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Abstract

The impact of random seeds in fine-tuning large001
language models (LLMs) has been largely over-002
looked despite its potential influence on model003
performance. In this study, we systematically004
evaluate the effects of random seeds on LLMs005
using the GLUE and SuperGLUE benchmarks.006
We analyze the macro-level impact through tra-007
ditional metrics like accuracy and F1, calculat-008
ing their mean and variance to quantify perfor-009
mance fluctuations. To capture the micro-level010
effects, we introduce a novel metric, consis-011
tency, measuring the stability of individual pre-012
dictions across runs. Our experiments reveal013
significant variance at both macro and micro014
levels, underscoring the need for careful con-015
sideration of random seeds in fine-tuning and016
evaluation.017

1 Introduction018

The impact of random seeds in neural network train-019

ing has long been recognized across various do-020

mains, such as general machine learning classifica-021

tion and regression tasks (Ganesh et al., 2023; Mad-022

hyastha and Jain, 2019), computer vision (Picard,023

2021; Åkesson et al., 2024), natural language pro-024

cessing (NLP)(Bethard, 2022; Lucic et al., 2022).025

Random seeds influence initialization and train-026

ing dynamics, introducing variability in model out-027

comes that can lead to significant fluctuations in028

performance (Bengio, 2012).029

In the field of NLP, large language models030

(LLMs) have achieved remarkable success across031

a wide range of NLP tasks, setting new state-of-032

the-art results on benchmarks like GLUE and Su-033

perGLUE. These benchmarks have became the de034

facto standard for evaluating the capabilities of035

LLMs in understanding, reasoning, and generating036

natural language. Despite the success of LLMs,037

the pretrained transformer architectures, such as038

BERT (Devlin et al., 2019) and RoBERTa (Liu,039

2019), have been found to be particularly sensitive040
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Figure 1: Macro and micro performance. A pretrained
LLM is fine-tuned with random seed 42 and 52. The
accuracy for both models is 60%, but the overlapping
of individual predictions is 20%.

to random seeds (Risch and Krestel, 2020; Dodge 041

et al., 2020; Mosbach et al., 2021). This sensitiv- 042

ity can result in substantial performance variations, 043

complicating the interpretation of experimental re- 044

sults and undermining confidence in benchmarking 045

or state-of-the-art outcomes. A recent analysis of 046

85 papers from the ACL Anthology (Bethard, 2022) 047

revealed risky practices in the use of random seeds: 048

over 50% of the papers exhibited potential misuse, 049

with 24 using a single fixed random seed. This 050

highlights that the influence of random seeds on 051

LLM performance is still an underexplored area. 052

Existing studies examining the impact of random 053

seeds (Ganesh et al., 2023; Madhyastha and Jain, 054

2019; Picard, 2021) typically evaluate performance 055

variations by measuring the variance of standard 056

metrics, such as accuracy and F1 score for classifi- 057

cation tasks, or Pearson correlation for regression 058

tasks, across multiple seeds. These evaluations 059

focus on the macro-level agreement of model per- 060

formance across the entire test set, offering insights 061

into overall variability. However, they overlook the 062

micro-level impact of how individual test points are 063

influenced by random seed variations. As shown in 064

Figure 1, model performance is robust to random 065

seeds 42 and 52 at the macro level (both achieve 066

60% accuracy) but lacks consistency at the micro 067

level (only 20% overlapping predictions). This 068
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micro-level inconsistency can have severe conse-069

