Directed Exploration in Reinforcement Learning from
Linear Temporal Logic

Marco Bagatella Andreas Krause
Department of Computer Science Department of Computer Science
ETH Ziirich, Ziirich, Switzerland ETH Ziirich, Ziirich, Switzerland

mbagatella@ethz.ch

Georg Martius
Max Planck Institute for Intelligent Systems
Tiibigen, Germany

Abstract

Linear temporal logic (LTL) is a powerful language for task specification in
reinforcement learning, as it allows describing objectives beyond the expressivity
of conventional discounted return formulations. Nonetheless, recent works
have shown that LTL formulas can be translated into a variable rewarding and
discounting scheme, whose optimization produces a policy maximizing a lower
bound on the probability of formula satisfaction. However, the synthesized
reward signal remains fundamentally sparse, making exploration challenging.
We aim to overcome this limitation, which can prevent current algorithms from
scaling beyond low-dimensional, short-horizon problems. We show how better
exploration can be achieved by further leveraging the LTL specification and
casting its corresponding Limit Deterministic Biichi Automaton (LDBA) as a
Markov reward process, thus enabling a form of high-level value estimation. By
taking a Bayesian perspective over LDBA dynamics and proposing a suitable
prior distribution, we show that the values estimated through this procedure can
be treated as a shaping potential and mapped to informative intrinsic rewards.
Empirically, we demonstrate applications of our method from tabular settings to
high-dimensional continuous systems, which have so far represented a significant
challenge for LTL-based reinforcement learning algorithms.

1 Introduction

Most reinforcement learning (RL) research has traditionally focused on a standard setting, prescribing
the maximization of cumulative rewards in a Markov Decision Process [30,|37]]. While this simple
formalism captures a variety of behaviors [36], its expressiveness remains limited [[1]. In pursuit of a
more natural and effective way to specify desired behavior, several works have turned towards logic
languages [6} 18l [15} 20, [26]]. Originally designed to describe possible paths of a system (with direct
applications, e.g., in model checking [2]), Linear Temporal Logic (LTL) [29] has been found to strike
an interesting balance between expressiveness and tractability.

Several works [3| 16} 42] have proposed a reward and discounting scheme to distill a policy through
RL from an LTL specification. Crucially, this policy optimizes a lower bound on the probability
of satisfying the specification [42]. However, this scheme results in a sparse reward signal and a
potentially flat value landscape, thus making exploration a fundamental challenge.
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Figure 1: Overview of DRL?. DRL? leverages an LDBA representation of the task (top left) and a
Bayesian estimate of its transition kernel (top center) to define a distribution over Markov reward
processes (top right), which can be used for high-level value estimation (bottom right). Resulting
values are mapped to an intrinsic reward signal (also bottom right), which guides exploration in the
product MDP (bottom left).

The necessity for strong exploration algorithms when learning from LTL specification is therefore
evident. Existing methods rely on counterfactual data augmentation schemes [42], which however do
not directly guide the agent in the underlying MDP, on the availability of a task distribution [44], or
on heuristics [[16]. Closer in spirit to our work, task-aware reward shaping has briefly been explored
in the context of logic on finite traces [6} 20], but has not been scaled to w-regular problems and
cannot adapt to unknown environment dynamics.

The main idea of our work is the distillation of an intrinsic reward signal from the structure of the
LTL specification itself. In particular, we repurpose the Limit Deterministic Biichi Automata (LDBA)
constructed from an LTL formula as a Markov reward process, by assuming a transition kernel over
LDBA states. We then leverage the reward process to perform a form of high-level value estimation
and compute values for given LDBA states. These values can be naturally leveraged for potential-
based reward shaping. Crucially, we adopt a Bayesian perspective on estimating the transition
kernel over the LDBA: by choosing a suitable prior distribution, we ensure that intrinsic rewards are
informative from the initial phases of learning. This is done by optimistically assuming that the agent
is capable of transitioning to any adjacent LDBA state in a single step, although this might not be
easily afforded by the dynamics of the environment. Moreover, by updating the distribution according
to evidence, the assumed transition kernel can be adapted over time to realistically represent the
agent’s behavior and environment’s dynamics.

Our method, named DRL? (Directed Reinforcement Learning from Linear Temporal Logic), is
illustrated in Figure[T]and is capable of driving deep exploration in reinforcement learning from linear
temporal logic specifications. The contributions of this work can be outlined as follows:

1. we design and introduce a method for exploration in reinforcement learning when learning
from LTL specifications, by casting the LDBA as a Markov reward process and leveraging it
for value estimation and distillation of intrinsic rewards;

2. we analyse the proposed method and the degree of suboptimality potentially induced by
intrinsic rewards;

3. we evaluate the method across diverse settings, spanning from simple tabular cases to
complex, high-dimensional environments, which pose a significant challenge for RL from
LTL specifications.

Section@ provides an introduction to LTL and its connection to RL. Our method is described in

Section 3|and evaluated in Sectiond] A discussion of related works and of the proposed one can be
found in Sections [5]and [f] respectively.

2 Background

This section provides a brief introduction to linear temporal logic and discusses connections to
reinforcement learning. For a complete introduction, we refer the reader to Baier and Katoen [2].



Linear Temporal Logic LTL formulas build upon a finite set of propositional variables (atomic
propositions, AP), over which an alphabet is defined as the powerset & = 24P i.e. the combinations
of variables evaluating to true.

As a more concrete, illustrative example, let us consider a farming robot, which is tasked with
continually weeding through any of three different fields. The presence of the robot in each field
could be described by the set of atomic propositions {a, b, c}. When the robot is operating in the first
field, a would evaluate to true (T), while b and ¢ would evaluate to false ().

Definition 2.1. (LTL Formula) An LTL formula is a composition of atomic propositions (AP), logical
operators not (—), and (A) and or (V) and temporal operators next (X) and until (U). Inductively:

e if p € AP, then p is an LTL formula;
¢ if ¢ and 0 are LTL formulas, then =¢, ¢ A 0, ¢ V 0, X ¢ and ¢ U 6 are LTL formulas.

Intuitively, while logical operators encode their conventional meaning, the next operator evaluates
to true if its argument holds true at the very next time step, and until is a binary operator which
requires its second argument to eventually evaluate to true, and its first argument to hold true until
this happens. From this sufficient set of operators, additional ones are often defined in order to allow
more concise specifications. In the context of reinforcement learning for control, useful operators
are finally (F(¢) := TU¢) and globally (G(y) := —~F—¢). Returning to our example, they
could be used to specify stability (F'Ga, i.e., reach and remain in the first field), or avoidance (G—a,
i.e., never enter the first field). A more complex task, which requires the farming robot to visit the
first and third fields, repeatedly, while always avoiding the second one, could be simply represented
as (GF(a A X Fc)) A (G—b). Through this work, we will refer to this task as Tp.

Each LTL formula can be satisfied by an infinite sequence of truth evaluations of AP (i.e., an w-word).
While a direct definition is also possible [38]], for simplicity, satisfaction will be introduced through
the acceptance of paths in an automaton built from the formula.

From Formulas to Automata A practical way of handling formula satisfaction involves the
introduction of Limit Deterministic Biichi Automata (LDBAs). An LDBA can be constructed from
any LTL formula [35] and is able to keep track of the progression of its satisfaction.

