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Abstract

As big models demonstrate remarkable per-
formance across diverse tasks, concerns about
their potential risks and social harms are raised.
Extensive efforts have been made towards align-
ing big models with humans to ensure their re-
sponsible development and human profits max-
imization. Nevertheless, the basic question
‘what to align with’ remains largely unexplored.
It is critical to precisely define the objectives
for big models to pursue, and aligning with
inappropriate goals could cause disaster, e.g.,
chatbots promote abusive or biased contents
when only following user instructions to inter-
act freely. This paper conducts a comprehen-
sive survey of different alignment goals, tracing
their evolution paths to identify the most appro-
priate goal for big models. Specifically, we cat-
egorize existing alignment goals into four pri-
mary levels: human instructions, human prefer-
ences, value principles and basic values, reveal-
ing a learning process that transforms from ba-
sic abilities to higher value concepts. For each
goal, we further elaborate its definition, how
to represent it and how to evaluate it. Posing
basic values as a promising goal, we discuss
challenges and future research directions.

1 Introduction

Big Models, exemplified by Large Language Mod-
els (LLMs), e.g., GPT-3 (Brown et al., 2020) and
ChatGPT (Ouyang et al., 2022), and Large Multi-
modal Models (LMMs), demonstrate remarkable
capabilities across a variety of tasks (Bubeck et al.,
2023). However, ‘opportunities and risks always
go hand in hand’, challenges and problems also
emerge in their applications. These models might
struggle to follow diverse user instructions (Tamkin
et al., 2021; Kenton et al., 2021), and they could
also generate content that conflicts with human
values, such as harmful content, eliciting social
risks (Weidinger et al., 2021; Bommasani et al.,
2021). Notably, these risks exhibit two character-
istics as models scale up, 1) emergent risks (Wei

et al., 2022a): unanticipated problems appear; and
2) inverse scaling (McKenzie et al., 2023): some
risks do not disappear but intensify. This implies
that big models could potentially raise greater risks.

To make big models better serve humans and
eliminate potential risks, aligning them with hu-
mans receives great attention (Kenton et al., 2021;
Gabriel, 2020), especially for LLMs. Existing re-
search highlights three main categories. The first
enhances models’ ability to comprehend and exe-
cute diverse human instructions by collecting nu-
merous task demonstrations for supervised fine-
tuning (Sanh et al., 2021; Mishra et al., 2021; Wang
et al., 2022b). In the second category, LLMs learn
from human feedback on their outputs (typically
preferred or dispreferred labels) to match human
preferences, without explicit guidelines (Nakano
et al., 2021; Ouyang et al., 2022; Kopf et al., 2023).
An emerging third one seeks to align LLMs with
pre-defined principles that encapsulate human val-
ues/ethics (Liu et al., 2022; Sun et al., 2023d; Bai
et al., 2022b,a), like the prominent ‘HHH’ crite-
ria (Bai et al., 2022a; Ganguli et al., 2022).

While all these efforts aim to align LLMs with
humans, they target different alignment goals,
from abilities to intrinsic value concepts. The
diversity of goals echoes the Specification Prob-
lem (Leike et al., 2018): how to precisely define
appropriate objectives, i.e., ‘the purpose we really
desire’ (Wiener, 1960), encoded into Al. Align-
ing with inappropriate goals can result in disasters,
e.g., chatbots may output abusive contents when
only following instructions to interact freely but not
adhering to the value of ‘no toxicity’. Moreover,
different goals require specially designed formal-
ization and alignment methods, leading to varied
consequences (Kenton et al., 2021). Despite the im-
portance of goal specification for alignment, most
studies and existing surveys are developed from the
perspective of methodologies (Ouyang et al., 2022;
Ji et al., 2023b), i.e., how to align (details in Ap-



Basic Input: Are ) . \ \
Values women more Output: Gender is not Align NG | Advanced \‘
Value systems defined in Z::%b:flggerzr 2 kEy to determine, but —> —@‘— ‘ Rule Learning |
i - 9 g o0 5 . .
the fields of humanity and  garten ... el R AT - | “
social science. é‘ ‘
x
. . (5]
) Value Input: Are P‘rlnc'lp'le 1: Not be; . . =
:/ Principles women more d1s_cr1r_mnat(?ry, toxic ... Output: Gender is not Align N g Concept
Valoe principles defined ;lé:%ablkeigggr f’rmcnple 2: Be helpful the‘key tp determine, but "5 ! ,‘o‘ - g Learning &
- 0 anSwer... ’g 1 S .
in the fields of Al safety or gartgn___ e SN O individual’s inferest... s € | Rule Learning
machine ethics. c
o
Preferred: Gender is not the B
Human e A7 TS key to determine, but an e s ©
101 e individual interest ... i N 2 Discrimination
Preferences g e for being kinder- Align @B\ 2 L earnin
Adapt to human preferences  9arten teachers than men? Non-preferred: Yes, because i = > 9
and human profits. women are more patient, £
attentive and nurturing a
(&)
—
2 | Human Instruction: Tell me if the sentence is y ::’
‘H;;; Instructions factually correct. Answer yes or no. mmmp  Output: No Align ,\/‘ X\ Associative and
5 ) ) ! Input: Mount Rainier is the second — =\ Chain Learning
ollow diverse instructions Fich in in North Ameri - Swrd
@I EELS ighest mountain in North America. :
Alignment Goal Data Form Aligned Model Human Learning Hierarchy

Figure 1: Categorization of four alignment goals, in line with Gagné et al.’s five-level human learning hierarchy.

pendix A.2). There lacks of an in-depth discussion
about identifying the most appropriate and essential
goal for alignment (i.e., what to align with?).

