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Abstract

Compositional reinforcement learning is a promising approach for training poli-
cies to perform complex long-horizon tasks. Typically, a high-level task is decom-
posed into a sequence of subtasks and a separate policy is trained to perform each
subtask. In this paper, we focus on the problem of training subtask policies in a
way that they can be used to perform any task; here, a task is given by a sequence
of subtasks. We aim to maximize the worst-case performance over all tasks as
opposed to the average-case performance. We formulate the problem as a two
agent zero-sum game in which the adversary picks the sequence of subtasks. We
propose two RL algorithms to solve this game: one is an adaptation of existing
multi-agent RL algorithms to our setting and the other is an asynchronous version
which enables parallel training of subtask policies. We evaluate our approach on
two multi-task environments with continuous states and actions and demonstrate
that our algorithms outperform state-of-the-art baselines.

1 Introduction

Reinforcement learning (RL) has proven to be a promising strategy for solving complex control
tasks such as walking [13], autonomous driving [17], and dexterous manipulation [3]. However, a
key challenge facing the deployment of reinforcement learning in real-world tasks is its high sample
complexity—to solve any new task requires a training a new policy designed to solve that task. One
promising solution is compositional reinforcement learning, where individual options (or skills) are
first trained to solve simple tasks; then, these options can be composed together to solve more
complex tasks [25, 24, 17]. For example, if a driving robot learns how to make left and right turns
and to drive in a straight line, it can then drive along any route composed of these primitives.

A key challenge facing compositional reinforcement learning is the generalizability of the learned
options. In particular, options trained under one distribution of tasks may no longer work well if used
in a new task, since the distribution of initial states from which the options are used may shift. An
alternate approach is to train the options separately to perform specific subtasks, but options trained
this way might cause the system to reach states from which future subtasks are hard to perform. One
can overcome this issue by handcrafting rewards to encourage avoiding such states [17], in which
case they generalize well, but this approach relies heavily on human time and expertise.

We propose a novel framework that addresses this challenges by formulating the option learning
problem as an adversarial reinforcement learning problem. At a high level, the adversary chooses
the task that minimizes the reward achieved by composing the available options. Thus, the goal is
to learn a set of robust options that perform well across all potential tasks. Then, we provide two
algorithms for solving this problem. The first adapts existing ideas for using reinforcement learning
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Figure 1: F1/10th Environment. The entry and exit regions for the right and sharp right segments
are shown in green and blue respectively.

to solve Markov games to our setting. Then, the second shows how to leverage the compositional
structure of our problem to learn options in parallel at each step of a value iteration procedure; in
some cases, by enabling such parallelism, we can reduce the computational cost of learning.

We validate our approach on two benchmarks: (i) a rooms environment where a point mass robot
must navigate any given sequence of rooms, where the sequence is an arbitrary combination of
straight, left, and right turns, and (ii) a simulated version of the F1/10th car, where a small racing car
must navigate any racetrack composed of several different track segments. In both, our empirical
results demonstrate that robust options are critical for performing well on a wide variety of tasks.

In summary, our contributions are: (i) a game theoretic formulation of the compositional reinforce-
ment learning problem, (ii) two algorithms for solving this problem, and (iii) an empirical evaluation
demonstrating the effectiveness of our approach.

Motivating example. Let us consider a small scale autonomous racing car shown in Figure 1 (a).
We would like to train a controller that can be used to navigate the car through all tracks constructed
using five kinds of segments; the possible segments are shown in Figure 1 (b) along with an example
track. The state of the car is a vector (x, y, v, θ) where (x, y) is its position on the track relative to
the current segment, v is its current speed and θ is the heading angle. An action is a pair (a, ω) ∈ R2

where a is the throttle input and ω is the steering angle. In this environment, completing each
segment is considered a subtask and a task corresponds to completing a sequence of segments—
e.g., straight→ right→ left→ sharp-right. Upon completion of a subtask, the car enters
the next segment and a change-of-coordinates is applied to the car’s state which is now relative to the
new segment. The goal here is to learn one option for each subtask such that the agent can perform
any task using these options.