Definition 2.2. (Limit Deterministic Biichi Automaton — LDBA) An LDBA is a tuple £ = (B, X U
AB , pPB , B*,by), where B is a finite set of states, ¥ = 24P is an alphabet over atomic propositions,
AB B — {0,..., N — 1} is the subset of indexed jump transitions available at each state, P® : B x
(EUAB ) — Bis a transition function, B* C Bis a set of accepting states and by € B is the initial state.

We remark that jump transitions A% are relevant for a subset of formulas including, e.g. stability
problems. While our method can be applied independently from their presence, for the sake of
simplicity, an extension to jump transitions is presented in Appendix[I|

An infinite sequence of LDBA actions (a;) €
(X)*° induces a path p = (b;)5° according to
b7;+1 = PB(bi, ai).

Definition 2.3. (Acceptance) An LDBA L ac-
cepts a path (b;)5° if and only if the path visits
an accepting state b* € B* infinitely often, that
isVt € N, 3¢’ > t such that by € B*.

GF(- & XF) & G

By translating each LTL specification into an Figure 2: Illustrative task Ty (left), and LDBA
LDBA, it is now possible to tie formula satis- encoding the formula (right, with starting state
faction to the acceptance of a path: informally, marked as 0 and accepting state in green). The
an infinite sequence of AP evaluations (w-word) farming robot (in green) moves in a 2D plane,
satisfies a formula ¢ if and only if the path where three areas of different colors represent
(b;)&° induced by the w-word in the LDBA £ fields. {a, b, c} are atomic propositions that evalu-
synthesized from ¢ is accepted. ate to true when the agent enters the yellow, blue
and red field, respectively. A trajectory satisfying

Let us consider the example in Figure 2] for the the specification is shown.

illustrative task 7y and the LTL formula ¢ =
(GF(a N XFc)) A (G-b). The periodic LDBA path (0, 1,2)*° is accepted, just as (0, 1,1,2)>,
although the latter takes on average more steps to reach the accepting state. On the other hand, the



paths (0) or (0, (3)>°) would not be accepted, as neither ever reach the accepting state, with the
second getting caught in a sink state by violating the avoidance criterion in ¢.

We note that this notion of success relies on conditions that are achieved eventually in the future,
independently of temporal distance. While this leads to myopic behavior under naive optimization
[42]], recent works [3l 7} [16} 142]] propose an elegant rephrasing for formula satisfaction in an RL-
friendly form, as we now describe.

Product MDPs and Policy Optimization The following part describes standard RL terminology
and then reconciles it with the introduced logic machinery.

Definition 2.4. (Markov Decision Process — MDP) A Markov Decision Process is a tuple M =
(S, A, P,R,~, o), where S and A are potentially continuous state and action spaces, P : S x A —
A(S) is a probabilistic transition kernel'} R : S x A — R is a reward function, + is a discount factor,
and po € A(S) is the initial state distribution.

MDPs are the standard modeling choice for RL environments; however, they are disconnected from
atomic propositions and unable to track progression over formula satisfaction. The semantics of APs
can be grounded in MDP states through a labeling function F : § — X, which evaluates APs in each
MDP state. On the other hand, progression over task satisfaction can naturally be stored in an LDBA,
as its states encode sufficient information on the history of paths.

Finally, all three components (MDP, labeling function and LDBA) can be synchronized to ensure con-
sistency between trajectories in each of them and enable mapping policies to distribution over paths,
and therefore likelihoods of formula satisfaction [[15,!42]. This can be done by defining a product MDP
M* = (8, A, P* R*,v™, 1 ), where S* =8 x B, A* = Aand u (s,b) = po(s) - Lp—p,-

The transition kernel over M * needs to guarantee that both the underlying MDP and the LDBA
evolve consistently. This synchronization is achieved through the labeling function F:

PX((s',V)) | (s,b),a) = P(s" | 5,a), with b’ = P5(b, F(s')). )]

Through this construction, it is finally possible to connect trajectories (and, therefore, policies) to
satisfaction of a given LTL formula. Let us consider an LTL formula ¢ and its corresponding LDBA
L, as well as a trajectory 7 = (;, b;)5° in the product MDP M*. Then, 7 |= ¢ (7 satisfies ) if
and only if £ accepts the path (b;)5°, i.e., the projection of 7 to LDBA states. Finally, let us consider
apolicy 7 : §* — A(A*): the probability of 7 satisfying o can thus be defined as the probability
integral for trajectories satisfying the formula: P(7 = ¢) = E;~r 1,—,. Optimizing a policy 7
for satisfaction of an LTL specification ¢ can be expressed as finding 7* € argmax .y P(7 = ¢)
. Prior works [[15} 42] have proposed RL-friendly proxy objectives, which optimize a lower bound
on the probability of LTL formula satisfaction:

7 € argmax E [ZF,;RX(bi)] (:= V), where @)
rem Tow Lo
o v, b€ B*
X(bh.) — . — - X X _ ) t
R*(bi) = 1pepy, Do =1, T t:HOv (b)), 7 (br) {1’ otherise. 3)

Paraphrasing, 7} maximizes the visitation count to accepting states in the LDBA under eventual
discounting. For a formal analysis of the policy recovered by this objective, we refer the reader to
Voloshin et al. [42]]. Our work builds upon this formulation and devises an exploration method to
compensate for its drawbacks. That is, the reward function R* is fundamentally sparse: the agent
only receives feedback when a significant amount of progress toward solving the task has been made,
and thus an accepting LDBA state is visited. As a result, while naive exploration might reach several
non-accepting LDBA states, the agent remains unable to evaluate them, as it is largely uninformed of
the yet unexplored parts of the LDBA. Our method distills the global known structure of the LDBA
in a denser intrinsic reward signal for exploration.

' A(S) represents the space of probability distributions over S.



3 Method: Directed Exploration in Reinforcement Learning from LTL

Our method relies on (i) repurposing the LDBA as a Markov reward process by assigning a transition
kernel, as well as rewards and discount signals for each transition, (ii) defining a value estimation
operator to compute high-level values for each LDBA state, and finally (iii) leveraging these values
for potential-based reward shaping. This procedure is described in Section[3.1} It takes an LDBA and
a transition kernel as input and returns intrinsic rewards for each transition in the product MDP. A
second and crucial component, discussed in Section @ is the estimation of the LDBA transition
kernel, which is essential for ensuring informative intrinsic rewards: by taking a Bayesian perspective,
we show that a symmetric prior can induce strong exploration. Finally, Section [3.3|connects each
component and describes a practical instantiation of the algorithm.

3.1 High-level Value Estimation from LDBA

As described in Section 2] an LDBA can be naturally synthesized from a given LTL specification,
through well-known schemes [35]. We now show how an LDBA can be recast as a Markov reward
process, which can be leveraged for computing values for each LDBA state. This construction
requires 2 ingredients, namely (i) an LDBA L, and (ii) a transition kernel K over LDBA states,
where K is a stochastic matrix such that K; j = E,. px Pt =bj]b=1b;), ie., an estimate of the
probability for the LDBA to transition to state b; starting from b; under some policy 7, assuming
stationarity. The choice of the transition kernel K is crucial for the effectiveness of the method and is
thus treated in detail in the following section.

