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Abstract
State-space models (SSMs) offer efficient alterna-
tives to Transformers for long sequences, but their
fixed-size recurrent state limits capability on algo-
rithmic tasks, such as retrieving past context. In
this work, we examine how in-context retrieval op-
erates in Transformer- and SSM-based language
models and find that both rely on a Gather-and-
Aggregate (G&A) mechanism: a Gather Head
extracts relevant information from context, which
an Aggregate Head integrates into representation.
In both architectures, G&A concentrates in a few
heads, forming bottlenecks even for simple re-
trieval. For example, disabling a single Gather
or Aggregate Head in a pruned Llama-3.1-8B
impairs retrieving the correct answer letter in
MMLU, reducing its accuracy from 66% to 25%.
Moreover, this retrieval bottleneck can obscure
knowledge demands of tasks as the pruned model
succeeds on MMLU with functioning G&A heads
yet fails on other knowledge benchmarks. The
bottleneck similarly extends to tasks where SSMs
typically underperform, like GSM8K, BBH, and
dialogue. We show that SSMs’ retrieval chal-
lenges manifest in these heads, creating smoother
attention patterns instead of the sharp transitions
effective G&A requires. Thus, the Transformer-
SSM retrieval gap exists in just a few heads,
rather than the entire language model. This
suggests a unified explanation for Transformer
vs. SSM performance gap while showing how
to merge their strengths. We find that pretrained
hybrid models, where SSMs are combined with
attention layers, delegate the role of Aggregate
Heads to attention. Similarly, replacing a single
G&A head in a pretrained SSM with an attention
variant boosts retrieval and benchmark scores.
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1. Introduction
Transformers have driven major breakthroughs in language
modeling, but their quadratic scaling with sequence length
has renewed interest in recurrent alternatives like state-space
models (SSMs). SSMs offer linear scaling with a fixed-size
memory while remaining competitive across many tasks.
However, replacing a large, explicit history cache with a
compact state representation poses a fundamental tradeoff.
SSM-based language models often struggle with the skill
of “in-context retrieval”—the ability to precisely locate and
extract tokens presented earlier in the sequence, such as
recalling a phone number mentioned several paragraphs ago
(Jelassi et al., 2024). This “algorithmic” challenge, which
Transformers handle effectively with direct access to past
tokens, has been identified as a key factor in the performance
gap between Transformer models and SSM variants (Arora
et al., 2023).

Previous work on SSM retrieval limitations has treated
language models as black boxes or focused on simplified
theoretical setups (Wen et al., 2024; Jelassi et al., 2024;
Waleffe et al., 2024). Meanwhile, Transformer research
shows that algorithmic capabilities, including retrieval, of-
ten concentrate in specific attention heads (Lieberum et al.,
2023; Wu et al., 2024). This raises a key question: Can the
Transformer-SSM performance gap be traced to algorithmic
capabilities in a few specific heads? Clarifying this will
enable a more targeted comparison of the two architectures,
helping determine whether SSMs can serve as viable build-
ing blocks for language modeling or require fundamental
modifications.

The MMLU benchmark (Hendrycks et al., 2021) exemplifies
this performance gap. While SSMs match Transformers on
many knowledge benchmarks, they significantly underper-
form on MMLU unless trained substantially longer (Waleffe
et al., 2024). This gap stems from MMLU’s evaluation for-
mat: rather than scoring the likelihood of full-text answers,
models must select letter labels (A, B, C, or D) correspond-
ing to the correct option. This creates a dual challenge
requiring both factual knowledge and retrieval capabilities
(Lieberum et al., 2023).

To isolate these distinct challenges, we show that both archi-
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(a) Gather Head (b) Aggregate Head

Figure 1. An illustration of Gather Head (left matrix) at L16H22 and Aggregate Head (right matrix) at L17H24 of Llama-3.1-8B
for a multiple-choice question. The Gather Head identifies critical segments and summarizes each segment to its last token “\n” as
shown in Figure 1(a), condensing key information into the residual stream. The Aggregate Head then combines these summaries as
illustrated in Figure 1(b), giving a significantly higher score to the second “\n,” which corresponds to the correct answer (B).

tectures have a clear division of labor: factual knowledge
extracted across layers and heads, but only a small number
of specialized heads retrieve the correct labels from input
context. This becomes particularly evident in our experi-
ments where a 4B-parameter pruned Llama-3.1-8B achieves
a strong MMLU score of 66%, which plummets to 25%
when disabling a single retrieval head. Moreover, these
heads obscure the true knowledge demands of such tasks—
despite strong MMLU performance, the pruned model per-
forms poorly on knowledge-focused benchmarks. Simi-
lar dependence extends beyond MMLU to mathematical
reasoning (GSM8K), multi-step logical reasoning (BBH),
and dialogue formats (ARC-C Chat), demonstrating that
retrieval capabilities, not knowledge deficits, drive SSM
underperformance in these domains.

To understand how these specialized heads function, we
investigate their underlying mechanism. We find that both
Transformer- and SSM-based language models converge
on a similar retrieval framework: a Gather-and-Aggregate
(G&A) mechanism. Specifically, a Gather Head identifies
and condenses segments of input tokens into a single vec-
tor representation (Figure 1(a)), which an Aggregate Head
subsequently processes to extract the necessary information

(Figure 1(b)). This finding indicates that the two language
models rely on similar retrieval strategies, despite architec-
tural differences. Consequently, their retrieval gap reduces
to the effectiveness with which a few specific heads imple-
ment the G&A mechanism.

Comparing G&A implementations, we find SSMs’ known
retrieval challenges manifest in how key heads implement
G&A. SSMs exhibit smoother attention patterns, making
sharp token shifts difficult and requiring more heads to
achieve comparable performance. Moreover, we show
how hybrid models (Glorioso et al., 2024; Lieber et al.,
2024), which integrate a few attention layers into predom-
inantly SSM-based architectures, overcome SSM’s limita-
tions. When trained from scratch, hybrid models naturally
delegate Aggregate Head functionality to attention layers.
Conversely, in pretrained SSM models, replacing a single
G&A instance with an attention-based one yields a signifi-
cantly greater MMLU improvement than any other attention
placement.

Our experiments are publicly available.1

1https://github.com/goombalab/
Gather-and-Aggregate
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2. Related Work
Sequence Models. Transformer-based models with self-
attention (Vaswani et al., 2023; Brown et al., 2020; Touvron
et al., 2023) dominate language modeling for their scala-
bility and performance. Recently, recurrent models like
structured state-space models (SSMs) (Gu et al., 2022; Gu
& Dao, 2023; Dao & Gu, 2024) gained interest for their
sub-quadratic efficiency and competitive results on long se-
quences. Other recurrent models include (Dao et al., 2022;
Sun et al., 2023; Katharopoulos et al., 2020; Yang et al.,
2024a; Zhang et al., 2024b; Beck et al., 2024; Qin et al.,
2024; Peng et al., 2024; Yang et al., 2024b). We use ”SSM”
to refer to these models as well, as our findings broadly
apply.

Despite SSMs’ efficiency, they struggle with tasks requiring
precise token interactions, such as in-context retrieval. Their
fixed-size hidden state limits memory capacity, making it
difficult to retain detailed past information. To address these
limitations, recent work (Lieber et al., 2024; Glorioso et al.,
2024; Waleffe et al., 2024; Ren et al., 2024; Wang et al.,
2024a; Paliotta et al., 2025) has adopted a hybrid approach,
integrating attention layers with a majority of SSM layers,
trading efficiency for improved capabilities such as retrieval.

Throughout this study, we examine four architectures:
Llama-3.1-8B-Instruct (Touvron et al., 2023), a standard
Transformer; Falcon-Mamba-7B-Instruct (Zuo et al., 2024),
a Mamba-1 SSM without MLP layers; Llamba-8B-Untied
(Bick et al., 2025), a Mamba-2 SSM distilled from Llama-
3.1-8B using MOHAWK (Bick et al., 2024); and Zamba-2-
7B-Instruct (Glorioso et al., 2024), a hybrid model with a
6:1 ratio of Mamba2 to attention layers and only two shared
attention layers. For brevity, we refer to these as Llama-
3.1-8B, Falcon-Mamba-7B, Llamba-8B, and Zamba-2-7B,
respectively.