If one trains the options independently with the only goal of reaching the end of each segment
(e.g., using distance-based rewards), it might (and does) happen that the car reaches the end of a
segment in a state that was not part of the initial states used to train the policy corresponding to the
next subtask. Therefore, one should make sure that the initial state distribution used during training
includes such states as well—either manually or using dataset aggregation [38]. Furthermore, it is
possible that the car reaches a state in the exit region of a segment from which it is challenging to
complete the next subtask—e.g., a state in which the car is close to and facing towards a wall. Our
algorithm identifies during training that, in order to perform future subtasks, it is better to reach the
end of a segment in a configuration where the car is facing straight relative to the next segment. As
demonstrated in our experiments, this leads to robust options and improved sample efficiency.

Related work. The options framework [41] is commonly used to model subtask policies as tem-
porally extended actions. In hierarchical RL [32, 31, 22, 9, 5, 43], options are trained along with a
high-level controller that chooses the sequence of options to execute in order to complete a specific
high-level task. There is also work on discovering options—e.g., using intrinsic motivation [30],
entropy maximization [10], semi-supervised RL [12], skill chaining [20], expectation maximiza-
tion [8] and subgoal identification [40]. There has also been a lot of research on planning using
learned options [1, 18, 37, 42, 21].

There has been some work on RL for zero-shot generalization [44, 33, 39, 23, 4]; however, in prior
work, the learning objective is to maximize average performance with respect to a fixed distribution
over tasks as opposed to the worst-case. Some hierarchical RL algorithms have also been shown to
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enable few-shot generalization [18] to unseen tasks. Most closely related to our work is the work
on compositional RL in the multi-task setting [17] in which the subtask policies are trained using
standard RL algorithms in a naive way without guarantees regarding worst-case performance.

There has also been work on skill composition using transition policies [25]; this method assumes
that the subtask policies are fixed and learns one transition policy per subtask which takes the system
from an end state to a “favourable” initial state for the subtask. However, poorly trained subtask
policies can lead to situations in which it is not possible to achieve such transitions. In contrast, our
approach trains subtask policies which compose well without requiring additional transition policies.
A recent paper [24] proposes a framework for training subtask policies with the aim of composing
them to perform a complex long-horizon task. However, their approach assumes that the high-level
task is fixed and the options are trained to maximize the performance with respect to a specific task.

There has been a lot of research on multi-agent RL algorithms [29, 15, 16, 28, 35, 36, 2] including
algorithms for two-agent zero-sum games [6, 45, 27]. In this paper, we utilize the specific structure
of our game to obtain a simple algorithm that neither requires solving matrix games nor trains a
separate policy for the adversary. Furthermore, we show that we can obtain an asynchronous RL
algorithm which enables learning options in parallel.

2 Problem Formulation

A multi-task Markov decision process (MDP) is a tupleM = (S,A, P,Σ, R, F, T, γ, η, σ0), where
S are the states, A are the actions, P (s′ | s, a) ∈ [0, 1] is the probability of transitioning from s to
s′ on action a, η is the initial state distribution, and γ ∈ (0, 1) is the discount factor. Furthermore,
Σ is a set of subtasks and for each subtask σ ∈ Σ, Rσ : S × A→ R is a reward function1, Fσ ⊆ S
is a set of final states where the subtask is considered completed and Tσ : Fσ × S → [0, 1] is the
jump probability function; upon reaching a state s in Fσ the system jumps to a new state s′ with
probability Tσ(s′ | s). For the sake of clarity, we assume2 that Tσ(s′ | s) = 0 for any s′ with
s′ ∈ Fσ′ for some σ′. Finally, σ0 ∈ Σ is the initial subtask which has to be completed first3. A
multi-task MDP can be viewed as a discrete time variant of a hybrid automaton model [17].

