
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARVIDEO: AUTOREGRESSIVE PRETRAINING FOR SELF-
SUPERVISED VIDEO REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a new self-supervised video representation learning frame-
work ARVideo, which autoregressively predict the next video token in a tailored
sequence order. Two key designs are included. First, we organize autoregressive
video tokens into clusters that span both spatially and temporally, thereby enabling
a richer aggregation of contextual information compared to the standard spatial-
only or temporal-only clusters. Second, we adopt a randomized spatiotemporal
prediction order to facilitate learning from multi-dimensional data, addressing the
limitations of a handcrafted spatial-first or temporal-first sequence order. Extensive
experiments establish ARVideo as an effective paradigm for self-supervised video
representation learning. For example, when trained with the ViT-B backbone,
ARVideo competitively attains 81.2% on Kinetics-400 and 70.9% on Something-
Something V2, which are on par with the strong benchmark set by VideoMAE.
Importantly, ARVideo also demonstrates higher training efficiency, i.e., it trains
14% faster and requires 58% less GPU memory compared to VideoMAE.

1 INTRODUCTION

The transformer architecture, as introduced in Vaswani et al. (Vaswani et al., 2017), has fundamentally
transformed the field of natural language processing (NLP) through its ability to model long-range
dependencies with minimal inductive bias. A crucial catalyst for its success lies in self-supervised
learning of robust and transferable representations from large volumes of unlabeled data. Within
this paradigm, masked language modeling (MLM) (Devlin et al., 2019) and autoregressive modeling
(AR) (Radford et al., 2018; Brown et al., 2020; OpenAI, 2023) stand out as two leading approaches.
Specifically, MLM masks random portions of input tokens and trains models to predict masked
elements; whereas AR predicts subsequent words in a sequence based on all preceding words. These
methods have propelled state-of-the-art performance in various NLP tasks.

In the video domain, however, the landscape is different. Previous studies have predominantly relied
on supervised pretraining using image datasets, often overlooking the critical aspect of temporal
dynamics (Liu et al., 2022b; Bertasius et al., 2021). Recently, there has been a shift towards
leveraging NLP-inspired mask language modeling (Devlin et al., 2019) or image-inspired mask
image modeling (He et al., 2022; Bao et al., 2022) to directly exploit unlabeled video datasets for
pretraining. For instance, VideoMAE (Tong et al., 2022; Feichtenhofer et al., 2022) introduces mask
autoencoder (He et al., 2022) for self-supervised video video representation learning; BEVT (Wang
et al., 2022a) learns spatial representations from image data and joint-masked image and video
modeling. Despite these advancements, autoregressive modeling—another powerful self-supervised
learning approach in NLP—has yet to be extensively explored within the context of video data
analysis.

Critically, applying autoregressive pretraining to video data entails the same principle of autore-
gressively predicting the next element in a sequential order based on its predecessors. In natural
language, these elements—words—are clearly defined and inherently follow a chronological order.
For images, elements could be conceptualized as pixels or patches arranged in a flattened sequence
(Chen et al., 2020; El-Nouby et al., 2024; Ren et al., 2024). The further transition to video data,
however, introduces additional complexity due to its inherently multidimensional nature (i.e., in-
cluding both spatial and temporal dimensions). This raises a crucial inquiry: how should we define
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Figure 1: ARVideo autoregressive predicts spatiotemporal cluster from grouping tokens span spatial
and temporal dimension.

an autoregressive ‘video element’ and establish a visual sequence order for self-supervised video
representation learning?

We note traditional methods, such as converting video into a sequence of cubes (Tong et al., 2022;
Bertasius et al., 2021; Wang et al., 2022a; Liu et al., 2022b) and subsequently linearly mapping these
cubes into video tokens, generally reveal critical limitations in addressing this query. Specifically, the
granularity of these video tokens often fails to encapsulate the rich semantics typically represented by
words in text-based models—primarily because 1) these video tokens are too dimensionally limited,
and 2) video inherently lacks a sequential order in its spatial dimensions, although it retains this
feature in its temporal aspects.