In this paper, we conduct the first comprehensive
survey of existing alignment goals, tracing their
evolution paths to shed light on the critical question:
what to align with? By dissecting the essence of
different alignment goals, we categorize them into
four levels that is in line with Gagné et al.’s five-
level human learning hierarchy (Gagne; Akcil et al.,
2021), shown in Figure 1. LI1. Human Instructions
(Sec.2), like associative and chain learning that fos-
ters logical reactions to specific inputs; L2. Human
Preferences (Sec.3), akin to discrimination learning
that differentiates varied contexts and reacts accord-
ingly; L3. Value Principles (Sec.4), akin to concept
learning and rule learning that identify instances of
the same category and yield consistent actions; and
LA4. Basic Values (Sec.5), related to advanced rule
learning that capture fundamental rationales for
generic problem-solving. This taxonomy reflects
the increasing abstraction and complexity observed
in human learning process, which facilitates under-
standing the evolution of these goals and indicates
further development by integrating insights from
the fields of humanity. For each goal, we present
its definition and related works about (1) Goal Rep-
resentation, i.e., how to represent and encode this
goal; and 2) Goal Evaluation, i.e., how to assess
the alignment efficacy. The taxonomy is in Ap-
pendix B.1. Posing basic values as a promising
goal, we discuss the challenges and future direc-
tions (Sec.6). Furthermore, we summarize open

resources to facilitate future research of big model
alignment, at Alignment-Goal-Survey.

2 Human Instructions

Benefiting from numerous parameters and massive
training data, LLMs show notable in-context learn-
ing ability, motivating the prompting paradigm (Liu
et al., 2023c). Due to the misalignment between
complex downstream tasks and the simplistic pre-
training objective (e.g., next-token prediction),
LLMs sometimes struggle to understand user in-
structions to complete tasks. Therefore, human
instructions is considered as the first alignment
goal, defined as enabling big models to under-
stand diverse human instructions and complete
tasks. This goal aims at unlocking the fundamental
abilities of big models, like those of humans to pro-
duce logical reactions for specific inputs, thereby
laying the foundation of advanced alignment goals.

2.1 Alignment Goal Representation

Instruction tuning is an effective technique to
achieve this goal, where a training dataset of <in-
struction, input, output> pairs is collected as a
proxy of this goal (Zhang et al., 2023b). To model
the diversity and infinity of human instructions,
efforts from three perspectives are involved.

Scaling the Diversity of Tasks Demonstrated
by (Chung et al., 2022), the instruction tuning
performance and cross-task generalization scale
well with the number of training tasks. Thus,
datasets containing increasingly more tasks are
built from different sources. Typically, such


https://anonymous.4open.science/r/Alignment-Goal-Survey/README.md

datasets are curated from existing NLP bench-
marks with human-written prompt templates, rang-
ing from hundreds, e.g., P3 (Sanh et al., 2021) and
Natural Instructions (Mishra et al., 2021), to thou-
sands of tasks, e.g., Super-Natlnst (Wang et al.,
2022b), Flan 2022 (Longpre et al., 2023) and OPT-
IML Bench (Iyer et al., 2022). Since manually
written instructions are limited in diversity and
creativity (Wang et al., 2022a), datasets are auto-
matically expanded by LLMs based on given seed
instructions and various prompt templates. such
as Unnatural Instruction (Honovich et al., 2022)
and Self-Instruct (Wang et al., 2022a). In addi-
tion, there are also crowd-sourcing ones, benefiting
from democratized wisdom, like ShareGPT (Chi-
ang et al., 2023). Instruction data for LMMs are
also constructed from image-text pairs, including
LLaVA (Liu et al., 2023b) and LLaVAR (Zhang
et al., 2023c). For further generalization, multilin-
gual instructions are obtained by translation.

Adding Examples & CoT Data To contextu-
alize the task and stimulate in-context learning,
some instructions are accompanied by examples.
In Natural Instructions (Mishra et al., 2021) and
Super-NatInst (Wang et al., 2022b), the task defini-
tion, positive examples and negative examples are
provided. Regarding an example, incorporating it
as a CoT prompt yields better performance (Wei
et al., 2022b; Mukherjee et al., 2023), which shows
richer signals about the step-by-step thought pro-
cess. In addition, some work introduces conversa-
tion datasets to learn finer-grained instructions and
in-process revisions, such as SELFEE (Ye et al.,
2023) and Phoenix (Chen et al., 2023b).

Improving Data Quality & Complexity Some
researchers commit to obtaining data with higher-
quality inputs and outputs to improve the alignment
performance. Evol-Instruct (Xu et al., 2023b) cre-
ates instructions with varying complexity by pro-
moting an LLLM to rewrite a simple instruction step-
by-step into more complex versions. To improve
the quality of model outputs, prompt engineering
is an effective technique (Xu et al., 2023a; Ding
et al., 2023). Demonstration data generated by
more advanced LLMs (Peng et al., 2023) or human
annotators are also integrated to training.
More dataset details are listed in Appendix B.

2.2 Alignment Goal Evaluation

In this evaluation, the key is to measure how well
LLMs follow human instructions and employ their

inner knowledge to complete various tasks, espe-
cially those unseen tasks during fine-tuning.

First, instruction datasets split testing sets for
evaluation, such as OPT-IML Bench (Iyer et al.,
2022), using quantitative metrics like accuracy
and ROUGE (Lin, 2004). They concern three lev-
els of generalization: 1) held-out samples from
applied datasets; 2) novel data distributions for
known tasks; and 3) entirely new tasks. Beyond
NLP tasks, evaluations extend to more general
and complex situations. BIG-bench (Srivastava
et al., 2022), with 204 tasks across diverse top-
ics, is positioned for capabilities on hard tasks,
as well as MMLU (Hendrycks et al., 2020b),
BBH (Suzgun et al., 2022) and MGSM (Shi et al.,
2022). Moreover, AGIEval (Zhong et al., 2023),
C-EVAL (Huang et al., 2023b) and CMMLU (Li
et al., 2023b) evaluate the models’ abilities on tasks
of human-level complexity, which integrate exam-
inations across multiple difficulties and subjects.
In addition to the above benchmarks necessitating
ground truths, automatic judgment models are es-
tablished, such as PandalLM (Wang et al., 2023b).
Evaluations show that instruction tuning can indeed
uncover or enhance big models’ capabilities.