Having access to these two ingredients, we can define a discrete Markov reward process £ =
(B, K,R*,v*,bp): the state space B and initial state by are left unchanged and coupled with the
transition kernel K. Moreover, we provide reward and a discounting functions: R* and v* are a
projection of the eventual reward and discounting scheme to the LDBA, as they are only dependent
on LDBA states (see Equation . A trajectory 7 = (bg, by, ...) can be sampled from the MRP
according to p(7) = [[5=; Kb, , ;- As any Markov reward process, the newly synthesized one
allows computing the value function under eventual discounting Vi (b) = Ex[> oo Ty R* (bt)]
with b;y1 ~ K (b;). The Markov property over the MRP induces the following Bellman equation
[37]:

Vi = R* +77 © (KVk), “
where a matrix notation is adopted: Vi, R* and v are represented as |B|-dimensional vectors, and
® stands for the Hadamard product. As the LDBA (and thus the MRP) is discrete and finite, the
Bellman equation defined over the MRP has a closed-form solution [37]]

Vi =1—-~v*0K)"'R*, 3)

where [ represents the identity matrix. As the MRP is closely related to the product MDP M * an
analysis of their connection is provided in Appendix [B}

Once value estimates V are computed, they can be treated as a potential function for reward shaping
[27], although under eventual discounting [42]:

Rine(b,b') = v (") Vi (b') — Vi (b). (6)

This reward signal can be added to the product MDP reward R* and optimized with an arbitrary RL
algorithm. We note that, as an instantiation of potential-based reward shaping, the optimal policy
in the product MDP remains invariant to this reward transformation, albeit under one additional
assumption.

Proposition 3.1. (Consistency) Let wus consider the product MDP M* =
(§*, A, P* R, v*, ) and its modification M* = (8%, A, P*,R* + Riur, 7", 13 )-

Under eventual discounting, any optimal policy in MX Sfor which Ty 28 0 is also optimal in M*.

The proof follows the general scheme for potential-based reward shaping [27] and extends it to the
eventual discounting setting (see Appendix [A).

*In the case of exceedingly complex specifications, and thus large LDBAs, iterative methods could be a
viable replacement.



While this procedure allows the synthesis of an intrinsic reward signal for arbitrary logic specifications,
the informativeness of this signal relies on two factors. The first factor is the existence of a sink
state, which occurs across many (but not all) LDBAs constructed from LTL formulas (e.g., formulas
involving global avoidance, as the illustrative task 7j). Its absence can be remedied by augmenting
the MRP state space with a virtual sink state, reachable from all other states and associated with
an eventual reward and discount factors of 0 and 1, respectively (see Appendix [C]for a complete
discussion and evaluation). The second factor lies in the transition kernel K. While Proposition
[3.T] guarantees that no kernel perturbs the optimal policy, it does not quantify how a chosen kernel
affects learning efficiency. The following section outlines how a careful choice of its initialization
and estimation is crucial to the practical effectiveness of the algorithm. Other alternatives are ablated
empirically in Appendix [F

3.2 Optimistic Priors for High Level Value Estimation

Let us consider a naive approach to the choice of
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The method would thus be rendered ineffective. Figure 3: Top: a randomly initialized policy is
executed in the product MDP M* for TO; its em-
pirical transition kernel K results in uniformly zero
value estimates Vi . Bottom: the expected value
for K over a posterior distribution estimated from
a symmetric prior results in informative value esti-
mates and intrinsic rewards.

In order to address this issue, we adopt a
Bayesian approach to the problem of estimat-
ing the LDBA transition kernel K. Let us con-
sider each row K;, which models a categorical
probability distribution over future LDBA states
from each LDBA state b; € 3. At its core, our
method proposes a prior distribution over these categoricals, such that appropriate shaping of the prior
controls and directs the exploration in the product MDP. As the conjugate prior to categorical distri-
butions, we adopt a Dirichlet prior K; ~ P(K;) = Dir(a;,, ..., a; 5—1). The prior is informed of
the LDBA structure by setting c; ; = 0 if the LDBA does not allow transitions from b; to b;. For the
m remaining non-zero Dirichlet parameters, we adopt an partially symmetric prior by setting them to
a shared value -, where « is a hyperparameter controlling the strength of the prior: large values of «
induce slower convergence of the posterior distribution to the empirical transition kernel.

We remark that the choice of symmetry corresponds to the assumption that, at each step, the agent is
capable of transitioning to each adjacent LDBA state with equal probability. In practice, the agent
might actually take several steps in the underlying MDP in order to transition to any different LDBA
state; moreover, some LDBA transitions can be substantially harder to achieve than others. Finally,
for complex problems, naive exploration may not even result in observing the full set of possible
transitions in a practical number of time steps. However, assuming that the agent is capable of
transitioning under a max-entropy distribution allows reward signals to propagate to all states, thus
resulting in informative estimates for the high-level value Vi and the intrinsic rewards Rj,. For the
illustrative example T, this is displayed in the bottom part of Figure 3]

Furthermore, while the initialization of K is possibly unrealistic, the Bayesian framework provides a
natural way to update it as an N-step trajectory D = (b)Y is gathered in the product MDP:

P(K;|D) oc P(D|K;)P(K;) (7

foreach ¢ € [0,...,|B]|]. This update is tractable due to the choice of a conjugate Dirichlet prior
for the categorical likelihood described by the transition kernel. As training progresses, a posterior
distribution P(K|D) can be updated with collected evidence. Moreover, instead of computing
high-level values for a specific transition kernel K as in Equation[5} we can compute the expected



value V' under the posterior distribution of transition kernels P(K|D) and thus of MRPs:

V= E [l= E [[I-voK)'R*. 8)
K~P(K|D) K~P(K|D)

We remark that the maximization of V' corresponds to the average-case MDP problem, while other
procedures can be easily adapted to solve the Robust MDP [47] or the Percentile Criterion MDP
problems [10]. In practice, the expectation in Equation [§|can be estimated by sampling, with the
special case of Thompson Sampling when a single sample is used. Our approach to estimating the
transition kernel is ablated empirically in Appendix [F} a study of the hyperparameter « controlling
prior strength is in Appendix [G|

3.3 Practical Algorithm

This section combines the elements

outlined above into a practical scheme Algorithm 1 DRL?

for distilling an intrinsic reward, Input: Product MDP M*, prior distribution P(K)
which is reported in Algorithm[I] On for each iteration do

top of the ability to sample trajecto- Execute policy 7 in M* to collect data D for N steps
ries from the product MDP and access Update posterior P(K|D) with evidence D (Eq.

to its LDBA, the algorithm only re- Compute high-level values V' (Eq.

quires the specification of a prior dis- Sample training batch B (either on- or off-policy)

tribution P(K') over LDBA transition Add intrinsic reward to batch B (Eq.[6)
kernels, which is proposed in Section Train 7 with B through arbitrary RL algorithm
[3.2] The output is a policy 7 optimiz- end for

ing an eventually discounted proxy to
the likelihood of task satisfaction.

4 Experiments

This section presents an empirical evaluation of the method by investigating the following questions:

+ Can DRL? drive deep exploration in reinforcement learning from linear temporal logic
specification?

» How does DRL? perform across different environments and specifications?

 Can DRL? be scaled to high-dimensional continuous settings?