To address these challenges, we hereby present ARVideo, a novel autoregressive-based video repre-
sentation learning paradigm with two key designs (see Figure 1). Firstly, we redefine ‘video elements’
by grouping video tokens into spatiotemporal video clusters, differentiating from conventional single-
dimensional strategies like spatial video clusters or temporal video clusters. This approach improves
semantic representation by aggregating more contextually relevant multidimensional information.
Secondly, we find that, compared to well-defined yet single-dimensional spatial-first or temporal-first
sequence orders, a sequence order that randomly integrates both spatial and temporal dimensions
empirically yields significantly stronger results. This suggests that effectively capturing the inherent
multidimensionality of video data is crucial for autoregressive modeling. Extensive experiments
establish our ARVideo as an effective paradigm for video representation learning. For example, while
the autoregressive video representation learning baseline only attains 74.2% on Kinetics-400 and
66.4% on Something-Something V2, ARVideo significantly boosts the results to 81.2% (+7%) and
70.9% (+4.5%), respectively. Notably, these results not only match but, in some aspects, surpass
the strong benchmark set by VideoMAE, particularly with respect to training efficiency—ARVideo
achieves faster training speeds by 14% and reduces GPU memory consumption by 58%.

2 RELATED WORK

2.1 VIDEO REPRESENTATION LEARNING

Video representation learning has witnessed significant exploration, historically driven by supervised
learning methods (Tran et al., 2018; Wang et al., 2019; Simonyan & Zisserman, 2014; Bertasius
et al., 2021; Liu et al., 2022b) that pretrain backbone networks on labeled image or video data before
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fine-tuning. However, such methods face challenges due to inherent discrepancy between image and
video data, compounded by the scarcity of comprehensively labeled video datasets.

In the era of self-supervised learning, recent work have designed pre-tasks incorporating temporal
information for self-supervised video representation learning (Xu et al., 2019; Benaim et al., 2020;
Huang et al., 2021; Qian et al., 2021; Ranasinghe et al., 2022) and leveraging contrastive learning for
effective visual representations (Qian et al., 2021; Kuang et al., 2021; Li et al., 2021; Diba et al., 2021;
Han et al., 2020a;b). Additional, mask reconstruction-based methods inspired by masked language
modeling (Devlin et al., 2019) are introduced into self-supervised image and video representation
learning. For example, MAE (He et al., 2022) presents a scalable self-supervised learning method
to reconstruct masked image patches while VideoMAE (Tong et al., 2022) extends this approach to
video data and reconstructs masked spacetime patches. BEVT (Wang et al., 2022b) separates spatial
learning from temporal dynamics, training on masked images initially before jointly on masked
images and videos. Christoph et al. (Feichtenhofer et al., 2022) introduce an efficient video-based
MAE extension with minimal biases and significant speedups. In contrast to prior works, our ARVideo
proposes a new path for self-supervised video representation learning via autoregressive pretraining.

2.2 AUTOREGRESSIVE PRETRAINING

As a representative approach for autoregressive pretraining, Generative Pretrained Transformer (GPT)
trains language models by autoregressively predicting the next word based on all preceding words
in a sentence. Inspired by the success of autoregressive modeling in NLP, researchers start to apply
autoregressive pretraining in computer vision. ImageGPT (Chen et al., 2020) learns effective image
representations by training a Transformer to autoregressively predict image pixels without any prior
knowledge of their 2D structure. SAIM (Qi et al., 2023) adopts an encoder to autoregressively
learn contextual information like a standard vision transformer (ViT) and a decoder to predict the
current content, mutually reinforcing each other’s functions. RandSAC (Hua et al., 2022) arranges
image tokens into segments for parallel intra-segment and sequential inter-segment autoregressive
prediction. However, applying autoregressive pretraining on video data faces notable challenges due
to the extra temporal dimension. ARVideo explores the design of autoregressive video elements and
visual sequence orders for video representation learning.