Central to understanding the performance differences be-
tween these architectures is token mixing: how models
propagate and combine information across token positions.
In self-attention, tokens selectively aggregate context via
learned weights, while SSMs use structured recurrences
with more restricted patterns. Ali et al. (2024); Dao & Gu
(2024) connect SSM token mixing to attention’s matrix-
multiplication form, showing Mamba-1 mimics many low-
dimensional attention heads. Mamba-2 (Dao & Gu, 2024;
Bick et al., 2025; Waleffe et al., 2024) uses fewer, larger
heads, increasing expressivity. These insights allow us to
view all sequence models as structured matrices over time.
Thus, we generalize token mixing beyond self-attention, re-
ferring to these mechanisms as Temporal Mixing Heads (or
simply Mixing Heads).

Retrieval Tradeoffs Between Transformers and SSMs.
SSMs rely on compressed, continuously updated hidden

states, unlike Transformers, which cache full context. This
structural difference impacts retrieval performance across
benchmarks. Waleffe et al. (2024) found that Mamba-
based models require extensive training to perform well
on MMLU, while Wen et al. (2024) identified weaknesses
in in-context retrieval tasks, such as associative recall. Je-
lassi et al. (2024) theoretically and empirically confirmed
that SSMs have difficulty with precise copying. Arora et al.
(2023) demonstrated that associative recall capabilities ac-
count for the majority of performance differences between
attention-based and gated-convolution models. Park et al.
(2024) shows that SSMs underperform on tasks requiring
non-standard retrieval, and proposed a hybrid architecture
to address this limitation. Arora et al. (2025) highlighted a
recall-throughput tradeoff, with attention offering stronger
recall at higher cost. Blouir et al. (2025) complemented
this view by enhancing retrieval in SSMs through training
improvements without architectural changes. Unlike previ-
ous work, we show these limitations originate from a small
subset of retrieval heads rather than the entire model.

Mechanistic Interpretability of Mixing Heads. Most
interpretability studies focus on attention heads in LLMs
(Elhage et al., 2021; Lieberum et al., 2023; Zhang et al.,
2024a; Olsson et al., 2022; Yu et al., 2024; Merullo et al.,
2024; Rai et al., 2024; Zheng et al., 2024; Wu et al., 2024;
Tulchinskii et al., 2024; Sanford et al., 2024), while rel-
atively little attention has been given to recurrent mecha-
nisms (Ali et al., 2024). Olsson et al. (2022) and Elhage
et al. (2021) showed that induction heads emerge to support
in-context learning. Subsequent work traced their training
dynamics (Bietti et al., 2023), and mapped factual recall
circuits (Meng et al., 2023).

Lieberum et al. (2023) identified two key heads in
Chinchilla-70B—Content Gatherer and Correct Letter—
that, with MLPs, support label prediction in multiple-choice
tasks. Wu et al. (2024) found that fewer than 5% of heads,
termed Retrieval Heads, are critical for retrieval, Chain-of-
thought, and reasoning.

We refine the understanding of how heads support retrieval
by showing that, in both Transformers and SSMs, retrieval
arises from a coordinated mechanism—not a single head.
One head identifies the target location, while another aggre-
gates its content. This view extends prior work in three ways.
First, the “Correct Letter” heads identified by Lieberum
et al. (2023) exhibit broader retrieval behavior than previ-
ously reported, going beyond multiple-choice selection. Sec-
ond, retrieval depends on coordinated interactions between
heads, challenging the interpretation in Wu et al. (2024)
that treated individual heads as independently responsible.
Third, we demonstrate that this mechanism also arises in
SSMs—despite their lack of attention—highlighting its ar-
chitectural generality. We introduce the term Aggregate
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Head to better reflect these empirical findings, while retain-
ing “Gather” as shorthand for the “Content-Gatherer” heads
described Lieberum et al. (2023).

Concurrent with our work, Wiegreffe et al. (2025) extended
Lieberum et al. (2023)‘s findings by analyzing training dy-
namics and cases of poor model performance. They in-
troduced synthetic tasks to disentangle knowledge from
multiple-choice formatting and identified mechanisms by
which models adapt to different answer symbols. While
their goals align with ours, we focus on the algorithmic
aspects of in-context retrieval in multiple-choice settings
across architectures.

3. A Case Study: Retrieval in MMLU
The MMLU benchmark (Hendrycks et al., 2021) spans 57 di-
verse tasks and is often viewed as a test of world knowledge.
However, its multiple-choice format also places demands
on retrieval: models must map question-answer context to
the correct letter label (A–D), as illustrated below:

is the central node of 802.11
wireless operations.
A. WPA
B. Access Point
C. WAP
D. Access Port
Answer:

Despite performing well on many factual benchmarks,
SSMs underperform on MMLU unless trained substantially
longer (Waleffe et al., 2024). Given their known retrieval
limitations (Jelassi et al., 2024), we ask whether this gap
stems from a failure of knowledge or of retrieval. To in-
vestigate, we analyze three representative models: Llama-
3.1-8B-Instruct (Transformer), Falcon-Mamba-7B-Instruct
(Mamba-1), and Llamba-8B-Untied (Mamba-2). We com-
pare their performance on MMLU versus benchmarks that
emphasize factual reasoning with minimal reliance on in-
context retrieval. For clarity, we omit instructional and
embedding-tying suffixes from model names in our discus-
sion.

Our investigation reveals two key findings:

1. Models can perform well on MMLU with limited knowl-
edge, suggesting that the task primarily reflects in-
context retrieval for the evaluated models. This adds
to concerns raised by prior work (Wang et al., 2024b;
Zhao et al., 2024).

2. Both Transformer- and SSM-based models encode re-
trieval abilities in a small set of specialized heads, ex-
tending prior work that focused solely on Transformers
(Lieberum et al., 2023; Wu et al., 2024).

These insights, combined with earlier findings about perplex-

ity gaps between attention-based models and SSM variants
(Arora et al., 2023), support our main claim: the general
performance gap between Transformer- and SSM-based
language models can be traced to specific algorithmic capa-
bilities within a small subset of heads.

Our analysis proceeds bottom-up: we begin by contrasting
MMLU with these knowledge-focused tasks (Section 3.1),
then localize MMLU performance to a single critical layer
(Section 3.2). We show coordination between two layers
(Section 3.3), narrow the effect to a small set of heads (Sec-
tion 3.4), and demonstrate that these implement a shared
retrieval mechanism across models (Section 3.5).

3.1. Evaluation Benchmarks.

Throughout the paper, we evaluate performance on two
categories of benchmarks: MMLU and what we term
Knowledge-Focused Tasks. MMLU’s format distinctively
presents multiple-choice questions, requiring models to pro-
cess lengthy contexts, then identify the correct option by
outputting the corresponding letter label (A, B, C, or D).
While MMLU is widely used, studies have noted that strong
performance may not reflect true understanding or knowl-
edge (Alzahrani et al., 2024; Wang et al., 2024b; Zhao et al.,
2024).

In contrast, Knowledge-Focused Tasks include ARC-
Challenge and ARC-Easy (Clark et al., 2018), PIQA (Bisk
et al., 2019), Winogrande (Sakaguchi et al., 2019), Open-
BookQA (Mihaylov et al., 2018), and HellaSwag (Zellers
et al., 2019). These benchmarks primarily assess factual
knowledge and commonsense reasoning with minimal re-
liance on recent context retrieval. The core difference
lies in how predictions are evaluated: MMLU requires se-
lecting a letter label tied to the correct answer, while the
other benchmarks score the likelihood of complete answer
texts—shifting the focus from label retrieval to how well
the model’s internal knowledge supports each option.

3.2. A Crucial Layer for MMLU

Motivated by the struggle of SSMs with MMLU (Wal-
effe et al., 2024) and by the fact that Transformers use
specialized components to solve multiple-choice questions
(Lieberum et al., 2023), we examine whether solving this
task utilizes different components in SSM-based language
models as well. Since all language models utilize residual
skip connections, eliminating a layer could reveal its spe-
cific contribution while keeping the rest of the information
flowing.

We iteratively remove layers from the end of the model and
evaluate performance on both MMLU and the knowledge-
focused tasks. Appendix A.1 presents performance trends
for Llama-3.1-8B as layers are progressively removed, and
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Appendix A.1 extends this analysis to Falcon-Mamba-7B
and Llamba-8B. For Llama-3.1-8B and Llamba-8B, we ab-
late both the mixer and its downstream MLP, since the latter
likely depends on the former. As shown in Appendix A.2,
similar trends hold even when only the mixer is removed.