quences in real-world applications, especially in070

fields where model predictions are highly sensitive071

to individual test points, such as medical diagnosis072

and autonomous driving. Understanding this micro-073

level effect is crucial for assessing model robust-074

ness at the level of individual predictions, ensuring075

that specific test samples are not inconsistently mis-076

classified or predicted due to seed-induced varia-077

tions. Additionally, it helps pinpoint specific areas078

where models may exhibit significant instability,079

such as consistently misclassifying certain types080

of data points or showing highly variable predic-081

tions for similar inputs. Recognizing these areas082

of instability can guide targeted improvements in083

both model design and evaluation practices, en-084

suring that assessments account for seed-induced085

variations in performance.086

Major contributions: To address these gaps, in087

this work, (1) we analyze the impact of random088

seeds on pretrained LLMs using the GLUE and089

SuperGLUE benchmarks, covering both macro and090

micro-level variability; (2) We introduce a novel091

consistency metric to assess prediction stability092

on individual test points, capturing the micro-level093

effects of random seeds; (3) Our extensive experi-094

ments reveal significant variability in both standard095

and consistency metrics, underscoring the need to096

consider seed-induced variations in fine-tuning and097

evaluation, and incorporate random seed sensitivity098

into benchmarking and reporting for more reliable099

and reproducible results.100

2 Macro Metric: Variance101

To measure the macro-level impact of random102

seeds on LLM performance, we calculate the vari-103

ance of a standard metric across multiple seeds.104

Let [ζ1, · · · , ζS ] represent the values of a model105

performance metric for LLMs fine-tuned with S106

random seeds, the variance is calculated by:107

VAR(ζ) =

√√√√ 1

S

S∑
i=1

(ζi − ζ̄)2 (1)108

where ζ̄ = 1
S

∑S
i=1 ζi. ζ can be any standard met-109

rics, such as F1 score for classification tasks or110

Pearson correlation for regression tasks. A smaller111

VAR indicates less variation in macro-level perfor-112

mance.113

3 Micro Metric: Consistency 114

’Consistency’ can have varying definitions across 115

domains. Building on prior work, Wang et al. 116

(2020) formally defined the consistency of a deep 117

learning model as its ability to produce consistent 118

predictions for the same input when periodically 119

retrained with streaming data in deployment set- 120

tings. Extending this idea, we define the consis- 121

tency of an LLM as its ability to generate consistent 122

predictions for the same input across models fine- 123

tuned with different hyperparameter settings, with 124

correct-consistency further specifying its ability to 125

make consistent correct predictions in this context. 126

More specifically, consider two LLMs A and B, 127

given a dataset D = d1, · · · , dN of N data points, 128

yAi and yBi are the prediction of A,B for a data 129

point di with ground truth ri. For classification 130

tasks, we calculate the consistency as follows: 131

CON:
1

N

N∑
t=1

1A,B(t) (2) 132

where 1A,B(·) is the indicator function that equals 133

1 if yAt = yBt , otherwise 0. And the correct- 134

consistency is calculated by: 135

ACC-CON:
1

N

N∑
t=1

1A,B,r(t) (3) 136

where 1A,B,r(·) is the indicator function that equals 137

1 if yAt = yBt = rt, otherwise 0. 138

For regression tasks, we calculate the consis- 139

tency as the Pearson correlation between two sets 140

of predictions [yA1 , ..., y
A
N ] and [yB1 , ..., y

B
N ]: 141

CON-PEAR:

∑N
i=1

(
yA
i − yA

)(
yB
i − yB

)
√∑N

i=1

(
yA
i − yA

)2
√∑N

i=1

(
yB
i − yB

)2

(4) 142

CON and ACC-CON range from [0, 1], while 143

CON-PEAR ranges from [-1, 1], where higher val- 144

ues indicate smaller variations in micro-level pre- 145

dictions. While consistency metrics can generally 146

be used for quantifying the agreement of individ- 147

ual predictions from any two LLMs with different 148

architectures, hyperparameters, or training settings, 149

in our study, they are specifically used to serve 150

as metrics to evaluate the micro-level impact of 151

random seeds on the same pretrained LLM. 152

4 Experimental Setup 153

In this section, we will show the details of our 154

experiment settings. More setting details can be 155
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found in Appendix.156

