents the averaged accuracy (ACC) and
variance (VAR) for GLUE and SuperGLUE tasks
across five random seeds. Significant variance
in macro-level performance is observed in many
tasks, reflecting sensitivity to random seed selec-
tion. Tasks like RTES (VAR = 18.22), COPA (VAR
=12.83), and MultiRC (VAR = 12.21) exhibit high
variability in ACC, highlighting the need for ro-
bust evaluation methods and stability-enhancing
techniques, such as more robust optimization meth-
ods, better hyperparameter tuning, or ensembling
across multiple seeds. In contrast, tasks like QQP
(VAR =0.07) and QNLI (VAR = 0.16) show much
greater stability, likely due to their inherent prop-
erties such as larger datasets or simpler decision
boundaries. High variability undermines the re-
liability of single-seed evaluations, emphasizing
the importance of averaging results and addressing
task-specific challenges to improve model robust-
ness.

There is a "common belief" in the machine learn-
ing community that random seed 42 may outper-
form others. To investigate whether a specific ran-
dom seed consistently leads to better results across
different models or tasks, in Figure 2 we present a
heatmap of normalized ACC for each task across
five random seeds. There is no significant differ-
ence in color distribution between each row, in-
dicating that no discernible pattern or evidence
supporting the existence of a universally superior
random seed.
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Figure 2: A heatmap of normalized ACC across tasks
and five random seeds, with a darker color representing
a better accuracy.

5.2 Micro impact

Table 1 reports consistency (CON) and correct-
consistency (ACC-CON) for GLUE and Super-
GLUE tasks across five random seeds. High
CON values in tasks like SST2 (98.1%), QNLI
(96.84%), and QQP (96%) indicate stable predic-
tions, while lower values for RTES (71.84%) and
COPA (67.7%) highlight their sensitivity to ran-
dom seeds, potentially due to smaller training sizes
or task complexity. High ACC-CON in SST2
(94.58%) and QNLI (92.95%) suggest stable cor-
rect predictions, whereas low ACC-CON in RTES
(56.6%) and MRPC (52.33%) reveal that consis-
tent predictions are not always accurate, empha-
sizing the need to evaluate both stability and cor-
rectness. Additionally, MRPC’s low VAR (0.93)
value demonstrates that similar macro-level accu-
racy does not necessarily imply true reproducibility,
underscoring the importance of micro-level analy-
sis beyond macro-level metrics.

Identifying robust data points—those consis-
tently predicted correctly through micro-level anal-
ysis—and leveraging them to enhance data collec-
tion, preprocessing, prompt engineering, or syn-
thetic data generation offer a potential solution for
mitigating seed-induced variability and improving
LLM robustness.

5.3 Training size impact

Training size significantly influences a model’s pre-
dictive performance, with larger datasets gener-
ally improving accuracy, though this is not guaran-
teed due to factors like task complexity and label
noise (Shahinfar et al., 2020; Althnian et al., 2021;
Bailly et al., 2022). Will increasing training data
size improve variance and consistency in general?
To answer the question, we show Pearson correla-
tion analysis between training size, variance, and
consistency in Figure 3. It reveals a weak negative
correlation (-0.25) between training size and VAR,
indicating that smaller datasets tends to increase
performance variance, as seen in RTES (highest

VAR of 18.22 with relatively small training size).
However, the effect is not pronounced or consistent
across all tasks, as MultiRC and WiC exhibit high
VAR despite a relatively large dataset. A weak or
moderate positive correlation is observed between
training size and both CON (0.41) and ACC-CON
(0.43), suggesting larger datasets generally improve
consistency and prediction stability across random
seeds, but with no guarantee.

Increasing training size can reduce both macro
and micro variability to random seeds, but its effec-
tiveness depends on factors like data quality, task
complexity, and label noise. Alternatively, as dis-
cussed in Section 5.2, identifying robust data points
and augmenting the training data with data points
having similar robust patterns (either real data or
generated synthetic data) provide a more targeted
strategy to mitigate seed-induced variability and
improve LLM robustness.
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Figure 3: Correlation between training size (log scale),
VAR, CON, and ACC-CON. Tasks are arranged in as-
cending order of training size, with exact sizes detailed
in Appendix 3.