All architectures reveal a striking pattern: while perfor-
mance on knowledge-focused benchmarks declines steadily
as layers are pruned, MMLU performance remains stable—
until a single layer is removed, at which point it drops
sharply. This suggests that a specific layer encodes the
critical skills required for MMLU. High MMLU scores can
persist even when most knowledge capacity is lost, highlight-
ing the role of targeted retrieval components over general
knowledge.

3.3. MMLU Relies on Two Crucial Layers

Based on insights from Appendix A.1, we refer to the mini-
mal model as the smallest subnetwork that retains all layers
up to (and including) the layer before the sharp drop in
MMLU performance. We now repeat the previous experi-
ment, this time on the minimal model, with a slight modi-
fication. Instead of cumulatively removing one layer at a
time from the end of the network, we remove a single layer,
evaluate the model performance without it, and then restore
the layer before proceeding to the next.

Appendix A.3 illustrates the results of this experiment in
Llama-3.1-8B, Falcon-Mamba-7B and Llamba-8B as well.
The findings reveal a surprising insight on the minimal
model: not one, but two layers are critical for the perfor-
mance of MMLU. Unlike earlier layers, the last two layers
of the minimal model show no correlation between MMLU
score and knowledge task performance. Pruning either layer
causes a significant drop in MMLU accuracy while causing
only a minor drop in scores on knowledge-focused tasks,
underscoring their essential role in the task.

3.4. Zooming In: MMLU Relies on Two Crucial Heads

Building on Section 3.3, we now zoom in from layers to
individual heads, analyzing how specific attention heads
within the two critical layers affect model performance.

Using the minimal model setup from that section (with only
the last two layers active), we ablated individual heads by
zeroing their outputs and measured the effect on MMLU
and knowledge-focused tasks. This revealed a small subset
of heads whose removal sharply reduced MMLU accuracy
while leaving other knowledge-focused benchmarks unaf-
fected. We label these as critical heads.

To confirm their importance, we evaluated four configu-
rations: (1) no critical heads retained, (2) only last-layer
critical heads, (3) only second-last-layer critical heads, and
(4) critical heads in both layers. The results presented in

Table 1 demonstrate that MMLU depends on just a few
mixing heads rather than the model’s broader knowledge
representation. Disabling them drops performance to near-
random. Remarkably, in Llama-3.1-8B, a single head is
sufficient to achieve over 66% MMLU accuracy, and in
Falcon-Mamba-8B, four Mamba-1 channels reach 52.26%.

3.5. Retrieval Emerges as a Key Factor in MMLU

Earlier results showed that two attention heads from separate
layers work together to solve MMLU across architectures.
We now provide evidence that these heads form part of a
broader in-context retrieval mechanism, validated through a
synthetic key-value (KV) retrieval task.

In this task, the model is given a dictionary and must recall
the value of a queried key, for example,

Memorize the following dictionary:
present:50
institute:0
scallops:84
neuropsychiatry:67
The value of the key ’scallops’ is

To succeed, the model must accurately store mappings (e.g.,
“scallops → 84”) and, when queried, retrieve the correct
value (’84’) by identifying ’scallops’ in its stored represen-
tations without confusion.

We tested 55 configurations with growing numbers of key-
value pairs, each using 1,000 synthetic samples. For each
configuration, we evaluated Llama-3.1-8B in three settings:
intact, with L17H24 removed, and with L16H22 removed
(the heads identified as critical in Section 3.4). The full
evaluation setup and prompt format are discussed in Ap-
pendix A.9.

As shown in Figure 5, removing either L16H22 or L17H24
significantly impairs retrieval, confirming their central role.
Notably, the impact of removing L17H24 increases with
dictionary size, suggesting its contribution grows with task
complexity. These findings extend previous research: the
retrieval heads we identified align with and generalize the
Content Gatherer head described by Lieberum et al. (2023)
and the retrieval mechanisms documented by Wu et al.
(2024). Importantly, our work demonstrates that similar
retrieval mechanisms also emerge within SSM-based lan-
guage models. The strong link between retrieval and MMLU
performance suggests that the Transformer–SSM gap may
stem from differences in a small number of retrieval-critical
heads rather than fundamental architectural limitations.
This reframes the performance gap as a targeted func-
tional difference—where SSMs may lack specific retrieval
capabilities—rather than a broad modeling inadequacy.
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4. Gather-and-Aggregate Heads
We now examine how the critical retrieval heads identi-
fied in Section 3 across architectures implement the same
Gather-and-Aggregate (G&A) mechanism. The mechanism
unfolds in two stages. First, a Gather Head isolates mean-
ingful segments within the input—such as multiple-choice
answers—and summarizes each into a representative token.
Then, a later Aggregate Head uses these summaries to
retrieve the information most relevant to the prompt.

While previous work has described retrieval-oriented heads
in Transformers—such as the “Correct Letter” heads iden-
tified by Lieberum et al. (2023)—these analyses focused
narrowly on multiple-choice tasks. Our findings show that
such heads are part of a broader retrieval strategy that gener-
alizes beyond this format. This also refines the interpretation
from Wu et al. (2024), who grouped retrieval heads under
a single role; in contrast, we find they specialize in com-
plementary functions within a coordinated process. Finally,
we show that this same mechanism emerges in SSM-based
models, despite their lack of explicit attention. These mod-
els exhibit smoother and less discrete patterns, but still learn
to implement a G&A strategy using different architectural
tools.

This section unpacks the mechanism in detail. We begin
with how it operates in Transformers (Sections 4.1 and 4.2),
then present experimental evidence that it also underlies
retrieval in SSMs (Section 4.3)

4.1. Gather Heads in Transformers

A Gather Head compresses semantically related tokens
within a segment into a single representative token. In
Transformer models, this typically occurs through atten-
tion patterns that cause the final token of each segment to
“attend to” all prior tokens in the same segment, effectively
summarizing them into a compact representation (see Fig-
ure 1(a)).

For example, consider the multiple-choice format intro-
duced in Section 3:

A. WPA\n → A. WPA \n

Here, the newline token (\n) at the end of each answer
choice acts as a summary token. This transformation re-
duces a segment from multiple tokens to one, simplifying
downstream computation.

Lieberum et al. (2023) observed this behavior in 70B Chin-
chilla, where attention heads collect tokens like “A”, “.”,
“W”, “PA”, and “\n” into the final newline token. The head’s
attention pattern essentially performs a form of local aggre-
gation, summarizing the contents of each segment.

While effective, this process is not always clean: attention

sometimes leaks to unrelated tokens—particularly “attention
sinks” (Xiao et al., 2024) used to stabilize processing over
long contexts.

4.2. Aggregate Heads in Transformers

Once the Gather Head condenses segments into representa-
tive tokens, an Aggregate Head—in a subsequent layer—
retrieves and combines these summaries to inform the
model’s prediction. This head typically attends from a
target token (e.g., the final “Answer:” position) over all
gathered summaries, assigning greater weights to the most
relevant one (see Figure 1(b)). This yields a sparse linear
combination over segment summaries, often resembling an
argmax-like operation (Tulchinskii et al., 2024):

"Answer:" = \n + \n + \n + \n

In Transformer models, such heads were previously termed
“Correct Letter” Heads (Lieberum et al., 2023), due to
their consistent weighting of the correct answer’s summary
token. However, the aggregation pattern generalizes be-
yond multiple-choice QA, enabling information retrieval in
broader contexts.

As with Gather Heads, this mechanism is imperfect. Ag-
gregate Heads sometimes distribute attention to irrelevant
tokens, including attention sinks. These limitations become
more pronounced in SSMs, as we discuss next.

4.3. G&A in Transformers and SSMs: Experimental
Evidence

The G&A pattern is well-documented in Transformers—but
do SSM models like Mamba implement the same structure?
We test this via a two-part experiment that isolates and
evaluates specific heads: (1) Pruning: We prune each model
to a minimal configuration (see Section 3.3), zeroing out
all heads in the final two layers except those suspected to
implement G&A (see Table 1); (2) Masking: At runtime,
we constrain the preserved heads’ attention patterns: Gather
Heads may only attend within each segment and to its final
token, and Aggregate Heads may only attend to those final
summary tokens (See Figure 6).