3 Human Preferences

While aligning with human instructions enables big
models to complete diverse tasks, it fails to guar-
antee that the generated responses always comply
with human preferences, potentially causing seri-
ous social risks. For example, some outputs are of
low readability or contain hallucinations, gender
biases and hate speech (Ouyang et al., 2022; Bai
et al., 2022a). In consequence, human preferences
are incorporated as the next alignment goal, defined
as empowering big models to not only complete
tasks but also in a way that adheres to human
preferences and profits. This goal refers to hu-
man preferences reflected by feedback, rather than
those summarized into universal value principles,
which shares similarity with human discrimination
learning to recognize essentially dissimilar items.

3.1 Alignment Goal Representation

Existing methods to introduce human preferences
for alignment are divided into several categories.

Human Demonstrations The most direct ap-
proach involves creating a dataset of human-desired
outputs to fine-tune LLMs, where the data quality



is critical. InstructGPT (Ouyang et al., 2022) col-
lects human demonstrations for 13k prompts from
API input distribution. OpenAssistant Conversa-
tion (Kopf et al., 2023) includes extensive crowd-
sourcing dialogues. In addition to public SFT data,
LLaMA?2 (Touvron et al., 2023) collects more ex-
amples of higher quality and diversity. Though
LLMs can learn some human-preferred patterns
through behavior cloning, the SFT data is limited
in scope and diversity due to high labor costs, and
humans suffer from providing demonstrations for
complex tasks (Wu et al., 2021). Besides, limited
exposure to negative samples during training makes
LLMs vulnerable to attacks (Liu et al., 2023d).

Human Feedback Evaluating the quality of
model outputs is easier than producing correct
demonstrations (Leike et al., 2018), which offers a
more feasible and scalable way to indicate human
preferences. Such feedback is applied in the RLHF
algorithm (Wu et al., 2021; Ouyang et al., 2022),
which collects comparative model outputs to train
a reward model as a generalizable proxy of human
preference, then fine-tunes LLMs to maximize the
reward. Variants of RLHF also rely on the compar-
ison data or reward model (Rafailov et al., 2023;
Yuan et al., 2023; Dong et al., 2023). Rather than
only scores, Liu et al. (2023a) include all intermedi-
ate feedback in the form of text sequences to learn
well-informed decisions. Safe RLHF (Dai et al.,
2023) considers finer-grained human preferences
by comparing helpfulness and safety separately.

Model Synthetic Feedback As obtaining high-
quality human preference labels is costly, some
work employs powerful Al to synthesize the feed-
back data. Given the description of user-desired
behaviors or a few examples, an LLM yield rewards
by measuring the relevance between the model out-
puts and the desired ones (Kwon et al., 2023). Sta-
ble Alignment (Liu et al., 2023d) builds a commu-
nity of multiple LLMs, where each model’s actions
are evaluated by the other models. In addition, pref-
erences signals are also synthesized by following
heuristic rules, such as ‘Large LLMs with more
and better shots might give better response over-
all’ (Kim et al., 2023) or directly querying off-the-
shelf LLMs (Lee et al., 2023). Lee et al. (2023) find
that RLAIF achieve comparable results to RLHF.

3.2 Alignment Goal Evaluation

This evaluation requires measuring human desired
properties beyond mere adherence to instructions.

Benchmarks Various benchmarks are employed
to assess different facets of model alignment. Truth-
fulQA (Lin et al., 2022) and OpenBookQA (Mi-
haylov et al., 2018), with questions demanding
identification of facts, measure truthfulness and re-
liability of model outputs. CrowS-Pairs (Nangia
et al., 2020), WinoGender (Rudinger et al., 2018),
BBQ (Parrish et al., 2021) and BOLD (Dhamala
et al., 2021) evaluates multiple types of social bias.
RealToxicityPrompts (Gehman et al., 2020) and
ToxiGen (Hartvigsen et al., 2022) indicate toxicity
levels, with toxicity scores calculated by Perspec-
tiveAPI. Beyond specific aspects, HELM (Liang
et al., 2022) offers a holistic assessment across var-
ious scenarios and metrics, such as accuracy, cali-
bration and fairness. Without expensive labor costs,
Perez et al. (2022) generates an evaluation collec-
tion of 154 datasets via LLMs, assessing models
on aspects like persona, sycophancy, and Al risks.

Human and LLM Evaluation For open-ended
questions, e.g. Vicuna-80 (Chiang et al., 2023),
automatic metrics such as ROUGE (Lin, 2004)
lack ground truths and suffer from poor correlation
with human preferences. Thus, human evaluations
are incorporated to compare target model outputs
against either baselines (Ouyang et al., 2022; Tou-
vron et al., 2023; Yuan et al., 2023; Stiennon et al.,
2020) or human-written references (Rafailov et al.,
2023). A win rate or Elo score (Askell et al., 2021)
is calculated to indicate superiority. With the ad-
vancement of LLMs, automatic chatbot arenas are
established using a powerful LLM as the judge,
requiring only guideline prompts but not human
efforts (Dubois et al., 2023). This approach has
been widely applied (Taori et al., 2023; Li et al.,
2023c; Chiang et al., 2023) and achieves impressive
agreements with human evaluators (Zheng et al.,
2023; Chiang and Lee, 2023). Moreover, some
work discusses and addresses its drawbacks, such
as position bias (Wang et al., 2023a).

Reward Model Evaluation In RLHEF, the reward
model trained on human feedback acts as a general-
izable proxy of human preferences (Ouyang et al.,
2022; Ramamurthy et al., 2022). Therefore, the
score returned by the reward model serves as a met-
ric of alignment. Studies have shown that reward
scores, computed across all testing samples, tend to
increase throughout the aligning process (Touvron
et al., 2023; Bai et al., 2022a; Rafailov et al., 2023;
Dong et al., 2023; Dai et al., 2023).