3 METHOD

In this section, we first revisit GPT (Radford et al., 2018) and ImageGPT (Chen et al., 2020) to
establish the foundation for the proposed ARVideo, as illustrated in Figure 1. We then analyze the
inherent difference between image and video data, followed by the design of elements and the optimal
prediction order as the key ingredients in ARVideo for autoregressive prediction with videos.

3.1 GENERATIVE PRETRAINED TRANSFORMER

We first outline the Generative Pretrained Transformer (GPT) framework. Consider an unlabeled
language dataset U comprising sentences [u1, ..., uN ], where each sentence uj consists of words
uj = {uj

1, ..., u
j
n}. GPT (Radford et al., 2018) autoregressively predicts the next word given all

preceding words, minimizing the negative log-likelihood with model parameter θ:

p(uj) = −log

n∏
i=1

p(uj
i |u

j
1, ..., u

j
i−1, θ). (1)

This modeling strategy has fundamentally changed the landscape of natural language processing,
leading to the development of tremendously successful models like ChatGPT (Radford et al., 2018)
and GPT-4 (OpenAI, 2023).

3.2 IMAGEGPT

Transitioning from natural language processing to image processing necessitates the design of
image elements for autoregressive prediction. In ImageGPT, it treats individual pixels as elements.
Specifically, given an image x ∈ RH×W×C , ImageGPT flattens it into a 1D pixel sequence of length
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Figure 2: Comparison between video token and different cluster.

N = H ×W , and autoregressively predicts the next pixel given all preceding pixels:

p(x) = −log

N∏
i=1

p(xi|x1, ..., xi−1, θ) (2)

This approach incurs significant computational overhead due to the quadratic complexity of self-
attention w.r.t. the input sequence length. ImageGPT thereby uses smaller image sizes (e.g., 32× 32)
in pretraining, yielding suboptimal performance. This limitation is pertinent in our development of
ARVideo and becomes more pronounced due to the added complexity of video data.

3.3 ARVIDEO

Illustrated in Figure 1, ARVideo autoregressively pretrains on video data x ∈ RT×H×W×C . Note
that directly extending ImageGPT to videos faces significant challenges, primarily due to the added
temporal dimension, which would significantly escalate computational demands, even with low-
resolution videos like 4 × 32 × 32. Moreover, pixels as autoregressive elements lack semantic
richness compared to words in the language, further necessitating pixel grouping strategies to enhance
representation learning. To better facilitate learning from multi-dimensional video data, we also
explore prediction orders across spatial and temporal dimensions.

3.3.1 PIXEL GROUPING

From Pixels to Video Tokens. With patch embeddings in ViT, videos can be patchified into non-
overlapping cubes (Tong et al., 2022; Bertasius et al., 2021; Wang et al., 2022a; Liu et al., 2022b)
of size PT × PW × PH . Then, each cube is transformed into a video token through a linear
projection layer, resulting in N = T

PT
× H

PH
× W

PW
video tokens. This tokenization significantly

reduces operational elements, thus alleviating computational demands while ensuring that each video
token encapsulates richer semantics compared to individual pixels. For example, as reported in
Table 1, using video tokens as autoregressive elements for pretraining significantly outperforms
approaches without tokenization by 3.3% while keeping pretraining resolution consistent with
previous work (Tong et al., 2022; Wang et al., 2022a).

Element Resolution Something- Something V2

Pixel 8× 14× 14 60.7
Token 16× 224× 224 64.0

Table 1: Grouping pixels into video tokens facilitates autoregressive pretraining on higher-resolution
videos and improves performance by 3.3%.

This promising transition from pixels to video tokens introduces a compelling query: Can further
performance gains be realized by aggregating more tokens? In pursuit of this, we examine three
options: grouping video tokens into spatial, temporal, or spatiotemporal clusters. It is important
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to note that within each cluster, video tokens are always fully attended to each other. This full-
attention configuration helps to enable a more effective consolidation of semantic content within each
autoregressive element.