In all models—Llama-3.1-8B (Transformer), Llamba-
8B (Mamba-2), and Falcon-Mamba-7B (Mamba-1)—the
pruned and masked configurations match the original
MMLU accuracy. This confirms that the selected heads
are sufficient to drive retrieval and that the G&A mechanism
is not unique to Transformers: despite architectural differ-
ences, SSM-based models converge on the same strategy.

Nevertheless, the attention patterns differ in texture. As
shown in Figure 7, attention maps in Mamba-based models
are smoother and less sharply localized. This softness limits
their ability to isolate segments cleanly: Gather Heads in
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SSMs often leak attention outside segment boundaries, and
Aggregate Heads struggle to sharply focus on the correct
summary token. These imperfections stem from the contin-
uous nature of SSM hidden states and are explored further
in Section 5.

5. The G&A Bottleneck in SSMs
The previous section established that both Transformers and
SSMs rely on a small number of heads to implement a two-
stage Gather-and-Aggregate (G&A) mechanism. We now
examine how this mechanism breaks down in SSMs, pro-
viding a mechanistic account of their retrieval limitations.

We begin by visually inspecting G&A behavior in SSMs
(Section 5.1), showing that Aggregate Heads attend broadly
rather than selectively. We then quantify redundancy in
SSM aggregation (Section 5.2), finding that multiple heads
are needed to match the performance of fewer, stronger
Transformer heads. Next, we show that hybrid models of-
fload aggregation to attention layers (Section 5.3); ablating
just six heads causes a 4× drop in MMLU. We then iden-
tify these heads as the bottleneck (Section 5.4): replacing
a single SSM layer restores MMLU from 33% to 50%. Fi-
nally, we explore how targeted attention during training or
distillation can restore G&A in SSMs (Section 5.5).

5.1. Visual Inspection of G&A Heads

Figures 6 and 7 show that Mamba Aggregate Heads cor-
rectly attend to segment-final tokens but also attend to neigh-
boring tokens unnecessarily. This likely introduces noise
and reduces aggregation effectiveness. This smooth behav-
ior reflects hidden-state architectures, where information
compression over time makes it harder to capture the global
nature of Aggregate Heads.

5.2. Redundancy of Aggregate Heads in SSM Models

We find that SSM-based models require more Aggregate
Heads than Transformer-based models to reach similar or
even lower levels of performance. This suggests that SSMs
compensate for limited per-head expressiveness by distribut-
ing the retrieval task across multiple weaker components.
Three observations support this claim:

1. Gradual Performance Decay. As shown in Table 4
and discussed in Section 6, ablating heads in Llamba
causes a slow, steady drop in performance—unlike the
sharp drops seen in Transformers—implying overlapping
functionality and less specialization.

2. Weaker, Less Isolated Heads. Llamba-8B, distilled
from Llama-3.1-8B via MOHAWK (Bick et al., 2024),
adds G&A heads in layers 16 and 17. But while Llama-
3.1-8B relies on two strong heads (L17H24 and L17H27),

Llamba-8B depends on a single moderate one (L17H31),
with others contributing little. Rather than concentrating
aggregation in a few strong heads, it spreads the load
across weaker ones.

3. More Heads Needed to Match Accuracy. Llama-3.1-
Minimal reaches 98% of its MMLU score with one Ag-
gregate Head, Llamba-8B-Minimal needs two for 95%,
and Falcon-Mamba-7B-Minimal requires four for 86%
(see Table 1). This points to lower per-head capacity in
SSMs.

5.3. Hybrid Models Delegate Aggregation to Attention

Attention layers in hybrid models are known to be critical
for retrieval and copying tasks (Lieber et al., 2024; Glorioso
et al., 2024; Waleffe et al., 2024). We hypothesize that
during training, Aggregate Heads naturally concentrate
in the attention layers, as attention’s greater expressivity
makes it better suited for aggregation.

To test this, we evaluate Zamba2-7B (Glorioso et al., 2024),
the strongest 7B-scale hybrid model to date. Table 2 iden-
tifies attention heads critical for general retrieval; here, we
further select nine that are especially important for MMLU:
L47H{2, 4, 6, 8, 18, 21, 25} and L59H{17, 21}. Each
head is disabled by zeroing out the final row of its atten-
tion matrix—a targeted intervention that impairs aggrega-
tion while leaving other capabilities, such as gathering and
contextual mixing, largely intact. All SSM layers remain
unchanged, preserving any aggregation they may contribute.

This intervention reduces MMLU accuracy from 64.3% to
34.9%, while knowledge task accuracy remains stable at
70%. Since MMLU’s random baseline is 25%, this 4x
drop demonstrates that SSMs alone cannot sustain strong
aggregation—hybrid models depend on attention layers to
implement the G&A mechanism.

5.4. Hybrid Replacements

To further test whether SSMs struggle to implement Ag-
gregate Heads, we examine how well an SSM mixer can
replicate an attention layer. Using Llamba-8B (Bick et al.,
2025), we distill each Mamba-2 layer independently from
Llama-3.1-8B following Bick et al. (2024), aligning outputs
via L2 loss without end-to-end optimization. Specifically,
i-th Llamba block receives the output of Llama’s (i− 1)-th
layer and matches Llama’s i-th layer.

After assembling the full model from the individually dis-
tilled layers, the distilled model recovers 64% of Llama’s
69% on knowledge tasks, while its MMLU performance
remains 33%, compared to 67% for Llama. This suggests
that a key retrieval-related capability was not captured.

To determine whether the observed performance gap is re-
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lated to retrieval and specifically to the G&A mechanism,
we conducted a hybrid replacement experiment. In this ex-
periment, we systematically replaced each layer in the dis-
tilled Llamba-8B model with its corresponding layer from
Llama-3.1-8B, evaluated its impact on MMLU (without
fine-tuning), and then reverted the model before proceeding
to the next layer.

The results, shown in Figure 8, reveal that most layer re-
placements had little or even a negative impact on MMLU.
However, replacing L17, which contains two prominent
G&A heads at H24 and H27 (L17H24 was identified in
Table 1), significantly improved performance from 33% to
50%. To isolate their effect, we ran additional hybrid exper-
iments. Swapping only L17H24, while keeping the rest of
the SSM heads intact, raised performance to 44%. Including
L17H27 as well increased it to 50%. This confirms that the
contribution stems from the Aggregate Heads within L17,
and further supports that individual SSM layers struggle to
implement the Aggregate Head within G&A—reinforcing
our claim that this limitation contributes to the performance
gap between Transformers and SSMs.

5.5. Addressing G&A Limitations in SSM-Based Models

Efforts to improve G&A in pure SSMs face a core constraint:
retrieval suffers due to fixed-size memory in RNN-style de-
signs (Jelassi et al., 2024; Wen et al., 2024). Rather than
working within these limits, we explore hybrids that intro-
duce attention layers to target retrieval bottlenecks directly.
Our analysis reveals two empirical patterns that guide hybrid
model design:

1. Training hybrids from scratch. G&A heads consis-
tently emerge in the middle of the network—for exam-
ple, at layers L16 and L17 out of 32 in Llama-3.1-8B
and Llamba-8B, and L35 and L36 out of 64 in Falcon-
Mamba-8B. This suggests that attention is most valuable
in mid layers, where retrieval operations naturally occur.
As a result, when designing hybrid models from scratch,
placing attention layers near the middle offers a targeted
way to support G&A without relying on full attention
throughout the network.

2. Distilling hybrids from a Transformer. As shown in
Section 5.4, replacing individual layers in a distilled SSM
with their attention-based counterparts from the teacher
yields little benefit—except at L17, where MMLU im-
proves from 33% to 50%. This indicates that the perfor-
mance gap is concentrated in the Aggregate Head. Based
on this, a practical strategy is to retain attention in the lay-
ers where strong G&A heads appear and distill the rest
into SSMs. This allows the hybrid to recover retrieval
quality where it matters most, while still benefiting from
the efficiency of SSMs elsewhere.

These observations provide a practical recipe for hybrid
design: introduce attention selectively—either guided by
where G&A heads naturally emerge when training from
scratch, or retained only in key locations when distilling
from a Transformer. We leave further investigation into op-
timal placement and architectural variants of hybrid models
to future work.