As the method is designed to handle the full complexity of LTL, our evaluation considers several
logic specifications, encompassing reach-avoidance (e.g., F'a A G(—b)) and subtask sequences (e.g.,
Ty : GF(a AN XFc) A G-b). In order to focus on exploration, the suite of formulas allows easily
scaling the number of LDBA states, or the minimum number of steps required in the underlying
MDP to induce a transition in the LDBA. To investigate the final question, we perform an evaluation
in both tabular and continuous domains. While the former avoids confounding effects arising from
function approximation, the latter stresses the ability to scale to complex underlying environments.
This also evaluates the versatility of DRL?2, as it is in practice coupled with tabular Q-learning [43]
and Soft Actor Critic [[12], respectively. In the first case, the environment involves navigation in a 2D
GridWorld, while in the latter we evaluate dexterous manipulation with a simulated Fetch robotic
arm and locomotion of a 12DoF quadruped robot and a 6DoF HalfCheetah. A detailed description
of the benchmark environments and specifications is provided in Appendix J} code is available at
sites.google.com/view/drl-2.

Baselines We compare DRL? to (1) a counterfactual experience replay scheme (LCER [42]), (2)
a novel baseline, that relies on inverse square root visitation counts of LDBA states to compute a
potential function for reward shaping (see Appendix[J), (3) the underlying learning algorithm with no
additional exploration bonuses. We note that other promising approaches for exploration in the LTL
domain exist, but they rely on meta-learned components or ad-hoc training regimes [31}44] and are
thus not suitable for a fair comparison.
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Figure 4: Return for Q-learning under eventual discounting. The three rows display reach-avoidance,
sequential and circular tasks, as illustrated on the right with optimal policies. Each atomic proposition
evaluates to T in cells of matching color; difficulty increases from left to right. Further details are
available in Appendix m DRL? is able to drive exploration when naive exploration is insufficient.

4.1 Tabular Setting

We first evaluate the exploration performance of DRL? by coupling it with tabular Q-learning [43]
when operating over discrete state and action spaces in the standard online episodic setting [37]].
The evaluation environment is a deterministic 2D gridworld, in which the agent can move in each
of the four cardinal directions by one unit at each timestep. The first row of Figure 4] evaluates a
reach-avoidance task G(a A —b), in which the agent needs to avoid a large area that covers all but
a corridor. The goal area is at the end of said corridor; and the difficulty of the task increases with
the length of the corridor. In this case the benefit of DRL? is evident, as it returns a negative reward
whenever the agent leaves the corridor, and the LDBA thus transitions to a sink state. The agent can
therefore direct its exploration towards a fraction of the state space, resulting in improved sample
efficiency. On the other hand, count-based shaping can only penalize transitions to the sink state once
it has been visited enough times. While LCER has the advantage of potentially ignoring failures by
hallucinating counterfactual LDBA states during training, it cannot discourage exploration of the
forbidden area. We remark that LCER remains a strong method significant when exploration of the
underlying MDP is not necessary; a detailed discussion is provided in Appendix [E}

The second and third row of Figure ] evaluate sequential tasks. In both, the agent navigates a room
with several zones. In the first case, the agent must reach a sequence of zones in a given order; in
the second one, this must be repeated indefinitely while also avoiding the center of the room. While
the standard reward under eventual discounting would be zero until the last zone in the sequence is
reached, DRL? provides an informative reward at each LDBA transition, thus informing the agent to
direct exploration towards promising directions. Therefore, as number and size of the zones grows (to
the right), DRL? results in more efficient exploration by encouraging LDBA transitions towards the
accepting state. This encouragement is instead only dependent on visitation counts for the count-based
baseline and absent in LCER. We additionally evaluate variations of these tasks in Appendix [D]

4.2 Continuous Setting

After verifying the effectiveness of DRL? in interpretable settings, this section investigates if the
exploration signal can be scaled to high-dimensional, long-horizon environments requiring the
application of deep RL algorithms. For simplicity, we evaluate its application to Soft Actor Critic
(SAC) [12]], which stands as a fundamental building block for many algorithms 24]]. On
the top of Figure [5]a simulated Fetch robotic arm [9] is evaluated on two tasks, namely (i) moving
its gripper to a specific location while avoiding lateral movements and (ii) gradually producing an
horizontal alignment of three cubes. In the middle, an HalfCheetah receives specifications encoding,
respectively, finite sequences of positions and infinite sequences of angles for its center of mass,
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Figure 5: Return for SAC under eventual discounting on Fetch (left), Doggo (center) and HalfCheetah
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coupled with deep RL.

Returns

resulting in precise horizontal locomotion, and in front flipping indefinitely. On the bottom, a 12DoF
simulated quadruped robot [33] is tasked with (i) fully traversing a narrow corridor, or with (ii)
navigating through two zones in sequence. As in the tabular case, the four tasks can all be described
through LTL formulas encoding reach-avoidance and sequential behavior. They are reported among
further details on the environments in Appendix[J}

As expected, in this setting the evaluation is slightly noisier and partially constrained by the learning
algorithm. Nevertheless, when applied to significantly more complex underlying environments,
DRL? is competitive with the stronger baselines in simpler problems, and largely outperforms them
when exploration in the underlying MDP becomes more challenging. Interestingly, we observe that
counterfactual experience replay (LCER) is less effective in this setting. We remark that LCER can
generate unfeasible states for the product MDP, which can be harmful when the agent has the ability
to interpolate between training samples.

5 Related Work

Learning from LTL specification has seen remarkable progress in recent years. While this section
provides an essential overview, an extended selection of works is presented in Appendix [H]

LTL is among several languages for task specification in RL: for instance, numerous works have
investigated Reward Machines [19, 20], which however do not match the expressiveness of LTL.
While Reward Machines can be very effective for reward shaping, either through heuristics [5]] or
value iteration [6], these methods are static and do not naively generalize to our setting.

The combination of LTL and RL has initially focused on reconciling logic and policy optimization
through the definition of a product MDP and the design of a reward signal encouraging task satisfaction
[13L 15416, 150 1164 22] 26]. This led to the development of principled approaches, proposing schemes
that provably and directly optimize a lower bound on the likelihood of formula satisfaction 34, 42].
The sparsity of rewarding schemes has motivated the development of several methods, traditionally
resorting to heuristics [[26], hierarchical decomposition [4, [21]], relabeling [31]] or metalearning [40,
44]], thus introducing potential suboptimality, off-policiness and additional requirements, respectively.

To the best of our knowledge, our approach is novel in its adaptive and informed estimation of the
high-level Markov reward process, resulting in a directed exploration method that retains optimality.

6 Discussion

This work proposes DRL?, an exploration method for reinforcement learning from LTL specifications.
By casting the LDBA encoding the specification as a Markov reward process, we enable a form of
high-level value estimation, which can produce value estimates for each LDBA state. These values
can be leveraged as a potential function for reward shaping and combined with an informed Bayesian
estimate of the LDBA transition kernel to ensure an informative training signal. As a result, DRL?
accelerates learning when non-trivial exploration of the underlying MDP is necessary for reaching an
accepting LDBA state, as is often the case for complex specifications.



Limitations DRL? is not designed to directly address certain exploration issues (such as jump
transitions). Nonetheless, it can be seamlessly combined with existing experience replay methods
that do. As several other exploration schemes, we note that DRL? introduces a slight non-stationarity
in the reward signal, which needs to be addressed by the underlying learning algorithm.