From Tokens to Spatial Clusters. As shown in Figure 2(b), we strategically group spatially
neighbored tokens—those sharing the same temporal positions but varying spatially—into spatial
clusters. Following the patch embedding step, video tokens within the spatial domain H

PH
× W

PW

are grouped into one element, resulting in T
PT

autoregressive elements. For example, a video of
size 16 × 224 × 224 with a cube embedding size of 2 × 16 × 16 (Tong et al., 2022) here will be
transformed into 8 autoregressive elements, with each element comprising 14× 14 tokens.

From Tokens to Temporal Clusters. As illustrated in Figure 2(c), our method integrates temporal
information by grouping tokens that are temporally adjacent into temporal clusters. Specifically,
tokens within the temporal domain T

PT
are grouped into one element, resulting in H

PH
× W

PW
au-

toregressive elements. For instance, a video of size 16× 224× 224 with a cube embedding size of
2× 16× 16 (Tong et al., 2022) here will transformed into 14× 14 autoregressive elements, with each
element comprising 8 tokens.

From Tokens to Spatiotemporal Clusters. Moving beyond the single-dimensional grouping strate-
gies discussed above, we now consider the inherently multidimensional nature of video data by
grouping neighboring KT × KH × KW tokens into spatiotemporal clusters with no overlaps, as
illustrated in Figure 2(d). This strategy results in a total number of T

PTKT
× H

PHKH
× W

PWKW
clusters,

with each containing both spatial and temporal information as an autoregressive element.

3.3.2 SPATIALTEMPORAL PREDICTION ORDER

For the spatiotemporal cluster, we further explore its prediction order. Specifically, this strategy
is expected to yield T

PTKT
clusters at each spatial position, and H

PHKH
× W

PWKW
clusters at each

temporal position.

Pre-defined order. We implement two systematic strategies: a spatial-first order and a temporal-first
order. The spatial-first approach prioritizes autoregressive pretraining within the H

PHKH
× W

PWKW

spatiotemporal clusters along the spatial dimension, before transitioning to clusters in subsequent tem-
poral positions. Conversely, the temporal-first approach prioritizes within the T

PTKT
spatiotemporal

clusters along the temporal dimension, then proceeds to clusters in subsequent spatial positions.

Random Rasteration. Inspired by the random sentence permutation technique used in XLNet (Yang
et al., 2019) for enhancing autoregressive pretraining, our random rasterization approach scrambles
the order of clusters randomly during autoregressive pretraining. This method avoids the constraints
of fixed sequential patterns, such as spatial-first or temporal-first, and allows ARVideo to adaptively
model both long- and short-range spatial-temporal information. Such flexibility in autoregressive
prediction orders not only captures the inherent multidimensionality of video data more effectively
but also fosters a richer, more comprehensive video representation.

3.3.3 MODEL ARCHITECTURE

We adopt the ViT (Dosovitskiy et al., 2021; Tong et al., 2022) as the encoder. For the decoder, we
take the Transformer decoder with cross attention but without self-attention. This design choice aims
to simplify the decoding process, emphasizing interaction between the encoded inputs while reducing
training costs. The query of the decoder is randomly initialized but includes position information
to facilitate sequence generation. Our model utilizes a strategically designed attention mask as in
previous work (Chen et al., 2020; Radford et al., 2018) to enable efficient autoregressive prediction in
a parallel computation framework. When transferring to downstream tasks, we remove the decoder
and only finetune the encoder.
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Method Backbone pretrain Epoch Frames GFLOPs Param Top-1
Supervised pretraining
TANet (Liu et al., 2021) ResNet152 IN-1K 100 16 242×4×3 59 79.3
TDNEn (Wang et al., 2021) ResNet101 IN-1K 100 8+16 198×10×3 88 79.4
TimeSformer (Bertasius et al., 2021) ViT-B IN-21K 15 8 196×1×3 121 78.3
Motionformer (Patrick et al., 2021) ViT-B IN-21K+K400 35 16 370×1×3 109 81.1
Video Swin (Liu et al., 2022a) Swin-B IN-21K+K400 30 32 321×1×3 88 82.7