4 Value Principles

Aligning big models with human preferences sig-
nificantly improves user satisfaction. However, this
approach, which is predominately directed by hu-
man feedback without explicit preference criteria,
encounters several challenges. First, it just acts
as a sort of imitation learning or discrimination,
but can not fully understand and discern accurate
and generalized patterns about human-desired be-
haviors (Guo et al., 2023). Second, the feedback
data might contain non-negligible human biases
or noises, leading to erratic performance from the
aligned model (Wang et al., 2024). To pursue effi-
cient and stable alignment, a more clarified align-
ment goal, i.e., value principles, is introduced,
which means guiding big models to perform in
accordance with a set of predefined value princi-
ples. Each principle directs consistent behaviors in
all applicable scenarios, like the concept learning
stage of humans. Such principles are usually orig-
inated from observed risks and established by the
Al community, different from basic value theories
in the field of social science and humanity.

4.1 Alignment Goal Representation
4.1.1 Value Principle Definition

As shown in Figure 2, two main categories of value
principles are considered in existing research.

HHH (Helpful, Honest and Harmless) This is
the most widespread criterion, which is available
across a majority of tasks (Askell et al., 2021) and
serves as the source of other specific principles. Bai
et al. (2022a); Ganguli et al. (2022) follow the three
terms to curate training samples. Constitutional
Al (Bai et al., 2022b) involves principles to revise
responses that are “harmful, unethical, racist, sexist,
toxic, dangerous, or illegal”. SELF-ALIGN (Sun
et al., 2023d) and SALMON (Sun et al., 2023c¢)
design 16 rules across various fields, such as being
ethical and honest. In addition, Sparrow (Glaese
et al., 2022) further specifies rules from the as-
pects of stereotypes, misinformation and others.
PALMS (Solaiman and Dennison, 2021) formu-
lates desired behaviors for each sensitive topic.

Social Norms & Ethics These are commonsense
rules about socially acceptable behaviors. Efforts
in machine ethics (Forbes et al., 2020) explore how
well models comprehend and apply these norms.
Rule-of-Thumb (RoTs) (Forbes et al., 2020), which
is a descriptive norm to judge whether an action

is ethical, performs as the basic unit of norms. A
large set of RoTs are available in corpora, such as
Moral Integrity Corpus (MIC) (Ziems et al., 2022),
Social Chemistry 101 (Forbes et al., 2020) and
Moral Stories (Emelin et al., 2020). To deal with
infinite moral situations, some work automatically
generates RoTs given a scenario and the target atti-
tude (Ziems et al., 2022; Sun et al., 2023b).

4.1.2 Value Principle Alignment

Methods to introduce the given value principles for
big model alignment fall into two main categories.

In-context Learning Leveraging the inherent
ability of LLMs to understand contexts and fol-
low instructions, introducing value principles as
prompts to guide LLMs’ behaviors is a straight-
forward approach (Tan et al., 2023). In addition
to static principles, Xu et al. (2023d) dynamically
retrieve relevant rules to facilitate ethical decision-
making. Though such “morally self-correction” ca-
pability has been observed in LLMs over a certain
scale (Ganguli et al., 2023), this method may be
infeasible for under-performing models and fails to
mitigate the risk of producing harmful content.

Fine-tuning Many studies incorporate value prin-
ciples into the model through either SFT or RLHF.
In terms of enhancing data construction, SELF-
ALIGN (Sun et al., 2023d) and Constitutional
Al (Bai et al., 2022b) requires an LLM to gener-
ate qualified outputs following specific principles.
BeaverTails (Ji et al., 2023a) manually label the
harmlessness of model outputs by checking across
14 risks, such as privacy violation. Then, reward
models are trained on the value-aware pairwise
data. Furthermore, Sparrow (Glaese et al., 2022)
and SALMON (Sun et al., 2023c) build explic-
itly principle-following reward models to measure
good behaviors based on given value principles.

4.2 Alignment Goal Evaluation

Safety and Risk Benchmarks These bench-
marks consist of adversarial questions against the
‘HHH’ principle. They involve an open-ended gen-
eration task that requires a final judgment by hu-
mans or an automatic LLM evaluator. The hh-rlhf
dataset focuses on questions related to helpfulness
and harmlessness(Bai et al., 2022a; Askell et al.,
2021; Ganguli et al., 2022). SafetyPrompts (Sun
et al., 2023a) is a Chinese benchmark, including
8 safety scenarios (e.g. insulting) and 6 kinds of
instruction attacks (e.g. prompt leaking). From
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Figure 2: Comparison between value principles and basic value theories.

a broader view of human values, the CVALUES
benchmark (Xu et al., 2023e) encompasses fun-
damental safety level and broader responsibility
level where questions are created by domain ex-
perts across 8 domains with larger social impacts.

Social Norm Benchmarks This category eval-
uates an Al model’s capability to recognize and
adhere to social norms, including Moral Stories
(Emelin et al., 2020), MIC (Ziems et al., 2022),
Social Chemistry (Forbes et al., 2020), Trust-
GPT (Huang et al., 2023a) and so on (Scherrer
et al., 2023). Tasks of varying difficulty are con-
sidered: 1) given an ethical situation and optional
actions, LLMs make moral decisions; 2) given a sit-
uation and an action, LLMs judge the morality us-
ing inner ethics; 3) given a situation and an action,
LLMs generate RoTs for judgment. In addition,
complex real-life dilemmas, where ethical norms
may conflict and require prioritization in decision-
making, are involved. SCRUPLES (Lourie et al.,
2021) presents intricate situations asking ‘Who’s
in the wrong?’, while ETHICAL QUANDARY
GQA (Bang et al., 2022) and MoralExceptQA (Jin
et al., 2022) delve into moral exception questions.