4.1 Benchmarks157

In this study, we conduct experiments on a range158

of NLP tasks including COLA (Matthews Corre-159

lation Coefficient), SST2 (Accuracy), MRPC (Ac-160

curacy), STSB (Pearson correlations), QQP (Accu-161

racy), QNLI (Accuracy), and RTE (Accuracy) from162

GLUE (Wang et al., 2018) benchmark; RTE (Ac-163

curacy), CB (Accuracy), WiC (Accuracy), BoolQ164

(Accuracy), MultiRC (Accuracy), and COPA (Ac-165

curacy) from SuperGLUE (Wang et al., 2019)166

benchmark. In our paper, we use RTEG to denote167

RTE task from GLUE and RTES for SuperGLUE.168

To ensure our experiments are conducted with169

proper settings and are reproducible, we followed170

the configurations and replicated the state-of-the-171

art (SOTA) scores reported in (Liu, 2019). We172

choose RoBERTa-large as the pretrained LLM. We173

were unable to replicate the representation (special174

token extractions) and model settings (unpublished175

pretrained model) for the WSC and MNLI tasks,176

so they are omitted from the experiment.177

4.2 Settings178

Our experiments were implemented using Hugging179

Face Transformers (v4.30.0) and PyTorch (v2.0),180

conducted on NVIDIA A100 GPUs with 40GB of181

memory across two GPUs. With limited computa-182

tional resources, we perform fully fine-tuning for183

each task with five random seeds: 42, 52, 62, 72, 82184

(i.e., S = 5), which are randomly chosen except 42185

(see Section 5.1). To calculate CON, ACC-CON,186

and CON-PEAR, we compute the metric for each187

of the 10 random seed pairs (e.g., 42 and 52) and188

then take the average of these 10 values as the fi-189

nal consistency score. We used the run_glue.py190

PyTorch script for fine-tuning, and default settings191

were applied unless otherwise specified. Although192

differences in the fine-tuning script and missing set-193

tings from the original authors prevented us from194

reproducing the exact SOTA scores, our results are195

close to the reported SOTA. A comparison of our196

implementation with the reference SOTA scores197

and detailed data and learning settings are provided198

in Appendix Table 2, Table 3, and Table 4.199

5 Results and Discussion200

In this section, we will show experimental results201

at both macro- and micro-level and discuss key202

findings.203

SuperGLUE BoolQ CB RTES MultiRC WiC COPA

ACC 85.05 98.8 69.6 79.01 68.4 73.2
VAR 0.24 1.1 18.22 12.21 2.83 12.83
CON 94.78 91.61 71.84 76.16 79.09 67.6
ACC-CON 82.44 90.18 56.61 67.10 57.95 57

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB

ACC 90.34 94.53 92.02 95.73 84.04 64.51 92.19
VAR 0.93 0.16 0.07 0.71 0.47 0.64 0.30
CON 92.21 96.84 96.00 98.10 92.78 94.23 0.9853
ACC-CON 52.33 92.95 90.03 94.58 80.43 82.52 -

Table 1: Macro- and micro-impact of five random seeds.
ACC is the average of five accuracies (SOTA metrics).
VAR is the variance of Accuracy calculated using Equa-
tion 1. CON and ACC-CON are the average of 10
values, each derived from Equation 2, 3, or 4. For
STSB, we put CON-PEAR value in CON row for con-
cise format. ACC, CON, and ACC-CON are expressed
as percentages.

5.1 Macro impact 204

Table 1 presents the averaged accuracy (ACC) and 205

variance (VAR) for GLUE and SuperGLUE tasks 206

across five random seeds. Significant variance 207

in macro-level performance is observed in many 208

tasks, reflecting sensitivity to random seed selec- 209

tion. Tasks like RTES (VAR = 18.22), COPA (VAR 210

= 12.83), and MultiRC (VAR = 12.21) exhibit high 211

variability in ACC, highlighting the need for ro- 212

bust evaluation methods and stability-enhancing 213

techniques, such as more robust optimization meth- 214

ods, better hyperparameter tuning, or ensembling 215

across multiple seeds. In contrast, tasks like QQP 216

(VAR = 0.07) and QNLI (VAR = 0.16) show much 217

greater stability, likely due to their inherent prop- 218

erties such as larger datasets or simpler decision 219

boundaries. High variability undermines the re- 220

liability of single-seed evaluations, emphasizing 221

the importance of averaging results and addressing 222

task-specific challenges to improve model robust- 223

ness. 224

There is a "common belief" in the machine learn- 225

ing community that random seed 42 may outper- 226

form others. To investigate whether a specific ran- 227

dom seed consistently leads to better results across 228

different models or tasks, in Figure 2 we present a 229

heatmap of normalized ACC for each task across 230

five random seeds. There is no significant differ- 231

ence in color distribution between each row, in- 232

dicating that no discernible pattern or evidence 233

supporting the existence of a universally superior 234

random seed. 235
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Figure 2: A heatmap of normalized ACC across tasks
and five random seeds, with a darker color representing
a better accuracy.