Mask video modeling
VIMPAC (Tan et al., 2021) ViT-L HowTo100M 100 10 N/A×10×3 307 77.4
BEVT (Wang et al., 2022a) Swin-B K400 150 32 282×1×3 88 76.2
VideoMAE (Tong et al., 2022) ViT-B K400 800 16 180×2×3 87 80.0
VideoMAE (Tong et al., 2022) ViT-B K400 1600 16 180×2×3 87 81.5

Autoregressive pretraining
iGPT (Chen et al., 2020) ViT-B IN-1K 300 16 180×2×3 87 61.2
Randsac (Hua et al., 2022) ViT-B IN-1K 1600 16 180×2×3 87 70.3
TokenGPT† ViT-B IN-1K 300 16 180×2×3 87 68.5
TokenGPT† ViT-B K400 800 16 180×2×3 87 74.2
ARVideo ViT-B K400 800 16 180×2×3 87 80.1
ARVideo ViT-B K400 1600 16 180×2×3 87 81.2

Table 2: Comparison with the state-of-the-art methods on Kinetics-400. “Ex. labels ✗” means
only unlabelled data is used during the pretraining phase. “N/A” indicates the numbers are not
available for us. † indicates the implementation by us with the token replacing pixel in iGPT.

4 EXPERIMENT

4.1 DATASET AND IMPLEMENTATION DETAILS

We primarily evaluate ARVideo on Kinetics-400 (Kay et al., 2017) and Something-Something
V2 (Goyal et al., 2017). Specifically, Kinetics-400 contains 400 classes and 260k videos of 10s, with
240k for training and 20k for validation; Something-Something V2 contains 174 classes with 169k
videos for training and 25k for validation. While Kinetics-400 provides a broad spectrum of actions
with minimal context, Something-Something V2 focuses more on the interaction of actions with
objects.

For our experiments, we first pretrain a vanilla video Transformer (Tong et al., 2022) with ARVideo,
and then fine-tune the pretrained model on the target action recognition datasets. Additionally, we
assess the feature transferability on AvA v2.2 (Gu et al., 2018) and HMDB (Kuehne et al., 2011).
AvA v2.2 is a human action localization dataset with 211k videos for training and 57k for validation;
HMDB is a small video dataset with 3.5k videos for training and 1.5k videos for validation.

We follow the established protocol in prior work (Tong et al., 2022) to train our models. Instead of
using negative log-likelihood as in GPT (Radford et al., 2018), we employ mean square error (MSE)
loss to measure the discrepancy between the predicted and target cubes, as utilized in MAE (He et al.,
2022). We randomly mask 80% tokens in each element to reduce the overall training costs; note that,
unlike MAE or VideoMAE, we do not reconstruct those masked regions.

4.2 MAIN RESULTS

Kinetics-400. We pretrain the ViT-B backbone for both 800 and 1600 epochs on Kinetics-400,
and report the corresponding results in Table 2. Notably, ARVideo attains 80.1% top-1 accuracy
under 800 epochs and 81.2% top-1 accuracy under 1600 epochs, exhibiting significant improvements
over previous autoregressive methods. Specifically, taking 1600-epoch-pretrained ARVideo for
comparison, it outperforms iGPT, the baseline model, by a striking +20.0%, and Randsac, the
previous state-of-the-art autoregressive model on images, by +10.9%. Additionally, compared to
TokenGPT, which performs token-level autoregressive prediction, ARVideo showed advancements of
+12.7% when TokenGPT was pretrained on an image dataset, and +7.0% when it was pretrained on
the Kinetics-400 dataset.