Automatic Morality Classifier With manually
collected benchmarks, automatic morality classi-
fiers have been developed to assess the content
generated by LLMs. SALMON (Sun et al., 2023c¢)
builds a principle-following reward model to score
model outputs upon given principles. Aggregating
public moral datasets, e.g., Moral Stories (Emelin
etal., 2020) and ETHICS (Hendrycks et al., 2020a),
Delphi (Jiang et al., 2021), an 11B classifier, is
developed as a generalized framework to make
moral judgment. Value KALEIDO (Sorensen et al.,
2023) is a language model trained to identify val-

ues, rights, and duties behind a manual context.

5 Basic Values

Though value principles define the alignment goal
more clearly, they originate from observed issues
and fail to address two challenges. 1) Clarity: Most
of these principles or norms are heuristic and hard
to cover all scenarios, which cannot be an unam-
biguous and precise proxy of human-desired val-
ues. 2) Adaptability: they are tightly bound with
observed issues, less adaptable to newly emerging
risks, evolving model capabilities and varying cul-
tural contexts (Graham et al., 2016; Joyce, 2007).
In social science and humanities, basic values are
established to clearly represent motivationally dis-
tinct values rooted in universal human requirements
and specify their connections to cover diverse hu-
man desiderata. These values serve as underlying
criteria for actions and are recognized across cul-
tures with different priorities (Schwartz, 2012), be-
ing a kind of advanced rule learning to facilitate
problem-solving with rationales. Such a goal be-
comes growing prominent, which means aligning
big models to a systematic distribution of basic
values. Adaptability can be achieved by adjusting
value distributions, since basic values can charac-
terize all individuals and cultures.

5.1 Alignment Goal Representation

Basic Value Theory In social science and hu-
manity, a broad array of value theories have been
established and tested over time. For human
morality, Bernard Gert’s Common Morality The-
ory posits ten universal moral rules (Gert, 2004).
Moral Foundation Theory (Graham et al., 2013)
decomposes human morality into five foundations:
Care/Harm, Fairness/Cheating, Loyalty/Betray, Au-



thority/Subversion and Sanctity/Degradation. Re-
garding broader human values, the most repre-
sentative is the Schwartz’s Theory of Basic Val-
ues (Schwartz, 2012), identifying four high-order
groups (openness to change, conservation, self-
enhancement and self-transcendence) and ten moti-
vationally distinct value dimensions. Similar theo-
ries include Rokeach Values (Rokeach, 1967), Life
Values (Brown and Crace, 2002), etc. Besides, So-
cial Value Orientation (SVO) (Murphy et al., 2011)
focuses on the balance between self and others in
interpersonal scenarios. Basic values also appear
in the field of Al, e.g., Sun et al. (2024) measure
trustworthy LL.Ms from six dimensions, including
truthfulness, safety, machine ethics and so on.

Basic Value Alignment To fine-tune models to
perform adhering to target basic value distribution,
the alignment goal should be modeled and opti-
mized properly. Kang et al. (2023) explore a su-
pervised fine-tuning method to inject any types of
value into LLMs, where arguments and dialogues
aligned with the target value are filtered for training.
Yao et al. (2023) design a more adaptable and data-
efficient approach BaseAlign, which first trains a
universal evaluator to identify basic values behind
LLMs outputs and then aligns models to the target
value through PPO (Schulman et al., 2017).

5.2 Alignment Goal Evaluation

Human Value Surveys In social science and hu-
manity, surveys featuring self-report and abstract
questions are designed to probe human beliefs and
values. These surveys are adapted to LLMs’ value
assessment through prompt engineering. Moral
Foundations Questionnaire (MFQ) is leveraged
to detect moral bias in LLMs (Abdulhai et al.,
2023). Duan et al. (2023) propose DeNEVIL to
dynamically tailor prompts to uncover these foun-
dations. World Values Survey (WVS) ! encom-
passes 13 value categories of questions such as ‘So-
cial Values, Attitudes and Stereotypes’ and ‘Hap-
piness and Well-being’. Pew Research Center’s
Global Attitudes Surveys (GAS) 2 contain 2,203
questions about topics such as religion and poli-
tics. The GlobalOpinionQA dataset is an aggre-
gation of GAS and WVS to capture LLMs’ opin-
ions on global issues (Durmus et al., 2023), re-
vealing biases towards viewpoints from English-
speaking areas. Furthermore, questionnaires about

"https://www.worldvaluessurvey.org
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basic human values include Schwartz Value Survey
(SVS) (Schwartz, 2012) that assigns importance
to 57 value items and alternative Portrait Values
Questionnaire (PVQ), based on which Zhang et al.
(2023d) generate a thousand-level prompt dataset
using GPT-4 to assess LLMs’ value understanding
ability. Social Value Orientation has a 6-question
survey (Zhang et al., 2023e). In addition, a com-
prehensive benchmark to evaluate trustworthiness
of LLMs has been established (Sun et al., 2024).

Automatic Value Classifier With annotated sam-
ples, automatic classifiers can be deployed to iden-
tify the underlying values of LLM’s outputs. Moral
Foundation Twitter Corpus (Hoover et al., 2020)
consists of tweets accompanied by 10 moral sen-
timent categories, where a sentiment classifier is
trained. DeNEVIL (Duan et al., 2023) introduces
a value classifier to provide signals for dynamic
generation. Focusing on the Schwartz’s Theory, a
value classifier is trained to discern the value di-
mensions based on ValueNET (Qiu et al., 2022) or
the argument dataset (Kiesel et al., 2022). Diverg-
ing from datasets of human utterances, Value FUL-
CRA (Yao et al., 2023) provides the opportunity to
train classifiers especially for LLMs outputs.

6 Challenges and Future Research

As shown in Figure 1, this survey presents a com-
prehensive overview of various alignment goals,
traversing from human instructions to value prin-
ciples and emergent basic values. Considering the
challenges of clarity and adaptability in defining
alignment goals, the universal basic values beyond
enumerated value principles tend to be promising,
while lacking an in-depth understanding and ex-
ploration. To inspire further studies, we discuss
several possible research directions.