In the case of our motivating example, the set of subtasks is given by

Σ = {left, right, straight, sharp-left, sharp-right}

with Fσ denoting the exit region of the segment corresponding to subtask σ. We use the jump
transitions T to model the change-of-coordinates performed upon reaching an exit region. The
reward function Rσ for a subtask σ is given by Rσ(s, a, s′) = −∥s′ − cσ∥22 +B ·1(s′ ∈ Fσ) where
cσ is the center of the exit region and the subtask completion bonus B is a positive constant.

A task τ is defined to be an infinite sequence4 of subtasks τ = σ0σ1 . . ., and T denotes the set of all
tasks. For any task τ ∈ T , τ [i] denotes the ith subtask σi in τ . In our setting, the task is chosen by
the environment nondeterministically. Given a task τ , a configuration of the environment is a pair
(s, i) ∈ S × Z≥0 with s /∈ Fτ [i] denoting that the system is in state s and the current subtask is τ [i].
The initial distribution over configurations ∆ : S × Z≥0 → [0, 1] is given by ∆(s, i) = ητ [0](s) if
i = 0 and 0 otherwise. The probability of transitioning from (s, i) to (s′, j) on an action a is

Pr((s′, j) | (s, i), a) =


∑
s′′∈Fτ[i]

P (s′′ | s, a)Tτ [i](s′ | s′′) if j = i+ 1

P (s′ | s, a) if j = i

0 otherwise.

Intuitively, the system transitions to the next subtask if the current subtask is completed and stays in
the current subtask otherwise. A (deterministic) policy is a function π : S → A, where a = π(s)
is the action to take in state s. Our goal is to learn one policy πσ for each subtask σ such that the
discounted reward over the worst-case task τ is maximized. Formally, given a set of policies Π =
{πσ | σ ∈ Σ} and a task τ , we can define a Markov chain over configurations with initial distribution

1We can also have Rσ : S×A×S → R depending on the next state but we omit it for clarity of presentation.
2This assumption can be removed by adding a fictitious copy of Fσ to S for each σ ∈ Σ.
3When there is no fixed initial subtask, we can add a fictitious initial subtask.
4A finite sequence can be appended with an infinite sequence of a fictitious subtask with zero reward.
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∆ and transition probabilities given by PΠ((s
′, j) | (s, i)) = Pr((s, j′) | (s, i), πτ [i](s)). We denote

by DΠ
τ the distribution over infinite sequences of configurations ρ = (s0, i0)(s1, i1) . . . generated

by τ and Π. Then, we define the objective function as

J(Π) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]
.

These definitions can be naturally extended to stochastic policies as well. In our motivating ex-
ample, choosing a large enough completion bonus B guarantees the discounted reward to be
higher for runs in which more subtasks are completed. Our aim is to compute a set of policies
Π∗ ∈ argmaxΠ J(Π). Each subtask policy πσ defines an option [41] oσ = (πσ, Iσ, βσ) where
Iσ = S \ Fσ and βσ(s) = 1(s ∈ Fσ). Here, the choice of which option to trigger is made by the
environment rather than the agent.

3 Reduction to Stagewise Markov Games

The problem statement naturally leads to a game theoretic view in which the environment is
the adversary. We can formally reduce the problem to a two-agent zero-sum Markov game
G = (S̄, A1, A2, P̄ , R̄, γ̄, η̄) where S̄ = S × Σ is the set of states, A1 = A are the actions of
agent 1 (the agent learning the options) and A2 = Σ are the actions of agent 2 (the adversary). The
transition probability function P̄ : S̄ ×A1 ×A2 × S̄ → [0, 1] is given by

P̄ ((s′, σ′) | (s, σ), a1, a2) =


P (s′ | s, a1) if s /∈ Fσ & σ = σ′

Tσ(s
′ | s) if s ∈ Fσ & σ′ = a2

0 otherwise.