Moreover, we note that ARVideo performs competitively against the strong benchmark—the mask
video modeling method, VideoMAE. For example, the performance difference between ARVideo
and VideoMAE is only 0.1% with 800 epochs of pretraining; this margin remains minimal at 0.3%
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Method Backbone Pretrain Epoch Frames GFLOPs Param Top-1
Supervised pretraining
TEINetEn (Liu et al., 2020) ResNet50×2 IN-1K 50 8+16 99×10×3 50 66.5
TANetEn (Liu et al., 2021) ResNet50×2 IN-1K 50 8+16 99×2×3 51 66.0
TDNEn (Wang et al., 2021) ResNet101×2 IN-1K 60 8+16 198×1×3 88 69.6
SlowFast (Feichtenhofer et al., 2019) ResNet101 K400 196 8+32 106×1×3 53 63.1
MViTv1 (Fan et al., 2021) MViTv1-B K400 100 64 455×1×3 37 67.7
TimeSformer (Bertasius et al., 2021) ViT-B IN-21K 15 8 196×1×3 121 59.5
TimeSformer (Bertasius et al., 2021) ViT-L IN-21K 15 64 5549×1×3 430 62.4
ViViT FE (Arnab et al., 2021) ViT-L IN-21K+K400 35 32 995×4×3 N/A 65.9
Motionformer (Patrick et al., 2021) ViT-B IN-21K+K400 35 16 370×1×3 109 66.5
Video Swin (Liu et al., 2022a) Swin-B IN-21K+K400 30 32 321×1×3 88 69.6

Mask video modeling
VIMPAC (Tan et al., 2021) ViT-L HowTo100M 100 10 N/A×10×3 307 68.1
BEVT (Wang et al., 2022a) Swin-B IN-1K+K400 150 32 321×1×3 88 70.6
MaskFeat↑312 (Wei et al., 2022) MViT-L K600 1600 40 2828×1×3 218 75.0
VideoMAE (Tong et al., 2022) ViT-B SSv2 800 16 180×2×3 87 69.6
VideoMAE (Tong et al., 2022) ViT-B SSv2 2400 16 180×2×3 87 70.8

Autoregressive pretraining
iGPT (Chen et al., 2020) ViT-B IN-1K 300 16 180×2×3 87 54.3
Randsac (Hua et al., 2022) ViT-B IN-1K 1600 16 180×2×3 87 59.6
TokenGPT† ViT-B IN-1K 300 16 180×2×3 87 59.2
TokenGPT† ViT-B SSv2 800 16 180×2×3 87 66.4
ARVideo ViT-B SSv2 800 16 180×2×3 87 69.8
ARVideo ViT-B SSv2 2400 16 180×2×3 87 70.9

Table 3: Comparison with the state-of-the-art methods on Something-Something V2. “Ex. labels
✗” means only unlabelled data is used during the pretraining phase. “N/A” indicates the numbers are
not available for us. † indicates the implementation by us with the token replacing pixel in iGPT.

Method K400 → AVA v2.2 K400 → HMDB
Contrastive Learning

MoCo - 67.9
Mask video modeling
VideoMAE 26.7 73.3
Autoregressive pretraining
ARVideo 26.9 74.1

Table 4: Comparison of model transferability. We first pretrain models on Kinetics-400, and then
transfer them to AVA v2.2 and HMDB.

with 1600 epoch pretraining. These results validate the effectiveness of ARVideo as a pioneering
autoregressive pretraining method in self-supervised video representation learning, equalling—and in
some aspects surpassing—the performance of established mask modeling methods.

Something-Something V2. We pretrain the ViT-B backbone for 800 and 2400 epochs on the
Something-Something V2 dataset. As reported in Table 3, ARVideo achieves top-1 accuracies of
69.8% and 70.9% for 800 and 2400 epochs, respectively, which are significantly stronger than prior
autoregressive pretraining methods. For example, under 2400 epochs, ARVideo surpassed the baseline
model iGPT by +16.6% and outperforms the best-performing image-based autoregressive method,
Randsac, by +11.3%. It also surpassed TokenGPT pre-trained on image datasets by +11.7% and on
the Something-Something V2 dataset by +4.5%. Additionally, when compared to the strong masked
video modeling method VideoMAE, ARVideo also performs competitively in both 800 epochs of
pretraining (i.e., 0.2% accuracy difference) and 2400 epochs of pretraining (i.e., 0.1% accuracy
difference). Together with the observations in Kinetics-400, these results can establish ARVideo as a
strong alternative to masked modeling approaches for video analysis.