Appropriate Value System By tracing the evo-
lution of existing alignment goals, analyzing their
strengths and weaknesses, we argue that the value
systems used to define the alignment goal should
have 1) clarity to represent unambiguous and pre-
cise values across broad scenarios; and 2) adapt-
ability to deal with emerging situations and varying
cultural values. Aligning with ill-defined value sys-
tems could result in serious harms (Gabriel, 2020).
Universal basic values in social sciences and hu-
manity exhibit some potential, such as Schwartz’s
Basic Value Theory (Schwartz, 2012) and Moral
Foundation Theory (Graham et al., 2013). Whether



these values originating from humanity are suitable
for Al alignment and how to formalize alignment
objectives with these theories still need exploration.
Besides, the feasibility, clarity, and adaptability
of various basic value theories and fundamental
dimensions in trustworthy AI (Sun et al., 2024)
should be further compared and analyzed. Hold-
ing on these advantages, more appropriate value
systems can be built through collaboration with
experts in philosophy, ethics, and social science.

Alignment Goal Representation Using basic
values to define the alignment goal, enhancements
can be explored from three key aspects. The first is
generalizability to provide accurate supervision sig-
nals for arbitrary scenarios from open domains, out-
of-distribution (OOD) cases or even unidentified
ones. Value principles specific to observed issues
or cases struggle with generalization to outliers. In
contrast, basic values, rooted in universal human
desires and underlying specific behaviors, offer
greater generalizability and help achieve scalable
oversight. The second is adaptability to diverse
cultural values. Basic values, recognized across
various cultures and differed by value priorities,
provide flexibility in formalizing different cultural
values as alignment goals The third is enhancing
transparency to make the alignment process more
interpretable and controllable, which is neglected
by existing work. Utilizing a limited set of com-
prehensive basic values, LLMs’ behaviors link to
specific value priorities. Adjusting these priorities
during alignment provides transparency.

Value-aware Alignment Algorithms Main-
stream alignment methods, i.e. SFT and RLHF,
hardly introduce explicit guidance of value princi-
ples, which tend to be ineffective in data and un-
stable. Though variability of values are presented
in various contexts, noises or conflicts might ex-
ist in the training samples, thus harmful values
such as power-seeking can be induced during the
alignment process. Constitutional Al (Bai et al.,
2022b), SELF-ALIGN (Sun et al., 2023d) and so
on are more effective methods, where explicit value
principles direct the training data construction or re-
ward calculation. However, the target LLM has not
yet directly learned to behave from these value prin-
ciples. Actually, in-context learning is a promising
method to prompt LLMs with clarified target value
and regulate their behaviors (Ganguli et al., 2023).
However, without fine-tuning, it cannot completely

eliminate inherent harms. It is also challenging
to express fine-grained value priorities and handle
varying contexts via simple prompts. Therefore, fu-
ture research should focus on developing efficient,
stable alignment algorithms that transparently align
LLMs with clear and generalizable target values
instead of ambiguous proxies.

Automatic & Comprehensive Evaluation Ac-
curate and robust benchmarks and evaluation meth-
ods are essential for guiding research about value
alignment. At present, some benchmarks are con-
structed for alignment evaluation (Xu et al., 2023e;
Sun et al., 2023a), which require human annota-
tions or final human judgment. This makes them
expensive and not easily scalable. Though power-
ful LLMs perform as an alternative for judgment,
it highly relies on LLMSs’ capabilities and intro-
duces uncertainty or biases. Consequently, auto-
matic evaluation methods and metrics are urgently
required to accelerate the assessment and research
process. Evaluations across various abilities and
difficulty levels should be considered: 1) under-
stand and agree with human values; 2) diagnose
scenarios involving values and make correct judg-
ments; 3) perform consistently with human values,
even in dilemmas; etc. This assessment becomes
more and more difficult, from simple discrimina-
tion to exact behaviors, which attempts to detect the
most essential values of LLMs behind their elicited
behaviors. Since priorities among values can only
matter in some quandary scenarios, we should also
consider specific dilemma cases in the evaluation
to figure out such fine-grained information.

7 Conclusion

This paper highlights the importance of specify-
ing appropriate goals for big model alignment and
presents the first survey of various alignment goals
in existing literature. We propose a novel catego-
rization for these goals in line with human learning
process: human instructions, human preferences,
value principles and basic values, which facilitates
understanding their evolution paths and indicates
further developments. To inspire studies aligning
big models from the level of basic values, we dis-
cuss challenges and future directions. Besides, our
survey provides a compilation of resources for big
model alignment. We expect this survey to act as
both a foundational guide and a source of inspira-
tion for researchers and practitioners in this field.



8 Limitations

In this paper, we provide a comprehensive survey
from the perspective of alignment goals for big
models and present a novel categorization for these
increasingly complex goals, which is in line with
human learning hierarchy thus indicative for future
research. Due to our emphasis on the evolution
process of alignment goals, there may be some
limitations in this paper.

Limited Details on Alignment Methods In
terms of value alignment, there are two critical
research questions: what to align with? and how
to align? This study centers on the former one
to clarify alignment goals, which performs as a
premise for subsequent design of alignment meth-
ods. As a result, details about concrete alignment
methods are not included in our paper, such as
the reinforcement learning from human feedback
(RLHF) and its improved versions. Information
about these aspects is available in other surveys ded-
icated to LLMs alignment methodologies (Wang
et al., 2023c; Zhang et al., 2023b), which differs
from our paper in the reviewing perspective and
are discussed by us in Appendix A.2.

Scope of Considered Big Models Examples of
big models mainly include Large Language Models
(LLMs) and Large Multimodal Models (LMMs).
This survey and the taxonomy are primarily con-
structed on the alignment research of LLMs, and
existing related works in the field of LMMs which
still focus on the alignment goals of human instruc-
tions. As LMMs alignment develops, we argue that
the proposed taxonomy should be applicable to
LMMs as well. Besides, we would conduct future
updates to include such advancement and ensure
the comprehensiveness of our taxonomy.