6. Transformer-SSM Gap Beyond MMLU
We previously showed that both Transformers and SSMs
rely on a few heads to implement a two-stage Gather-and-
Aggregate (G&A) mechanism for in-context retrieval. We
now extend this analysis to more benchmarks and models,
reinforcing that the broader retrieval gap stems from specific
algorithmic limits rather than general language modeling
ability. Our analysis has three parts: Section 6.1 identifies
G&A heads across models; Section 6.2 evaluates how archi-
tectural choices affect performance; Section 6.3 examines
how task format influences these effects.

6.1. Isolating Retrieval Differences Across Architectures

In Section 3, we showed that MMLU performance can be
severely degraded by removing a single critical head—even
when the model performs poorly on knowledge-focused
tasks. This scenario is specific to MMLU: a task where
strong retrieval alone can yield high accuracy, even when
the model’s knowledge is degraded. In contrast, most bench-
marks require both retrieval and factual knowledge, making
it harder to isolate the contribution of retrieval alone.

As a result, the minimal-model strategy used in MMLU fails
on other tasks: pruning layers diminishes knowledge capac-
ity and lowers scores across the board, masking the effect of
retrieval-specific mechanisms. To avoid this confound, we
instead take a different approach: rather than pruning the
model, we preserve its knowledge and selectively disable
only the G&A heads.

As detailed in Section 3.5, we use the synthetic KV-Retrieval
task to identify G&A heads by ablating each one and mea-
suring its effect on retrieval accuracy (Table 2). A perfor-
mance drop signals the head’s involvement in G&A. This
method, also used by Wu et al. (2024), isolates retrieval
ability without relying on external knowledge, enabling us
to trace G&A heads across layers and architectures in a
controlled, generalizable way.

6.2. Quantifying the Retrieval Gap

Having identified the retrieval-critical heads, we now mea-
sure their practical impact across benchmarks by incremen-
tally disabling them in three model families. These include
Transformer models (Llama-3.1-8B-Instruct and Llama-3.2-
3B-Instruct (Touvron et al., 2023)) as baselines for effective
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G&A implementation, pure SSM models (Llamba-3B and
Llamba-8B (Bick et al., 2025)) based on Mamba-2, and
hybrid models (Zamba2-2.7B and Zamba2-7B (Glorioso
et al., 2024)) that use Mamba-2 layers with shared attention
modules. For Zamba2, we ablate only attention heads, as
they perform retrieval (Section 5.3). Each shared head is
ablated in one instance to isolate its effect.

Table 4 summarizes the results. Transformer models show
a sharp performance drop on retrieval-heavy tasks after re-
moving just 10–20 heads, while knowledge-task accuracy
remains stable—confirming retrieval is concentrated in a
few heads. Zamba2-7B behaves similarly, with consistent
effects across shared-head instances, reinforcing their uni-
fied G&A roles (Table 2). In contrast, Llamba-8B degrades
slowly. Even after removing 30 G&A heads, it retains over
95% of its original performance. This gradual drop reflects
redundancy: SSMs distribute retrieval across many weaker
heads, unlike the focused G&A in Transformers—consistent
with Section 5.

6.3. Amplifying the Retrieval Gap through Task Format

Beyond architecture, task format can amplify or reduce
the retrieval gap between Transformers and SSMs. We
previously noted this in MMLU, where models select a
letter label rather than score full answer texts.

To further illustrate, we compare two formats of the same
content: the original ARC-Challenge multiple-choice task
and its conversational variant, ARC-Challenge Chat. As
shown in Table 3, disabling G&A heads has little effect on
the multiple-choice version but sharply reduces accuracy
in the chat variant. The conversational format increases
retrieval demands by spreading relevant content across di-
alogue turns, favoring architectures with sharper retrieval
(Transformers and hybrids) over those with more diffuse
mechanisms (pure SSMs).

This highlights a key point: retrieval pressure is shaped not
just by what is asked, but by how it’s presented. When
context is more distributed, effective in-context retrieval
becomes more critical—even if the underlying knowledge
stays the same.

7. Conclusions
We show that both Transformer and SSM models develop
a Gather-and-Aggregate (G&A) mechanism across a small
number of heads to support in-context retrieval, which is
crucial for performance on many benchmarks. While SSMs
struggle to implement strong G&A heads due to their fixed-
size hidden state, this limitation is localized and does not
reflect a general weakness in language modeling.

Hybrid models provide further insight: they naturally of-

fload G&A to attention layers, leveraging their stronger
algorithmic capacity. This explains why even a few atten-
tion layers can meaningfully boost SSM models, providing
practical guidance for hybrid design.

Our results also reframe benchmark interpretation. Al-
though MMLU is often seen as a broad knowledge test,
we find that MMLU performance is primarily governed
by retrieval ability. This highlights the role of algorithmic
skills, and particularly retrieval, in benchmark success.

Important open questions remain: while narrowing the re-
trieval gap is a key step, the role of G&A in in-context
learning and copying warrants further study. It also remains
to be seen whether G&A is part of a broader retrieval process
involving other head types, such as Amplification Heads
(Lieberum et al., 2023), which enhance signal propagation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Complementary Material for Section 3
In this section, we present additional results from the experiments conducted on the models explored in Section 3. These
results provide further insights into the behavior of knowledge and retrieval capabilities across layers and heads in different
models.

A.1. Detailed Performance Across Layers

We extend the analysis presented in Section 3.2 by providing performance data on other models, which show similar
trends. As demonstrated in Appendix A.1, the pattern of stable MMLU scores despite a gradual decline in knowledge task
performance is consistent across all models tested. Notably, the sharp drop in MMLU performance upon removal of specific
layers reaffirms the criticality of certain layers in encoding retrieval skills.

Figure 2. Residual performance trends for knowledge tasks and the MMLU benchmark as layers are progressively pruned layers of
Llama-3.1-8B, Llamba-8B, and Falcon-Mamba-7B. The leftmost bar represents the full model with all layers intact, while subsequent
bars correspond to models with layers pruned incrementally from the end of the network. The plot highlights three key observations: (1)
MMLU scores remain relatively stable despite a decline in general knowledge tasks performance, indicating reliance on task-specific
skills; (2) a sharp drop in MMLU performance identifies a critical layer encoding essential skills; and (3) the gradual decline in knowledge
tasks’ scores reflects the distributed nature of knowledge representation across layers.

A.2. Layer Removal: Mixer and MLP Components

For both Llama-3.1-8B and Llamba-8B, we performed experiments where entire layers, including both the mixer and MLP
components, were removed. This approach was taken under the assumption that MLP components likely depend on outputs
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from the mixer components, which are crucial for information flow across layers. The results from these tests, presented
in Appendix A.2, show that similar performance trends are observed whether the MLP components are retained or not.
This suggests that the mixer components play a more prominent role in encoding retrieval capabilities, while the MLP
components do not significantly alter the overall performance on knowledge tasks and MMLU benchmarks. This finding
reinforces the idea that retrieval skills are primarily concentrated in specific layers and do not rely heavily on the MLP
components within those layers.

Figure 3. Residual performance trends for knowledge tasks and the MMLU benchmark as layers are progressively pruned from Llama-
3.1-8B, Llamba-8B but keeping the MLPs intact. This plot yields similar results to Appendix A.1

A.3. Performance in Minimal Models

The results from Section 3.3 are further elaborated in Appendix A.3. The performance of Llama-3.1-8B and other models
when subjected to layer removal shows that, for all models, not one, but two layers are crucial for MMLU performance. The
surprising robustness of MMLU performance in the minimal models highlights the importance of fine-tuning layer-wise
architecture to achieve strong retrieval performance while retaining knowledge capabilities.
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Figure 4. Residual performance trends for the MMLU benchmark and knowledge tasks metrics in the minimal model (defined with
respect to MMLU) for Llama-3.1-8B, Llamba-8B, and Falcon-Mamba-7B. In this experiment, each layer is independently pruned, and the
resulting performance is assessed. The results reveal that two layers are critical for MMLU performance, as pruning either of the last two
layers causes a significant drop in MMLU scores while leaving knowledge metrics largely unaffected. This finding highlights the unique
role of these layers in task-specific skills rather than general knowledge representation.

A.4. Critical Heads Drive MMLU Performance Across Models

To assess how in-context retrieval is localized within specific heads, we examine the MMLU performance of three
models—Llama-3.1-8B, Llamba-8B, and Falcon-Mamba-7B—under targeted head ablation. Table 1 presents the results of
selectively retaining or removing mixing heads in the final two layers of each model, while preserving all earlier components.