5.2 Micro impact236

Table 1 reports consistency (CON) and correct-237

consistency (ACC-CON) for GLUE and Super-238

GLUE tasks across five random seeds. High239

CON values in tasks like SST2 (98.1%), QNLI240

(96.84%), and QQP (96%) indicate stable predic-241

tions, while lower values for RTES (71.84%) and242

COPA (67.7%) highlight their sensitivity to ran-243

dom seeds, potentially due to smaller training sizes244

or task complexity. High ACC-CON in SST2245

(94.58%) and QNLI (92.95%) suggest stable cor-246

rect predictions, whereas low ACC-CON in RTES247

(56.6%) and MRPC (52.33%) reveal that consis-248

tent predictions are not always accurate, empha-249

sizing the need to evaluate both stability and cor-250

rectness. Additionally, MRPC’s low VAR (0.93)251

value demonstrates that similar macro-level accu-252

racy does not necessarily imply true reproducibility,253

underscoring the importance of micro-level analy-254

sis beyond macro-level metrics.255

Identifying robust data points—those consis-256

tently predicted correctly through micro-level anal-257

ysis—and leveraging them to enhance data collec-258

tion, preprocessing, prompt engineering, or syn-259

thetic data generation offer a potential solution for260

mitigating seed-induced variability and improving261

LLM robustness.262

5.3 Training size impact263

Training size significantly influences a model’s pre-264

dictive performance, with larger datasets gener-265

ally improving accuracy, though this is not guaran-266

teed due to factors like task complexity and label267

noise (Shahinfar et al., 2020; Althnian et al., 2021;268

Bailly et al., 2022). Will increasing training data269

size improve variance and consistency in general?270

To answer the question, we show Pearson correla-271

tion analysis between training size, variance, and272

consistency in Figure 3. It reveals a weak negative273

correlation (-0.25) between training size and VAR,274

indicating that smaller datasets tends to increase275

performance variance, as seen in RTES (highest276

VAR of 18.22 with relatively small training size). 277

However, the effect is not pronounced or consistent 278

across all tasks, as MultiRC and WiC exhibit high 279

VAR despite a relatively large dataset. A weak or 280

moderate positive correlation is observed between 281

training size and both CON (0.41) and ACC-CON 282

(0.43), suggesting larger datasets generally improve 283

consistency and prediction stability across random 284

seeds, but with no guarantee. 285

Increasing training size can reduce both macro 286

and micro variability to random seeds, but its effec- 287

tiveness depends on factors like data quality, task 288

complexity, and label noise. Alternatively, as dis- 289

cussed in Section 5.2, identifying robust data points 290

and augmenting the training data with data points 291

having similar robust patterns (either real data or 292

generated synthetic data) provide a more targeted 293

strategy to mitigate seed-induced variability and 294

improve LLM robustness. 295
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Figure 3: Correlation between training size (log scale),
VAR, CON, and ACC-CON. Tasks are arranged in as-
cending order of training size, with exact sizes detailed
in Appendix 3.

6 Conclusion 296

In conclusion, this work highlights the significant 297

impact of random seeds on pretrained LLMs, re- 298

vealing variability at both macro and micro lev- 299

els. By introducing a novel consistency met- 300

ric, we emphasize the importance of considering 301

seed-induced variations in individual predictions in 302

model evaluation. Our findings stress the need for 303

incorporating random seed sensitivity into bench- 304

marking for more reliable and reproducible results. 305

7 Limitations 306

Due to limited computing resources, our exper- 307

iments were conducted with only five random 308

seeds, which may not be sufficient for drawing 309
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broader generalizations of the findings and impli-310

cations. Additionally, the reference SOTA scores311

for GLUE and SuperGLUE tasks were obtained312

using the pretrained LLM RoBERTa-large, and313

therefore, we conducted experiments solely on314

RoBERTa-large. Expanding the experiments to in-315

clude various LLMs, particularly larger-scale mod-316

els, would strengthen our findings and conclusions.317

Furthermore, incorporating more NLP benchmark318

datasets would provide a more comprehensive eval-319

uation, as diverse datasets would better capture vari-320

ability across tasks, domains, and data distributions,321

ultimately enhancing the robustness and applicabil-322

ity of our analysis. Additionally, our findings and323

implications are more suited for classification tasks,324

as only 1 out of the 13 tasks in our experiments is325

a regression task. Therefore, more comprehensive326

experiments should be conducted specifically on327

various regression tasks. The ACC-CON metric,328

which is not directly applicable to regression tasks,329

hinders the ability to evaluate correct consistency330

in this context.331

References332

Julius Åkesson, Johannes Töger, and Einar Heiberg.333
2024. Random effects during training: Implications334
for deep learning-based medical image segmentation.335
Computers in Biology and Medicine, 180:108944.336