Transfer Learning. To investigate the feature transferability of ARVideo, we transfer the model
trained on Kinetics-400 to AvA v2.2 and HMDB. We can observe that ARVideo demonstrate
strong transferability, achieving 26.9 mAP on AvA v2.2 and 74.1% Top-1 accuracy on HMDB—
outperforming both VideoMAE and MoCo (see Table 4). For example, compared to VideoMAE,
ARVideo shows (slight) improvements of 0.2% on AvA v2.2 and 0.8% on HMDB.
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Method Encoder Decoder Training Time GPU MemoryQ Key/Value Q Key/Value

VideoMAE 160 160 1568 1568 145h 41.3G
ARVideo 300 300 1372 300 127h (-12.4%) 26.1G (-36.8%)

Table 5: The comparison of pretraining time and GPU memory.
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Figure 3: The attention rank comparison between VideoMAE and ARVideo

Computation cost. We report the training time and GPU memory usage in Table 5 (with ViT-B
trained on Kinetics-400 for 800 epochs, using 8×A6000). Compared to VideoMAE, ARVideo
presents significant reductions in both GPU memory usage and training time—ARVideo reduces
training cost by 12.4% (from 145 hours to 127 hours) and GPU memory consumption by 36.8%
(from 41.3G to 26.1G). This advantage stems from ARVideo’s shorter sequence length as we drop
the last cluster in the autoregressive modeling.

Attention rank. The self-attention mechanism computes attention scores for a given input sequence,
forming what is known as the attention map. The rank of this matrix can serve as a measure of its
ability to capture complex patterns in the data. Typically, high-rank attention matrices suggest a
model that can capture a wide variety of patterns and relationships within the data, while low-rank
matrices may suggest a model that does not well utilize its full capacity or operates on simpler
data (Wang et al., 2020). Following this instruction, we plot the rank of the attention map in each
layer of VideoMAE and our ARVideo in Figure 3. We can observe that, across nearly all layers
except the 6th, ARVideo maintains higher attention ranks than VideoMAE, indicating a stronger
representational ability of our model’s self-attention layers.

Visualization. We provide some randomly selected visualization results in Figure 7. Note that this
work aims to provide a new perspective to self-supervised video representation learning instead of
video generation.

4.3 ABLATION STUDY

In this part, we ablate four factors—cluster shape, mask ratio, prediction order, and decoder design.
Note that, unless otherwise specified, all ablations are conducted on the ViT-B backbone with 200
epochs of pretraining.

Cluster shape. We group neighboring and non-overlapped KT ×KH ×KW tokens into one cluster
and analyze the effect of different cluster shapes. Three situations are considered: 1) KT = KW =
KH = 1, equivalent to the TokenGPT, which pertains autoregressively at the token/cube level; 2)
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case KT KH KW Something-Something V2

Token/Cube 1 1 1 64.0
spatial cluster 1 H

PH

W
PW

66.0
spatial cluster 1 7 7 66.2

temporal cluster T
PT

1 1 65.2
temporal cluster 2 1 1 65.6

spatiotemporal cluster 4 7 7 65.5
spatiotemporal cluster (ARVideo) 2 7 7 66.8

Table 6: Ablation study on the cluster shape.

t t+n Generated t Generated t+n

Table 7: The visualization results of GPT-Video.

KT = T
PT

,KW = KH = 1, representing a temporal cluster; and 3) KT = 1,KW = W
PW

,KH =
H
PH

, representing a spatial cluster.