Outlook This work opens up exciting future directions, including a formal analysis of which reward
shaping terms would not only grant consistency, but also maximize sample efficiency. Moreover,
as DRL? leverages the LDBA structure, its effectiveness is dependent on it. Its applicability can
thus further benefit by LDBA construction algorithms that do not return an arbitrary LDBA in its
equivalence class, but rather the one which is most suitable for guiding an RL agent.

Having shown how the fundamental problem of sparsity for complex LTL tasks can be addressed by
directly leveraging their structure, we believe that the evidence provided in this work further supports
reinforcement learning as suitable paradigm for extracting a controller from a logic specification,
simply via interaction and learning.
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A Proof of Proposition 3.1 and Further Analysis

This section presents a proof for Proposition [3.1]in Section [3] which we also report in its entirety for
ease of reference, and further discusses how the intrinsic reward is informed by the task.

Proposition A.l. (Consistency) Let us consider the product MDP M* =
(8%, A, P*,R*,v*, uy) and its modification M* = (8%, A*,P*,R* 4+ Rinr, 7", i )-
Under eventual discounting, any optimal policy in M* for which I' “28° 0 is also optimal in M*.

The proof consists of a simple extension of known results on potential-based reward shaping [27] to
account for eventual discounting. Let us consider an arbitrary state-action pair (sg,ag) € S* x A*

and the optimal Q-function in M under eventual discounting :

X
T, px L

QI(SO,(I()) = [Zl“t 3t7 Gy, 3t+1) + Rmtr(staatv st+1)):| (9)
= H%[ FtRX(St,ausm)+ZFtRimr(8t,at,st+1))} (10)
T t=0 t=0
= Qls0.a0) + B | DT Rulse, . 501))| (11)
P 0
= Ql(so,a0) +_E :Zrt (3110 (brs) = V' (b0))] (12)
= QY(s0,a0) + E _ZM (s141)V (b)) = D_TV(®)| - (13)
t=0
= Q(s0,00) + Jim [TV (b) =7 (s0)V (bo)] (14)
= Ql(so.a0) + fim B[PV (b)) — 7 (s0)V (bo) (15)

where Q7 is the optimal Q-function in M* under eventual discounting. If the assumption holds, and

Iy F2ge 0, then the second term fades, and we have

Q7 (s0,a0) = Q7 (s0,a0) —v* (s0)V (bo) (16)

The difference between the two Q-functions Ql and Q)] is therefore constant at any given state. Thus,

7*(s) = argmax Q] (s, a) = argmax Q) (s,a) = 7*(s). O (17
acAX acAx

As stated above, this invariance relies on the assumption that the product of discounts converges
to zero, which would happen in case an accepting state is visited infinitely often. Intuitively, once
a good policy is found, the contribution of the intrinsic reward fades, and there is no incentive for
optimization algorithms to update the policy away from its optimum. While this assumption often
holds for the optimal policy (e.g., in deterministic environments), there are cases in which this may
not be true (e.g., in the stochastic case, if the LDBA features a sink state). Nevertheless, we note that
the assumption holds for optimal policies in tasks considered in this paper, and in recent literature
[42].

On the other hand, in cases in which the assumption does not hold (e.g., as often happens for a random
initialized policy), the intrinsic reward can in principle still bias the policy and drive exploration well.
For instance, let us assume that the likelihood of visiting an accepting LDBA state under the current
policy 7 is exactly zero. This implies R*(-) = 0,7*(-) = land I'; = Ht o’Y *(by) = 1. In this
case, the value under eventual discounting for an arbitrary state sy € S* is
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o0

VJ(SO,CL()) = IEIZQ [Zrt(RX(St,at73t+1) +Rintr(5t7at78t+1))} (18)
Tr*7 X t:0

= E [ZRintr(Sta at, 5t+1)>} (19)
P

= B[ 27 (se)V (o) - V)| 20)
ﬂ.*7 X i—0

= Jim E_ [V (b0)] =V (b0). 1)

Thus, a policy optimizing the value function under eventual discounting with the intrinsic reward
provided by DRL? also maximizes the likelihood of eventually reaching the LDBA state with
maximum high-level value V. It is easy to show that this corresponds to the accepting state b* in the
LDBA as the high-level value of any LDBA state b € Bis V' (b) = (1 — P, (=b*|b))V (b*) < V(b*),
where P, (—b*|b) is the likelihood of never reaching the accepting state under the current policy.

We can thus conclude that a policy trained with DRL? preserves its asymptotic optimality, while also
benefiting from an informative exploration signal during early stages of training.

B Connection Between MRP and Product MDP

This section discusses the relationship between product MDP (introduced in Section [2) and MRP
(described in Section [3)) in further detail. Let us consider a trajectory in the product MDP 7 =
((s0,b0), (s1,b1),...). Due to the construction of the MRP, the return of the projection of 7 to
the MRP state space (in this case, (bg, b1, ... )) is the same as the return of 7 in the product MDP,
evaluated according to R* and v*. A similar argument can be made for a policy 7 given a fixed
starting state (sg, bg). If the MRP transition kernel K is a projection of the transition kernel induced
by 7 in the product MDP, then the value Vi (by) computed in the MRP matches the value computed
in the product MDP V™ ((sg,bp)). Nonetheless, we remark that the MRP can be seen as a high-
level approximation of the product MDP, and as such it loses information. Thus, it may not be
straightforward to leverage the MRP to accurately compute values for arbitrary MDP states, to the
best of our knowledge.

C Addition of a Virtual Sink State

As described in Section a design choice in DRL? involves the construction of a virtual sink state
for LDBAS that do not feature one, where a sink state can be defined as an LDBA state b, € 1B such
that PB (b, -) = bs.

Let us consider an LDBA featuring a path from each state to an accepting state. Moreover, let us
consider a transition kernel K with full support over reachable LDBA states (as is the case for likely
samples under the prior proposed in Section[3.2)). In this case, the values computed under eventual
discounting by solving Equation |8 would be uniform: Vi = ﬁ As a consequence, intrinsic
rewards computed through Equation [6| would be constantly zero until an accepting state is visited and
thus uninformative. This is a natural consequence of the fact that, if irreversible failure is not possible,
any policy inducing a transition kernel with a good enough support will satisfy the specification,
considering an infinite horizon.

In order to provide an informative learning signal, DRL? augments LDBASs that do not feature a sink
state with a virtual one and assumes that it can be reached from any other LDBA state. We note that
this is equivalent with associating each LDBA state with a discount factor equal to the likelihood of
transitioning to the virtual sink. While this can introduce myopic behavior [42], we remark that DRL?
also learns and updates its estimate of the LDBA transition kernel. As any virtual sink state cannot in
practice be reached, the likelihood of transitioning to it from each visited LDBA state converges to
zero as the number of environment steps increases. Thus, as training progresses, any virtual sink is
effectively removed, together with any degree of myopia introduced.

14



Sequential, easy Sequential, medium Sequential, hard F(a&XF(b&XFC))

4 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Steps Steps Steps

s DRI.? === DRL? w/o0 virtual sink No exploration

~
S

Returns
~ IS
o s &
Returns
o
o o

Returns

Figure 6: Ablation of the addition of a virtual sink for DRL2. When a sink state is not featured nor
added (e.g. in sequential tasks), the performance of the No-exploration baseline is recovered.