Across all architectures, we observe a sharp and consistent pattern: removing just one or two critical heads reduces MMLU
accuracy to near-random levels (∼25%), while retaining them restores much of the original performance. Notably, these
heads represent fewer than 0.1% of the total head count, highlighting the extreme concentration of retrieval ability within
a tiny subset of the model. Meanwhile, scores on knowledge-focused benchmarks remain nearly unchanged across all
configurations, reinforcing that these heads are specifically responsible for in-context retrieval rather than general language
modeling or factual recall.

This result supports the broader claim that the Gather-and-Aggregate mechanism emerges in just a handful of components
and suggests that hybrid and efficient model designs can selectively preserve only these heads.
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Figure 5. Evaluation of Llama-3.1-8B on the KV-Retrieval task under three settings: unmodified, with only L16H22 removed, or
with only L17H24 removed (the Gather and Aggregate Heads identified in Section 3.4, respectively). Performance is reported across
55 configurations with increasing numbers of key-value pairs, using the original (non-pruned) model. Each bar shows accuracy for a given
dictionary size—for example, with 20 pairs, the original score is 85.6%, removing only the Gather Head (L16H22) drops accuracy to
76%, and removing only the Aggregate Head (L17H24) drops it to 62%. These results underscore two key points we build on later: (1)
Retrieval is more sensitive to Aggregate Head removal than to Gather Head removal, underscoring its importance; (2) The Aggregate
Head becomes increasingly important as task complexity grows.

Model Heads Retained Metrics (%)

Prev. Layers Layer X Layer X+1 MMLU Knowledge
Tasks

Llama-3.1-8B

0–31 22 24 66.32 39.09
0–31 ∅ 24 24.36 39.18
0–31 22 ∅ 25.59 39.21
0–31 ∅ ∅ 25.56 39.21

Llamba-8B

0–31 10 3, 9 58.92 39.08
0–31 ∅ 3, 9 42.17 39.16
0–31 10 ∅ 38.02 39.00
0–31 ∅ ∅ 29.82 36.76

Falcon-Mamba-7B

0–8191 3186, 5143
6607, 7305

1565, 1906
3873, 4925 52.26 37.23

0–8191 ∅ 1565, 1906
3873, 4925 35.91 37.25

0–8191 3186, 5143
6607, 7305 ∅ 39.39 37.26

0–8191 ∅ ∅ 24.98 37.28

Table 1. Impact of Critical Head Removal Across Model Architectures. We evaluate how retaining or removing specific heads in the
final two layers affects MMLU and knowledge task performance for three models: Llama-3.1-8B, Llamba-8B, and Falcon-Mamba-7B.
Each row shows performance under a different configuration, where the ”Heads Retained” columns indicate which heads are active in
the two final layers (”Layer X” and ”Layer X+1”) while all earlier heads are preserved. The heads shown correspond to the critical
Gather and Aggregate Heads identified in prior analyses. For Llama and Llamba models, retaining both heads restores near-original
MMLU performance (66.3% and 58.9%, respectively), while removing either or both causes performance to collapse to near-random
levels. In Falcon-Mamba-7B, just four attention channels (among thousands) across the final two layers are sufficient to recover 52.3%
MMLU accuracy—again, comparable to full-model performance. Knowledge task scores remain mostly unchanged across configurations,
reinforcing that these heads specifically control retrieval rather than factual knowledge access. This shows that across architectures,
in-context retrieval is driven by just a few heads, whose removal alone accounts for the majority of the performance gap.

A.5. Retrieval Heads Across Model Families

Table 2 presents the 50 most retrieval-relevant heads for each model, ranked by their individual contribution to KV-Retrieval
accuracy. Several trends emerge. In Transformers, top heads cluster in upper layers, often overlapping with those critical
for MMLU. In SSM-based models, retrieval heads are more diffuse and individually weaker. Zamba2 hybrids concentrate
high-performing heads around shared-attention layers, suggesting these layers anchor retrieval in otherwise SSM-heavy
architectures.
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Table 2. Attention Head Ablation Study: Performance impact on KV-Retrieval task when individual attention heads are removed
from various language models. Each head was systematically knocked out and the model’s accuracy was evaluated on a KV-Retrieval
benchmark with dictionary size of 20 across 1000 samples. After measurement, each head was restored before testing the next one.
Results show the 50 most significant attention heads from each model, sorted by accuracy, revealing which heads contribute most
critically to the KV-Retrieval capability across Zamba2, Llama, and Llamba model families. For Zamba2 models, † marks layers with the
first shared attention, and ‡ marks those with the second.

Zamba2-2.7B Zamba2-7B Llama-3.2-3B Llama-3.1-8B Llamba-3B Llamba-8B

Layer Head Acc Layer Head Acc Layer Head Acc Layer Head Acc Layer Head Acc Layer Head Acc

6† 0 0.088 11‡ 28 0.139 14 7 0.381 12 1 0.421 20 30 0.214 17 31 0.382
18† 12 0.199 23‡ 28 0.139 12 1 0.405 8 8 0.494 1 0 0.220 21 2 0.446
6† 12 0.303 35‡ 28 0.139 14 6 0.524 13 5 0.514 15 30 0.296 16 29 0.460

30† 0 0.328 47‡ 28 0.139 15 18 0.545 14 7 0.519 14 17 0.301 22 26 0.465
6† 26 0.380 59‡ 28 0.176 13 5 0.589 13 17 0.596 11 23 0.317 27 15 0.471

30† 4 0.421 71‡ 28 0.176 10 17 0.597 15 18 0.635 12 24 0.320 14 9 0.471
18† 25 0.426 11‡ 21 0.266 9 1 0.625 14 6 0.680 19 13 0.324 11 25 0.476
30† 20 0.430 23‡ 21 0.266 0 4 0.639 13 23 0.685 19 7 0.327 21 27 0.482
18† 26 0.433 35‡ 21 0.266 12 13 0.648 12 2 0.730 10 20 0.329 16 18 0.487
30† 31 0.472 47‡ 21 0.266 9 18 0.655 5 14 0.732 15 6 0.333 11 31 0.487
24‡ 23 0.479 59‡ 21 0.281 12 8 0.657 10 17 0.761 24 17 0.334 10 15 0.490
30† 12 0.482 71‡ 21 0.281 14 0 0.667 11 9 0.784 13 29 0.335 14 5 0.492
30† 24 0.483 11‡ 3 0.424 15 20 0.670 5 22 0.816 7 28 0.337 11 29 0.492
30† 26 0.488 23‡ 3 0.424 10 3 0.671 14 0 0.828 10 16 0.338 15 16 0.495
36‡ 3 0.496 35‡ 3 0.424 3 18 0.677 19 7 0.830 14 6 0.340 12 9 0.495
36‡ 30 0.496 47‡ 3 0.424 19 7 0.677 9 23 0.839 12 25 0.344 18 30 0.497
30† 16 0.499 6† 2 0.430 8 8 0.685 7 16 0.844 11 16 0.348 14 7 0.497
18† 16 0.500 17† 2 0.430 11 10 0.689 12 23 0.846 14 9 0.350 28 28 0.498
6† 16 0.508 29† 2 0.430 12 0 0.689 10 11 0.855 19 0 0.352 22 28 0.498

24‡ 3 0.514 41† 2 0.430 13 16 0.693 16 15 0.855 13 19 0.352 9 28 0.501
24‡ 6 0.521 53† 2 0.430 9 21 0.696 11 11 0.859 10 17 0.352 22 9 0.502
24‡ 7 0.521 65† 2 0.434 11 1 0.698 7 4 0.860 16 22 0.353 9 20 0.502
30† 25 0.524 77† 2 0.434 12 12 0.699 12 7 0.868 12 10 0.353 11 0 0.504
24‡ 21 0.526 11‡ 15 0.473 3 2 0.703 10 20 0.870 2 9 0.355 8 17 0.504
18† 20 0.532 11‡ 18 0.473 1 17 0.705 3 4 0.878 0 7 0.355 15 9 0.505
6† 1 0.532 23‡ 15 0.473 5 13 0.705 0 7 0.879 1 23 0.356 6 10 0.505