6 Conclusion

In conclusion, this work highlights the significant
impact of random seeds on pretrained LLMs, re-
vealing variability at both macro and micro lev-
els. By introducing a novel consistency met-
ric, we emphasize the importance of considering
seed-induced variations in individual predictions in
model evaluation. Our findings stress the need for
incorporating random seed sensitivity into bench-
marking for more reliable and reproducible results.

7 Limitations

Due to limited computing resources, our exper-
iments were conducted with only five random
seeds, which may not be sufficient for drawing



broader generalizations of the findings and impli-
cations. Additionally, the reference SOTA scores
for GLUE and SuperGLUE tasks were obtained
using the pretrained LLM RoBERTa-large, and
therefore, we conducted experiments solely on
RoBERTa-large. Expanding the experiments to in-
clude various LLMs, particularly larger-scale mod-
els, would strengthen our findings and conclusions.
Furthermore, incorporating more NLP benchmark
datasets would provide a more comprehensive eval-
uation, as diverse datasets would better capture vari-
ability across tasks, domains, and data distributions,
ultimately enhancing the robustness and applicabil-
ity of our analysis. Additionally, our findings and
implications are more suited for classification tasks,
as only 1 out of the 13 tasks in our experiments is
a regression task. Therefore, more comprehensive
experiments should be conducted specifically on
various regression tasks. The ACC-CON metric,
which is not directly applicable to regression tasks,
hinders the ability to evaluate correct consistency
in this context.
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A Appendix

A.1 Data Description

Table 3 presents the statistics of the dataset used
in our experiments. Each dataset consists of prede-
fined train, dev and test data in CSV format. We use
the train and dev sets for training and evaluation.
Since the test set does not include gold-standard
labels, the dev set also serves as the test set. For
datasets where each instance may have multiple
correct answers, such as MultiRC, we split the data
at the question-answer pair level rather than the
passage level. This ensures a more balanced dis-
tribution of instances across the train and dev sets.
In the COPA dataset, each instance is originally
described by six fields—premise, choicel, choice2,
question, idx, and label. To adapt these instances
into a multiple-choice format, we construct two
candidate sequences for every sample. Specifically,
for each candidate, we concatenate the premise
with the question and the corresponding choice us-
ing a dedicated separation token (e.g., “[SEP]”) to
clearly delineate the different textual components.
We then maintain the original label field, convert-
ing it from 1/2 to 0/1 to match the 0-based index
convention in multiple-choice classification. This
preprocessing ensures consistency with other clas-
sification tasks and allows the model to effectively
learn the relationships between the premise and
possible choices.

A.2 Hyperparameter Settings

Table 4 provides the detailed hyperparameter con-
figurations. Unless stated otherwise, we adopt the
default hyperparameter values from the Hugging
Face framework.

A.3 Replicated SOTA Scores

To ensure the reproducibility of our experiments
in SuperGLUE and GLUE tasks, we adhered
to the specified settings and reproduced the
state-of-the-art (SOTA) accuracy scores reported
in: https://github.com/facebookresearch/
fairseq/tree/main/examples/roberta. Our
replicated accuracy scores for the GLUE and Su-
perGLUE tasks, presented in Table 2, are directly

comparable and align with those shown in Table 1
of the main paper and Table 5 in Section A.4.

A.4 Additional Results

Table 5 presents model performance across var-
ious metrics, including precision (P), recall (R),
F1 score, accuracy, CON, and ACC-CON, with
average values and standard deviations (VAR). In
Section 5 of the main paper, significant variance in
macro-level performance across many tasks high-
lights sensitivity to random seed selection. Similar
patterns in the VAR values for P, R, and F1 fur-
ther confirm the robustness of our findings across
various standard metrics.
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GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
Reference 909 94.7 922 96.4 86.6 68.0 924
Replicated 91.2 94.7 92.1 96.9 84.8 653 925
SuperGLUE BoolQ CB RTES MultiRC WiC COPA
Reference 869 98.2 89.5 85.7 75.6  94.0
Replicated 854 100 86.3 84.9 712 90.0

Table 2: Reference and replicated scores on the GLUE and SuperGLUE tasks. These scores are obtained by training

on the train set, validating and testing on the dev set.