We observe that the states are partitioned into two sets S̄ = S1 ∪ S2 where S1 = {(s, σ) | s /∈ Fσ}
is the set of states where agent 1 acts (causing a step inM) and S2 = {(s, σ) | s ∈ Fσ} is the set
of states where agent 2 takes actions (causing a change of subtask); this makes G a stagewise game.
The reward function R̄ : S̄×A1 → R is given by R̄((s, σ), a) = Rσ(s, a) if s /∈ Fσ and 0 otherwise.
The discount factor depends on the state and is given by γ̄(s, σ) = γ if s /∈ Fσ and 1 otherwise; this
is because a change of subtask does not invoke a step inM. The initial state distribution η̄ is given
by η̄(s, σ) = η(s)1(σ = σ0). A run of the game is a sequence ρ̄ = s̄0a

1
0a

2
0s̄1a

1
1a

2
1 . . . where s̄t ∈ S̄

and ait ∈ Ai.
A (deterministic) policy for agent i is a function πi : S̄ → Ai. Given policies π1 and π2 for agents 1
and 2, respectively and a state s̄ ∈ S̄ we denote by DG

s̄ (π1, π2) the distribution over runs generated
by π1 and π2 starting at s̄. Then, the value of a state s̄ is defined by

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]
.

We are interested in computing a policy π∗
1 maximizing

JG(π1) = Es̄∼η̄[min
π2

V π1,π2(s̄)].

Given a policy π1 for agent 1, we can construct a policy πσ for any subtask σ given by πσ(s) =
π1(s, σ); we denote by Π(π1) the set of subtask policies constructed this way. The following the-
orem connects the objective of the game with our multi-task learning objective; all proofs are in
Appendix A.
Theorem 3.1. For any policy π1 for agent 1 in G, we have J(Π(π1)) ≥ JG(π1).

Therefore, JG(π1) is a lower bound on the objective J(Π(π1)) which we seek to maximize. Now,
let us define the optimal value of a state s̄ by V ∗(s̄) = maxπ1 minπ2 V

π1,π2(s̄). The following
theorem shows that it is possible to construct a policy π∗

1 that maximizes JG(π1) from the optimal
value function V ∗.
Theorem 3.2. For any policy π∗

1 such that for all (s, σ) ∈ S1,

π∗
1(s, σ) ∈ argmaxa∈A

{
R̄((s, σ), a) + γ ·

∑
s′∈S

P (s′ | s, a)V ∗(s′, σ)
}
,

we have that π∗
1 ∈ argmaxπ1

JG(π1).
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Algorithm 1 Asynchronous value iteration algorithm for computing optimal subtask policies.
1: function ASYNCVALUEITERATION(M, V )
2: while stopping criterion is met do
3: for σ ∈ Σ do // in parallel
4: ComputeWσ(V )

5: V ← Fasync(V ) // using Equation 3

3.1 Value Iteration

In this section, we briefly look at two value iteration algorithms to compute V ∗ which we later adapt
in Section 4 to obtain learning algorithms. Let V = {V : S1 → R} denote the set of all value
functions over S1. Given a value function V ∈ V we define its extension to all of S̄ using

JV K(s, σ) =
{
minσ′∈Σ

∑
s′∈S Tσ(s

′ | s)V (s′, σ′) if s ∈ Fσ
V (s, σ) otherwise.

(1)

For a state s ∈ Fσ , JV K(s, σ) denotes the worst-case value (according to V ) with respect to the
possible choices of next subtask σ′. Now, we consider the Bellman operator F : V → V defined by

F(V )(s, σ) = max
a∈A

{
R̄((s, σ), a) + γ ·

∑
s′∈S

P (s′ | s, a)JV K(s′, σ)
}

(2)

for all (s, σ) ∈ S1. Let us denote by V ∗ ↓S1
the restriction of V ∗ to S1. The following lemma

follows straightforwardly giving us our first value iteration procedure.
Theorem 3.3. F is a contraction mapping with respect to the ℓ∞-norm on V and V ∗ ↓S1

is the
unique fixed point of F with limn→∞ Fn(V ) = V ∗ ↓S1

for all V ∈ V .