24‡ 25 0.533 23‡ 18 0.473 13 22 0.705 4 5 0.883 8 26 0.357 5 24 0.505
12‡ 12 0.534 35‡ 15 0.473 9 3 0.710 15 20 0.883 0 18 0.357 19 24 0.506
24‡ 22 0.538 35‡ 18 0.473 6 4 0.713 1 7 0.884 11 24 0.359 15 17 0.506
36‡ 16 0.539 47‡ 15 0.473 10 18 0.713 3 23 0.885 16 9 0.360 12 18 0.506
24‡ 13 0.539 47‡ 18 0.473 5 19 0.714 10 10 0.886 13 30 0.360 7 11 0.507
18† 10 0.541 59‡ 3 0.480 12 10 0.717 12 3 0.886 11 0 0.352 24 5 0.508
30† 6 0.544 71‡ 3 0.480 11 15 0.721 12 6 0.886 13 19 0.352 13 29 0.508
18† 21 0.545 11‡ 17 0.488 9 17 0.722 9 11 0.888 7 7 0.360 7 20 0.508
12‡ 19 0.545 23‡ 17 0.488 4 4 0.726 11 1 0.890 6 1 0.360 7 30 0.508
18† 19 0.546 35‡ 17 0.488 11 2 0.729 8 17 0.892 26 6 0.361 6 18 0.508
24‡ 15 0.547 47‡ 17 0.488 12 4 0.730 1 15 0.895 23 16 0.361 5 8 0.508
18† 24 0.548 59‡ 15 0.488 10 8 0.732 4 4 0.896 19 9 0.361 13 31 0.509
6† 25 0.548 71‡ 15 0.488 13 21 0.733 6 15 0.896 7 9 0.361 12 15 0.509

18† 0 0.549 11‡ 10 0.496 2 16 0.735 9 18 0.896 22 27 0.362 11 12 0.509
6† 11 0.549 23‡ 10 0.496 10 5 0.735 8 12 0.897 16 16 0.362 10 1 0.509

24‡ 12 0.550 35‡ 10 0.496 11 14 0.735 24 15 0.897 11 8 0.362 10 8 0.509
6† 24 0.550 47‡ 10 0.496 11 9 0.739 3 3 0.898 9 16 0.362 10 17 0.509

18† 2 0.551 59‡ 18 0.496 5 17 0.740 0 1 0.900 3 27 0.362 8 30 0.509
24‡ 1 0.552 71‡ 18 0.496 13 12 0.741 5 6 0.900 11 22 0.363 7 24 0.509
12‡ 9 0.552 6† 1 0.500 9 8 0.743 20 11 0.900 6 24 0.363 5 7 0.509
6† 22 0.553 17† 1 0.500 7 3 0.744 3 16 0.901 18 7 0.364 12 7 0.510

18† 6 0.554 29† 1 0.500 12 22 0.745 10 4 0.902 16 15 0.364 11 8 0.510
12‡ 7 0.554 41† 1 0.500 19 1 0.747 1 0 0.903 14 27 0.364 9 0 0.510
30† 2 0.555 53† 1 0.500 4 8 0.748 3 1 0.905 13 24 0.364 22 31 0.511
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Figure 6. Visualization of the masking applied to the Gather Head (first row) and the Aggregate Head (second row) of Llamba-8B.
The Gather Heads are restricted to interactions with the representative token and its associated answer, while the Aggregate Heads are
limited to processing only the final token’s relevant portions. This setup ensures that the hypothesized Gather-and-Aggregate mechanism
is exclusively responsible for the observed model behavior during MMLU evaluation.

A.6. Masked Head Evaluation Confirms Role Specialization

To confirm that the observed Gather-and-Aggregate behavior is not incidental, we conduct controlled masking experiments
that restrict head input and output pathways. Figure 6 visualizes the masking applied to Llamba-8B: the Gather Head
is constrained to interact only with a specific context segment (e.g., the representative token and its candidate answers),
while the Aggregate Head is permitted to read only the final token. This enforces a clean separation of responsibilities and
eliminates confounding interactions.

The results demonstrate that even under these constraints, performance remains high, indicating that the heads in question
genuinely specialize in retrieval. Figure 7 further supports this by comparing attention maps across Transformer and SSM
models. While Llama-3.1-8B shows sharp, focused patterns for both head types, SSM models exhibit smoother, more
diffuse behavior—suggesting that explicit retrieval pathways are more difficult to encode in state-space models, but can still
emerge under the right inductive bias or hybridization.

A.7. Hybrid Layer Replacement Pinpoints Retrieval Bottlenecks

To further isolate the limitations of SSMs in implementing retrieval behavior, we perform layer-wise replacement experiments,
shown in Figure 8. In this setup, we substitute individual Llamba-8B layers with their Llama-3.1-8B counterparts, then
evaluate the resulting hybrid model on MMLU. Most substitutions have little or even negative effect, confirming that
localized replacements do not trivially enhance retrieval. However, replacing Layer 17 yields a substantial boost—nearly
doubling MMLU accuracy relative to the Llamba baseline.

This layer aligns with the Aggregate Head L17H24, previously identified as critical. The result reinforces our earlier claim:
SSMs struggle particularly with the global integration stage of retrieval, and improving only this step—while leaving the
rest of the model unchanged—can already unlock large performance gains.

A.8. Disabling G&A Heads Impairs Reasoning But Not Knowledge Access

The head ablation results in Table 3 and Table 4 provide complementary evidence that Gather-and-Aggregate heads are
responsible for task-specific reasoning rather than knowledge access alone. In ARC-Challenge, where answers are selected
from fixed options, head removal causes modest degradation. But in ARC-Challenge-Chat, where generative reasoning is
required, accuracy drops sharply with G&A removal.

Table 4 generalizes this across six benchmarks. MMLU, LAMBADA, GSM8K, and BBH show substantial performance
drops—especially in models like Llama-8B and Zamba2—despite only moderate declines in knowledge-based tasks. These
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Figure 7. Illustration of Gather Heads (top row) and Aggregate Heads (bottom row) across different model types. The left
column shows attention patterns in Llama-3.1-8B (Transformer-based), while the center and right columns correspond to Llamba-8B
(Mamba-2-based) and Falcon-Mamba-7B (Mamba-1-based), respectively—both state-space models (SSMs). In Transformer models,
both Gather and Aggregate Heads produce sharp, localized patterns. In contrast, SSM-based models exhibit smoother behavior, making it
harder to isolate specific segments or retrieve information with the same precision.

results demonstrate that disabling G&A heads selectively damages retrieval and reasoning, without erasing stored knowledge.
This aligns with our core hypothesis: these heads act as interfaces for using knowledge in context, not for storing it.

MODEL #REMOVED
HEADS

ARC-CHALLENGE
(CHAT)

ARC-CHALLENGE
(REGULAR)

ACC ↑ ACC ↑

Llama-3B

0 76.8 (+0.0%) 45.5 (+0.0%)
10 72.2 (-6.0%) 43.6 (-4.2%)
20 50.0 (-34.9%) 42.0 (-7.7%)
30 43.2 (-43.8%) 41.9 (-7.9%)

Llama-8B

0 84.3 (+0.0%) 54.9 (+0.0%)
10 77.1 (-8.5%) 51.6 (-6.0%)
20 49.3 (-41.5%) 47.3 (-13.8%)
30 53.6 (-36.4%) 47.9 (-12.8%)

Table 3. Comparison of ARC Challenge and ARC-Challenge Chat under Attention Head Removal. ARC-Challenge Chat repackages
the same questions as ARC Challenge into a conversational, generative format. While ARC Challenge uses normalized accuracy, the chat
version relies on exact-match due to its open-ended outputs. Models initially perform better on the chat variant, leveraging its generative
flexibility to reason through questions. But when G&A heads are ablated, performance drops sharply—unlike the minor declines seen in
ARC Challenge. This contrast suggests the degradation reflects impaired retrieval rather than loss of stored knowledge.

A.9. KV-Retrieval Recipe

To probe retrieval behavior in isolation, we design a synthetic memorization task in which the model is asked to recall values
associated with keys presented earlier in the same prompt. Each input contains a list of key-value (KV) pairs, followed by a
query for the value of one of the keys. For example:

Memorize the following dictionary:
present:50
institute:0
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Figure 8. Results of the hybrid replacement experiment. Each Llamba-8B layer was replaced with its Llama-3.1-8B counterpart and
tested on MMLU. Most swaps had little or negative impact on the 33% baseline, but replacing layer 17—where a key Aggregate Head is
(Table 1)—significantly improved MMLU. This underscores both the difficulties SSMs face in replicating the Aggregate mechanism and
G&A critical role in MMLU performance.