We report the results in Table 6. Firstly, we can observe that all clustered configurations significantly
enhance performance over the TokenGPT baseline. For example, simply grouping tokens into
spatial/temporal/spatiotemporal clusters yields 2.0%/2.2%/2.8% improvements, respectively. Then,
when comparing different clusters, we note that our spatiotemporal cluster (ARVideo) with KT =
2,KW = KH = 7 attains the best performance of 66.8%, outperforming the best-performed
spatial cluster (KT = 1,KW = KH = 7) by 0.8% and the best-performed temporal clusters
(KT = 2,KW = KH = 1) by 1.2%. However, it is interesting to note that, if a poorly designed
spatiotemporal cluster (KT = 4,KW = KH = 7) is used, the performance will drop to 65.5%.

Prediction order. In our evaluation of prediction order, which plays an important role in constructing
the video sequence, we first check with the predefined spatial-first and temporal-first orders. As
shown in Table 8, temporal-first order achieves 66.0% top-1 accuracy, which is 0.4% higher than
spatial-first order. However, our randomized spatial-temporal prediction order, adept at learning
both long- and short-range spatial-temporal dynamics, exhibits a superior performance of 66.8%,
surpassing the predefined spatial-first approach by 1.2% and the temporal-first approach by 0.8%.

Mask Ratio. To reduce the temporal redundancy, ARVideo randomly mask a portion of tokens as in
Flip (Li et al., 2023), MAE (He et al., 2022) and VideoMAE (Tong et al., 2022). We hereby check

9
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Order SSv2

Spatial-First 65.6
Temporal-First 66.0
Spatial-temporal random 66.8

Table 8: Ablation study on the prediction
order.

Mask Ratio SSv2

75% 66.0
80% 66.8
90% 65.6
95% 64.8

Table 9: Ablation study on the mask ratio from
75% to 95%.

Method Decoder Something-Something V2Self-Atten Cross-Atten

ARVideo ✓ 66.8
ARVideo ✓ ✓ 66.6

Table 10: Ablation study on the decoder architecture.

Decoder Width Decoder Depth Something-Something V2

384 4 66.0
512 4 66.8
768 4 66.8

512 2 66.2
512 4 66.8
512 8 66.6

Table 11: Ablation study on the decoder depth and width.

how the masking ratio affects the overall performance. As shown in Table 9, our study starts from a
mask ratio of 75% (i.e., same as the MAE’s setup), which achieves 66.0% top-1 accuracy. Increasing
the mask ratio to 80% boosted the top-1 accuracy to 66.8%, while further increases to 90% and 95%
lower the top-1 accuracies by 1.2% and 2.0%, respectively. We stress that, although ARVideo used a
lower mask ratio than VideoMAE, it still enjoys faster training speeds and reduced GPU load (see
Section 4.2 and Table 5).

Decoder Architecture. We hereby explore the effects of different decoder architectures. As reported
in Table 10, whether or not having self-attention in the decoder has little effect on performance (i.e.,
66.6% vs. 66.8%), but excluding self-attention significantly reduces computational costs. Therefore,
we take the decoder without self-attention by default in ARVideo.

Decoder Width and Depth. Lastly, we systematically ablate two critical aspects in designing
decoders: its width and depth. We start with a four-layer decoder and follow the default setup in
VideoMAE. As presented in Table 11, increasing the decoder width shows performance improvement
from 66.0% at a width of 384 to 66.8% at a width of 512. Further width increase makes the
performance plateau. Meanwhile, in terms of depth, deviations from the four-layer standard negatively
impacted performance: e.g., increasing to eight layers decreased performance by 0.2%, while reducing
to two layers dropped performance by 0.6% (see the last three rows in Table 11).

5 CONCLUSION

In this paper, we introduce ARVideo for self-supervised video representation learning, inspired by
the autoregressive principles of GPT in natural language processing. Diverging from conventional
methods, our approach innovatively uses video token clusters as the element for autoregressive
prediction, significantly reducing computational demands while still managing to capture essential
spatial-temporal dynamics. This advancement improves the efficiency of video data processing and
sets a new paradigm for self-supervised video representation learning. The promising results obtained
from ARVideo underscore its potential and advocate for further exploration and development of
autoregressive pretraining methods within the video domain.
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