Next we consider an asynchronous value iteration procedure which allows us to parallelize com-
puting subtask policies for different subtasks. Given a subtask σ and a value function V ∈ V , we
define a subtask MDPMV

σ which behaves likeM until reaching a final state s ∈ Fσ after which it
transitions to a dead state ⊥ achieving a reward of JV K(s, σ). Formally,MV

σ = (Sσ, A, Pσ, R
V
σ , γ)

where Sσ = S ⊔ {⊥} with ⊥ being a special dead state, Pσ(s′ | s, a) = P (s′ | s, a) if ⊥ ̸= s /∈ Fσ
and Pσ(s′ | s, a) = 1(s′ = ⊥) otherwise. The reward function is given by RVσ (s, a) = Rσ(s, a) if
⊥ ≠ s /∈ Fσ , RVσ (s, a) = JV K(s, σ) if ⊥ ≠ s ∈ Fσ and is 0 otherwise. We denote byWσ(V ) the
optimal value function of the MDPMV

σ . We then define the asynchronous value iteration operator
Fasync : V → V using

Fasync(V )(s, σ) =Wσ(V )(s). (3)

We can show that repeated application of Fasync leads to the optimal value function V ∗ of the G.
Theorem 3.4. For any V ∈ V , limn→∞ Fnasync(V )→ V ∗ ↓S1

.

Since each Wσ(V ) can be computed independently, we can parallelize the computation of Fasync

giving us the algorithm in Algorithm 1. We can also show that it is not necessary to computeWσ(V )
exactly. Let Vσ = {V̄ : Sσ → R} be the set of all value functions over Sσ . For a fixed V ∈ V , let
Fσ,V : Vσ → Vσ denote the usual Bellman operator for the MDPMV

σ given by

Fσ,V (V̄ )(s) = max
a∈A

{
RVσ (s, a) + γ ·

∑
s′∈Sσ

Pσ(s
′ | s, a)V̄ (s′)

}
for all V̄ ∈ Vσ and s ∈ Sσ . For any V ∈ V and σ ∈ Σ, we define a corresponding Vσ ∈ Vσ using
Vσ(s) = JV K(s, σ) if s ∈ S and Vσ(⊥) = 0. Then, for any integer m > 0 and V ∈ V , we can use
Fmσ,V (Vσ) as an approximation toWσ(V ). Let us define Fm : V → V using

Fm(V )(s, σ) = Fmσ,V (Vσ)(s).

Intuitively, Fm corresponds to performing m steps of value iteration in each subtask MDP MV
σ

(which can be parallelized) starting at Vσ . The following theorem guarantees convergence when
using Fm instead of Fasync.
Theorem 3.5. For any V ∈ V and m > 0, limn→∞ Fnm(V )→ V ∗ ↓S1

.
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Algorithm 2 Robust Option Soft Actor Critic.
Inputs: Learning rates αψ , αθ, entropy weight β and Polyak rate δ.

1: function ROSAC(αψ , αθ, β, δ)
2: Initialize parameters {ψσ}σ∈Σ, {ψtarg

σ }σ∈Σ and {θσ}σ∈Σ

3: Initialize replay buffer B
4: for each iteration do
5: for each episode do
6: s0 ∼ η
7: σ0 ← InitialSubtask
8: for each step t do
9: at ∼ πθσt

(· | st) and st+1 ∼ P (· | s, a)
10: B ← B ∪ {(st, at, st+1)}
11: if st+1 ∈ Fσt

then
12: st+1 ∼ Tσt(· | st+1)

13: σt+1 ← Greedy(ε, argminσ Ṽ (st+1, σ),Σ)
14: else
15: σt+1 ← σt
16: for each gradient step do
17: Sample batch B ∼ B
18: for σ ∈ Σ do
19: ψσ ← ψσ − αψ∇ψσLQ(ψσ, B)
20: θσ ← θσ − αθ∇θσLπ(θσ, B)
21: ψtarg

σ ← δψσ + (1− δ)ψtarg
σ

4 Learning Algorithms

In this section, we present RL algorithms for solving the game G. We first consider the finite MDP
setting for which we can obtain a modified Q-learning algorithm with a convergence guarantee. We
then present two algorithms based on Soft Actor Critic (SAC) for the continuous state setting.