MODEL #HEADS MMLU LAMB. GSM8K SWDE BBH KNOWLEDGE
ACC ↑ PPL ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑

Llama-3B

0 60.3 (+0.0%) 4.8 (+0.0%) 28.7 (+0.0%) 85.8 (+0.0%) 38.2 (+0.0%) 60.5 (+0.0%)
10 53.1 (-12.0%) 6.5 (+35.7%) 17.4 (-39.4%) 81.9 (-4.5%) 33.4 (-12.6%) 59.4 (-1.8%)
20 32.2 (-46.6%) 8.8 (+82.8%) 9.1 (-68.2%) 57.5 (-33.0%) 27.7 (-27.5%) 58.7 (-3.0%)
30 29.9 (-50.4%) 10.1 (+109%) 5.6 (-80.5%) 47.5 (-44.6%) 25.4 (-33.5%) 58.0 (-4.1%)

Llama-8B

0 68.1 (+0.0%) 3.4 (+0.0%) 27.3 (+0.0%) 90.8 (+0.0%) 45.1 (+0.0%) 68.5 (+0.0%)
10 61.9 (-9.1%) 4.2 (+22.0%) 21.7 (-20.5%) 87.3 (-3.9%) 37.7 (-16.5%) 67.1 (-2.0%)
20 38.1 (-44.0%) 6.8 (+98.6%) 9.4 (-65.6%) 79.5 (-12.4%) 29.2 (-35.2%) 64.8 (-5.4%)
30 38.7 (-43.2%) 7.3 (+115%) 7.8 (-71.4%) 74.0 (-18.5%) 29.0 (-35.7%) 64.4 (-6.0%)

Llamba-3B

0 52.5 (+0.0%) 3.6 (+0.0%) - 21.3 (+0.0%) 9.2 (+0.0%) 63.8 (+0.0%)
10 42.6 (-18.9%) 5.2 (+44.4%) - 18.6 (-12.7%) 9.0 (-2.2%) 63.7 (-0.2%)
20 41.3 (-21.3%) 8.2 (+128%) - 18.1 (-15.0%) 9.0 (-2.2%) 63.1 (-1.1%)
30 41.2 (-21.5%) 9.1 (+153%) - 18.1 (-15.0%) 9.0 (-2.2%) 62.6 (-1.9%)

Llamba-8B

0 60.7 (+0.0%) 4.09 (+0.0%) - 20.0 (+0.0%) 11.0 (+0.0%) 69.1 (+0.0%)
10 59.6 (-1.8%) 6.26 (+53.2%) - 18.3 (-8.5%) 11.6 (+5.5%) 68.8 (-0.4%)
20 59.0 (-2.8%) 6.99 (+70.8%) - 18.6 (-7.0%) 11.4 (+3.6%) 68.6 (-0.7%)
30 58.1 (-4.3%) 7.44 (+81.9%) - 18.1 (-9.5%) 11.4 (+3.6%) 68.2 (-1.3%)

Zamba2-2.7B

0 55.7 (+0.0%) 4.2 (+0.0%) 57.4 (+0.0%) 89.5 (+0.0%) 30.6 (+0.0%) 66.8 (+0.0%)
10 42.4 (-23.9%) 12.8 (+204%) 24.7 (-57.0%) 84.3 (-5.8%) 25.5 (-16.7%) 64.8 (-3.0%)
20 37.2 (-33.2%) 22.2 (+428%) 6.5 (-88.7%) 74.4 (-16.9%) 17.4 (-43.1%) 62.6 (-6.3%)

Zamba2-7B

0 65.1 (+0.0%) 3.1 (+0.0%) 60.5 (+0.0%) 91.7 (+0.0%) 33.0 (+0.0%) 70.6 (+0.0%)
10 63.0 (-3.2%) 3.6 (+16.1%) 40.1 (-33.7%) 80.0 (-12.8%) 24.6 (-25.5%) 68.7 (-2.7%)
20 57.3 (-12.0%) 5.2 (+67.7%) 27.6 (-54.4%) 75.1 (-18.1%) 28.9 (-12.4%) 67.5 (-4.4%)
30 54.0 (-17.1%) 7.0 (+126%) 18.4 (-69.6%) 43.7 (-52.3%) 24.0 (-27.3%) 67.3 (-4.7%)
40 50.6 (-22.3%) 9.5 (+206%) 14.9 (-75.4%) 41.2 (-55.1%) 21.7 (-34.2%) 67.0 (-5.1%)
50 37.7 (-42.1%) 13.9 (+348%) 7.5 (-87.6%) 39.6 (-56.8%) 18.5 (-43.9%) 67.0 (-5.1%)
60 36.2 (-44.4%) 19.8 (+538%) 7.2 (-88.1%) 39.6 (-56.8%) 15.9 (-51.8%) 66.5 (-5.8%)

Table 4. Impact of Disabling G&A Heads Across Models. Each value reports the change relative to the 0-head configuration.
Evaluations are conducted on MMLU (Hendrycks et al., 2021), LAMBADA (Paperno et al., 2016), Grade School Math (GSM8K)
(Cobbe et al., 2021), SWDE (Arora et al., 2024), Big-Bench Hard (BBH) (Suzgun et al., 2022), and knowledge-focused tasks defined in
Section 3.1. Note that (1) GSM8K and BBH are evaluated using the “exact-match, flexible-extract” metric; (2) GSM8K is omitted for
Llamba models, which were not trained on mathematical datasets and are not intended for arithmetic reasoning.

scallops:84
neuropsychiatry:67
The value of the key ’scallops’ is
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Evaluation Setup. We use dictionaries containing key-value pairs and evaluate the model on randomly generated examples.
For each example, we assess the model’s ability to retrieve the correct value under two settings:

1. Generation: The model is prompted with the full dictionary and asked to generate 10 additional tokens. We check
whether the correct value appears anywhere in the generated output.

2. Answer Scoring: Each possible value from the dictionary is appended to the end of the prompt, and the log-probability
of the resulting sequence is computed. The value assigned the highest log-probability is treated as the model’s prediction.

The key difference between these strategies lies in how the model expresses its beliefs. Generation allows the model to
unfold a short sequence of reasoning steps, operating within a richer space of token-level interactions. However, this
flexibility comes at the cost of interpretability, making it harder to surgically probe the model’s internal mechanisms. Answer
scoring, by contrast, restricts the model to a fixed set of candidates, offering a more direct readout of its internal ranking.

This distinction is important because generation can surface hallucinations—cases where the model outputs values not
present in the dictionary or otherwise digresses from the task—while answer scoring is restricted to valid options. We find
that the heads responsible for hallucinations differ from those that enable correct retrieval. This stands in contrast to the
formulation of Wu et al. (2024), who used generation alone and concluded that “retrieval heads” may be responsible for
hallucinations.

Prompt Format. We test two variants of the query prompt that differ only in their final character:

1. ‘The value of the key ‘scallops’ is‘ and

2. ‘The value of the key ‘scallops’ is ‘ (with a trailing space).

Though superficially similar, these variants elicit markedly different behaviors under Answer Scoring. In variant (1), the
model must evaluate completions like ‘The value of the key ‘scallops’ is84‘, which lacks a space and
results in unnatural tokenization. Surprisingly, this unnatural format is highly diagnostic: head-level retrieval signals
emerge clearly with as few as 20–30 key-value pairs. In contrast, variant (2), which uses the more natural space-delimited
form, requires much longer dictionaries to produce similar head-level effects. For comparison, Wu et al. (2024) relied on
35K-token contexts to observe such patterns—well beyond typical context lengths.

We hypothesize that this discrepancy reflects a shift in the distribution of retrieval effort across the model. When the prompt
ends cleanly on a token boundary, the model can offload the task to a small number of dedicated retrieval heads. By contrast,
introducing a continuation token (like a space) appears to encourage more distributed processing across heads.

Head-Ablation Protocol. To identify attention heads involved in retrieval, we systematically ablate each head by zeroing
out its output projection and measure the resulting drop in accuracy under Answer Scoring (without the trailing space). This
procedure isolates heads that are critical for retrieval while keeping computational overhead low.

Overall, this setup offers a clean and flexible diagnostic for in-context retrieval—independent of natural language or factual
knowledge—and clarifies how individual heads contribute to this core algorithmic skill.
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