Alhanoof Althnian, Duaa AlSaeed, Heyam Al-Baity,337
Amani Samha, Alanoud Bin Dris, Najla Alzakari,338
Afnan Abou Elwafa, and Heba Kurdi. 2021. Impact339
of dataset size on classification performance: an em-340
pirical evaluation in the medical domain. Applied341
Sciences, 11(2):796.342

Alexandre Bailly, Corentin Blanc, Élie Francis, Thierry343
Guillotin, Fadi Jamal, Béchara Wakim, and Pascal344
Roy. 2022. Effects of dataset size and interactions345
on the prediction performance of logistic regression346
and deep learning models. Computer Methods and347
Programs in Biomedicine, 213:106504.348

Yoshua Bengio. 2012. Practical recommendations for349
gradient-based training of deep architectures. In Neu-350
ral networks: Tricks of the trade: Second edition,351
pages 437–478. Springer.352

Steven Bethard. 2022. We need to talk about random353
seeds. arXiv preprint arXiv:2210.13393.354

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and355
Kristina Toutanova. 2019. BERT: Pre-training of356
deep bidirectional transformers for language under-357
standing. In Proceedings of the 2019 Conference of358
the North American Chapter of the Association for359
Computational Linguistics: Human Language Tech-360
nologies, Volume 1 (Long and Short Papers), pages361

4171–4186, Minneapolis, Minnesota. Association for 362
Computational Linguistics. 363

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali 364
Farhadi, Noah Smith, and Hannaneh Hajishirzi. 2020. 365
Fine-tuning pretrained language models: Weight ini- 366
tializations, data orders, and early stopping. arXiv 367
preprint arXiv:2002.06305. 368

Prakhar Ganesh, Hongyan Chang, Martin Strobel, and 369
Reza Shokri. 2023. On the impact of machine learn- 370
ing randomness on group fairness. In Proceedings of 371
the 2023 ACM Conference on Fairness, Accountabil- 372
ity, and Transparency, pages 1789–1800. 373

Yinhan Liu. 2019. Roberta: A robustly opti- 374
mized bert pretraining approach. arXiv preprint 375
arXiv:1907.11692, 364. 376

Ana Lucic, Maurits Bleeker, Samarth Bhargav, Jessica 377
Forde, Koustuv Sinha, Jesse Dodge, Sasha Luccioni, 378
and Robert Stojnic. 2022. Towards reproducible ma- 379
chine learning research in natural language process- 380
ing. In Proceedings of the 60th Annual Meeting of the 381
Association for Computational Linguistics: Tutorial 382
Abstracts, pages 7–11, Dublin, Ireland. Association 383
for Computational Linguistics. 384

Pranava Madhyastha and Rishabh Jain. 2019. On model 385
stability as a function of random seed. arXiv preprint 386
arXiv:1909.10447. 387

Marian Mosbach, Maksym Andriushchenko, and Diet- 388
rich Klakow. 2021. On the stability of fine-tuning 389
bert: Misconceptions, explanations, and strong base- 390
lines. arXiv preprint arXiv:2006.04884. 391

David Picard. 2021. Torch. manual_seed (3407) is all 392
you need: On the influence of random seeds in deep 393
learning architectures for computer vision. arXiv 394
preprint arXiv:2109.08203. 395

Julian Risch and Ralf Krestel. 2020. Bagging BERT 396
models for robust aggression identification. In Pro- 397
ceedings of the Second Workshop on Trolling, Ag- 398
gression and Cyberbullying, pages 55–61, Marseille, 399
France. European Language Resources Association 400
(ELRA). 401

Saleh Shahinfar, Paul Meek, and Greg Falzon. 2020. 402
“how many images do i need?” understanding how 403
sample size per class affects deep learning model 404
performance metrics for balanced designs in au- 405
tonomous wildlife monitoring. Ecological Informat- 406
ics, 57:101085. 407