4.1 Finite MDP

Assuming finite states and actions, we can obtain a Q-learning variant for solving G which we call
Robust Option Q-learning. We assume that jump transitions T are known to the learner; this is usu-
ally the case since jump transitions are used to model subtask transitions and change-of-coordinates
within the controller. However, we believe that the algorithm can be easily extended to the scenario
where T is unknown.

We maintain a function Q : S1 × A → R with Q(s, σ, a) denoting Q((s, σ), a). The corre-
sponding value function VQ is defined using VQ(s, σ) = maxa∈AQ(s, σ, a) and is extended to
all of S̄ as JVQK. Note that, given a Q-function, the extended value function JVQK can be com-
puted exactly. Robust Option Q-learning is an iterative process—in each iteration t, it takes a step
((s, σ), a1, a2, (s

′, σ)) in G with (s, σ) ∈ S1 and updates the Q-function using

Qt+1(s, σ, a1)← (1− αt)Qt(s, σ, a1) + αt(R̄((s, σ), a1) + γJVQtK(s
′, σ)). (4)

where Qt is the Q-function in iteration t and JVQtK is the corresponding extended value function.

Under standard assumptions on the learning rates αt, similar toQ-learning, we can show that Robust
Option Q-learning converges to the optimal Q-function almost surely. Here, the optimal Q-function
is defined by Q∗(s, σ, a) = R̄((s, σ), a) + γ

∑
s′∈S P (s

′ | s, a)V ∗(s′, σ) for all (s, σ) ∈ S1. Let
αt(s, σ, a) denote the learning rate used in iteration t ifQt(s, σ, a) is updated and 0 otherwise. Then,
we have the following theorem.

Theorem 4.1. If
∑
t αt(s, σ, a) =∞ and

∑
t α

2
t (s, σ, a) <∞ for all (s, σ) ∈ S1 and a ∈ A, then

limt→∞Qt = Q∗ with probability 1.
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4.2 Continuous States and Actions

In the case of continuous states and actions, we can adapt any Q-function based RL algorithm such
as Deep Deterministic Policy Gradients (DDPG) [26] or Soft Actor Critic (SAC) [14] to our setting.
Here we present an SAC based algorithm that we call Robust Option SAC (ROSAC) which is outlined
in Algorithm 2. This algorithm, like SAC, adds an entropy bonus to the reward function to improve
exploration.

We maintain two Q-functions for each subtask σ, Qψσ : S → R parameterized by ψσ and a target
function Qψtarg

σ
parameterized by ψtarg

σ . We also maintain a stochastic subtask policy πθσ : S →
D(A) for each subtask σ where D(A) denotes the set of distributions over A. Given a step (s, a, s′)
inM and a subtask σ with s /∈ Fσ , we define the target value by

yσ(s, a, s
′) = Rσ(s, a) + γJV K(s′, σ)

where the value JV K(s′, σ) is estimated using Ṽ (s′, σ) = Qψtarg
σ

(s′, ã) − β log πθσ (ã | s′) with
ã ∼ πθσ (· | s′) if s′ /∈ Fσ . If s′ ∈ Fσ , we estimate JV K(s′, σ) using Ṽ (s′, σ) = minσ′∈Σ Ṽ (s′′, σ′)

where Ṽ (s′′, σ′) = Qψtarg

σ′
(s′′, ã) − β log πθσ′ (ã | s′′) with ã ∼ πθσ′ (· | s′′) and s′′ ∼ Tσ(· | s′).

Now, given a batch B = {(s, a, s′)} of steps inM we update ψσ using one step of gradient descent
corresponding to the loss

LQ(ψσ, B) =
1

|B|
∑

(s,a,s′)∈B

(Qψσ (s, a)− yσ(s, a, s′))2

and the subtask policy πθσ is updated using the loss

Lπ(θσ, B) = − 1

|B|
∑

(s,a,s′)∈B

Eã∼πθσ (·|s)
[
Qψσ

(s, ã)− β log πθσ (ã | s)
]
.