9 Ethical Consideration

This paper conducts a comprehensive survey about
alignment goals for big models, which aims at clar-
ifying the most appropriate values encoded into
Al and transparently guarantee their responsible
development. Notably, discussing these details can
also provide inspirations for designing malicious
alignment goals, injecting harmful noises into the
training data and adversarial attacks. More robust
alignment methods are required at the same time.
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A Supplements of Introduction

A.1 Scope of References

To make the survey as comprehensive as possible,
we review papers in recent years (mostly 2019-
2024) from well-known conferences and journals,
including the ACL, EMNLP, NAACL, NeurIPS,
ICLR, arXiv where newly emergent papers are
released, and so on. Topics of related work en-
compass LLMs alignment, value alignment, value
evaluation, reward modeling, instruction tuning,
etc.

A.2 Related Work

In this section, we review related work from two
primary aspects: the surveys about Al alignment
and the discussions on alignment goals.

With remarkable progress in big models, great
efforts have been made to align them with human
values and ensure their responsible development.
To furnish a picture of existing works and inspire
future research, there are numerous surveys about
Al or large language model alignment. Zhang et al.
(2023b) and Wang et al. (2023c) summarize re-
search works about instruction tuning, including
the available datasets, training methods, evalua-
tion methods, applications to other modalities and
domains. Shen et al. (2023) exhibit a more com-
prehensive survey of alignment methodologies by
categorizing them into outer and inner alignment.
Jiet al. (2023b) also explore the methodologies and
practical applications of Al alignment. However,
these studies predominantly explore the research
question ‘how to align’, focusing on the algorithms



Data Source Dataset ‘ #Tasks | #Instruction Prompt Types
PromptSource (Bach et al., 2022) 180 2,085 A
P3 (Sanh et al., 2021) 270 2,073 A
Natural Instructions (Mishra et al., 2021) 61 61 7ZS & FS
Super-Natlnst (Wang et al., 2022b) 76 1,616 7S & FS
Existing NLP Benchmarks GLM-130B (Zeng et al., 2022) 74 - FS
xP3 (Muennighoff et al., 2022) 83 - 7S
OPT-IML Bench (Iyer et al., 2022) 1,991 18M 7S & FS & CoT
Flan 2022 Collection (Longpre et al., 2023) | 1,836 15SM ZS & FS & Co
COIG (Zhang et al., 2023a) 2k 200k A
Unnatural Inst (Honovich et al., 2022) 117 240k 7S
Self-Instruct (Wang et al., 2022a) 175 82k ZS
Alpaca (Taori et al., 2023) 175 52k ZS & FS
Baize (Xu et al., 2023c¢) - 111.5k Conversation
Model-Generated UltraChat (Ding et al., 2023) - 675k Conversation
Evol-Instruct (Xu et al., 2023b) - 250k Varying Complexity
Phoenix (Chen et al., 2023b) - 189k Multilingual
Bactrain-X (Li et al., 2023a) - 3.4M Multilingual
Crowd-Sourcing ShareGPT (Chiang et al., 2023) - ~100k Converastion
OpenAssistant (Kopf et al., 2023) - ~161k Conversation

Table 1: Details of public instruction datasets, ordered by their release time. ‘ZS’ and ‘FS’ mean zero-shot and
few-shot respectively and ‘CoT’ means chain-of-thought.

rather than the underlying objectives. Differently,
this paper provides an overview from a novel per-
spective of ‘what to align with’, which is critical to
determine the objective encoded into Al

In previous studies, there are a few discus-
sions about defining precise and appropriate goals
for alignment. For example, Specification Prob-
lem (Leike et al., 2018) underscores the necessity
for precise reward modeling to ensure correct align-
ment. Furthermore, various alignment goals and
their differences have been analyzed in position
papers (Gabriel, 2020), ranging from instructions,
intentions, preferences to interests and values. Dis-
tinguished from previous works, our paper con-
ducts the first practical survey of alignment goals
introduced in existing research works. By dissect-
ing their essence and integrating the insights gained
from human learning process, our paper presents
a novel categorization with increasing abstraction
and complexity. In addition, we also delve into the
challenges and future research directions.

B Supplements of Human Instructions

Details of public instruction datasets are enumer-
ated in Table 1.
B.1 Taxonomy of Alignment Goals

Figure 3 illustrates the taxonomy of alignment
goals in our paper.
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Promp (Bach et al., 2022); P3 (Sanh et al., 2021); Natural Inst. (Mishra et al., 2021);

Super-Natural Inst. (Wang et al., 2022b); GLM (Zeng et al., 2022); xP3 (Muennighoff et al., 2022);
Flan 2022 (Longpre et al., 2023); OPT-IML Bench (Iyer et al., 2022);COIG (Zhang et al., 2023a)

NLP Task Instructions

Goal
Representatior

Unnatural Inst. (Honovich et al., 2022); Self-Instruct (Wang et al., 2022a); Aplaca (Taori et al., 2023);
Baize (Xu et al., 2023c); UltraChat(Ding et al., 2023); Evol-Instruct (Xu et al., 2023b);
Phoenix (Chen et al., 2023b); Baxtrain-X (Li et al., 2023a)

Model-Generated Instructions

Human Instructions

(See. 2) Human-Shared Tnstructions HShareGPT (Chiang et al., 2023); OpenAssistant Conversation (Kopf et al., 2023)

OPT-IML Bench (Iyer et al., 2022); Flan 2022 (Longpre et al., 2023); MMLU (Hendrycks et al., 2020b);
BBH (Suzgun et al., 2022); MGSM (Shi et al., 2022); Big-Bench (Srivastava et al., 2022);

C-Eval (Huang et al., 2023b); AGIEval (Zhong et al., 2023); CMMLU (Li et al., 2023b);

LM-Written Evaluation (Perez et al., 2022); PandaLM (Wang et al., 2023b)