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 408
preet Singh, Julian Michael, Felix Hill, Omer Levy, 409
and Samuel R Bowman. 2019. Superglue: A stickier 410
benchmark for general-purpose language understand- 411
ing systems. arXiv preprint arXiv:1905.00537. 412

Alex Wang, Amanpreet Singh, Julian Michael, Felix 413
Hill, Omer Levy, and Samuel R Bowman. 2018. 414
Glue: A multi-task benchmark and analysis platform 415
for natural language understanding. arXiv preprint 416
arXiv:1804.07461. 417

5

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-tutorials.2
https://doi.org/10.18653/v1/2022.acl-tutorials.2
https://doi.org/10.18653/v1/2022.acl-tutorials.2
https://doi.org/10.18653/v1/2022.acl-tutorials.2
https://doi.org/10.18653/v1/2022.acl-tutorials.2
https://aclanthology.org/2020.trac-1.9/
https://aclanthology.org/2020.trac-1.9/
https://aclanthology.org/2020.trac-1.9/


Lijing Wang, Dipanjan Ghosh, Maria Gonzalez Diaz,418
Ahmed Farahat, Mahbubul Alam, Chetan Gupta,419
Jiangzhuo Chen, and Madhav Marathe. 2020. Wis-420
dom of the ensemble: Improving consistency of deep421
learning models. Advances in Neural Information422
Processing Systems, 33:19750–19761.423

A Appendix424

A.1 Data Description425

Table 3 presents the statistics of the dataset used426

in our experiments. Each dataset consists of prede-427

fined train, dev and test data in CSV format. We use428

the train and dev sets for training and evaluation.429

Since the test set does not include gold-standard430

labels, the dev set also serves as the test set. For431

datasets where each instance may have multiple432

correct answers, such as MultiRC, we split the data433

at the question-answer pair level rather than the434

passage level. This ensures a more balanced dis-435

tribution of instances across the train and dev sets.436

In the COPA dataset, each instance is originally437

described by six fields—premise, choice1, choice2,438

question, idx, and label. To adapt these instances439

into a multiple-choice format, we construct two440

candidate sequences for every sample. Specifically,441

for each candidate, we concatenate the premise442

with the question and the corresponding choice us-443

ing a dedicated separation token (e.g., “[SEP]”) to444

clearly delineate the different textual components.445

We then maintain the original label field, convert-446

ing it from 1/2 to 0/1 to match the 0-based index447

convention in multiple-choice classification. This448

preprocessing ensures consistency with other clas-449

sification tasks and allows the model to effectively450

learn the relationships between the premise and451

possible choices.452

A.2 Hyperparameter Settings453

Table 4 provides the detailed hyperparameter con-454

figurations. Unless stated otherwise, we adopt the455

default hyperparameter values from the Hugging456

Face framework.457

A.3 Replicated SOTA Scores458

To ensure the reproducibility of our experiments459

in SuperGLUE and GLUE tasks, we adhered460

to the specified settings and reproduced the461

state-of-the-art (SOTA) accuracy scores reported462

in: https://github.com/facebookresearch/463

fairseq/tree/main/examples/roberta. Our464

replicated accuracy scores for the GLUE and Su-465

perGLUE tasks, presented in Table 2, are directly466

comparable and align with those shown in Table 1 467

of the main paper and Table 5 in Section A.4. 468

A.4 Additional Results 469

Table 5 presents model performance across var- 470

ious metrics, including precision (P), recall (R), 471

F1 score, accuracy, CON, and ACC-CON, with 472

average values and standard deviations (VAR). In 473

Section 5 of the main paper, significant variance in 474

macro-level performance across many tasks high- 475

lights sensitivity to random seed selection. Similar 476

patterns in the VAR values for P, R, and F1 fur- 477

ther confirm the robustness of our findings across 478

various standard metrics. 479
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GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
Reference 90.9 94.7 92.2 96.4 86.6 68.0 92.4
Replicated 91.2 94.7 92.1 96.9 84.8 65.3 92.5

SuperGLUE BoolQ CB RTES MultiRC WiC COPA
Reference 86.9 98.2 89.5 85.7 75.6 94.0
Replicated 85.4 100 86.3 84.9 71.2 90.0

Table 2: Reference and replicated scores on the GLUE and SuperGLUE tasks. These scores are obtained by training
on the train set, validating and testing on the dev set.