The gradient ∇θσLπ(θσ, B) can be estimated using the reparametrization trick if πθσ (· | s) is a
Gaussian distribution whose parameters are differentiable w.r.t. θσ . We use Polyak averaging to
update the target Q-networks {Qψtarg

σ
| σ ∈ Σ}.

Note that we do not train a separate policy for the adversary. During exploration, we use the ε-
greedy strategy to select subtasks. We first estimate the “worst” subtask for a state s using σ̃ =
argminσ Ṽ (s, σ) where Ṽ (s, σ) is estimated as before. Then the function Greedy(ε, σ̃,Σ) chooses
σ̃ with probability 1− ε and picks a subtask uniformly at random from Σ with probability ε.

Asynchronous ROSAC. We can also obtain an asynchronous version of the above algorithm which
lets us train subtask policies in parallel. Asynchronous Robust Option SAC (AROSAC) is outlined in
Algorithm 3. Here we use one replay buffer for each subtask. We maintain an initial state distribution
η̃ over S to be used for training every subtask policy {πσ}σ∈Σ. η̃ is represented using a finite set of
states D from which a state is sampled uniformly at random. The value function Ṽ : S × Σ → R
is estimated as before. To be specific, in each iteration, an estimate of any value Ṽ (s, σ) is obtained
on the fly using the Q-functions and the subtask policies from the previous iteration.

The SAC subroutine runs the standard Soft Actor Critic algorithm for N iterations on the subtask
MDPMṼ

σ (defined in Section 3)5 with initial state distribution η̃ (defaults to η if D = ∅). It returns
the updated parameters along with states Xσ visited during exploration with Xσ ⊆ Fσ . The states
in Xσ are used to update the initial state distribution for the next iteration following the Dataset
Aggregation principle [38].

5 Experiments

We evaluate our algorithms ROSAC and AROSAC on two multi-task environments; a rooms environ-
ment and an F1/10th racing car environment [11].

5Note that it is possible to obtain samples from MṼ
σ as long can one can obtain samples from M and

membership in Fσ can be decided.
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Algorithm 3 Asynchronous Robust Option Soft Actor Critic.
Inputs: Learning rates α, entropy weight β, Polyak rate δ and number of SAC iterations N .

1: function AROSAC(α, β, δ, N )
2: Initialize parameters Ψ = {ψσ}σ∈Σ, Ψtarg = {ψtarg

σ }σ∈Σ and Θ = {θσ}σ∈Σ

3: Initialize replay buffers {Bσ}σ∈Σ and Initialize D = {}
4: for each iteration do
5: Ṽ ← OBTAINVALUEESTIMATOR(Ψ,Θ)
6: for σ ∈ Σ do // in parallel
7: ψσ, ψ

targ
σ , θσ, Xσ ← SAC(MṼ

σ , D, ψσ, ψ
targ
σ , θσ, α, β, δ,N)

8: for σ ∈ Σ do
9: for s ∈ Xσ do

10: s′ ∼ Tσ(· | s) and D ← D ∪ {s′}

Figure 2: Rooms environ-
ment

Rooms environment. We consider the environment shown in Fig-
ure 2 which depicts a room with walls and exits. Initially the robot
is placed in the green triangle. The L-shaped obstacles indicate walls
within the room that the robot cannot cross. A state of the system is a
position (x, y) ∈ R2 and an action is a pair (v, θ) where v is the speed
and θ is the heading angle to follow during the next time-step. There
are three exits: left (blue), right (yellow) and up (grey) reaching each
of which is a subtask. Upon reaching an exit, the robot enters another
identical room where the exit is identified (via change-of-coordinates)
with the bottom entry region of the current room. A task is a sequence
of directions—e.g., left → right → up → right indicating that
the robot should reach the left exit followed by the right exit in the
subsequent room and so on. Although the dynamics are simple, the
obstacles make learning challenging in the adversarial setting.