Among the tasks considered in Figure ] MRPs for sequential tasks do not naturally feature a sink
state. To support the discussion, we additionally provide empirical evidence on the performance of
DRL? in these tasks when a virtual sink is not added. We note that performance on other tasks would
not be affected, as they naturally feature a sink state.

In Figure @ we observe that DRL? without a virtual sink state recovers the performance of the
No-exploration baseline, as expected. Experimental settings are the same as those outlined in Section

D Additional Tabular Results

Optimal policies for the reach-avoidance tasks from Figure [ (first row) would also solve a shortest-
path reaching problem in the underlying MDP. In other words, a linear path to the goal does not
violate the constraints. This Section evaluates a variation of the original task, by reshaping the safe
area of the reach-avoid task into a U-shape. In this case, the shortest path to the goal violates the
avoidance constraints. Fortunately, changing the shape of the avoidance zone only results in a local
change to the labeling function F. DRL?, as well as other baselines, can handle arbitrary relabeling
functions; thus these methods can adapt to arbitrary environment layouts.

Results are reported in[7] for all task variants (easy, medium and hard). In general, as the path length
has now increased, performance globally decreases accordingly. Nevertheless, the overall relative
performance of each methods is consistent with the original version of the task. We note that LCER
now outperforms the count-based baseline, as it can effectively ignore previous visits to the zone
to avoid. In the extreme case in which the length of the U-maze is very large, but the starting position
is very close to the goal if the avoidance constraint is ignored, we expect LCER to perform even
better.

E Comparison to LTL-guided Counterfactual Experience Replay (LCER)

The environments and tasks presented in Section 4] require significant exploration in the underlying
MDP and stress the ability to leverage the semantics of LDBA states to accelerate this process.

LTL-guided Counterfactual Experience Replay [41]] takes an orthogonal approach to the problem
of exploration when learning from LTL formulas and represents a very strong baseline in specific
environments. In particular, LCER does not leverage the semantics of the LDBA, however it
generates synthetic experience by fully controlling its dynamics. Transitions ((s, b), a, (s’, b)) with
{(s,0),(s',0')} C S* and a € A* are relabeled by uniformly resampling the initial LDBA state and

simulating the LDBA transition caused by action a, resulting in a new transition ((s, ), a, (s', ).

U-reach-avoid, hard

U-reach-avoid, easy U-reach-avoid, medium
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Figure 7: Alternative evaluation of reach-avoid task involving a conflict between reaching objectives
and avoidance constraints. Results are consisted with those in Figure ]
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Figure 8: Comparison of DRL2, LCER and additional baselines in the Sequential task from Figure
(left) and an additional variation (right). LCER performs very well when significant exploration of
the underlying MDP is not required, as is the case for the example on the right. To the left of each set
of training curve, the task is represented, and an optimal policy is visualized.

Generated transitions respect the transition kernel of the product MDP and are thus valid training

samples. However, the method does not guarantee that relabeled product states (s, 5) are actually
feasible, as the set of reachable product states might only consist of a manifold of the full Cartesian
product of MDP and LDBA state spaces. For instance, let us consider the illustrative task 7} as
displayed in Figure[2} at any step, if the agent is in the red field, the LDBA would necessarily be in
its sink state and in no other state. Any relabeling of this particular state would thus not be relevant.
Furthermore, as a form of state relabeling, LCER cannot generate on-policy data, as the on-policy

action sampled in (s, b) might be different than the original action sampled in (s, b) [32].

Nevertheless, LCER remains a very strong exploration method in environments in which each MDP
state can be associated with several LDBA states; furthermore, in the presence of sink LDBA states,
LCER can hallucinate their avoidance. In this merit, we report an additional experiment in Figure
evaluating DRL?, LCER and baselines in a modified version of the Sequential environment from
Figure @] In its original version (on the left), the accepting LDBA state can only be visited once
the distant final zone (in bright purple) is reached. In this case, LCER is not effective. However,
if the zones are rearranged in a way such that they can be visited without excessive exploration in
the underlying MDP (e.g., by placing them closer to the starting MDP state, as done on the right),
the performance of LCER largely improves, fully bridging the gap with DRL2. We note that the
modified version of the task requires fewer steps to reach an accepting state from the starting one; the
baseline without exploration incentives also solves the task, albeit less efficiently. For evaluations on
additional variations of tabular tasks, we refer the reader to Appendix [D]and ]

LCER and DRL? thus address different issues in exploration from logic formulas. Fortunately, the
two methods are orthogonal and can be freely combined.

F Kernel Estimation Ablation

Proposition [3.1] states that, under specific assumptions, optimal policies are invariant to the proposed
reward shaping. In fact, Proposition [3.1]holds for any choice of transition kernel K. In practice, the
choice of kernel still impacts the quality of exploration and sample efficiency. We ablate this choice
by comparing the effectiveness of kernels sampled by our methods with several others, to assert what
constitutes a “good” kernel for exploration.

We remark that DRL? averages its values over transition kernels sampled from a posterior distribution
to a symmetric Dirichlet prior. We compare this choice to three additional ones:

* kernels sampled from a partially informed prior, which differs from the one used in DRL?
due to its lack of knowledge over the connectivity of the MRP/LDBA, except for its sink
state. It essentially assumes that a transition between any LDBA state pair is always possible.

* a transition kernel obtained using value iteration (VI), and that therefore represents the
optimal policy under assumption of full controllability of an high level MDP. It represents a
naive implementation of the reward shaping introduced in Icarte et al. [20]. This kernel has
the lowest entropy possible, as value iteration outputs a deterministic policy.

* an empirical kernel, which simply counts LDBA transitions performed by the policy in the
product MDP. This kernel does not leverage the LDBA structure, and is visualized in Figure

Bl
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Figure 9: Ablation of kernel initialization and estimation methods. Results suggest that an informed
symmetric prior, as used by DRL?, performs reliably.

These ablations are evaluated in the medium variants of the three tabular tasks from Figure [] to
highlight performance differences; all experimental parameters are unchanged.

Results are presented in Figure 0] We observe that a partially informed prior can recover part of
DRL?’s performance, but suffers as the size of the LDBA increases (Sequential, medium). The
transition kernel obtained through VI performs well in some tasks, and less in other: since the optimal
policy under eventual discounting assigns similar values to non-sink LDBA states, reward shaping
becomes less informative. Finally, choosing the empirical kernel generally leads to low performance,
as discussed in Figure 3]

G Prior Strength Ablation

This Section performs an empirical evaluation of the effect of the hyperparameter «, which controls the
strength of the prior over MRP transition kernels in DRL2. We ablate the default choice (o = 1000)
in the hard variant of tasks from the tabular evaluation in Figure[d] Overall, in Figure[T0|we observe
that DRL? is fairly robust to this hyperparameter. Performance is generally lower for weak priors
(o < 100), which can be significantly affected by poor trajectories collected by the initial policy. As
the prior is informed by the LDBA structure, we find that it generally provides good guidance even
for stronger priors. We note that, in case the prior is misinformed, a weaker prior would indeed be
favorable.

H Extended Related Works

Logic for Task Specification The intersection of reinforcement learning and logic languages has
flourished around the topic of Reward Machines [6} 20} 40]. While Reward Machines can handle
regular expressions, LTL is designed to address a superset, namely w-expressions. As a consequence,
LTL gains the ability to reason about infinite sequences and tasks including liveness and stability.