InstructGPT (Ouyang et al., 2022); Summarization (Stiennon et al., 2020; Wu et al., 2021);
‘WebGPT (Nakano et al., 2021); OpenAssistant (K6pf et al., 2023); Game Reward (Kwon et al., 2023);
LLaMA2 (Touvron et al., 2023)

Human Demonstrations

Human Feedback
Model Synthetic Feedback

Summarization (Stiennon et al., 2020; Wu et al., 2021); WebGPT (Nakano et al., 2021);
InstructGPT (Ouyang et al., 2022); OpenAssistant (Kopf et al., 2023); Safe RLHF (Dai et al., 2023);
Hindsight (Liu et al., 2023a);DPO (Rafailov et al., 2023); RAFT (Dong et al., 2023); RRHF (Yuan et al., 2023)

Game Reward (Kwon et al., 2023); IFL (Scheurer et al., 2023): ALMoST (Kim et al., 2023);
Stable Alignment (Liu et al., 2023d); RLAIF (Lee et al., 2023); Clever Flamingo (Chen et al., 2023a)

Human Preferences
(Sec. 3)

TruthfulQA (Lin et al., 2022); OpenBookQA (Mihaylov et al., 2018); CrowS-Pairs (Nangia et al., 2020);
‘WinoGender (Rudinger et al., 2018); BBQ (Parrish et al., 2021); BOLD (Dhamala et al., 2021);
RealToxicityPrompts (Gehman et al., 2020); ToxiGen (Hartvigsen et al., 2022); BIG-Bench (Srivastava et al., 2022);
HELM (Liang et al., 2022); LM-Written Evaluation (Perez et al., 2022)

Goal
Evaluation

InstructGPT (Ouyang et al., 2022); Llama2 (Touvron et al., 2023); RRHF (Yuan et al., 2023);
AlpacaEval (Li et al., 2023c); AlpacaFarm (Dubois et al., 2023); Vicuna (Chiang et al., 2023);
LLM-as-a-Judge (Zheng et al., 2023); LLM Evaluation (Chiang and Lee, 2023); Position Bias (Wang et al., 2023a)

Human & LLM Evaluation

Reward Model

HHH (helpful
honest & harmless)

Llama2 (Touvron et al., 2023); HH-RLHF (Yuan et al., 2023); DPO (Rafailov et al., 2023); RAFT (Dong et al., 2023).
GRUE (Ramamurthy et al., 2022); Safe RLHF (Dai et al., 2023); HPS v2 (Wu et al., 2023)

HH-RLHF (Bai et al., 2022a); Red-Team (Ganguli et al., 2022); Contitutional Al (Bai et al., 2022b);
SELF-ALIGN (Sun et al., 2023d); SALMON (Sun et al., 2023c); Sparrow (Glaese et al., 2022);
PALMS (Solaiman and Dennison, 2021); BeaverTails (Ji et al., 2023a)

Alignment
Goals

Principle Definition

Moral Integity Corpus (Ziems et al., 2022); Social Chemistry 101 (Forbes et al., 2020);
Moral Stories (Emelin et al., 2020); ETHICS (Hendrycks et al., 2020a); MoralDial (Sun et al., 2023b);
Scruples (Lourie et al., 2021); Goofus & Gallant (Nahian et al., 2020)

Social Norms
& Ethics

In-Context Learning ]—[Scll’—Crilicism (Tan et al., 2023); Denevil (Duan et al., 2023); OPO (Xu et al., 2023d) ]

Principle Alignment

Contitutional AI (Bai et al., 2022b); SELF-ALIGN (Sun et al., 2023d); Red-Teaming (Ganguli et al., 2022);
BeaverTails (Ji et al., 2023a); Sparrow (Glaese et al., 2022); SALMON (Sun et al., 2023c);
PALMS (Solaiman and Dennison, 2021)

Fine-tuning

Safety Benchmarks
Social Norms Benchmarks
Morality Classifier

Basic Value Theory

Value Principle
(Sec. 4)

HH-RLHF (Bai et al., 2022a); SafetyPrompts (Sun et al., 2023a); SafeText (Levy et al., 2022);
CValues (Xu et al., 2023e)

Moral Integity Corpus (Ziems et al., 2022); Social Chemistry 101 (Forbes et al., 2020);
Moral Stories (Emelin et al., 2020); ETHICS (Hendrycks et al., 2020a); TrustGPT (Huang et al., 2023a);
SCRUPLES (Lourie et al., 2021); MoralExceptQA (Jin et al., 2022); ETHICAL QUANDARY GQA (Bang et al., 2022)

HH-RLHF (Bai et al., 2022a); SALMON (Sun et al., 2023c); Goofus & Gallant (Nahian et al., 2020);
Delphi (Jiang et al., 2021); Value KALEIDO (Sorensen et al., 2023)

Bernard Gert’s Common Morality Theory (Gert, 2004); Moral Foundation Theory (Graham et al., 2013);
Schwartz Theory of Basic Values (Qiu et al., 2022); Rokeach Values (Qiu et al., 2022);
Social Value Orientation (Murphy et al., 2011)

\{Busic Value Alignment HVILLAMA (Kang et al., 2023); BaseAlign (Yao et al., 2023) ]

Basic Values

(Sec. 2) GlobalOpinionQA (Durmus et al., 2023) (World Values Survey (WVS) (wor, 2021) & Pew Research

Center’s Global Attitudes surveys (GAS) (pew, 2022)); Moral Foundations (Abdulhai et al., 2023);
Schwartz Value Surveys (Zhang et al., 2023d); Social Value Orientation (Zhang et al., 2023e);
Denevil (Duan et al., 2023)

Human Value Surveys

Goal
Evaluation

Automatic Value Classifier Moral Foundation Twitter Copus (Hoover et al., 2020); VALUENET (Qiu et al., 2022); }

Arguments (Kiesel et al., 2022); Value FULCRA (Yao et al., 2023)

Figure 3: Taxonomy of reviewed papers about various alignment goals.
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