F1/10th environment. This is the environment in the motivating example. A publicly available
simulator [11] of the F1/10th car is used for training and testing. The policies use the LiDAR
measurements from the car as input (as opposed to the state) and we assume that the controller can
detect the completion of each segment; as shown in prior work [17], one can train a separate neural
network to predict subtask completion.

Baselines. We compare our approach to three baselines. The baseline NAIVE trains one controller
for each subtask with the only aim of completing the subtask, similar to [17], using a manually
designed initial state distribution. DAGGER is a similar approach which, instead of using a manually
designed initial state distribution for training, infers the initial state distribution using the Dataset
Aggregation principle [38]. The MADDPG baseline solves the game G using the multi-agent RL
algorithm proposed in [29] for solving concurrent Markov games with continuous states and actions.

Evaluation. We evaluate the performance of these algorithms against two adversaries. One adver-
sary is the random adversary which picks the next subtask uniformly at random from the set of all
subtasks. The other adversary estimates the worst sequence of subtasks for a given set of options
using Monte Carlo Tree Search (MCTS) [19]. The MCTS adversary is trained by assigning a reward
of 1 if it selects a subtask which the corresponding policy is unable to complete within a fixed time
budget and a reward of 0 otherwise. For the Rooms environment, we consider subtask sequences of
length atmost 5 whereas for the F1/10th environment, we consider sequences of subtasks of length
at most 20. We evaluate both the average number of subtasks completed as well as the probability
of completing the set maximum number of subtasks.

Results. The plots for the rooms environment are shown in Figure 3 and plots for the F1/10th
environment are shown in Figure 4. We can observe that ROSAC is able outperform other approaches
and learn robust options. In the rooms environment, AROSAC achieves similar performace albeit
requiring more samples; however, it has the added benefit of being parallelizable. In the F1/10th
environment, it performs similar to the other baselines. DAGGER and NAIVE baselines are unable to
learn policies that can be used to perform long sequences of subtasks; this is mostly due to the fact
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Figure 3: Plots for the Rooms environment. x-axis denoted the number of sample steps and y-axis
denoted the either the average number of subtasks completed or the probability of completing 5
subtasks. Results are averaged over 10 runs. Error bars indicate ± standard deviation.
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Figure 4: Plots for the F1/10th environment. x-axis denoted the number of sample steps and y-axis
denoted the either the average number of subtasks completed or the probability of completing 20
subtasks. Results are averaged over 5 runs. Error bars indicate ± standard deviation.

that they learn options that cause the system to reach states from which future subtasks are difficult
to perform—e.g., in the rooms environment, the agent sometimes reaches the left half of the exits
from where it is difficult to reach the right exit in the subsequent room. Although MADDPG uses the
same reduction to two-player games as ROSAC, it ignores all the structure in the game and treats it as
a generic Markov game. As a result, it learns a separate NN policy for each player which leads to the
issue of unstable training, primarily due to the non-stationary nature of the environment observed
by either agent. As shown in the plots, this leads to poor performance when applied to the problem
of learning robust options.

6 Conclusions

We have proposed a framework for training robust options which can be used to perform arbitrary
sequences of subtasks. In our framework, we first reduce the problem to a two-agent zero-sum
stagewise Markov game which has a unique structure. We utilized this structure to design two al-
gorithms, namely ROSAC and AROSAC, and demonstrated that they outperform existing approaches
for training options with respect to multi-task performance. One potential limitation of our approach
is that the set of subtasks is fixed and has to be provided by the user. An interesting direction for
future work is to address this limitation by combining our approach with option discovery methods.

Societal impacts. Our work seeks to improve reinforcement learning for complex long-horizon
tasks. Any progress in this direction would enable robotics applications both with positive impact—
e.g., flexible and general-purpose manufacturing robotics, robots for achieving agricultural tasks,
and robots that can be used to perform household chores—and with negative or controversial
impact—e.g., military applications. These issues are inherent in all work seeking to improve the
abilities of robots.
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