For this reason, several works have investigated LTL for task specification. Early attempts proposed
heuristic reward shaping schemes [26], which gradually evolved towards dynamic or eventual
rewarding and discounting schemes [4, [7, 8, [15} 16, 142]]. As for the optimization of such schemes,
while linear programming is sufficient for known dynamics and finite action spaces, Q-learning
approaches have been adopted when a model of the environment is not available [3| 4] [15]. A
fundamental restriction of this approaches was lifted by adopting actor-critic [16] or policy gradient
[42] methods suited for continuous action spaces. Nevertheless, in this case, empirical demonstration
of LTL-guided RL have remained mostly constrained to low-dimensional setting.

Logic-driven Exploration in Reinforcement Learning A significant effort has been targeted at
addressing the sparsity arising from proposed rewarding schemes [[15} 142].
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Figure 10: Ablation of prior strength hyperparameter c.
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Perhaps closest to the method we propose, several works investigate reward shaping for reinforcement
learning from logic specification. In the context of reward machines, Camacho et al. [5] consider
potential functions ®(s, b) of both the MDP and automaton states; among those, they investigate
counting the minimum number of steps to reach an accepting automaton state, which is equivalent to
computing values under a specific automaton transition kernel.

Another work [20] explores an extension, which is also fundamentally related to our method: the
authors investigate value iteration on an MDP synthetised from the automaton to compute a potential
function for reward shaping, thus leveraging the semantics of the task. While motivated by a similar
intuition to ours, a naive application of this method would not be viable in an eventually discounted
setting, which involves w-regular problems, as we report in Appendix [F} By adopting an LDBA
instead of a DFA, and more importantly by integrating an eventual discounting scheme, our method
is able to avoid myopic behavior while handling the full complexity of LTL. Futhermore, DRL?
does not require assumptions on controllability by defining a Markov reward process instead. Values
estimated in the MRP are thus softer than the optimal ones in a corresponding MDP, and we find
them to be more informative for exploration. We validate this discussion empirically, by evaluating
optimal transition kernels under eventual discounting in Appendix [F} By updating its distribution
over MRP transition kernels, it is moreover capable of providing an adaptive and informative reward
signal, rather than a static one derived from a hard assumption.

Other reward shaping techniques in the literature involve the use of an accepting frontier function
[L5L[16]], of bonuses for first visitations [4]], or on the knowledge of additional information such as
annotated maps [46]]. In particular, Hasanbeig et al. [16] tracks and expands the frontier of visited
LDBA states, while preventing visits to sinks, but is not task-informed. Our method, in contrast,
naturally recovers these two incentives, but biases the first one towards accepting states. Crucially, it
also guarantees that the optimal policy is preserved.

Directly within the LTL literature, another line of work leverages the discrete structure of automata
and learns hierarchical [16} 20} 21], goal-conditioned [31]] or modular [4] policies. While considerably
improving sample efficiently, these approaches are known to potentially introduce suboptimality [20].

A further possibility is that of leveraging control over the automaton to produce synthetic experience
by relabeling the LDBA states of collected transitions. Such schemes have been proposed in the
context of Reward Machines [20] and LTL [42]; as they can produce off-policy samples, they cannot
be naively applied to on-policy methods, as discussed in Appendix [E] Other relabeling techniques
only target the initial LDBA state [43]] or focus on optimality guarantees [34].

Finally, we note that previous work have also led to strong exploration on unseen tasks, as the result
of a meta-learning phase [25, 40].

I Extension to Jump Transitions

This section extends several passages across Sections [2| and [3| to address the presence of jump
transitions in the LDBA, and confirms this extension empirically. Jump transitions occur in a subset
of automata, in particular for stability specification.

The definition of LDBA in Section 2] can therefore be extended as follows:

Definition I.1. (Limit Deterministic Biichi Automaton - LDBA) An LDBA is a tuple £ = (B, X U
AB PB B* by), where B is a finite set of states, ¥ = 247 is an alphabet over atomic propositions,
AB B — {0,...,N — 1} is the subset of indexed jump transitions available at each state, P :
B x (XU .A”) — Bis a transition function, B* C B is a set of accepting states, and by € B is the
initial state. There exists a mutually exclusive partitioning of B = Bp U By such that B* C Bp
and for (b,a) € (Bp x ¥) then P5(b,a) € Bp. Moreover, A5(b) = @ for all b € Bp and
PB(b,a) € Bp forall (b,a) in By x AB(b).

Similarly, a path over an LDBA needs can be induced by an infinite sequence of LDBA actions
(a;)§ € (X U AB)>, thus also accounting for jumps.

Finally, the definition of product MDP can also be altered accordingly, as M>* =
(S*, A PX RX v%, 1), where S* = S x B, AX = AU AB, and pu (5,b) = po(8) - Lp=p,- Its
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Figure 11: Evaluation of DRL? and baselines on a the task F'Ga in presence of jump transitions.

transition kernel is then defined as

P*((s",b)la, (s,0)) = (22)
P(s'|a,s), a€ Al = PB(b,F(s))
1 a € AB(b),b = PB(b,a),s = s
0 otherwise

The rest of the content through the main body of the paper is already compatible with the existence
of jump transitions and does not need extensions.

As discussed above, our methods, as well as all baselines, are in principle compatible with the
presence of jump transitions. Thus, we now evaluate the task F'Ga in reach-avoid tabular settings.
This setup is similar to that of the corresponding experiment in recent work [42]]. Overall, as the
structure of the LDBA is minimal, we observe that all considered methods perform reasonably well in
Figure In particular, DRL? and the count-based baseline slightly improve over the No-exploration
baseline. LCER [42] works particularly well, as the task does not involve several substeps, but
presents irrecoverable failures when jumping at the wrong time. We refer to Appendix [E] for a further
comparison between DRL? and LCER.

J Implementation Details

This section presents a thorough description of methods, tasks and hyperparameters. For the sake of
reproducibility, we provide our full codebase ﬂ

J.1 Environments and Tasks

Throughout the paper, experiments involve simulated environments.

J.1.1 Tabular Environments

The environments considered in tabular settings (Figure ) are variants of the common gridworld,
that is a 2D grid, with one cell being occupied by the agent. The action space is discrete and includes
5 actions, four of which allow movement in each of the cardinal directions, and a single no-op action.
The observation space contains x and y coordinates of the agent and is therefore 2-dimensional.
While dynamics are shared, the labeling function from MDP states to atomic propositions and task-
dependent details differ across tasks and are reported below. We note that each task is also represented
in the rightmost column of Figure 4] although not to scale for illustrative purposes.

Reach-avoidance Reach-avoidance is evaluated in a gridworld without obstacles (Figure ] top).
The agent is initialized at one end of a thin corridor (of unit width). The other end of the corridor is
not bounded; however, the AP a evaluates to true in each cell of the corridor beyond a fixed distance
from the starting cell. The AP f evaluates to true anywhere outside the corridor. The formula
evaluated is F'a A G—b. The difficulty of the task can be scaled by increasing the distance to the zone
to reach (7, 9 and 11 for easy, medium and hard task variants, respectively). Episodes have a duration
equal to the minimum number of step to reach the final zone, plus 10 steps.