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
Classes 2 2 2 2 2 2 -
Train samples 3668 104743 363846 67349 2490 8551 5749
Dev samples 408 5463 40430 872 277 1043 1500
Test samples 1725 5463 39096 1821 3000 1063 1379
SuperGLUE ~ BoolQ CB RTES MultiRC WiC COPA
Classes 2 3 2 2 2 2

Train samples 9427 250 2500 27243 5428 400

Dev samples 1886 50 500 4848 1200 100

Test samples 3270 57 278 953 638 500

Table 3: Data statistics for GLUE and SuperGLUE.

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
Random seed 42 72 42 52 52 72 42
Batch size 10 10 10 10 10 10 32
Epoch 8 6 8 7 10 8 3
Learning rate 2e-5 2e-5 le-5 2e-5 le-5 1le-5 4e-5
Learning rate schedule type linear linear linear linear linear linear linear
Max sequence length 512 512 512 512 512 512 512
Gradient accumulation steps 2 2 2 2 2 2 2
SuperGLUE BoolQ CB RTES MultiRC WiC COPA
Random seed 62 52 72 72 42 52

Batch size 10 10 10 10 10 10

Epoch 8 7 10 6 8 9

Learning rate le-5 2e-5 2e-5 2e-5 le-5 3e-5
Learning rate schedule type linear linear linear linear linear linear

Max sequence length 512 512 512 512 512 256
Gradient accumulation steps 2 2 2 2 2 2

Table 4: The hyperparameter settings for GLUE and SuperGLUE tasks to replicate the reference performance in

Table 2.
GLUE SuperGLUE
Tasks P R F1  Accuracy CON ACC-CON Tasks P R F1 Accuracy CON ACC-CON
MRPC 91.67 9448 93.04 90.34 9221 52.33  BoolQ 87.69 88.36 88.03 85.05 94.78 82.44
(£0.47) (£1.9) (£0.75) (£0.93) (£0.98) (£1.19) (£0.39) (£0.32) (£0.18) (£0.24) (£0.28) (£0.24)
QNLI 9547 93.62 9453 9453 96.84 9295 CB 99.13 98.26 98.67 98.8 91.61 90.18
(£0.28) (£0.31) (£0.17) (£0.16) (£0.3) (£0.21) (£1.95) (£2.38) (£1.22) (£1.1) (£2.53) (£2.95)
QQP  87.67 91.17 8938 92.02 96.00 90.03 RTES 76.31 6534 7634 69.6 71.84 56.61
(£0.36) (£0.53) (£0.11) (£0.07) (£0.07) (£0.04) (£19.45) (£38.38) (£9.12) (£18.22) (£17.63) (£14.4)
SST2 9556 95.68 95.6 95.73 98.1 94.58  MultiRC 79.81 68.24 82.46 79.01 76.16 67.09
(£0.57) (£0.89) (£0.36) (£0.71) (£0.27) (£0.27) (£0.66) (£38.17) (£0.65) (F12.21) (£18.87) (£16.48)
RTEG 87.57 77.25 82.08 84.04 9278 80.43  WiC 65.12 79.06  71.28 68.4 79.09 57.95
(£1.28) (£1.13) (£0.52) (£0.47) (£1.09) (£0.74) (£1.29) (£8.29) (+4.17) (£2.83) (£7.00) (£4.99)
COLA - - - 64.51 9423 82.52 COPA 70.20 7220  71.00 73.20 67.60 57.00
- - - (£0.64) (£0.64) (£0.35) (£14.46) (£13.79) (£13.55) (£12.83) (£10.29) (£11.98)
STSB - - - 92.19  98.53 -
- - - (£0.30) (£0.16) -

Table 5: Evaluation metrics used in this study. Accuracy is employed for all tasks except STSB and CoLA, where
Pearson correlation and Matthew’s correlation coefficient are used, respectively. CON - consistency, ACC-CON -

correct consistency.
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