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB

Classes 2 2 2 2 2 2 -
Train samples 3668 104743 363846 67349 2490 8551 5749
Dev samples 408 5463 40430 872 277 1043 1500
Test samples 1725 5463 39096 1821 3000 1063 1379

SuperGLUE BoolQ CB RTES MultiRC WiC COPA

Classes 2 3 2 2 2 2
Train samples 9427 250 2500 27243 5428 400
Dev samples 1886 50 500 4848 1200 100
Test samples 3270 57 278 953 638 500

Table 3: Data statistics for GLUE and SuperGLUE.

GLUE MRPC QNLI QQP SST2 RTEG COLA STSB
Random seed 42 72 42 52 52 72 42
Batch size 10 10 10 10 10 10 32
Epoch 8 6 8 7 10 8 3
Learning rate 2e-5 2e-5 1e-5 2e-5 1e-5 1e-5 4e-5
Learning rate schedule type linear linear linear linear linear linear linear
Max sequence length 512 512 512 512 512 512 512
Gradient accumulation steps 2 2 2 2 2 2 2

SuperGLUE BoolQ CB RTES MultiRC WiC COPA
Random seed 62 52 72 72 42 52
Batch size 10 10 10 10 10 10
Epoch 8 7 10 6 8 9
Learning rate 1e-5 2e-5 2e-5 2e-5 1e-5 3e-5
Learning rate schedule type linear linear linear linear linear linear
Max sequence length 512 512 512 512 512 256
Gradient accumulation steps 2 2 2 2 2 2

Table 4: The hyperparameter settings for GLUE and SuperGLUE tasks to replicate the reference performance in
Table 2.

GLUE SuperGLUE

Tasks P R F1 Accuracy CON ACC-CON Tasks P R F1 Accuracy CON ACC-CON
MRPC 91.67 94.48 93.04 90.34 92.21 52.33 BoolQ 87.69 88.36 88.03 85.05 94.78 82.44

(±0.47) (±1.9) (±0.75) (±0.93) (±0.98) (±1.19) (±0.39) (±0.32) (±0.18) (±0.24) (±0.28) (±0.24)
QNLI 95.47 93.62 94.53 94.53 96.84 92.95 CB 99.13 98.26 98.67 98.8 91.61 90.18

(±0.28) (±0.31) (±0.17) (±0.16) (±0.3) (±0.21) (±1.95) (±2.38) (±1.22) (±1.1) (±2.53) (±2.95)
QQP 87.67 91.17 89.38 92.02 96.00 90.03 RTES 76.31 65.34 76.34 69.6 71.84 56.61

(±0.36) (±0.53) (±0.11) (±0.07) (±0.07) (±0.04) (±19.45) (±38.38) (±9.12) (±18.22) (±17.63) (±14.4)
SST2 95.56 95.68 95.6 95.73 98.1 94.58 MultiRC 79.81 68.24 82.46 79.01 76.16 67.09

(±0.57) (±0.89) (±0.36) (±0.71) (±0.27) (±0.27) (±0.66) (±38.17) (±0.65) (±12.21) (±18.87) (±16.48)
RTEG 87.57 77.25 82.08 84.04 92.78 80.43 WiC 65.12 79.06 71.28 68.4 79.09 57.95

(±1.28) (±1.13) (±0.52) (±0.47) (±1.09) (±0.74) (±1.29) (±8.29) (±4.17) (±2.83) (±7.00) (±4.99)
COLA - - - 64.51 94.23 82.52 COPA 70.20 72.20 71.00 73.20 67.60 57.00

- - - (±0.64) (±0.64) (±0.35) (±14.46) (±13.79) (±13.55) (±12.83) (±10.29) (±11.98)
STSB - - - 92.19 98.53 -

- - - (±0.30) (±0.16) -

Table 5: Evaluation metrics used in this study. Accuracy is employed for all tasks except STSB and CoLA, where
Pearson correlation and Matthew’s correlation coefficient are used, respectively. CON - consistency, ACC-CON -
correct consistency.
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