3sites.google.com/view/drl-2
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Sequential The second task in Figure [d]also takes place in a gridworld without obstacles. Contigu-
ous 7 x 7 squares are aligned horizontally. The agent starts at the center of the leftmost square; in each
square to the right, a different AP evaluates to true, in alphabetical order. In the first square to the
right of the starting one, a evaluates to true, in the second b evaluates to true and so on. Difficulty
can be scaled by specifying longer formulas: F(a AXF(bAXFc)), F(aANXF(bAXF(cAXFd)))
and F(a N XF(bAXF(cANXF(dANXFe)))) are used, respectively, for easy, medium and hard
tasks. Episodes have a fixed length of 70 steps.

Circular Circular tasks (Figure 4] bottom) present 5 contiguous 7 x 7 squares, aligned as a cross.
The central zone represents an obstacle: it is labeled to the AP e, and the agent cannot reach its
central 6 x 6 cells. The other 4 zones are labeled as a, b, ¢, d in counterclockwise order, and the agent
is initialized in proximity of the first one. The difficulty of the task can be controlled by scaling
the number of zones involved in a loop: GF(a A XFb) A —e, GF(a AN XF(b AN XFc) A —e and
GF(aANXF(bAXF(cAXFd)) A —e for easy, medium and hard tasks, respectively. An episode
lasts for 70 steps.

J.1.2 Continuous Environments

Sectionf]also provides an evaluation on continuous, high-dimensional environments. Since evaluation
of LTL-guided RL has traditionally been mostly restricted to simple tabular [20] or low-dimensional
[L6, [42]] settings, we repurpose high-dimensional environments from safe and goal-conditioned
reinforcement learning research.

Fetch Experiments reported in the first row of Figure[5| were developed on top of the common Fetch
robotic benchmark [9]], and are also available as part of our codebase. We evaluate two tasks, in which
the agent controls the end effector position of a 7DoF robotic arm with 4-dimensional actions over
episodes of 50 steps. FetchAvoid is reminiscent of the reach-avoidance task in tabular settings, and
involves fully stretching out the arm while avoiding lateral movements (i.e., not entering red zones as
shown in Figure[5)). In this case, observations are 10-dimensional. In FetchAlign the agent has to
interact with three cubes on one side of the table, and has to align them horizontally at the center of
the table. In this case, observations include information on the cubes, and are 45-dimensional. The
two tasks are specified, respectively, with the formulas F'a A G—e (reach the end of the table, and
avoid lateral movements), and F'(a A X F'(b A X F'¢)) (position the first, second and then third block).

Doggo Doggo is a 12DoF quadruped adapted from the most challenging tasks in SafetyGym [33].
It is tasked with navigating a flat plane; observations are 66-dimensional, actions are 12-dimensional
and the length of each episode is 500 steps. Similarly to other reach-avoidance tasks, DoggoAvoid
involves navigation to a distant goal (shown in green in Figure[5), in a straight line, while completely
avoiding detours. On the other hand, DoggoLinear involves navigating through a sequence of 2
circular zones. These two tasks are encoded through the following two specifications: F'a A G—e and
F(a AN X F'b). Episode length is set to 500.

HalfCheetah HalfCheetah [39] involves controlling a 6DoF robot in a vertical 2D plane and is
a standard environments in the deep reinforcement learning literature. We define two tasks in this
underlying environments. In CheetahSequential the agent is tasked with eventually reaching, in
succession, 4 consecutive zones to its right, as encoded by the formula F'(aAX F(bAX F(cAX Fd))).
Once the last zone is reached, the task is solved and the agent can stop. In CheetahFrontflip the
agent is informed by the formula GF(a A X F(b A X F(c A X Fd))), where each variable evaluates
to true for a given range of angles of the main body of the robot, respectively when the Cheetah
is in its default position, standing on its front legs, upside down, and standing on its back legs. As
a result, the formula is satisfied by an infinite sequence of frontflips. Notably, this task can not be
satisfied by finite trajectories.

J.2 Methods and Algorithms
The core of our method computes an intrinsic reward and is therefore applicable on top of arbitrary

reinforcement learning algorithms. Therefore, we will first discuss the implementation of the method
itself, as well as relevant baselines, and then details involving RL algorithms.
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The proposed algorithm is detailed in Algorithm [I] Its computational cost is dominated by the closed
form solution of the value in the Markov reward model (see Equation[8), which is cubic in the number
of MRM states. However, since LDBAs for most common tasks in these settings are relatively small
(< 20 states), the computational load is negligible, even when computing the expected value over the
posterior via sampling.

The main hyperparameter introduced by DRL? is a,
which controls the strength of its prior as described in
Section It is set to 102 in tabular settings, and to
10° in continuous settings, where increased stability
was found to be beneficial. The remaining hyperpa-

Table 1: Hyperparameters for Q-learning
and Soft Actor Critic.

Hyperparameter Value

rameters for reward shaping are shared with the count- ¥ 0.99

based baseline and are, respectively, the frequency of ~ Buffer size 4-10°

updates to the potential function (set to 2000 environ- ~ Batch size 64

ment steps), and a scaling coefficient to the intrinsic  Initial exploration 2 - 10? steps
reward, which was tuned individually for each method 7 (Polyak) 5- 1072 for SAC
in a grid of [0.1, 1.0, 10.0]. We found a coefficient of =~ Learning rate 3-10~% for SAC,
0.1 to be optimal across all tasks for both methods in 1 for Q-learning

tabular settings, while continuous settings benefit from
a stronger signal and a coefficient of 10.0. The two remaining baselines (relying on LCER and no
exploration techniques) introduce no additional hyperparameters on top of the learning algorithm.

The intrinsic reward is added to the extrinsic one and optimized under eventual discounting through
one of two algorithms, depending on the setting. In practice, we rely on tabular Q-learning [45]] with
an e-greedy policy (e=0.1) and Soft Actor Critic with automatic entropy tuning [[13]. In the tabular
case, strict adoption of eventual discounting [42] results in a largely uniform policy, as in most states
no action would reduce the likelihood of task satisfaction. As a consequence, a prohibitive number of
steps would be required during evaluation for computing cumulative returns. For this reason, our
practical implementation of tabular Q-learning does not apply eventual discounting, although this
would be possible given a much larger computational budget. Our SAC implementation is partially
based on that provided by Huang et al. [[17]. Hyperparameters for each algorithm were tuned to
perform best when no exploration bonus is being used, and are reported in Tables [T} They are kept
fixed across tasks.

J.3 Metrics

Unless specified, the metric used to measure the methods’ performance is cumulative return under
eventual discounting, that is R = Zij\;o %, where v = 0.99 and N is the number of visits to
an accepting LDBA state within an episode. In the limit of N — oo, this metric is a proxy for
the likelihood of task satisfaction [42]. All curves report mean performances estimated across 10
seeds, and shaded areas represent 95% simple bootstrap confidence intervals. They undergo average
smoothing with a kernel size of 10.

J.4 Tools

Our codebas mostly relies on numpy [[14] for numeric computation and torch [28] for its autograd
functionality. Furthermore, we partially automate the synthesis of LDBAs from LTL formulas through
rabinizer [23].

J.5 Computational Costs

All methods have comparable runtimes within their setting (tabular or continuous). Each experimental
run required 8 cores of a modern CPU (Intel i7 12th Gen CPU or equivalent). Each run in tabular and
continuous settings required on average 30 minutes and 150 minutes, respectively.

*Available at sites.google.com/view/drl-2
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